
Java with BlueJ Part 2

Ron McFadyen

January 3, 2016

2

c©2015 Ron McFadyen

Department of Applied Computer Science

University of Winnipeg

515 Portage Avenue

Winnipeg, Manitoba, Canada

R3B 2E9

r.mcfadyen@uwinnipeg.ca

ron.mcfadyen@gmail.com

This work is licensed under Creative Commons Attribution NonCommercial
ShareAlike 4.0 International Public License. To view a copy of this license
visit

http://creativecommons.org/licenses/by-nc-sa/4.0/

This work can be distributed in unmodified form for non-commercial pur-
poses. Modified versions can be made and distributed for non-commercial
purposes provided they are distributed under the same license as the origi-
nal. Other uses require permission of the author.

The website for this book is

www.acs.uwinnipeg.ca/rmcfadyen/CreativeCommons/

To Callum

3

4

Contents

1 One-Dimensional Arrays 7

1.1 Initializing arrays . 9

1.2 Storage of arrays and copying arrays 10

1.3 The enhanced for . 11

1.4 Passing string values into main() 13

1.5 Parallel arrays . 15

1.6 Partially filled arrays . 17

1.7 Array utilities in Java class libraries 20

2 Arrays of Arrays 25

2.1 Two-dimensional arrays in Java 26

2.2 Ragged Arrays . 30

2.3 Examples . 32

2.4 Higher Dimensions . 38

2.5 Exercises . 39

3 Data Validation 61

3.1 Character . 61

3.2 String . 61

3.3 StringBuilder . 61

4 Enumeration Classes (Enums) 81

4.1 values() Method . 85

4.2 Enum constants are objects 100

5 Hierarchies 120

5.1 Object class . 120

5.2 Inheritance . 120

5.3 Abstract classes . 120

5

6 CONTENTS

5.4 Interface classes . 120

6 File Processing 121
6.1 Binary files . 121

7 Exception Handling 123
7.1 File handling . 123

8 Recursion 140

9 Sorting and Searching 160
9.1 Sorting techniques . 160
9.2 Insertion sort . 160
9.3 Bubble sort . 160
9.4 Quicksort . 160
9.5 Searching . 160
9.6 Sequential search . 160
9.7 Binary search . 160

10 Map Class 161

Chapter 1

One-Dimensional Arrays

There are many situations where we deal with a collection of information.
Some examples are:

1. names of students in a class
2. courses offered by a department
3. temperatures for the last month
4. employees in a company

The above cases all have one thing in common: in each case there can be
more than one value. For instance, there would be several students in a class
and for each student there is a name, for example: ”John”, ”Mary”, ”Lee”,
etc. In Java, one way of handling a collection like this is to use a data struc-
ture called an array. The array is declared similar to other variables and
then an integer (called an index) is used to refer to its elements individually.
So, studentName can be the name of the collection and studentName[0],
studentName[1], studentName[2], etc. is the way we refer to elements of
the collection. To declare an array of names where each element of the array
can be a String value we use:

String[] studentName;

The square braces [] are used to indicate a one-dimensional array. Its
called one-dimensional because one index value is used to refer to an indi-
vidual element of the array. In Java index values begin at 0 and go up to
the length of the array -1. We can declare arrays of any type, for example:

7

8 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

declaration sample purpose

String[] studentName; an array of names

int[] mark; an array of marks

double[] temperature; an array of temperatures

boolean[] answer; an array of true/false answers

char[] letter; an array of multiple choice answers

The above are examples of how to declare an array. Before the array can
be used the programmer must also declare its size. Once the programmer
declares the size it cannot be made larger - this is one of the drawbacks
to using arrays and why sometimes another technique will be chosen. To
declare an array that can hold, say, 100 names we use:

String[] studentName;

studentName = new String[100];

or, we can combine the above into one line:

String[] studentName = new String[100];

or, if an int variable holds the length we can write:

int arraylength = 100;

String[] studentName = new String[arraylength];

Every array has an int field named length that is a part of it; the value
stored is the length of the array. So, for studentName above the value stored
in studentName.length is 100. This field is very useful; for instance if we
need to display all the names in studentName we can use the code:

for (int i=0; i<studentName.length; i++}

System.out.println(studentName[i]);

The length field is immutable which means it cannot be altered once it is
set. This means that once you have declared an array to be a certain length
you cannot change its length.

1.1. INITIALIZING ARRAYS 9

1.1 Initializing arrays

Because arrays can have multiple values there is a different syntax used when
its necessary to set initial values. For instance, suppose we need an array to
hold the number of days in each month. We can declare and initialize as:

int[] daysInMonth =

{31 ,28 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31};

The Java syntax for initializing an array is to enclose a comma-separated
list of values between the pair { }. Initializing arrays this way also sets the
length of the array. The value of daysInMonth.length is 12.

Example 1 Array initialization and displaying each element

Consider the following program where daysInMonth is initialized and dis-
played.

Listing 1.1: Initializing and displaying an array.

1 /**

2 * Display number of days in each month

3 */

4 public class MonthLengths

5 {

6 public static void main(String [] args){

7 int[] daysInMonth =

8 {31 ,28 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31};

9 System.out.println("Days for each of "

10 +daysInMonth.length+" months ");

11 for (int i = 0; i< daysInMonth.length; i++)

12 System.out.print(daysInMonth[i]+" ");

13 }

14 }

The output:

10 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

1.2 Storage of arrays and copying arrays

Arrays are objects in Java and so the memory location for the array variable
contains a reference to the actual storage locations holding the array’s values.
For instance the memory allocations for an array can be visualized as:

Now suppose we need to make a copy of the array. If we just use:
s = t; //s and t are arrays of same type

what we end up with is two storage locations for s and t that reference
the same 4 elements. We haven’t created a copy, rather we have two array
variables that reference the same 4 elements:

If we need a real copy of the array t then we require a loop to accomplish
this:

// s and t are of the same type

for (int i=0; i<t.length; i++) s[i] = t[i];

You can re-instantiate an array variable. New locations are assigned to the
array (see below) and the old ones are reclaimed for reuse according to an
internal Java garbage collection procedure.

1.3. THE ENHANCED FOR 11

1.3 The enhanced for

There is a variation on the for called the enhanced for that can be used when
a program iterates from the first element through to the last element of an
array and does not change any values. The syntax is

for (type variable : array)

statement

The for statement in the previous example can be rewritten:

for (int days : daysInMonth)

System.out.print(days+" ");

Example 2 Calculating an average

Consider the following program where temperature is assigned values ob-
tained from a user and then the average temperature is displayed. The
assignments must be done using a for whereas the calculation of the sum
can be done with a enhanced for.

Listing 1.2: Initializing an array from input.

1 import java.util.Scanner;

2 /**

3 * Display average of 7 values

4 */

5 public class AverageTemperature

6 {

7 public static void main(String [] args){

8 Scanner kb = new Scanner(System.in);

9 double [] temperature = new double [7];

10 System.out.println("Enter 7 temperatures:");

11 for (int i=0; i<7; i++)

12 temperature[i] = kb.nextDouble ();

13 double sum = 0.0;

14 for (double t:temperature) sum +=t;

15 System.out.println("average= "+sum /7.0);

16 }

17 }

12 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

When to use the enhanced for

The enhanced for helps to express a programming idiom succinctly as no
loop counter is required. However, there are many cases where the enhanced
for cannot be used:

1. iterate backwards through the array elements

2. access elements of more than one array

3. partially filled arrays (discussed later)

4. assigning new values to array elements.

1.4. PASSING STRING VALUES INTO MAIN() 13

1.4 Passing string values into main()

In all of our main methods we have specified a String array named args:
public static void main(String[] args)

In the above line args is declared to be an array of String. The variable
args is used to pass values (that are strings) into a method. When you have
used BlueJ to execute the main() method you have the opportunity to pass
an array of strings to the program.

Example 3 Passing arguments to main()

The following program just lists the strings passed into the program.

Listing 1.3: String values passed into main().

1 /**

2 * Print the values passed into the program

3 */

4 public class Args

5 {

6 public static void main(String [] args){

7 System.out.println("The elements of args:");

8 for (String s: args) System.out.print(" "+s);

9 }

10 }

The following shows a user executing main() and passing in 3 strings with
the resulting output from the program:

14 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

1.5. PARALLEL ARRAYS 15

1.5 Parallel arrays

There are times when two or more arrays have exactly the same number of
elements and where array elements at the same index relate to one another
in some meaningful way. For example suppose we have one array of student
names and another of student numbers. If the arrays represent information
for the same set of students then we would want to arrange that the ith

element of the name array and the ith element of the number array are for
the same student.

Example 4 Parallel arrays: student names and numbers

Consider the following where two arrays hold information for 5 students: one
array of names and the other an array of student numbers. For simplicity
we initialize the arrays inline. The program prompts the user for a student
number and displays the student’s name. In order to get the name of the
student the program goes through all the elements of number and when it
finds a number matching the input, it displays the corresponding name in
the other array.

Listing 1.4: Finding information in parallel arrays.

1 import java.util.Scanner;

2 /**

3 * Student information is in two arrays.

4 * Find student number and report name.

5 */

6 public class StudentInfo

7 {

8 public static void main(String [] args){

9 String [] name =

{"Joe","Linda","Mary","Peter","Lee"};

10 int[] number = {123, 222, 345, 567, 890};

11 Scanner kb = new Scanner(System.in);

12 System.out.println("Enter student number:

");

13 int toFind = kb.nextInt ();

14 for (int i=0; i<number.length; i++)

15 if (toFind == number[i])

16 System.out.println(name[i]);

16 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

17 }

18 }

This program performs what is usually called a search operation: scanning
an array looking for a specific element. The program as it was written
always iterates through the whole number array; normally a programmer
would stop the iteration once the element has been found - that is left as an
exercise.

1.6. PARTIALLY FILLED ARRAYS 17

1.6 Partially filled arrays

In our examples so far the arrays are completely full - every element has a
value. In general we do not expect this to always be the case and so, for
some applications, we keep track of how many locations are actually filled.

Example 5 Partially filled: calculate average

Suppose we need to calculate the average monthly sales. Since there are 12
months we use an array of length 12. We want a user to use the program at
any time of year and so there may be fewer than 12 values. The program
prompts the user for the monthly sales values, and requests the last value
entered to be -1 (a stopper value). The program keeps track of how many
elements are filled. Consider the following program and the points discussed
after the listing:

Listing 1.5: Average sales for up to 12 months.

1 import java.util.Scanner;

2 /**

3 * From monthly sales calculate monthly average.

4 */

5 public class MonthlySales

6 {

7 public static void main(String [] args){

8 double [] sales = new double [12];

9 Scanner kb = new Scanner(System.in);

10 System.out.println("Enter monthly sales"

11 +" enter -1 after last value");

12 int numberMonths =0;

13 double aSale = kb.nextDouble (); //1st month

14 while(aSale != -1) {

15 sales[numberMonths ++] = aSale;

16 aSale = kb.nextDouble ();

17 }

18 double sum = 0;

19 for (int i=0; i<numberMonths; i++)

20 sum+= sales[i];

21 if (numberMonths >0) System.out.println(

22 "average = "+sum/numberMonths);

18 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

23 }

24 }

The program exhibits some important features:

1. The sales array is of length 12 and the variable numberMonths keeps
track of how many months of data the user provides.

2. Prior to the while, in line 13, the first sales amount is obtained

3. The while tests the value of the last sales amount obtained.

4. In the body of the while the previously obtained sales amount is
placed into the array, and the next value is obtained.

5. Lines 19 and 20 accumulate the total sales

6. Testing for no months of data in line 21 prevents the program from
crashing if the user entered -1 as the first value (division by zero).

1.6. PARTIALLY FILLED ARRAYS 19

Arrays and ArrayLists

In some cases you may want to use the functionality of the ArrayList class
but for whatever reason the data you are working with is in an array. It is
easy to create an ArrayList from an array as shown in the program below.

Listing 1.6: Initializing an ArrayList from an array.

1 import java.util.ArrayList;

2 /**

3 * Create an ArrayList from an array of strings

4 */

5 public class ArrayListFromArray

6 {

7 public static void main(String [] args){

8 // An array that will be used to provide

9 // initial data for an ArrayList

10 String [] name={"Joe","Jasper","Abigail"};

11 ArrayList <String > nameAL =

12 new ArrayList(name.length);

13 // The add() method is used to append

14 // an element to the ArrayList

15 for (String n: name) nameAL.add(n);

16 // Printing an ArrayList results in each

17 // of its elements being displayed as

18 // in a comma -separated list.

19 System.out.println(nameAL);

20 }

21 }

Line 15 is an enhanced for where each element of the array is added to the
ArrayList. Line 19 prints the ArrayList. Note the output below and how
the ArrayList is displayed as a comma-separated-values list embedded in
square brackets [] - this is the default display for an ArrayList.

20 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

1.7 Array utilities in Java class libraries

Arrays are often used in programming and there are many important array
algorithms. For instance, copying an array was discussed previously. The
System class contains a method arraycopy() that can be used to copy a
portion of one array to another. The method takes 5 arguments (in this
order): name of the source array, starting element position in the source,
the destination array, the starting element position in the destination, and
the total number of elements to copy. For instance to copy all elements of
the array t to the array s we could use:

System.arraycopy(t, 0, s, 0, t.length);

There is a Java library class named java.util.Arrays that has additional
methods which include:

1. equals(): Returns true if two arrays are equal to one another. The
arrays are equal if they have the same number of elements and if
corresponding elements are equal.

2. sort(): Rearranges the elements of an array so they are in ascending
sequence.

3. binarySearch(): Returns the index of an element if it was found in
a sorted array. Binary search is a type of search technique that takes
advantage of the fact that an array is sorted. The general idea is
to continually bisect the array looking for the required element. The
process examines the middle element and determines if the required
element is above or below the middle element; then the process con-
tinues on that subset of the array where the required element may be
present. The process continues until the required value is found or
there is nothing left to examine.

4. fill(): Assigns a specified value to every element of an array.

1.7. ARRAY UTILITIES IN JAVA CLASS LIBRARIES 21

Example 6 Sorting and searching an array

The interested student is referred to the Java Class Library documentation
for complete information regarding Arrays. Here, we demonstrate how one
can sort an array and then search the array for a specific entry. Consider
that we have an array of names. To simplify we shall initialize the array in
the code. The program prompts the user for a name, performs a search, and
then responds accordingly. Following the listing there are some remarks.

Listing 1.7: Initializing and displaying an array.

1 import java.util.Arrays;

2 import java.util.Scanner;

3 /**

4 * An array of names is sorted and then

5 * searched for a specific name.

6 */

7 public class SortAndSearch

8 {

9 public static void main(String [] args){

10 String [] name =

11 {"Joe","Linda","Mary","Peter","Lee","Patricia"};

12 Arrays.sort(name);

13 Scanner kb = new Scanner(System.in);

14 System.out.println("Enter a name: ");

15 String toFind = kb.next();

16 int foundAt =

17 Arrays.binarySearch(name , toFind);

18 if (foundAt >= 0)

19 System.out.println(

20 "Found in position "+foundAt);

21 else System.out.println("Not Found ");

22 }

23 }

Note the following points regarding SortAndSearch above:

1. The Arrays class is imported in line 1.

2. The sort() method is invoked in line 12. As a result the entries of
name have been rearranged are are now sorted alphabetically.

22 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

3. In line 17 binarySearch() is used to search for the name entered by
the user. If the value is not negative then that is the index where the
name was found.

1.7. ARRAY UTILITIES IN JAVA CLASS LIBRARIES 23

Exercises

1. Modify Example 1 to include a parallel array for the names of months.
On 12 lines, one per month, display each month and its number of
days.

2. Modify Example 2 to determine the minimum and the maximum of the
7 temperatures. Note that this is similar to Exercise 1 in the Section
on the for statement, but in this case the elements are stored in an
array.

3. Modify Example 3 so that it sorts the strings before they are displayed.

4. Modify lines 14-16 in Example 4 so that the loop stops if the number
is found.

5. Modify Example 5 so that it displays the name of the month when
sales were their largest.

6. Write a program to determine someone’s score on a multiple-choice
test having 12 questions. The program has two char arrays: cor-
rectAnswers[] and studentAnswers[]. The array correctAnswers holds
the correct answers to the test. Use the following for correct answers:
a b c d a b c d a b c d

The student’s answers will be provided by the user of the program.
These must be stored in the array studentAnswers[]. After the stu-
dent answers have been obtained the program must determine the
student’s score: the number of questions the student answered cor-
rectly.

For example if the student answers are:
a a a b b b c c c d d d
then the score for this student is 4.

7. Write a program to analyze text such that each word (token) found
is stored in an array. Use the file Readme.txt. Sort the array and
display its contents.

24 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

Chapter 2

Arrays of Arrays

Java programmers frequently use an array (also called a one-dimensional
array) to deal with a linear collection of elements (where the elements are
of the same type). However there are times when a more complicated array
structure is useful. For instance suppose we are keeping track of snowfall by
month for Denver, Colorado, for the years 2000 through to 2014. We can
represent this information readily in a tabular format - see Figure 2.1.

It is easy for someone to get information from such a table as that above.
To do so you need to know the meanings of three things:

• What do the values in the cells of the table represent?
– In this example snowfall in inches.

• What do the rows represent ?
– In this example years from 2000 to 2014.

• what do the columns represent?
– In this example months January, . . . December.

One can use the table to find out the snowfall during some month and some
year. If we want to obtain the snowfall for the month of February in 2005
we need to go the sixth row from the top and then to the second element
from the left. There we see the value 0.5 . . . that is, in February of 2005
Denver received a half inch of snow.

25

26 CHAPTER 2. ARRAYS OF ARRAYS

Figure 2.1: Monthly snowfall from 2000 to 2014 for Denver, Colorado.

2.1 Two-dimensional arrays in Java

The snowfall table can be stored in a Java array, but in this case we would
use a two-dimensional array and it could be defined as:

double [][] snowfall;

Each element of the array must be of the same type . . . in this case they are
doubles. Notice the two pairs of square braces, [] and [], in the declaration
statement. There are two pairs because we will use two subscripts to refer-
ence an element of the table. To obtain the element for February 2005 we
use snowfall[5][1]. Recall with Java that subscript values begin at 0 and
so the sixth row is row 5 and the second column is column 1. Its a lengthy
statement but to initialize snowfall we could use:

private double [][] snowfallInInches ={

{6.2 ,1.8 ,11.3 ,4.6 ,0 ,0 ,0 ,0 ,0.2 ,0 ,7.6 ,5.6}

{8.7 ,10.6 ,6.7 ,11.7 ,7.2 ,0 ,0 ,0 ,0 ,1 ,4.2 ,2.9} ,

{6.1 ,2.8 ,12.5 ,0 ,0.7 ,0 ,0 ,0 ,0 ,4.8 ,3.9 ,0.0} ,

{0,7.5,35.2,3.4,7,0,0,0,0,0,2.9,4.5},

{4.6 ,8.9 ,1.8 ,15.3 ,0 ,0 ,0 ,0 ,0 ,1.4 ,10 ,2.6} ,

2.1. TWO-DIMENSIONAL ARRAYS IN JAVA 27

{7.4 ,0.5 ,4.6 ,11.4 ,1.4 ,0 ,0 ,0 ,0 ,9.6 ,1 ,4.1} ,

{3.6 ,3 ,8.6 ,0.3 ,0.2 ,0 ,0 ,0 ,0 ,9.8 ,4.4 ,29.4} ,

{15.9 ,5.5 ,6.7 ,0.9 ,0 ,0 ,0 ,0 ,0 ,3 ,2.5 ,20.9} ,

{3.1 ,5.1 ,5.4 ,2.9 ,3.4 ,0 ,0 ,0 ,0 ,0 ,1.7 ,10.3} ,

{4.9 ,0 ,13.8 ,7.4 ,0 ,0 ,0 ,0 ,0 ,17.2 ,9.3 ,11.1} ,

{2.6 ,5.8 ,12.8 ,0.5 ,1.3 ,0 ,0 ,0 ,0 ,0 ,1.5 ,3.3} ,

{8,5.3 ,2.5 ,1.2,1 ,0 ,0,0 ,0 ,8.5 ,4.5,16.5} ,

{4.9,20.2,0,1,0,0,0,0,0,5.5,1.7,5.2},

{4.6 ,14.1 ,23.5 ,20.4 ,3.4 ,0 ,0 ,0 ,0 ,1.4 ,2 ,4.7} ,

{14.3,3.3,6,5.6,1.1,0,0,0,0,0,4,12},

};

Some important points about snowfall:

1. The data is presented in row order. And for each row the data is
presented in column order. There are 16 rows of data in the table.

2. Note how values are separated by commas and the data for each row
is enclosed in a pair of curly braces, { }. Each row contains 12 values,
one per month.

3. Only the snowfall amounts are in the array. A program must know
the year that a row represents and know the month that a column
represents.

When the JVM creates the array, it actually creates an array where each el-
ement is an array. The diagram in Figure 2.2 shows how the JVM organizes
a two dimensional array in memory as an array of arrays.

Figure 2.2: Two dimensional array - an array of arrays.

When a program references an array element the JVM accesses the stor-

28 CHAPTER 2. ARRAYS OF ARRAYS

age structure using the subscripts in sequence. So for snowfall[5][1] the
JVM uses the first subscript, 5, to access the sixth element of the 15 element
array; then the JVM uses the second subscript, 1, to access the second el-
ement of a 12-element array where the value 0.5 is stored in the above figure.

In the foregoing we initialized the array in a declaration statement. That
is not always appropriate. If we were obtaining the values from input we
would first of all declare the array of the appropriate size and then proceed
to read data into the array. The declaration statement for our Denver snow-
fall example would be:

private double [][] snowfall = new double[15][12];

The program in Listing 2.1 reads the data from a file named SnowfallInInches.txt
from the same folder as where the program is located. In this program you
should note the following:

• line 10 declares the two dimensional array with 15 rows and 12 columns.
• lines 19 to 24 read the data from the file.

– The outer loop controls the row subscript. Notice the use of the
length field . . . the number of rows is snowfall.length().

– The inner loop controls the column subscript. Notice again the
use of the length field. Each row is in fact an array, and the ith

row is referenced by snowfall[i] . . . the number of elements in
the ith row is snowfall[i].length().

– In line 22 the value read is stored in the ith row and jth column
of snowfall. Recall that the two dimensional storage structure
the JVM creates is an array of arrays. And so in terms of the
storage structure its true to say that the value is stored as the jth

element of the ith array of snowfall.
• Lines 26 to 32 display the values in a tabular format.

The output from the program is shown following the listing

Listing 2.1: Reading array data

1 import java.util.Scanner;

2 import java.io.File;

3 import java.io.FileNotFoundException;

4
5 public class Snowfall

6 {

7 public static void main(String [] args)

2.1. TWO-DIMENSIONAL ARRAYS IN JAVA 29

8 throws FileNotFoundException {

9 // an array of 15 rows and 12 columns

10 double [][] snowfall = new double [15][12];

11 // get data from file

12 Scanner f = new Scanner(

13 new File("SnowfallInInches.txt"));

14 System.out.println("\nData read from "

15 +"SnowfallInInches.txt "+

16 "\nby year from 2000 to 2014, and for "+

17 "\neach year from January to December");

18 // outer loop controls the row subscript

19 for (int i=0; i<snowfall.length; i++){

20 // inner loop controls the column

21 for (int j=0;j<snowfall[i]. length;j++){

22 snowfall[i][j] = f.nextDouble ();

23 }

24 }

25 // display the contents of the table by year

26 System.out.println("Data obtained is:");

27 for (int i=0; i<snowfall.length; i++){

28 System.out.println ();

29 for (int j=0;j<snowfall[i]. length;j++){

30 System.out.print(snowfall[i][j]+"\t");

31 }

32 }

33 }

34 }

Figure 2.3: Output: Snowfall in Denver.

30 CHAPTER 2. ARRAYS OF ARRAYS

2.2 Ragged Arrays

Recall how two dimensional arrays are actually arrays of arrays. Its pos-
sible then that rows can have different numbers of elements. For example
suppose we have five drivers who drive trucks delivering goods, and for each
driver and delivery we keep track of the kilometres they drive. If it is the
case that the number of deliveries varies for these drivers we can use a two
dimensional array; consider the following sample data:

Figure 2.4: Five drivers with varying numbers of trips.

The program in Listing 2.2 initializes the array with 5 rows, one per driver,
and varying elements for each array that makes up a row. Following the
program listing is the output from running the program.

Listing 2.2: Reading array data

1 import java.util.Scanner;

2 public class DriversTrips

3 {

4 public static void main(String [] args){

5 // 2D array with varying number

6 // of elements per row

7 int [][] trips ={

8 {25, 29, 30, 40},

9 {44, 25},

10 {22, 27, 55, 33, 80},

11 {55, 57, 45},

12 {31, 42, 49, 46}

13 };

14 System.out.println("\n\t\tDriver Trips");

2.2. RAGGED ARRAYS 31

15 // number of drivers = number of rows

16 // is trips.length

17 for (int i=0; i<trips.length; i++){

18 System.out.print("driver: "+i+"\t");

19 // number of trips for ith driver

20 // is trips[i]. length

21 for (int j=0;j<trips[i]. length;j++){

22 System.out.print(trips[i][j]+"\t");

23 }

24 System.out.println ();

25 }

26 }

27
28 }

Figure 2.5: Output: DriversTrips.

32 CHAPTER 2. ARRAYS OF ARRAYS

2.3 Examples

Example 1 Accessing a specific array element

Consider the following program that displays the snowfall for a specific year
and a month obtained from the user. The program converts the year and
month into appropriate subscript (int) values. The output for a sample run
follows.

Listing 2.3: Display a specific cell in a 2D array

1 import java.util.Scanner;

2 import java.io.File;

3 import java.io.FileNotFoundException;

4
5 public class DisplaySnowfall

6 {

7 public static void main(String [] args)

8 throws FileNotFoundException {

9 // initialize the snowfall array

10 double [][] snowfall = new double [15][12];

11 Scanner f = new Scanner(

12 new File("SnowfallInInches.txt"));

13 for (int i=0; i<snowfall.length; i++){

14 // inner loop controls the column ac

15 for (int j=0;j<snowfall[i]. length;j++){

16 snowfall[i][j] = f.nextDouble ();

17 }

18 }

19 // prompt user ... display snowfall

20 System.out.println("Enter the year as "+

21 "an integer , "+

22 "\nthen the name of the month:");

23 Scanner kb = new Scanner(System.in);

24 // convert year to proper subscript

25 int year = kb.nextInt () -2000;

26 String month = kb.next();

27 // convert month to proper subscript

28 int monthInt = convertMonth(month);

29 System.out.print("The snowfall for "+

2.3. EXAMPLES 33

30 month+" in "+ (2000+ year)+" is "+

31 snowfall[year][monthInt]+" inches");

32 }

33
34 public static int convertMonth(String month){

35 int monthInt;

36 switch (month.toLowerCase ()){

37 case "january": monthInt = 0; break;

38 case "february": monthInt = 1; break;

39 case "march": monthInt = 2; break;

40 case "april": monthInt = 3; break;

41 case "may": monthInt = 4; break;

42 case "june": monthInt = 5; break;

43 case "july": monthInt = 6; break;

44 case "august": monthInt = 7; break;

45 case "september": monthInt = 8; break;

46 case "october": monthInt = 9; break;

47 case "november": monthInt = 10; break;

48 case "december": monthInt = 11; break;

49 default: monthInt = -1; // bad month

name

50 }

51 return monthInt;

52 }

53 }

Figure 2.6: Output: Sample run for DisplaySnowfall.

34 CHAPTER 2. ARRAYS OF ARRAYS

Example 2 Accessing all elements in a row

Consider the following program that displays the total snowfall for 2005.
This program accesses all elements in a specific row. Of particular impor-
tance to this program is the use of the enhanced for in lines 24-25 to access
the elements in the row for 2005:

for (double s : snowfall[year])

total+=s;

Listing 2.4: Display a specific cell in a 2D array

1 import java.util.Scanner;

2 import java.io.File;

3 import java.io.FileNotFoundException;

4
5 public class TotalSnowfall2005

6 {

7 public static void main(String [] args)

8 throws FileNotFoundException {

9 // initialize the snowfall array

10 double [][] snowfall = new double [15][12];

11 Scanner f = new Scanner(

12 new File("SnowfallInInches.txt"));

13 for (int i=0; i<snowfall.length; i++){

14 // inner loop controls the column ac

15 for (int j=0;j<snowfall[i]. length;j++){

16 snowfall[i][j] = f.nextDouble ();

17 }

18 }

19 // display snowfall for 2005

20 // convert year to proper subscript

21 int year = 2005 -2000;

22 // get total of values in the row for 2005

23 double total = 0;

24 for (double s : snowfall[year])

25 total +=s;

26 System.out.print("The snowfall for 2005 "+

27 " is "+total+" inches");

28 }

29 }

2.3. EXAMPLES 35

Example 3 Accessing all elements in a column

Consider the following program that displays the average snowfall for the
month of February. In lines 22-23 this program accesses elements in the
second column of each row.

Listing 2.5: Display a specific cell in a 2D array

1 import java.util.Scanner;

2 import java.io.File;

3 import java.io.FileNotFoundException;

4
5 public class AverageFebruarySnowfall

6 {

7 public static void main(String [] args)

8 throws FileNotFoundException {

9 // initialize the snowfall array

10 double [][] snowfall = new double [15][12];

11 Scanner f = new Scanner(

12 new File("SnowfallInInches.txt"));

13 for (int i=0; i<snowfall.length; i++){

14 // inner loop controls the column ac

15 for (int j=0;j<snowfall[i]. length;j++){

16 snowfall[i][j] = f.nextDouble ();

17 }

18 }

19 // get total of values in for Februar

20 // by accessing second element of each row

21 double total = 0;

22 for (int i=0; i<snowfall.length; i++)

23 total += snowfall[i][1];

24 System.out.print("The average February "+

25 "snowfall is "+(total/snowfall.length)+

26 " inches");

27 }

28 }

36 CHAPTER 2. ARRAYS OF ARRAYS

Example 4 Ragged arrays:using row length

Consider the following program that displays the number of trips per driver.
In lines 14-15 this program determines the number of trips for driver i by
just using the length field for the array comprising row i.

Listing 2.6: Display total number of trips for each driver.

1 import java.util.Scanner;

2 public class TripsPerDriver

3 {

4 public static void main(String [] args){

5 int [][] trips ={

6 {25, 29, 30, 40},

7 {44, 25},

8 {22, 27, 55, 33, 80},

9 {55, 57, 45},

10 {31, 42, 49, 46}

11 };

12 // one line for each driver

13 for (int i=0; i<trips.length; i++){

14 System.out.println("driver "+i+

15 " made "+trips[i]. length+

16 " deliveries");

17 }

18 }

19
20 }

2.3. EXAMPLES 37

Example 5 Representing a matrix

In mathematics there is a structure called a matrix that, in Java terms, is
just a two dimensional array. Operations such as addition and multiplication
are defined for matrices where certain properties of the matrices involved
must be true. For example, two matrices with the same number of rows and
columns can be added together to produce a third matrix. The following
program initializes two matrices A and B, and then adds them producing a
third matrix, C.

In this program examine the loops in lines 25-27 where corresponding ele-
ments are added. The program uses a method displayMatrix, lines 33-41,
that accepts 2 parameters: a heading to display, and a matrix to display.

Listing 2.7: Display a specific cell in a 2D array

1 import java.util.Scanner;

2 public class MatrixAddition

3 {

4 public static void main(String [] args) {

5 int [][] a ={

6 {1, 2, 3, 4},

7 {1, 2, 3, 4},

8 {1, 2, 3, 4}

9 };

10 int [][] b ={

11 {1, 2, 3, 4},

12 {5, 6, 7, 8},

13 {9, 10, 11, 12}

14 };

15 int [][] c ={

16 {0, 0, 0, 0},

17 {0, 0, 0, 0},

18 {0, 0, 0, 0}

19 };;

20 // C = A + B

21 // For each c[i][j] in C

22 // c[i][j] = a[i][j]+b[i][j]

23 // A and B must have the same

24 // number of rows and columns

25 for (int i=0; i< a.length; i++)

38 CHAPTER 2. ARRAYS OF ARRAYS

26 for (int j=0; j<a[i]. length; j++)

27 c[i][j] =a [i][j] + b[i][j];

28 // display the 3 matrices

29 displayMatrix("A = ",a);

30 displayMatrix("B = ",b);

31 displayMatrix("C = ",c);

32 }

33 public static void displayMatrix(

34 String heading ,int [][] m){

35 System.out.println(heading);

36 for (int i=0; i<m.length; i++){

37 for (int j=0; j<m[i]. length; j++)

38 System.out.print(m[i][j]+"\t");

39 System.out.println ();

40 }

41 }

42 }

2.4 Higher Dimensions

You can define and use arrays with any number of dimensions. For instance
suppose we are recording values for each second of each minute of each hour
in a day, we could use a 3-dimensional array such as:

double [][][] obs = new double[24][60][60];

Of course the storage structure used in this case would involve an array of
24 elements, where each of those is an array of 60 elements and where each
of those is an array of 60 elements.

2.5. EXERCISES 39

2.5 Exercises

1. Write a program that displays the names of the months for the year
2005 when the snowfall in Denver exceeded 1 inch.

2. Write a program that displays the name of the month in the year 2005
when Denver received the greatest amount of snow.

3. Write a program that calculates and displays the total number of kilo-
metres driven by each driver.

4. Write a program that calculates and displays the total number of kilo-
metres driven (totalled over all drivers).

5. Write a program that displays each driver’s name and the total number
of kilometres driven. As well as the two dimensional array trips,
your program must include a one dimensional array containing driver
names.

6. Modify the program in Example 5 so that it forms the product of
A and B. If A has n rows and m columns and B has m rows and p
columns, then the product A×B yields a third matrix of n rows and
p columns. Each element of C is a sum of products involving the ith

row of A and the jth column of B:
ci,j =

∑n
k=1 ai,k bk,j

7. Suppose A and B are two matrices as described in the previous ques-
tion. However now let A be an m ×m identity matrix. An identity
matrix is one that has 1s on the diagonal and 0s everywhere else. That
is,
Ai,j = 1 where i = j and
Ai,j = 0 where i 6= j
For example, if m = 4 we have A =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

The program then multiplies matrix A by the matrix B . . . the result
should be B.

8. Write a method initSequentialValues(. . . } that sets the values of
the elements of a matrix to the values 1, 2, 3, For example suppose

40 CHAPTER 2. ARRAYS OF ARRAYS

A is a matrix of 4 rows and 5 columns. Then the result of calling
initSequentialValues(A)

we have A =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

9. Similar to the previous question, but place the sequential values in
column order. Write a method initSequentialValues(. . . } that sets
the values of the elements of a matrix to the values 1, 2, 3, For
example suppose A is a matrix of 4 rows and 5 columns. Then the
result of calling initSequentialValues(A)

we have A =

1 5 9 13 17
2 6 10 14 18
3 7 11 15 19
4 8 12 16 20

60 CHAPTER 2. ARRAYS OF ARRAYS

Chapter 3

Data Validation

3.1 Character

3.2 String

3.3 StringBuilder

61

80 CHAPTER 3. DATA VALIDATION

Chapter 4

Enumeration Classes
(Enums)

To enumerate is to list all values. There are many situations where a Java
application is works with a well-defined set of values for some entity. Con-
sider these examples:

1. days of the week: Sunday, Monday,. . .

2. months of the year: January, February, . . .

3. planets of the solar system: Mercury, Venus, . . .

4. suits in a deck of cards: Spades, Hearts, . . .

5. card faces in a deck of cards: Ace, Two, . . .

6. states of a door: open, closed, . . .

7. four directions: north, south, east, west

8. grades: A, B, . . .

When Java 1.5 was released Enums were added to the Java language. Enum
is a variation on the Java class that provides for cases where the programmer
needs a small number of values. In order to create an Enum when you use
BlueJ you click the button New Class and in the pop-up you select Enum
instead of Class, give a name to the Enum, and click the OK button. See
Figure 4.1 where a new Enum named Day is to be created.

81

82 CHAPTER 4. ENUMERATION CLASSES (ENUMS)

Figure 4.1: Create a new Enum

Figure 4.2 shows the default code placed in an Enum by the BlueJ editor.
This code is generated for any Enum and happens to be exactly what some-
one would use (or start with) for an Enum to represent the 7 days of the
week. If we were creating a different Enum we would need to edit the code
appropriately.

Figure 4.2: Code generated by BlueJ

Note how the declaration of an Enum begins in a way similar to that of a
class with the word class replaced by enum:

public enum Day {

Figure 4.2 shows a complete Enum in its simplest form . . . just an enumera-
tion of values. Note how the values are in upper case; this is a convention of

83

coding - not necessary but it is a common practice to name constants using
upper case characters.

public enum Day

{

}

In Java code the way these constants are specified is usually done by in-
cluding a prefix ”Day.” where the constants are said to be fully-qualified:
Day.MONDAY, Day.TUESDAY, Day.WEDNESDAY, etc. Given that an
enum Day has been defined one can now make other declarations such as

Day today; \\ declare today to be of type Day

today = Day.MONDAY;\\ assign today a value

There is Java feature called static import (see exercises) that will enable
code to specify an enum simply, for example:

today = Monday;

We will now show how simple enums can be used in code.

Example 1 Using an enum for days of the week

In this example we have a project with an enum Day, and a Java class
CalculatePay - see Figure 4.4. The example is a simple gross pay application
that requires 3 things: rate of pay, hours worked, and the day of the week
to be used for the calulation - see the following listing. If the current day is
a weekend day then the rate of pay is doubled. Note in the code how the if
statement uses == to compare two values.

Figure 4.3: BlueJ project with an enum and a class

84 CHAPTER 4. ENUMERATION CLASSES (ENUMS)

Listing 4.1: Use Enums for the day of the week.

1 /**

2 * Calculate gross pay for one day

3 * based on hours worked and rate of pay.

4 * For weekends the rate of pay is doubled.

5 */

6 public class CalculatePay

7 {

8 public static void main(String [] args){

9 // set today to be Saturday

10 Day today = Day.SATURDAY;

11 double rate = 15.00;

12 int hours = 6;

13 double gross;

14 if (today == Day.SATURDAY

15 || today == Day.SUNDAY)

16 gross = 2 * rate * hours;

17 else

18 gross = rate * hours;

19 }

20 }

4.1. VALUES() METHOD 85

4.1 values() Method

In its basic form an enum is a set of distinct values. Java provides several
methods that are pre-defined for enums. In this section we consider the
values() method. This method returns an array of values. For instance if
we coded

Day[] mydays = Day.values();

we would have the set of days as elements of an array named mydays. In
the following listing we see that we can iterate through and display the list,
in this case, one value per line. The output follows.

Listing 4.2: Use valueOf() to get Enum constants.

1 /**

2 * Use values () to get the enum values

3 */

4 public class EnumValues

5 {

6 public static void main(String [] args){

7 Day[] daysOfWeek = Day.values ();

8 System.out.println("Days of the week:");

9 for (Day d: daysOfWeek)

10 System.out.println(d);

11 }

12 }

Figure 4.4: Displaying the elements returned from values()

100 CHAPTER 4. ENUMERATION CLASSES (ENUMS)

4.2 Enum constants are objects

An Enum is a special type of java class. It is different from classes we have
used up to this point as there are a fixed number of objects automatically
created - one object for each Enum constant. In our example involving the
days of the week there are 7 constants and so there are exactly 7 objects.

Because enums are represented by objects they can have data and methods.
In this section two important points are made pertaining to:

1. the way values for fields in an enum are specified

2. that enum instances are created automatically by the JVM and not
through the use of the new operator.

Here, we consider a simple example where each Enum constant has an as-
sociated piece of information. Consider an educational environment where
a student receives a grade in each course they are taking. Suppose these
grades will be one of A, B, C, D, and F; these grades can be represented by
an enum Grade. Suppose also that each grade has a corresponding grade
point value (A has a grade point value of 4, B . . . 3, C . . . 2, D . . . 1, and
F . . . 0). When we define the enum Grade we specify the values for fields
(grade points) in parentheses following each constant, as in:

public enum Grade{A(4), B(3), C(2), D(1), F(0);

One small matter to notice in the above line is that Java requires a semi-
colon at the end of the list of constants with field values- this was not
necessary in the previous examples. The next two things specified are fields
and constructors. In this example we need a field for the grade point values:

private int gradePoint;

and then the constructor . . . the constructor is called automatically by the
JVM. Since we have defined constants above with integer values in paren-
theses the constructor must have an int parameter:

Grade(int gradePoint){

this.gradePoint = gradePoint;

}

The process of instantiating enum types is handled by the JVM automati-
cally; it is not possible for a programmer to purposely instantiate an enum.
If you were to try and compile a statement such as:

Day d = new Day();

4.2. ENUM CONSTANTS ARE OBJECTS 101

Java compiler will reject your code; your program will not compile.

102 CHAPTER 4. ENUMERATION CLASSES (ENUMS)

Chapter 5

Hierarchies

5.1 Object class

5.2 Inheritance

5.3 Abstract classes

5.4 Interface classes

120

Chapter 6

File Processing

6.1 Binary files

121

122 CHAPTER 6. FILE PROCESSING

Chapter 7

Exception Handling

7.1 File handling

123

124 CHAPTER 7. EXCEPTION HANDLING

Chapter 8

Recursion

140

Chapter 9

Sorting and Searching

9.1 Sorting techniques

9.2 Insertion sort

9.3 Bubble sort

9.4 Quicksort

9.5 Searching

9.6 Sequential search

9.7 Binary search

160

Chapter 10

Map Class

161

