
Java with BlueJ and Pi

Ron McFadyen

May 11, 2015

ii

Copyright

c©2015 by Ron McFadyen

Ron McFadyen
Department of Applied Computer Science
University of Winnipeg
515 Portage Avenue
Winnipeg, Manitoba, Canada
R3B 2E9

r.mcfadyen@uwinnipeg.ca
ron.mcfadyen@gmail.com

This work is licensed under Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International Public License. To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-sa/4.0/.
This work can be distributed in unmodified form for non-commercial purposes.
Modified versions can be made and distributed for non-commercial purposes
provided they are distributed under the same license as the original. Other uses
require permission of the author.

The website for this book is www.acs.uwinnipeg.ca/rmcfadyen/CreativeCommons/

To Callum

iii

iv

Contents

1 Introduction 1

1.1 Java, the beginning . 1

1.2 Running Java Programs . 2

1.3 A First Program . 3

1.3.1 Exercises . 3

1.4 BlueJ . 4

1.5 Raspberry Pi . 5

2 Basics 7

2.1 Variables . 8

2.1.1 Exercises . 9

2.2 char . 9

2.3 boolean . 9

2.4 byte, short, int, long . 10

2.5 float, double . 10

2.6 Calculations in Java . 11

2.6.1 Expressions . 12

2.6.2 Exercises . 13

2.6.3 Exercises . 17

2.6.4 Mixed Mode Expressions 17

2.6.5 Unary Operators . 18

2.6.6 Exercises . 19

2.7 The String Class . 19

2.7.1 Catenation operator + . 23

2.7.2 Exercises . 23

2.8 Output . 24

2.8.1 System.out . 24

2.8.2 JOptionPane . 25

2.9 Input . 27

2.9.1 The Scanner Class . 27

2.9.2 The JOptionPane Class 28

v

vi CONTENTS

3 Control Structures 31
3.1 Compound statements . 31
3.2 The while Statement . 33

3.2.1 Exercises . 36
3.2.2 Nesting statements . 38
3.2.3 Autoincrement . 39
3.2.4 Exercises . 39

3.3 The if Statement . 40
3.3.1 Exercises . 41
3.3.2 Nesting statements . 42
3.3.3 Exercises . 45

3.4 The for Statement . 46
3.5 The do while Statement . 46
3.6 The switch Statement . 46
3.7 Logical Expressions . 47

3.7.1 Examples . 48

Chapter 1

Introduction

This book is about programming in Java. We begin with short descriptions of
Java, BlueJ, and the Raspberry Pi. We feel that BlueJ is one of the simplest
development environments for the beginning programmer to use. All of the
examples in this text have been tested using BlueJ on one of the smallest and
inexpensive computers available today, the Raspberry Pi. You will find exercises
at the end of each section. Answers are available on the website for this text to
all exercises with the exception of extension exercises.

1.1 Java, the beginning

James Gosling is referred to as the father of the Java programming language.
He graduated with a BSc (1977) from University of Calgary and a PhD (1983)
from Carnegie Mellon University. Later, in 1994 at Sun Microsystems he created
the Java language while leading a team that was purposed with developing a
handheld home-entertainment controller targeted at the digital cable television
industry. That project did not produce the expected outcome, but in 1995,
the team announced that the Netscape Navigator Internet browser would incor-
porate Java technology, and from there its adoption for implementing systems
began.

James Gosling has received several awards, including:

• 2007 - appointed an Officer of the Order of Canada.[1]

• 2013 - named an Association of Computing Machinery Fellow for ”Java,
NeWS, Emacs, NetBeans, and other contributions to programming lan-
guages, tools, and environments”.[2]

• 2015 - awarded the IEEE John von Neumann Medal for ”the Java pro-
gramming language, Java Virtual Machine, and other contributions to
programming languages and environments”.[3]

1

2 CHAPTER 1. INTRODUCTION

In 2010 Oracle acquired Sun Microsystems and took over the development
of the language. The language has gone through a number of updates, and at
the time of writing the current release is referred to as Java 8. All programs in
this text have been tested on Java 8.

This text is about programming Java applications. The student may be
interested Java applets (these run in a web browser) which are discussed in an
appendix.

1.2 Running Java Programs

When someone develops a Java program they must first enter the Java code in a
text file; however, these files must have names that end with ”.java”. These files
are known as source code files. In order to execute a Java program it must first
of all be translated into Java bytecode. Source code files are human-readable
but bytecode is just 0’s and 1’s. A program that does this is called a compiler,
and we say that the source code is compiled into bytecode. The compiler made
available by Oracle is called javac. Bytecode files always have a name that ends
with ”.class”. The bytecode is not directly executable on a computer - bytecode
is not machine code, but it is close to that. Bytecode is ”executed” by a special
program call the Java Virtual Machine, or jvm. Java programs are portable in
the sense that you can write a program and deploy it anywhere - as long as there
is a jvm for that platform. The process of developing, compiling, and running
a Java program is shown below.

1.3. A FIRST PROGRAM 3

1.3 A First Program

The traditional first program to be seen in many texts is the HelloWorld pro-
gram. When it is executed, this program does one simple thing: it displays the
message ”Hello World” and then ends.

Listing 1.1: HelloWorld.java

1 public class HelloWorld

2 {

3 public static void main(String[] args)

4 {

5 String message = "Hello World";

6 System.out.println(message);

7 }

8 }

When you inspect this program one thing that is immediately obvious is that
there is a lot of overhead to do just one thing. Each line of the program is
explained below:

1. The first line gives a name to the program: HelloWorld.

2. The program is actually a Java class and the lines making up the class are
delimited by the { in line 2 and the } in the very last line.

3. A class like this has a method, and the third line gives the name main
to this method. In general, a method can take arguments and the text
(String[] args) is the way those are indicated for a main method - much
more on this in a later chapter.

4. The lines that comprise the main method begin with the { in the fourth
line and end with the } in the seventh line.

5. Line 5 is an assignment statement that says the value to be assigned to
the variable message is the text Hello World. When this line executes the
string Hello World is stored in a memory location reserved for the variable
message.

6. Line 6 is an example of how output is obtained. When this line executes
the contents of message are transferred to a display unit.

1.3.1 Exercises

1. Run the Hello World program.

2. Modify the Hello World program so it displays a different message.

4 CHAPTER 1. INTRODUCTION

1.4 BlueJ

BlueJ is an integrated development environment that provides the programmer
with a framework that includes an editor, compiler, and a runtime environ-
ment. It is our experience that BlueJ is very suitable for the beginning Java
programmer.

BlueJ is available as a free download from http://www.bluej.org. There is
no point repeating a description and installation instructions that can be found
at the BlueJ site. Below is a picture showing HelloWorld in a BlueJ project.
Note the button available to compile the source code.

1.5. RASPBERRY PI 5

1.5 Raspberry Pi

The Raspberry Pi is a small computer developed by the Raspberry Pi foundation
in order to promote the teaching of computer science. One remarkable point
about the Raspberry Pi is its price: US$35 (at the time of writing). The current
model comes with 1 GB of memory, 4 USB ports, an ethernet port, a camera
interface, HDMI and composite outputs, a micro SD slot, and a set of general
purpose input/output pins. The computer weighs 45 grams and it all fits inside
a case with dimensions 9.5 ×6.2× 2.7cm.

At the Raspberry Pi and BlueJ sites you will see that the Pi runs BlueJ
(and all the programs included in this text have been run on the Pi). Of course
one does need some additional components to make it useful: keyboard, mouse,
monitor, internet. Below is a picture of one installed inside a clear case with a
wireless keyboard/mouse adapter, wifi adapter, and HDMI cable attached.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Basics

The focus of this chapter is literals, variables, primitive data types, and related
expressions. It is common for programs to include constants; in Java these are
referred to as literals. Examples include: 123, 123.45, ’a’, ”Gosling”, true. You
will see literals used in many examples to follow.

Variables are indispensable to programming. A variable is simply a name
given to a piece of computer memory - a piece of memory that holds a value that
a program can use and change as it executes. The Java programming language
requires us to declare the type of data to be associated with a variable. There are
eight primitive data types: byte, short, int, long, float, double, char and boolean.
When you develop a program you choose a specific data type depending on the
nature of the data your program processes:

• byte, short, int, and long are used for cases where the data is to be treated
as whole numbers. For example, 33, 498, -100 are whole numbers (numbers
without a fractional component). These data types differ with regards to
the magnitude of number they can represent.

• float and double are used for cases where the data is numeric and where
one expects values to have a fractional component such as: 101.5, 26.334,
-55.5. When written we show them with a decimal point. Again, these
two types differ with regards to size in terms of the number of significant
digits and in the magnitude of the number they can represent.

• char is used when there are individual characters to be handled. Examples
of individual characters are ’a’, ’b’, ’q’, ’$’. When specific values are used
they are enclosed in single quotes as shown.

• boolean is used when the situation requires one to work with logical values
of true and false. In a Java program these values are written just as we
do in English: true, false.

7

8 CHAPTER 2. BASICS

2.1 Variables

The concept of a variable is very important to programming. A variable is
a named location in a computer’s memory. A Java programmer will declare
variables in declaration statements and then use those variable names later
in the program to refer to the value currently associated with the variable.
Consider the program below which does the following:

• it declares an int variable called i,

• sets the value of i to 1,

• displays the value of i,

• changes the value of i to be 25,

• and then displays its new value.

Listing 2.1: Variable Declarations

1 /**

2 * This Java class declares an int variable,

3 * assigns values, and displays the values

4 */

5 public class Variables

6 {

7 public static void main(String[] args){

8 // declare a variable i to hold an int value

9 int i;

10 // set i to 1 and display the value

11 i = 1;

12 System.out.println ("i is: "+i);

13 // change the value of i and display it again

14 i = 25;

15 System.out.println ("i is: "+i);

16 }

17 }

As you study Java you will find that certain names are keywords and as
such they cannot be used for variable names - keywords are reserved for special
purposes only. The word int in a Java program is reserved for situations where
one declares a variable to be of type int. For instance, you cannot declare a
variable to have the name int. In sample programs we have seen a few of these
reserved words: public, class, void, static.

Naming Variables

A convention used by many Java programmers is to choose names that are
short yet meaningful. A name you choose should indicate the intent of its

2.2. CHAR 9

use. In situations where the intent of use involves more than one word a Java
programmer will often name the variable in camel case. For instance, suppose
you need a variable to keep track of net pay. In order to have a proper name
a programmer could choose the name netPay for the variable. Two words are
involved: net and pay. the first word is in lower case and other word is catenated
to it, and only the first letter of the second word is capitalized. Camel case is
a style where words are catenated together forming a variable name - the first
word is all lower case, the second and subsequent words have only the first letter
capitalized.

Some examples of variables named according to camel case:

netPay grossPay
dayOfWeek shippingAddress
monthOfYear billingAddress
studentNumber lastName

Camel case is a good convention to follow when declaring variables. How-
ever, Java will accept any variable name (that is not a keyword) as long as the
name starts with a letter and contains any mixture of letters, digits, and the
underscore character (’ ’). Some valid variable names include: a123, net pay,
gross pay.

Java variable names are case-sensitive. This means that variable names such
as NetPay and netPay are two distinct variables.

2.1.1 Exercises

1. Choose one of the programs from above and modify it to use a keyword
for a variable name. What is the response you get from the Java compiler.

2. Modify the println in the Hello World so that the variable message is
misnamed as Message with a capital M. What is the response you get
from the Java compiler.

2.2 char

char is used when you need to handle characters individually. When you
see a char value in a program you see them enclosed in single quotes, as in:
’a’,’A’.’q’,’%’.

Java organizes memory for char values so that each one is stored in 2 bytes
of memory. 2 bytes of memory means that there can be as many as 65536(216)
individual characters.

2.3 boolean

The boolean type has two values: true and false. We will see that the boolean
type is particularly important when we discuss logical expressions and control
structures.

10 CHAPTER 2. BASICS

2.4 byte, short, int, long

These data types are used for numeric values where there is no fractional com-
ponent - all values are whole integers. These types differ with respect to the
amount of memory used (and therefore minimum and maximum values):

data type memory minimum value maximum value
byte 1 byte -128 127
short 2 bytes -32768 32767
int 4 bytes -2147483648 2147483647
long 8 bytes -9223372036854775808 9223372036854775807

Calculations can involve any of addition, subtraction, multiplication, divi-
sion, and modulo, as shown in the following:

operator example of use example’s result
+ 7 + 11 18
- 12 - 5 7
* 3 * 4 12
/ 13/5 2
% 13 % 5 3

With respect to the last three rows in the above table:

• the multiplication operator in Java is the *.

• / is the division operator. If we divide one int by another the result is also
an int - that is, there is no fractional component; any remainder is lost.

• % is the modulo operator which yields the remainder when the first
operand is divided by the second operand.

Exercise: Write programs to determine what happens when a program:

• adds 1 to the largest value.

• subtracts 1 from the smallest value.

• divides a value by zero.

We will discuss other operators later in the text.

2.5 float, double

These are used to represent values that have decimal places. Just as we cannot
write down the fraction 1/3 completely (it is a repeating decimal 0.33333 etc.)
there are fractions that cannot be represented in a computer. With limited space
we are often storing just an approximation. One must be aware that round-off
can occur and so this type should not be used in some cases: for example if your

2.6. CALCULATIONS IN JAVA 11

program needs to represent monetary values. More about this much later on in
the text. These types differ with respect to the number of significant digits they
store (approximately 7 for float and 16 for double) and the overall magnitude
of a value:

data type memory minimum (approx) maximum (approx)
float 4 bytes ±1.4× 10−45 ±3.4× 1038

double 8 bytes ±4.9× 10−324 ±1.79769× 10308

Of course a programmer can perform calculations on doubles. The operators
we will discuss at this time include +, -, *, and / as shown in the following table.

operator example of use example’s result
+ 7.1 + 1.1 8.2
- 12.1 - 5.0 7.1
* 2.2 * 2.2 4.84
/ 10/4 2.5

When programmers use float or double they must be aware that some num-
bers are only approximated in memory. Consider the program below that cal-
culates the difference between two values:

Listing 2.2: Approximations.java

1 public class Approximations

2 {

3 public static void main(String[] args)

4 {

5 // the following result should be 0.05

6 // but the value printed is 0.04999999999999716

7 System.out.println(100.25-100.20);

8 }

9 }

Try running the above program and verify the output is as indicated.
If a data type for a value with decimal places is not given, the default is

double; therefore, the calculations in the above example were carried out using
double arithmetic.

2.6 Calculations in Java

Our previous examples of calculations were simple: two operands and one op-
erator. If you require more complicated calculations then you must code the
expression carefully. The notation for expressions used in Java is called infix:
you type the first operand, then the operator, and then the second operand, as
in 9.0 * 5.0. Operations can be combined. For instance, suppose the variable c is
of data type double and represents a value in degrees Celsius, then the formula
for converting Celsius temperatures to Fahrenheit is coded as:

12 CHAPTER 2. BASICS

((9.0 / 5.0) * c) - 32.0

There are several points to be made regarding the above expression:

• a value expressed with a decimal point is by default a double value;

• parentheses are used to create sub-expressions - sub-expressions are eval-
uated first before anything else;

• the order of operations can be critical: in this case the formula for con-
verting Celsius to Fahrenheit requires the division to be performed before
the multiplication and the subtraction must be done last;

• all operations in this example involve doubles.

The Java language evaluates an expression according to priorities (which can be
overridden using sub-expressions). The highest priority operators are performed
first and then the next highest, and so on.

2.6.1 Expressions

An expression is Java code which, when evaluated, yields a value. We will firstly
consider expressions that involve literals, variables and operators.

The Assignment Operator

In terms of Java syntax, we previously referred to the following as an assignment
statement.

i = 1;

This is actually a Java statement with the expression

i = 1

followed by a semi-colon. In the above, the equals (=) sign is an operator, and
the expression

i = 1

is to be read ”the value 1 is assigned to the variable i” - the value 1 is stored in
the memory location belonging to i. The assignment operator has two operands.
The operand to the left of the equals sign must be a variable; the operand to
the right must be an expression. When the assignment is executed, the value
of the expression (on the right of the assignment operator) will be stored in the
memory location reserved for the variable.

2.6. CALCULATIONS IN JAVA 13

2.6.2 Exercises

1. Modify the following program so the two print statements produce exactly
the same results. For this to work, Java statements that interchange the
values of x and y are required.

1 public class InterchangeVariableValues

2 {

3 public static void main(String[] args){

4 {

5 int x = 33, y = 222;

6 System.out.println(x+" "+y);

7 int temp;

8 temp = x;

9

10

11 // This next print statement is to produce exactly the

12 // same output (character-for-character) as the

13 // previous print statement

14 System.out.println(y+" "+x);

15 }

16 }

17 }

2. Modify question 1 so that the two values for x and y are obtained as input
from the user.

Other Operators

Other operators we consider in this section are +, -, *, /, and %. Note that any
example that uses % will be using int operands.
As with the equals operator these are used in an infix fashion: one operand to
the left of the operator and one operand to the right of the operator. Some
examples:

Operator Examples
netPay + overtimePay
grossPay - netPay
hours * 20.50
13 / 5
13 % 5

Complex expressions

Expressions can be more complicated; we can write more complex expressions
involving these operators so long as each variable, literal, or sub-expresson is
separated from the next variable or literal by an operator. At least one space

14 CHAPTER 2. BASICS

must separate an operand and an operator. Consider these examples of Java
expressions:

Java Expressions
9.0 / 5.0 * c - 32.0
f = 9.0 / 5.0 * c - 32.0
number / 10 * 10
grossPay - deductions * taxRate

Operator Priorities

When you examine the above expressions, in what order do you think the oper-
ations are performed? Are calculations performed in a left-to-right manner, or,
are some operations performed before others?

Consider the last example

grossPay - deductions * taxRate

Suppose the intention of the programmer is to implement the business rule:
taxes are calculated as net pay (gross pay minus deductions) multiplied by the
tax rate.

This would not be the result as Java gives * a higher priority than -. By this
we mean that, in Java, the multiplication would be computed first giving us the
result of deductions * taxRate, the result of which would then be subtracted
from grossPay. In situations like this a programmer will create a sub-expression
enclosed in a pair of parentheses. To get the desired result above the programmer
would code:

(grossPay - deductions) * taxRate

forcing the subtraction to be performed first and for that result to be multiplied
by the tax rate. Sub-expressions are evaluated first, before the expression of
which it a part.

The order in which expressions are evaluated is determined as indicated in the
following table:

Order of Evaluation
Highest to Lowest

sub-expressions
* / %
+ -
=

Next we discuss a few examples to illustrate the evaluation of Java expressions.

2.6. CALCULATIONS IN JAVA 15

Example 1

Consider the expression

13 % 5

We will only consider in this text the use of the modulo operator, %, where both
operands are integers. When the operands are integers, the modulo operator
returns the remainder when the first operand is divided by the second operand.
So this example evaluates to 3, the remainder when 13 is divided by 5.
Exercise: What expression would yield the rightmost digit of an integer stored
in the variable number?

Example 2

Now consider the expression

netPay = grossPay - deductions * taxRate

Of the operators in the expression, the multiplication operator has the highest
priority and so it is performed first, the minus operation is performed next, and
since assignment has the lowest priority it is performed last. We can show this
order of evaluation using parenthesis where sub-expressions match what we have
just stated:

netPay = (grossPay - (deductions * taxRate))

Suppose the intention of the programmer was to implement a business rule
where the taxes to be paid were to be calculated as the product of the tax
rate and the difference between gross pay and deductions. According to the
business rule, the default evaluation according to operator priorities is not what
the programmer requires; to get the expression evaluated as per the business
rule, we need to have:

netPay = (grossPay - deductions) * taxRate

Example 3

For the operators +, -, /, *, and %, when there is more than one operator of
the same priority then they are carried out from left to right. Consider the
expression

9.0 / 5.0 * c - 32.0

where the programmer intends that a value in degrees Celsius is converted to
Fahrenheit using the well-known formula:

F =
9

5
C − 32

This expression has two operators of the same priority (/ and *). Since mul-
tiplication and division have the same priority, 9.0 is divided by 5.0 and that
result is multiplied by c - the expression is evaluated as required to convert
Celsius to Fahrenheit.

16 CHAPTER 2. BASICS

Example 4

If an expression has more than one assignment operator then those are carried
out from right to left. Consider the expression

taxesPaid = netPay = grossPay - deductions * taxRate

and consider the priorities of the operators. Let us suppose grossPay is 100.00,
deductions is 10.00, and that taxRate is 0.10.

The values of netPay and taxesPaid will be the same, 99.00. The expression is
evaluated according to the sequence:

• deductions is multiplied by taxRate yielding a value of 1.00 ;

• 1.00 is subtracted from grossPay yielding a value of 99.00;

• 99.00 is assigned to netPay;

• the value of netPay is assigned to taxesPaid and so the value of taxesPaid
becomes 99.00

Example 5

Recall from Example 4, if an expression has more than one assignment operator
then those are carried out from right to left. Now consider a similar expression
but where we have a sub-expression:

taxesPaid = (netPay = grossPay - deductions) * taxRate

Consider the priorities of the operators and the use of the subexpression to
override operator priorities. Again, let us suppose grossPay is 100.00, deductions
is 10.00, and that taxRate is 0.10.

The values of netPay and taxesPaid will be different. The expression is evaluated
according to the sequence:

• deductions is subtracted from grossPay yielding a value of 90.00;

• this result, 90.00, is assigned to the variable netPay;

• 90.00 (the value of the sub-expresson) is multiplied by 0.10 yielding a value
of 9.00;

• this result, 9.00, is assigned to taxesPaid;

If the intention of the programmer was to implement two business rules where
(1) net pay is determined as gross pay minus deductions, and (2) the taxes to
be paid were to be calculated as the product of the tax rate and net pay, then
the above expression implements both rules.

2.6. CALCULATIONS IN JAVA 17

2.6.3 Exercises

The last two exercises refer to programs available at the website for this text.
These two programs could be modified to assist in answering questions 1, 2, and
3.

1. Use the expression in Example 1 in a program.

2. Use the expressions in Example 2 in a program.

3. Use the expression in Example 3 in a program. You will need to declare c
to be a double and assign it a value.

4. Run the TaxesPaid program and verify the output from Example 4. Note
in the program that the expression is followed by a semi-colon to be a
proper Java statement.

5. Run the TaxesPaidCalculatedCorrectly program and verify the output is
as stated in Example 5. Note in the program that the expression is followed
by a semi-colon to be a proper Java statement.

2.6.4 Mixed Mode Expressions

Expressions could contain a mixture of types. Java permits conversions between
integer and floating-point types, and also allows characters to be converted to
integer and floating-point types. Every character corresponds to a number.
There are two types of conversions: widening and narrowing conversions. By
widening we mean that the type being converted to contains all values of the
other type. For example, any value of the short type (a 2-byte integer) can be
represented as an int type (a 4-byte integer). So, the following will involve an
automatic conversion of a short to an int.

Listing 2.3: Example of widening

1 /**

2 * This Java class declares a short variable,

3 * assigns it a value, and then assigns the

4 * value to a variable of type int

5 */

6 public class ShortToInt

7 {

8 public static void main(String[] args){

9 short s;

10 s = 100;

11 int t;

12 t = s;

13 System.out.println ("s is: "+s);

14 System.out.println ("t is: "+t);

15 }

16 }

18 CHAPTER 2. BASICS

Java allows these widening conversions automatically:

• from byte to short, int, or long, float, or double

• from short to int, long, float, or double

• from int to long, float, or double

• from char to int, long, float, or double

• from long to float or double

• from float to double

• from char to int, long, float, or double

Example 1. Consider the expression

(100 - 10) * 0.10

The sub-expression involves integers and the result is an integer producing a
value of 90. Next in the evaluation will be the multiplication involving 90 and
0.10, and these are different types: int and double. Java automatically converts
the 90 to 90.0 before the multiply is performed.
Example 2. Consider the expression

(9/5) * 1 - 32.0

The sub-expression, 9/5, involves integers and the result is an integer yielding
a value of 1. Next in the evaluation will be the multiplication involving 1 and
1, which yields the int value of 1. Now we have 1 minus 32.0. For this to be
performed the 1 is converted to 1.0 and the final result is -31.0. Note that this
would be considered inacurrate (wrong) for the conversion of 1 degree Celsius to
Fahrenheit. To get a more accurate result the expression should have involved
9.0/5.0.
Narrowing conversions are cases where there could be a loss of precision going
from one type to another. For example converting an double to a char is not
allowed unless the programmer directly indicates that casting from one type to
another is be performed. We will leave the cast language construct until a later
chapter.

2.6.5 Unary Operators

At this point we introduce the unary minus. A unary minus, -, can be placed
immediately in front of an expression to negate the value of the expression. For
instance the value of

-(1000 / 10)

is -100.

2.7. THE STRING CLASS 19

2.6.6 Exercises

1. The expressions

(9/5) * 30 - 32.0

and

(9.0/5.0) * 30 - 32.0

produce different results. Write a program to show the different results.

2. Write a program that will print the integer values for the characters ’a’,
’b’, ’c’, ’A’, ’B, ’C’, ’1’, ’2’, ’3’. Note that you can use a statement such as

int value = ’a’;

3. Change the program ShortToInt so that it assigns the value of an int to a
short. What happens when you try to compile the program?

4. What values are produced by the following expressions:
99 / 10
99 / 10 * 10
99 % 10
99 / 10 * 10 + 99 % 10

2.7 The String Class

It is very common for a program to work with text strings and the Java String
class is provided to facilitate the many things that progammers need to do with
text strings. String literals are written as a sequence of characters that are
delimited by double quotes:

"this is a line of text"

"my first name is Joe"

"515 Portage Avenue"

Because text strings are used so often Java provides a ”short-cut” for assigning
values to String variables without the need for using the new keyword:

String fullName = "Joe Smith";

Recall that String was not mentioned in the section on primitive data types.
The assignment statement above causes an object to be created and a reference
to that object is stored in the variable fullName. There is a subtle difference
that is hard to appreciate at this time: the varible holds a reference to the value
instead of holding the actual value. The diagram below attempts to show the
difference.

20 CHAPTER 2. BASICS

Because strings are objects defined as String another way to declare fullName
and assign it a value is:

String fullName = new String("Joe Smith");

The String class provides many methods for working with text strings such as:

2.7. THE STRING CLASS 21

Useful String methods
method name type description
equals() boolean used to determine if two strings

are identical
equalsIgnoreCase() boolean used to determine if two strings

are identical irrespective of case
indexOf(...) int returns the first position of a char-

acter provided as an argument, or
-1 if it is not present

length() int returns the length of a string
toLowerCase() String converts all characters to lower

case
toUpperCase() String converts all characters to upper

case
trim() String removes leading spaces (blanks)

and trailing spaces from a string

The following program illustrates various methods.

Listing 2.4: Using String methods for input

1 public class UsingStringMethods

2 {

3 public static void main(String[] args)

4 {

5 // a string with leading and trailing spaces

6 String fullName = " Joe Smith ";

7 // same name fewer leading and trailing spaces

8 String fullNameLc = " Joe Smith ";

9

10 // Display the lengths of the two strings

11 System.out.println("The two strings and there lengths:"

12 +"\n<"+fullName+"> is "+fullName.length()+" characters long"

13 +"\n<"+fullNameLc+"> is "+fullNameLc.length()+" characters

long"

14);

15

16 // compare the two strings for equality

17 boolean namesAreEqual = fullName.equals(fullNameLc);

18 System.out.println("\nTest for equality yields: "+namesAreEqual);

19

20 // compare the two strings for equality ignoring case

21 namesAreEqual = fullName.equalsIgnoreCase(fullNameLc);

22 System.out.println("\nTest for equality ignoring case yields:

"+namesAreEqual);

23

24 // trim both and then compare the two strings for equality

ignoring case

25 fullName = fullName.trim();

22 CHAPTER 2. BASICS

26 fullNameLc = fullNameLc.trim();

27 namesAreEqual = fullName.equalsIgnoreCase(fullNameLc);

28 System.out.println("\nTriming and then testing for equality

ignoring case yields: "+namesAreEqual);

29

30 // display fullName in lowercase

31 fullName = fullName.toLowerCase();

32 System.out.println("\nFull name in lowercase: "+fullName);

33

34 }

35 }

The output is:

2.7. THE STRING CLASS 23

2.7.1 Catenation operator +

The + operator is a binary operator that is used frequently in statements that
generate output. If the two operands of + are strings then the two strings are
catenated together forming one larger string as a result. If one operand is not
a string then the equivalent string representing its value is generated, and then
the catenation of two strings is carried out forming a new string as a result.

2.7.2 Exercises

1. Evaluate the following Java expressions:

"x = "+100

"The remainder is "+ (21 % 10)

(21 % 10) + " is the remainder"

"x = "+100+200

100 +" is the value of x"

100 + 200 +" is the value of x"

"" + (100 == 100)

2. Write a program with 3 String variables: firstName, middleInitials, last-
Name. Assign values to these variables to represent your name. Print a
line that shows your name in the format:

<last name> <a comma> <first name> <space> <initials>

for example: Smith, John A

24 CHAPTER 2. BASICS

2.8 Output

2.8.1 System.out

A simple way to generate output for the user is to use the println() and print()
methods that belong to the pre-defined Java class named System and an object
within System named out. The output generated is said to go to the standard
output device. When you use this type of output with BlueJ you will see a
window pop up named ”Terminal Window” that contains the output produced
by the program.
The following program listing illustrates ways of producing output. The println()
and print() methods take one argument which is a text string. Often that text
string is composed of multiple catenations. Notice the last println() introduces
some special characters for new line and tabbing. The special characters are
not displayed, they are used to control the appearance of the output.

Listing 2.5: Using println()

1 public class UsingPrintln

2 {

3 public static void main(String[] args)

4 {

5 double grossPay, taxesPaid, taxRate, netPay, deductions;

6 grossPay = 100.00;

7 deductions = 10.00;

8 taxRate = 0.10;

9 // Calculate taxes and net pay

10 taxesPaid = netPay = (grossPay - deductions) * taxRate;

11 //

12 // Each time println() executes the output will start on a new

line

13 // Produce one line of output with one double value

14 System.out.println(grossPay);

15 // Often a good idea is to label the output so it is

self-describing

16 // Produce one line of output with a label and a value

17 System.out.println("Gross Pay is "+grossPay);

18 // Several items can be catenated

19 // Note that one text string must appear on one line

20 // but a long one can be formed over multiple lines

21 System.out.println("Gross Pay = "+grossPay

22 +" Deductions = "+grossPay);

23 // You can force output to go onto more than one line

24 // by embedding control characters in a string

25 // ’\n’ is the new line character

26 // ’\t’ is the tab character

27 System.out.println("\tGross Pay = "+grossPay

28 +"\n\tDeductions = "+grossPay

29 +"\n\tNet Pay = "+netPay);

30 }

2.8. OUTPUT 25

31 }

println() advances to a new line and then displays output. print() differs from
println() in that it does not automatically advance to a new line when it dis-
plays output; instead, output begins at the point where the previous print() or
println() left off. If we change all the println() to print() expressions for the
previous example the output we get is:

2.8.2 JOptionPane

In some situations a programmer may find JOptionPane message dialogs useful.
The following program shows how to display some information. When the pop-
up window appears, the program is suspended until the user clicks the OK
button. Note that line 1 is an import statement that directs the compiler to the
location where it find details of the Scanner class.

Listing 2.6: Using println()

1 import javax.swing.JOptionPane;

2 public class UsingDialogBox

3 {

4 public static void main(String[] args)

5 {

6 double netPay, grossPay, deductions;

7 grossPay = 100.00;

26 CHAPTER 2. BASICS

8 deductions = 10.00;

9 // Calculate net pay

10 netPay = grossPay - deductions;

11 JOptionPane.showMessageDialog(null, "net pay is "+netPay);

12 }

13 }

The pop-up window the user showing the information and an OK button:

2.9. INPUT 27

2.9 Input

We examine two ways a programmer can arrange to get input from the user by
using pre-defined Java classes: the Scanner class and the JOptionPane class.

2.9.1 The Scanner Class

A Scanner object can be used with the standard input stream which is named
System.in. The typical statement used is:

Scanner keyboard = new Scanner(System.in);

System is a pre-defined Java class that has an object named in. Once a variable
like keyboard is defined the programmer can use methods defined for a scanner
object to get values the user has typed on the keyboard. Some of the most
useful methods are listed below.

Useful Scanner methods
hasNext() returns true if the scanner has more tokens
next() returns the next token
nextLine() returns the next line
nextInt() returns the next int in the input stream
nextDouble() returns the next double in the input stream
nextBoolean() returns the next boolean in the input stream

The program below shows one how to use next(), nextDouble(), and nextInt()
to obtain a user’s name, hours worked and rate of pay. Note that line 1 is an
import statement that directs the compiler to the location where it find details
of the Scanner class.

Listing 2.7: Using JOptionPane for input

1 import java.util.Scanner;

2 public class UsingScannerForInput

3 {

4 public static void main(String[] args)

5 {

6 double rateOfPay;

7 String name;

8 int hoursWorked;

9 // Declare a scanner object for the keyboard

10 Scanner keyboard = new Scanner(System.in);

11 // Prompt the user for a name

12 System.out.println("\n\nEnter your name (no spaces) and press

enter");

13 name = keyboard.next();

14 // Prompt the user for hours worked

15 System.out.println("Enter the hours worked (no decimal places)

and press enter");

16 hoursWorked = keyboard.nextInt();

28 CHAPTER 2. BASICS

17 // Prompt the user for the rate of pay

18 System.out.println("Enter your rate of pay and press enter");

19 rateOfPay = keyboard.nextDouble();

20

21 // Calculate gross pay and display all the information

22 double grossPay = hoursWorked * rateOfPay;

23 System.out.println("\n Your name: "+name

24 +"\n hours worked: "+hoursWorked

25 +"\n rate of pay: "+rateOfPay

26 +"\n gross pay : "+grossPay);

27 }

28 }

The above program was run, and the contents of the Terminal Window are
shown below. This window shows the output/prompts from the program and
the input provided by the user via the keyboard.

2.9.2 The JOptionPane Class

Another technique a programmer can use is in the form of dialog boxes. The
programmer can use the Java pre-defined class JOptionPane to obtain String
input from the user (the person running the program).

Consider the following program that obtains 2 values from the user.

2.9. INPUT 29

Listing 2.8: Using JOptionPane for input

1 /**

2 * This Java class uses JOptionPane to obtain

3 * input from the user

4 */

5 import javax.swing.JOptionPane;

6 public class UsingJOptionPane

7 {

8 public static void main(String[] args){

9 String firstName = JOptionPane.showInputDialog("Enter first

name");

10 String lastName = JOptionPane.showInputDialog("Enter first

name");

11 System.out.println ("Your name is: "+firstName+" "+lastName);

12 }

13 }

Line 5 is required since we need to tell the Java compiler where it can find the
JOptionPane class. When line 9 executes it causes a dialog box to be displayed
to the user (see below). The user is able to enter a value in the box and press
OK. Then control goes back to the program and the value entered is assigned
to firstName. A similar dialog box is displayed when line 10 executes.

30 CHAPTER 2. BASICS

Chapter 3

Control Structures

Programmers need 3 basic control structures when coding programs. These
three things are: sequences, decisions, and loops. A sequence structure is one
that comprises instructions that are to be executed sequentially one after the
other. A decision structure allows for exactly one of a set of sequences to
be executed. A loop structure comprises a sequence that is to be executed
iteratively. These three structures can be combined. Java has one sequence
structure, two (some may say more) different decision structures, and several
ways of coding loops. We will begin with the compound, the while and the if
statements.

3.1 Compound statements

Java statements delimited by curly braces { and } form a compound statement.
{ and } always appear as a pair. The { is first, followed by }. Anytime you
include a { you must have a matching }. Pairs like these must be used properly
- a pair must never overlap with another pair, but as we will see one pair can
be entirely enclosed in some other pair.
In the example that follows you will see two compound statements: one forms
the statement to be executed when x is greater than y, and the other forms the
statement to be executed when x is not greater than y. Note the while and if
statements are covered next.
We will see later that compound statements are a necessary component of many
decision and loop structures.

31

32 CHAPTER 3. CONTROL STRUCTURES

Listing 3.1: Program with 2 compound statements

1 public class DisplayLargest

2 {

3 public static void main(String[] args)

4 {

5 int largest, smallest;

6 int x = 100;

7 int y = 500;

8 if (x > y) {

9 largest = x;

10 smallest = y;

11 }

12 else {

13 largest = y;

14 smallest = x;

15 }

16 System.out.println("x is "+x+" and y is "+y);

17 System.out.println("the largest is "+largest);

18 System.out.println("the smallest is "+smallest);

19 }

20 }

3.2. THE WHILE STATEMENT 33

3.2 The while Statement

The JVM executes the statements in a program sequentially, one statement after
another. However, the while statement can change this. Embedded in a while
is another statement (often a compound statement) to be executed repeatedly
as long as some logical expression is true. The general syntax is

while (logical expression)
statement

The order of execution of Java statements can be visualized using a flow diagram:

How the JVM executes a while

A logical expression is an expression that evaluates to a boolean value, i.e. true
or false. Java has several operators which evaluate to true and false including
the relational and equality operators. The relational operators are <, <=, >=,
and >:

Relational operators
operator meaning example

< less than count < 100
> greater than netPay > 100
<= less than or equal to netPay <= grossPay
>= greater than or equal to number >= 0

The equality operators are == and !=. Later we will discuss boolean operators
that are used to combine logical expressions.

Equality operators
operator meaning example

== equal to netPay == grossPay
!= not equal to netPay != grossPay

34 CHAPTER 3. CONTROL STRUCTURES

Example 1

Consider the following program that prints numbers from 0 to 9:

Listing 3.2: Displaying numbers

1 /**

2 * Display the numbers from 0 to 9.

3 */

4 public class Numbers0To9

5 {

6 public static void main(String[] args)

7 {

8 int count = 0;

9 System.out.println("Numbers");

10 while (count < 10){

11 System.out.println(count);

12 count = count + 1;

13 }

14 System.out.println("*******");

15 }

16 }

The JVM starts sequential execution with the statement in line 8 - the variable
count is initialized to 0. The JVM then moves on to Line 9 which results in the
printing of a heading for the output. Next, the JVM encounters the while loop
in Line 10. Observe that lines 11 and 12 form a compound statement (enclosed
in curly braces). This compound statement is executed for count equal to 0, 1,
2, and so on, up to count equal to 9; when count has the value 9 the compound
statement is executed and count is assigned the value 10 in line 12. That’s
the last time the compound statement is executed since the value of the logical
expression evaluates to false - the JVM will move on to the statement following
the while statement (line 14) where normal sequential execution resumes. The
output follows:

3.2. THE WHILE STATEMENT 35

Figure 3.1: Output from Numbers0To9

Example 2

Consider another program which displays the digits of a positive number that
the user provides as input. This program uses a scanner object in order to get
input from the user via the keyboard.

Listing 3.3: Display digits

1 import java.util.Scanner;

2 public class DisplayDigits

3 {

4 public static void main(String[] args)

5 {

6 // Arrange to use a scanner object for keyboard input

7 Scanner keyboard = new Scanner(System.in);

8 // Prompt the user for a positive number

9 System.out.println("Enter a positive number "

10 +"and then press Enter: ");

11 int number = keyboard.nextInt();

12 System.out.println("The number is "+number);

13 while (number > 0){

14 int digit = number % 10;

15 System.out.println("\tnext digit is "+digit);

16 number = number / 10;

17 }

18 System.out.println("all digits have been displayed");

19

20 }

21 }

36 CHAPTER 3. CONTROL STRUCTURES

This program has a while loop where the number obtained from the user is
altered each time the loop executes. Line 16 contains the expression

number / 10

The value of this expression is assigned to variable number, and so eventually
the value stored in number will be reduced to 0 and the loop terminates. Note
in line 14 how the program obtains the rightmost digit via the modulo operator.
A sample of output is:

Output from DisplayDigits

3.2.1 Exercises

1. Write a program that will sum the digits from -100 to 100.

2. What happens when a user enters the value 0 when DisplayDigits is exe-
cuted?

3. What happens when a user enters a negative value when DisplayDigits is
executed?

4. What happens when a user enters something that is not an integer when
DisplayDigits is executed?

5. Write a program that converts from Celsius to Fahrenheit for Celsius val-
ues starting at -40 and going up +40 in increments of 1.

6. Write a program that converts from Celsius to Celsius for Fahrenheit val-
ues starting at -40 and going up +40 in increments of 1.

3.2. THE WHILE STATEMENT 37

7. Write a program to convert from Euro Dollars to US Dollars for Euros
ranging from 100 to 1,000 in steps of 100. Prompt the user for the ex-
change rate for converting Euros to US dollars. At the time of writing the
exchange rate was 1.12; that is, 1 Euro was worth 1.12 US dollars.

8. Write a program that will sum the digits of a number. For example if the
number is 124, then the sum of its digits is 7 = 1+2+4

9. Write a program that prompts the user for an identification number (e.g.
student number, credit card number, etc.). The program must then dis-
play each digit of the number.

10. Consider the calculation of n factorial defined as:

n! = 1× 2× 2× ...× n where n > 0

Use a while to calculate n!. Prompt the user for the value of n.

38 CHAPTER 3. CONTROL STRUCTURES

3.2.2 Nesting statements

The statement executed repeatedly can be any Java statement including another
while (or any other statement discussed in this chapter).

Example 3

consider the program:

Listing 3.4: Nesting one while inside another while

1 /**

2 * Program with one while inside another while

3 * Outer while controls the value of variable i

4 * Inner while controls the value of variable j

5 * Inner while is executed once for each value of i

6 */

7 public class NestedWhiles

8 {

9 public static void main(String[] args)

10 {

11 int i, j;

12 System.out.println("i j");

13 // i takes on values 0, 1

14 i = 0;

15 while (i < 2){

16 j = 0;

17 // j takes on values 0, 1, 2

18 while (j < 3){

19 System.out.println(i+" "+j);

20 j = j + 1;

21 }

22 i = i + 1;

23 }

24 System.out.println("***");

25

26 }

27 }

The above program has two variables i and j. The outer while (lines 15-23) is
executed twice, once with i equal to 0 and then with i equal to 1. The inner
while (lines 18-21) is executed once for each value of i; for each value of i, the
variable j takes on the values 0, 1, and 2. Study the program to verify the output
shown next. How many times is the print statement (line 19) executed? Notice
the indentation of lines 18-21; this is done simply to help a human read the
code - one quickly sees that those lines are a control structure that is embedded
inside another control structure.

3.2. THE WHILE STATEMENT 39

Figure 3.2: Output from NestedWhiles

3.2.3 Autoincrement

Because statements that increment a variable’s value, such as

i = i + 1;

are so common Java has a special unary operator ++ for this. The statement

i++;

has the same effect as the above assignment statement. ++ is a unary operator
(takes one operand). The operand can be before or after the ++. The difference
relates to when the increment occurs which is only relevant in more complex
expressions. See the section on Unary Operators for more information.
Java has a similar operator, - -, which has the effect of decrementing the value
of a variable, and so the following two statements are equivalent:

count = count - 1;

count--;

3.2.4 Exercises

1. Modify the programs in this section to use the ++ operator where it can
be applied.

2. Use nested whiles to print a 4 × 4 times-table. The times-table should
appear as follows

1 2 3 4
1 1 2 3 4
2 2 4 6 8
3 3 6 9 12
4 4 8 12 16

40 CHAPTER 3. CONTROL STRUCTURES

3.3 The if Statement

The structure of an if statement is as follows (note that the else and statement-2
are optional. We say the if statement has an optional else clause.

When the JVM executes an if statement, the JVM will first evaluate the log-
ical expression. If the expression is true then statement-1 is executed; if the
expression is false then statement-2, if present, is executed. The if statement
conditionally executes either statement-1 or statement-2. The JVM process can
be visualized as:

How the JVM executes an if

3.3. THE IF STATEMENT 41

Example 1

Consider the following program that displays a different message depending
on the value of the expression number > 0. Note that compound statements
are used even though it was not necessary - some programmers always code
compound statements. Exactly one of the two compound statements will be
executed.

Listing 3.5: Using an if statement

1 public class PositiveOrNot

2 {

3 public static void main(String[] args)

4 {

5 // Display a message if number is positive or not

6 int number = 11;

7 if (number > 0) {

8 System.out.println("the number "+number+" is positive");

9 }

10 else {

11 System.out.println("the number "+number+" is not positive");

12 }

13 }

14 }

3.3.1 Exercises

1. Modify PositiveOrNot so that it obtains a number from the user. Use a
Scanner object so that you can get the number as an integer.

2. Write a program that obtains a number from the user and displays whether
the number is an even number or an odd number. Consider using the %
operator.

3. Write a program that obtains two numbers from the user and displays the
larger of the two numbers.

42 CHAPTER 3. CONTROL STRUCTURES

3.3.2 Nesting statements

The syntax of the if statement provides for the conditional execution of any Java
statement, including other if statements, whiles, etc. When the conditionally
executed statement is an if statement then we are nesting an if inside another
if.

Example 2

Consider where a customer is paying for some goods with either cash or a debit
card. Suppose there are no pennies in circulation and if someone is paying with
cash the cost is rounded to the nearest nickel. For instance if the cost is $10.22
then the cost is rounded down to $10.20, and if the cost is $10.23 the cost is
rounded up to $10.25. Suppose also that a debit card payment has a surcharge
of 25 cents. Consider the following program where the program prompts for the
type and cost of a purchase, and handles a cash or debit purchase appropriately.
To avoid rounding errors the program uses integers for the cost and so the cost
is processed in cents (not as a double where a decimal point separates dollars
and cents).

Listing 3.6: Using an if statement

1 import java.util.Scanner;

2 /**

3 * Determine value of payment to be received from customer

4 * based on whether or not it is cash payment.

5 * Cash payments are rounded off to the nearest nickel and

6 * debit card payments have a surcharge of 25 cents.

7 */

8 public class RoundCostUpDown

9 {

10 public static void main(String[] args)

11 {

12 int originalCost, actualCost;

13 String typePayment;

14 System.out.println("Enter type of payment and "

15 +"value of purchase in pennies: ");

16 Scanner kb = new Scanner(System.in);

17 typePayment = kb.next();

18 originalCost = kb.nextInt();

19 if (typePayment.equals("cash")) {

20 if (originalCost % 5 < 3)

21 actualCost = originalCost - originalCost%5;

22 else

23 actualCost = originalCost + (5 - originalCost%5);

24 }

25 else

26 actualCost = originalCost + 25;

27 System.out.println(originalCost+" "+actualCost);

3.3. THE IF STATEMENT 43

28 }

29 }

44 CHAPTER 3. CONTROL STRUCTURES

Example 3

Consider how a letter grade could be translated into a numeric grade, as defined
in this table:

letter grade grade point
A 4
B 3
C 2
D 1
F 0

If you were given a letter grade, its a simple matter to find the grade in the
letter grade column and look across to find out the grade point value. We can
do a similar thing in Java using nested if statements. In the program below
each if represents a line in the table. Assuming the grade obtained from the
user appears in the table, the grade will be determined.

Listing 3.7: Using an if statement

1 import java.util.Scanner;

2 /**

3 * Determine a numeric equivalent to a letter grade.

4 * Note the standard indentation of extra spaces.

5 */

6 public class LetterGradeToNumericGrade

7 {

8 public static void main(String[] args)

9 {

10 String letterGrade;

11 double numericGrade;

12 System.out.println("Please enter letter grade:");

13 Scanner kb = new Scanner(System.in);

14 letterGrade = kb.next();

15 if (letterGrade.equals("A"))

16 numericGrade = 4.0;

17 else

18 if (letterGrade.equals("B"))

19 numericGrade = 3.0;

20 else

21 if (letterGrade.equals("C"))

22 numericGrade = 2.0;

23 else

24 if (letterGrade.equals("D"))

25 numericGrade = 1.0;

26 else

27 numericGrade = 0.0;

28 System.out.println(letterGrade+" is equivalent to

"+numericGrade);

29 }

3.3. THE IF STATEMENT 45

30 }

Observe the indentation in the listing above. When each logical expression is
basically the same with one simple change (the value A, B, ...) a Java program-
mer will change the indentation to that shown below, and may then refer to an
if else-if structure.

Listing 3.8: Using an if statement

1 import java.util.Scanner;

2 /**

3 * Determine a numeric equivalent to a letter grade.

4 * Note how "else if" appears on one line

5 * and how they are aligned.

6 */

7 public class IfElseIfIndentation

8 {

9 public static void main(String[] args)

10 {

11 String letterGrade;

12 double numericGrade;

13 System.out.println("Please enter letter grade:");

14 Scanner kb = new Scanner(System.in);

15 letterGrade = kb.next();

16 if (letterGrade.equals("A"))

17 numericGrade = 4.0;

18 else if (letterGrade.equals("B"))

19 numericGrade = 3.0;

20 else if (letterGrade.equals("C"))

21 numericGrade = 2.0;

22 else if (letterGrade.equals("D"))

23 numericGrade = 1.0;

24 else

25 numericGrade = 0.0;

26 System.out.println(letterGrade+" is equivalent to

"+numericGrade);

27 }

28 }

3.3.3 Exercises

1. Consider how a numeric grade could be translated into a letter grade, as
defined in this table:

46 CHAPTER 3. CONTROL STRUCTURES

range grade
80-100 A
70-79 B
60-69 C
50-59 D
0-49 F

Given a mark, its a simple matter to determine which range it falls into
and determining the corresponding grade. Write a program which obtains
a numeric value and translates that into a letter grade. Consider using
statements of the form:

if (mark > ...)

2. Modify your program for the above question so that it validates the mark
obtained from the user to ensure the value is in the range [0, 100].

3. Write a program that obtains 10 numbers from the user and then displays
the largest of these numbers. Control the input using a while and nest an
if inside the while.

3.4 The for Statement

3.5 The do while Statement

3.6 The switch Statement

3.7. LOGICAL EXPRESSIONS 47

3.7 Logical Expressions

A logical expression is an expression that evaluates to a boolean value, i.e.
true or c. Java has several comparison operators that produce a value of true
or false. The two types of operators we consider here are the relational and
equality operators. The relational operators are <, <=, >=, and >:

Relational operators
operator meaning example

< less than count < 100
> greater than netPay > 100
<= less than or equal to netPay <= grossPay
>= greater than or equal to number >= 0

The equality operators are == and !=.

Equality operators
operator meaning example

== equal to netPay == grossPay
!= not equal to netPay != grossPay

Logical expressions can be combined using boolean operators which are &&, ||,
and !:

Boolean operators
operator meaning example

&& AND count > 0 && count < 100
|| OR netPay > 100 || grossPay > 150
! NOT ! (number >= 0)

Truth tables

The values produced by the boolean operators can be illustrated using truth
tables. A truth table shows all possible combinations of operand(s) and the
result of an operation for each combination.

&& is true only when both operands are true:

AND
operand-1 operand-2 result

true true true
true false false
false true false
false false false

|| is true when either one (or both) of the operands is true:

48 CHAPTER 3. CONTROL STRUCTURES

OR
operand-1 operand-2 result

true true true
true false true
false true true
false false false

! simply negates its operand:

NOT
operand result

true false
false true

Operator priority

The table below shows the priorities from highest to lowest for the arithmetic,
logical, and boolean operators.

Order of Evaluation
Highest to Lowest

sub-expressions (. . .)
autoincrement/decrement ++, −−
unary -, !

arithmetic * /

arithmetic + - (including string catenation)
assignment =
relational < > <= <=

equality == !=

boolean &&

boolean ||

3.7.1 Examples

In the following consider that x and y are ints and are both equal to 100 for
each example.

Example 1

Consider

x+3 > 100

Since addition is performed before > this expression is equivalent to

103 > 100

which evaluates to true.

3.7. LOGICAL EXPRESSIONS 49

Example 2

Consider

x++ > 100 && y++ <= 101

Since autoincrement is performed before relational operations this expression is
equivalent to

101 > 100 && 101 <= 101

which evaluates to true.

Example 3

Consider

x + y > 150 && y = 100

The arithmetic operations are performed first followed by the relational opera-
tions and so the above is equivalent to

false && true

which evaluates to false. However, in a case like this where two expressions are
ANDed, the JVM would evaluate the first operand of && and since that is false
the JVM would not evaluate a second operand since a false ANDed to anything
yields false. Similarly the JVM does not evaluate the second operand for ||

when the first operand is true.

Example 4

Consider that

boolean found = true

and we have the expression

! found && -x < 100

The unary operation would be performed first and so the above is equivalent to

false && -x < 100

which evaluates to false. Again, the JVM would not evaluate the second operand
of && since the first operand is false.

50 CHAPTER 3. CONTROL STRUCTURES

Bibliography

[1] http://publications.gc.ca/gazette/archives/p1/2007/2007-03-24/pdf/g1-
14112.pdf.

[2] http://www.acm.org/press-room/news-releases/2013/fellows-2013.

[3] http://www.ieee.org/documents/vonneumannrl.pdf.

51

