
Java with BlueJ Part 2

Ron McFadyen

March 27, 2016

2

c©2015 Ron McFadyen

Department of Applied Computer Science

University of Winnipeg

515 Portage Avenue

Winnipeg, Manitoba, Canada

R3B 2E9

r.mcfadyen@uwinnipeg.ca

ron.mcfadyen@gmail.com

This work is licensed under Creative Commons Attribution NonCommercial
ShareAlike 4.0 International Public License. To view a copy of this license
visit

http://creativecommons.org/licenses/by-nc-sa/4.0/

This work can be distributed in unmodified form for non-commercial pur-
poses. Modified versions can be made and distributed for non-commercial
purposes provided they are distributed under the same license as the origi-
nal. Other uses require permission of the author.

The website for this book is

www.acs.uwinnipeg.ca/rmcfadyen/CreativeCommons/

To Callum

3

4

Contents

1 One-Dimensional Arrays 9

1.1 Initializing arrays . 11

1.2 Storage of arrays and copying arrays 12

1.3 The enhanced for . 14

1.4 Passing string values into main() 16

1.5 Parallel arrays . 18

1.6 Partially filled arrays . 20

1.7 Array utilities in Java class libraries 23

2 Arrays of Arrays 27

2.1 Two-dimensional arrays in Java 28

2.2 Ragged Arrays . 32

2.3 Examples . 34

2.4 Higher Dimensions . 40

2.5 Exercises . 41

3 Validation and Text Manipulation 43

3.1 Testing and the assert statement 43

3.2 Validating parameters . 47

3.3 Manipulating Text . 51

3.3.1 split and toCharArray 51

3.3.2 StringBuilder . 55

3.4 Exercises . 61

4 Enumeration Classes (Enums) 63

4.1 The basic Enum . 65

4.2 values() method . 66

4.3 Comparing enum values . 67

4.4 valueOf(. . .) method . 68

5

6 CONTENTS

4.5 Enum constants are objects 69

4.6 Summary . 72

4.7 Exercises . 74

5 Hierarchies 77

5.1 IS-A . 78

5.2 The Practitioner Hierarchy 80

5.2.1 Creating and using objects of the hierarchy 86

5.3 Overriding methods . 89

5.3.1 Calling an overridden superclass method 91

5.4 Exercises . 92

5.5 Abstract Classes and Methods 93

5.6 Exercises . 97

5.7 Summary . 98

5.8 Exercises . 100

6 Interfaces 101

6.1 Comparable interface . 103

6.2 Defining an interface . 109

6.3 Comparator Interface . 118

6.4 Summary . 120

6.5 Exercises . 122

7 Files 125

7.1 Primitive data and strings . 126

7.1.1 Binary files . 126

7.1.2 XML files . 130

7.2 Objects . 134

7.2.1 Binary files . 135

7.2.2 XML files . 139

7.3 Summary . 145

7.4 Exercises . 146

8 Exception Handling 147

8.1 Catching an exception . 149

8.2 Designing a custom exception 157

9 Recursion 167

9.1 Recursive methods . 167

9.2 Recursive data structures . 181

CONTENTS 7

9.3 Exercises . 186

10 Sorting and Searching 189
10.1 Sorting Algorithms . 190

10.1.1 Selection Sort . 191
10.1.2 Insertion Sort . 193
10.1.3 Bubble Sort . 195
10.1.4 Quicksort . 197
10.1.5 Implementation . 199
10.1.6 Listings . 199

10.2 Sorting Objects . 205
10.3 Searching Algorithms . 209

10.3.1 Searching an Unordered List 209
10.3.2 Searching an Ordered List 210

10.4 Exercises . 214

8 CONTENTS

Chapter 1

One-Dimensional Arrays

There are many situations where we deal with a collection of information.
Some examples are:

1. names of students in a class
2. courses offered by a department
3. temperatures for the last month
4. employees in a company

The above cases all have one thing in common: in each case there can be
more than one value. For instance, there would be several students in a class
and for each student there is a name, for example: ”John”, ”Mary”, ”Lee”,
etc. In Java, one way of handling a collection like this is to use a data struc-
ture called an array. The array is declared similar to other variables and
then an integer (called an index) is used to refer to its elements individually.
So, studentName can be the name of the collection and studentName[0],
studentName[1], studentName[2], etc. is the way we refer to elements of
the collection. To declare an array of names where each element of the array
can be a String value we use:

String[] studentName;

The square braces [] are used to indicate a one-dimensional array. Its
called one-dimensional because one index value is used to refer to an indi-
vidual element of the array. In Java index values begin at 0 and go up to
the length of the array -1. We can declare arrays of any type, for example:

9

10 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

declaration sample purpose

String[] studentName; an array of names

int[] mark; an array of marks

double[] temperature; an array of temperatures

boolean[] answer; an array of true/false answers

char[] letter; an array of multiple choice answers

The above are examples of how to declare an array. Before the array can
be used the programmer must also declare its size. Once the programmer
declares the size it cannot be made larger - this is one of the drawbacks
to using arrays and why sometimes another technique will be chosen. To
declare an array that can hold, say, 100 names we use:

String[] studentName;

studentName = new String[100];

or, we can combine the above into one line:

String[] studentName = new String[100];

or, if an int variable holds the length we can write:

int arraylength = 100;

String[] studentName = new String[arraylength];

Every array has an int field named length that is a part of it; the value
stored is the length of the array. So, for studentName above the value stored
in studentName.length is 100. This field is very useful; for instance if we
need to display all the names in studentName we can use the code:

for (int i=0; i<studentName.length; i++}

System.out.println(studentName[i]);

The length field is immutable which means it cannot be altered once it is
set. This means that once you have declared an array to be a certain length
you cannot change its length.

1.1. INITIALIZING ARRAYS 11

1.1 Initializing arrays

Because arrays can have multiple values there is a different syntax used when
its necessary to set initial values. For instance, suppose we need an array to
hold the number of days in each month. We can declare and initialize as:

int[] daysInMonth =

{31 ,28 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31};

The Java syntax for initializing an array is to enclose a comma-separated
list of values between the pair { }. Initializing arrays this way also sets the
length of the array. The value of daysInMonth.length is 12.

Example 1 Array initialization and displaying each element

Consider the following program where daysInMonth is initialized and dis-
played.

Listing 1.1: Initializing and displaying an array.

1 /**

2 * Display number of days in each month

3 */

4 public class MonthLengths

5 {

6 public static void main(String [] args){

7 int[] daysInMonth =

8 {31 ,28 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31};

9 System.out.println("Days for each of "

10 +daysInMonth.length+" months ");

11 for (int i = 0; i< daysInMonth.length; i++)

12 System.out.print(daysInMonth[i]+" ");

13 }

14 }

The output:

12 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

1.2 Storage of arrays and copying arrays

Arrays are objects in Java and so the memory location for the array variable
contains a reference to the actual storage locations holding the array’s values.
For instance the memory allocations for an array can be visualized as:

Now suppose we need to make a copy of the array. If we just use:
s = t; //s and t are arrays of same type

what we end up with is two storage locations for s and t that reference
the same 4 elements. We haven’t created a copy, rather we have two array
variables that reference the same 4 elements:

If we need a real copy of the array t then we require a loop to accomplish
this:

// s and t are of the same type

for (int i=0; i<t.length; i++) s[i] = t[i];

You can re-instantiate an array variable. New locations are assigned to the
array (see below) and the old ones are reclaimed for reuse according to an
internal Java garbage collection procedure.

1.2. STORAGE OF ARRAYS AND COPYING ARRAYS 13

14 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

1.3 The enhanced for

There is a variation on the for called the enhanced for that can be used when
a program iterates from the first element through to the last element of an
array and does not change any values. The syntax is

for (type variable : array)

statement

The for statement in the previous example can be rewritten:

for (int days : daysInMonth)

System.out.print(days+" ");

Example 2 Calculating an average

Consider the following program where temperature is assigned values ob-
tained from a user and then the average temperature is displayed. The
assignments must be done using a for whereas the calculation of the sum
can be done with a enhanced for.

Listing 1.2: Initializing an array from input.

1 import java.util.Scanner;

2 /**

3 * Display average of 7 values

4 */

5 public class AverageTemperature

6 {

7 public static void main(String [] args){

8 Scanner kb = new Scanner(System.in);

9 double [] temperature = new double [7];

10 System.out.println("Enter 7 temperatures:");

11 for (int i=0; i<7; i++)

12 temperature[i] = kb.nextDouble ();

13 double sum = 0.0;

14 for (double t:temperature) sum +=t;

15 System.out.println("average= "+sum /7.0);

16 }

17 }

1.3. THE ENHANCED FOR 15

When to use the enhanced for

The enhanced for helps to express a programming idiom succinctly as no
loop counter is required. However, there are many cases where the enhanced
for cannot be used:

1. iterate backwards through the array elements

2. access elements of more than one array

3. partially filled arrays (discussed later)

4. assigning new values to array elements.

16 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

1.4 Passing string values into main()

In all of our main methods we have specified a String array named args:
public static void main(String[] args)

In the above line args is declared to be an array of String. The variable
args is used to pass values (that are strings) into a method. When you have
used BlueJ to execute the main() method you have the opportunity to pass
an array of strings to the program.

Example 3 Passing arguments to main()

The following program just lists the strings passed into the program.

Listing 1.3: String values passed into main().

1 /**

2 * Print the values passed into the program

3 */

4 public class Args

5 {

6 public static void main(String [] args){

7 System.out.println("The elements of args:");

8 for (String s: args) System.out.print(" "+s);

9 }

10 }

The following shows a user executing main() and passing in 3 strings with
the resulting output from the program:

1.4. PASSING STRING VALUES INTO MAIN() 17

18 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

1.5 Parallel arrays

There are times when two or more arrays have exactly the same number of
elements and where array elements at the same index relate to one another
in some meaningful way. For example suppose we have one array of student
names and another of student numbers. If the arrays represent information
for the same set of students then we would want to arrange that the ith

element of the name array and the ith element of the number array are for
the same student.

Example 4 Parallel arrays: student names and numbers

Consider the following where two arrays hold information for 5 students: one
array of names and the other an array of student numbers. For simplicity
we initialize the arrays inline. The program prompts the user for a student
number and displays the student’s name. In order to get the name of the
student the program goes through all the elements of number and when it
finds a number matching the input, it displays the corresponding name in
the other array.

Listing 1.4: Finding information in parallel arrays.

1 import java.util.Scanner;

2 /**

3 * Student information is in two arrays.

4 * Find student number and report name.

5 */

6 public class StudentInfo

7 {

8 public static void main(String [] args){

9 String [] name =

{"Joe","Linda","Mary","Peter","Lee"};

10 int[] number = {123, 222, 345, 567, 890};

11 Scanner kb = new Scanner(System.in);

12 System.out.println("Enter student number:

");

13 int toFind = kb.nextInt ();

14 for (int i=0; i<number.length; i++)

15 if (toFind == number[i])

16 System.out.println(name[i]);

1.5. PARALLEL ARRAYS 19

17 }

18 }

This program performs what is usually called a search operation: scanning
an array looking for a specific element. The program as it was written
always iterates through the whole number array; normally a programmer
would stop the iteration once the element has been found - that is left as an
exercise.

20 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

1.6 Partially filled arrays

In our examples so far the arrays are completely full - every element has a
value. In general we do not expect this to always be the case and so, for
some applications, we keep track of how many locations are actually filled.

Example 5 Partially filled: calculate average

Suppose we need to calculate the average monthly sales. Since there are 12
months we use an array of length 12. We want a user to use the program at
any time of year and so there may be fewer than 12 values. The program
prompts the user for the monthly sales values, and requests the last value
entered to be -1 (a stopper value). The program keeps track of how many
elements are filled. Consider the following program and the points discussed
after the listing:

Listing 1.5: Average sales for up to 12 months.

1 import java.util.Scanner;

2 /**

3 * From monthly sales calculate monthly average.

4 */

5 public class MonthlySales

6 {

7 public static void main(String [] args){

8 double [] sales = new double [12];

9 Scanner kb = new Scanner(System.in);

10 System.out.println("Enter monthly sales"

11 +" enter -1 after last value");

12 int numberMonths =0;

13 double aSale = kb.nextDouble (); //1st month

14 while(aSale != -1) {

15 sales[numberMonths ++] = aSale;

16 aSale = kb.nextDouble ();

17 }

18 double sum = 0;

19 for (int i=0; i<numberMonths; i++)

20 sum+= sales[i];

21 if (numberMonths >0) System.out.println(

22 "average = "+sum/numberMonths);

1.6. PARTIALLY FILLED ARRAYS 21

23 }

24 }

The program exhibits some important features:

1. The sales array is of length 12 and the variable numberMonths keeps
track of how many months of data the user provides.

2. Prior to the while, in line 13, the first sales amount is obtained

3. The while tests the value of the last sales amount obtained.

4. In the body of the while the previously obtained sales amount is
placed into the array, and the next value is obtained.

5. Lines 19 and 20 accumulate the total sales

6. Testing for no months of data in line 21 prevents the program from
crashing if the user entered -1 as the first value (division by zero).

22 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

Arrays and ArrayLists

In some cases you may want to use the functionality of the ArrayList class
but for whatever reason the data you are working with is in an array. It is
easy to create an ArrayList from an array as shown in the program below.

Listing 1.6: Initializing an ArrayList from an array.

1 import java.util.ArrayList;

2 /**

3 * Create an ArrayList from an array of strings

4 */

5 public class ArrayListFromArray

6 {

7 public static void main(String [] args){

8 // An array that will be used to provide

9 // initial data for an ArrayList

10 String [] name={"Joe","Jasper","Abigail"};

11 ArrayList <String > nameAL =

12 new ArrayList(name.length);

13 // The add() method is used to append

14 // an element to the ArrayList

15 for (String n: name) nameAL.add(n);

16 // Printing an ArrayList results in each

17 // of its elements being displayed as

18 // in a comma -separated list.

19 System.out.println(nameAL);

20 }

21 }

Line 15 is an enhanced for where each element of the array is added to the
ArrayList. Line 19 prints the ArrayList. Note the output below and how
the ArrayList is displayed as a comma-separated-values list embedded in
square brackets [] - this is the default display for an ArrayList.

1.7. ARRAY UTILITIES IN JAVA CLASS LIBRARIES 23

1.7 Array utilities in Java class libraries

Arrays are often used in programming and there are many important array
algorithms. For instance, copying an array was discussed previously. The
System class contains a method arraycopy() that can be used to copy a
portion of one array to another. The method takes 5 arguments (in this
order): name of the source array, starting element position in the source,
the destination array, the starting element position in the destination, and
the total number of elements to copy. For instance to copy all elements of
the array t to the array s we could use:

System.arraycopy(t, 0, s, 0, t.length);

There is a Java library class named java.util.Arrays that has additional
methods which include:

1. equals(): Returns true if two arrays are equal to one another. The
arrays are equal if they have the same number of elements and if
corresponding elements are equal.

2. sort(): Rearranges the elements of an array so they are in ascending
sequence.

3. binarySearch(): Returns the index of an element if it was found in
a sorted array. Binary search is a type of search technique that takes
advantage of the fact that an array is sorted. The general idea is
to continually bisect the array looking for the required element. The
process examines the middle element and determines if the required
element is above or below the middle element; then the process con-
tinues on that subset of the array where the required element may be
present. The process continues until the required value is found or
there is nothing left to examine.

4. fill(): Assigns a specified value to every element of an array.

24 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

Example 6 Sorting and searching an array

The interested student is referred to the Java Class Library documentation
for complete information regarding Arrays. Here, we demonstrate how one
can sort an array and then search the array for a specific entry. Consider
that we have an array of names. To simplify we shall initialize the array in
the code. The program prompts the user for a name, performs a search, and
then responds accordingly. Following the listing there are some remarks.

Listing 1.7: Initializing and displaying an array.

1 import java.util.Arrays;

2 import java.util.Scanner;

3 /**

4 * An array of names is sorted and then

5 * searched for a specific name.

6 */

7 public class SortAndSearch

8 {

9 public static void main(String [] args){

10 String [] name =

11 {"Joe","Linda","Mary","Peter","Lee","Patricia"};

12 Arrays.sort(name);

13 Scanner kb = new Scanner(System.in);

14 System.out.println("Enter a name: ");

15 String toFind = kb.next();

16 int foundAt =

17 Arrays.binarySearch(name , toFind);

18 if (foundAt >= 0)

19 System.out.println(

20 "Found in position "+foundAt);

21 else System.out.println("Not Found ");

22 }

23 }

Note the following points regarding SortAndSearch above:

1. The Arrays class is imported in line 1.

2. The sort() method is invoked in line 12. As a result the entries of
name have been rearranged are are now sorted alphabetically.

1.7. ARRAY UTILITIES IN JAVA CLASS LIBRARIES 25

3. In line 17 binarySearch() is used to search for the name entered by
the user. If the value is not negative then that is the index where the
name was found.

26 CHAPTER 1. ONE-DIMENSIONAL ARRAYS

Exercises

1. Modify Example 1 to include a parallel array for the names of months.
On 12 lines, one per month, display each month and its number of
days.

2. Modify Example 2 to determine the minimum and the maximum of the
7 temperatures. Note that this is similar to Exercise 1 in the Section
on the for statement, but in this case the elements are stored in an
array.

3. Modify Example 3 so that it sorts the strings before they are displayed.

4. Modify lines 14-16 in Example 4 so that the loop stops if the number
is found.

5. Modify Example 5 so that it displays the name of the month when
sales were their largest.

6. Write a program to determine someone’s score on a multiple-choice
test having 12 questions. The program has two char arrays: cor-
rectAnswers[] and studentAnswers[]. The array correctAnswers holds
the correct answers to the test. Use the following for correct answers:
a b c d a b c d a b c d

The student’s answers will be provided by the user of the program.
These must be stored in the array studentAnswers[]. After the stu-
dent answers have been obtained the program must determine the
student’s score: the number of questions the student answered cor-
rectly.

For example if the student answers are:
a a a b b b c c c d d d
then the score for this student is 4.

7. Write a program to analyze text such that each word (token) found
is stored in an array. Use the file Readme.txt. Sort the array and
display its contents.

Chapter 2

Arrays of Arrays

Java programmers frequently use an array (also called a one-dimensional
array) to deal with a linear collection of elements (where the elements are
of the same type). However there are times when a more complicated array
structure is useful. For instance suppose we are keeping track of snowfall by
month for Denver, Colorado, for the years 2000 through to 2014. We can
represent this information readily in a tabular format - see Figure 2.1.

It is easy for someone to get information from such a table as that above.
To do so you need to know the meanings of three things:

• What do the values in the cells of the table represent?
– In this example snowfall in inches.

• What do the rows represent ?
– In this example years from 2000 to 2014.

• what do the columns represent?
– In this example months January, . . . December.

One can use the table to find out the snowfall during some month and some
year. If we want to obtain the snowfall for the month of February in 2005
we need to go the sixth row from the top and then to the second element
from the left. There we see the value 0.5 . . . that is, in February of 2005
Denver received a half inch of snow.

27

28 CHAPTER 2. ARRAYS OF ARRAYS

Figure 2.1: Monthly snowfall from 2000 to 2014 for Denver, Colorado.

2.1 Two-dimensional arrays in Java

The snowfall table can be stored in a Java array, but in this case we would
use a two-dimensional array and it could be defined as:

double [][] snowfall;

Each element of the array must be of the same type . . . in this case they are
doubles. Notice the two pairs of square braces, [] and [], in the declaration
statement. There are two pairs because we will use two subscripts to refer-
ence an element of the table. To obtain the element for February 2005 we
use snowfall[5][1]. Recall with Java that subscript values begin at 0 and
so the sixth row is row 5 and the second column is column 1. Its a lengthy
statement but to initialize snowfall we could use:

private double [][] snowfallInInches ={

{6.2 ,1.8 ,11.3 ,4.6 ,0 ,0 ,0 ,0 ,0.2 ,0 ,7.6 ,5.6}

{8.7 ,10.6 ,6.7 ,11.7 ,7.2 ,0 ,0 ,0 ,0 ,1 ,4.2 ,2.9} ,

{6.1 ,2.8 ,12.5 ,0 ,0.7 ,0 ,0 ,0 ,0 ,4.8 ,3.9 ,0.0} ,

{0,7.5,35.2,3.4,7,0,0,0,0,0,2.9,4.5},

{4.6 ,8.9 ,1.8 ,15.3 ,0 ,0 ,0 ,0 ,0 ,1.4 ,10 ,2.6} ,

2.1. TWO-DIMENSIONAL ARRAYS IN JAVA 29

{7.4 ,0.5 ,4.6 ,11.4 ,1.4 ,0 ,0 ,0 ,0 ,9.6 ,1 ,4.1} ,

{3.6 ,3 ,8.6 ,0.3 ,0.2 ,0 ,0 ,0 ,0 ,9.8 ,4.4 ,29.4} ,

{15.9 ,5.5 ,6.7 ,0.9 ,0 ,0 ,0 ,0 ,0 ,3 ,2.5 ,20.9} ,

{3.1 ,5.1 ,5.4 ,2.9 ,3.4 ,0 ,0 ,0 ,0 ,0 ,1.7 ,10.3} ,

{4.9 ,0 ,13.8 ,7.4 ,0 ,0 ,0 ,0 ,0 ,17.2 ,9.3 ,11.1} ,

{2.6 ,5.8 ,12.8 ,0.5 ,1.3 ,0 ,0 ,0 ,0 ,0 ,1.5 ,3.3} ,

{8,5.3 ,2.5 ,1.2,1 ,0 ,0,0 ,0 ,8.5 ,4.5,16.5} ,

{4.9,20.2,0,1,0,0,0,0,0,5.5,1.7,5.2},

{4.6 ,14.1 ,23.5 ,20.4 ,3.4 ,0 ,0 ,0 ,0 ,1.4 ,2 ,4.7} ,

{14.3,3.3,6,5.6,1.1,0,0,0,0,0,4,12},

};

Some important points about snowfall:

1. The data is presented in row order. And for each row the data is
presented in column order. There are 16 rows of data in the table.

2. Note how values are separated by commas and the data for each row
is enclosed in a pair of curly braces, { }. Each row contains 12 values,
one per month.

3. Only the snowfall amounts are in the array. A program must know
the year that a row represents and know the month that a column
represents.

When the JVM creates the array, it actually creates an array where each el-
ement is an array. The diagram in Figure 2.2 shows how the JVM organizes
a two dimensional array in memory as an array of arrays.

Figure 2.2: Two dimensional array - an array of arrays.

When a program references an array element the JVM accesses the stor-

30 CHAPTER 2. ARRAYS OF ARRAYS

age structure using the subscripts in sequence. So for snowfall[5][1] the
JVM uses the first subscript, 5, to access the sixth element of the 15 element
array; then the JVM uses the second subscript, 1, to access the second el-
ement of a 12-element array where the value 0.5 is stored in the above figure.

In the foregoing we initialized the array in a declaration statement. That
is not always appropriate. If we were obtaining the values from input we
would first of all declare the array of the appropriate size and then proceed
to read data into the array. The declaration statement for our Denver snow-
fall example would be:

private double [][] snowfall = new double[15][12];

The program in Listing 2.1 reads the data from a file named SnowfallInInches.txt
from the same folder as where the program is located. In this program you
should note the following:

• line 10 declares the two dimensional array with 15 rows and 12 columns.
• lines 19 to 24 read the data from the file.

– The outer loop controls the row subscript. Notice the use of the
length field . . . the number of rows is snowfall.length().

– The inner loop controls the column subscript. Notice again the
use of the length field. Each row is in fact an array, and the ith

row is referenced by snowfall[i] . . . the number of elements in
the ith row is snowfall[i].length().

– In line 22 the value read is stored in the ith row and jth column
of snowfall. Recall that the two dimensional storage structure
the JVM creates is an array of arrays. And so in terms of the
storage structure its true to say that the value is stored as the jth

element of the ith array of snowfall.
• Lines 26 to 32 display the values in a tabular format.

The output from the program is shown following the listing

Listing 2.1: Reading array data

1 import java.util.Scanner;

2 import java.io.File;

3 import java.io.FileNotFoundException;

4
5 public class Snowfall

6 {

7 public static void main(String [] args)

2.1. TWO-DIMENSIONAL ARRAYS IN JAVA 31

8 throws FileNotFoundException {

9 // an array of 15 rows and 12 columns

10 double [][] snowfall = new double [15][12];

11 // get data from file

12 Scanner f = new Scanner(

13 new File("SnowfallInInches.txt"));

14 System.out.println("\nData read from "

15 +"SnowfallInInches.txt "+

16 "\nby year from 2000 to 2014, and for "+

17 "\neach year from January to December");

18 // outer loop controls the row subscript

19 for (int i=0; i<snowfall.length; i++){

20 // inner loop controls the column

21 for (int j=0;j<snowfall[i]. length;j++){

22 snowfall[i][j] = f.nextDouble ();

23 }

24 }

25 // display the contents of the table by year

26 System.out.println("Data obtained is:");

27 for (int i=0; i<snowfall.length; i++){

28 System.out.println ();

29 for (int j=0;j<snowfall[i]. length;j++){

30 System.out.print(snowfall[i][j]+"\t");

31 }

32 }

33 }

34 }

Figure 2.3: Output: Snowfall in Denver.

32 CHAPTER 2. ARRAYS OF ARRAYS

2.2 Ragged Arrays

Recall how two dimensional arrays are actually arrays of arrays. Its pos-
sible then that rows can have different numbers of elements. For example
suppose we have five drivers who drive trucks delivering goods, and for each
driver and delivery we keep track of the kilometres they drive. If it is the
case that the number of deliveries varies for these drivers we can use a two
dimensional array; consider the following sample data:

Figure 2.4: Five drivers with varying numbers of trips.

The program in Listing 2.2 initializes the array with 5 rows, one per driver,
and varying elements for each array that makes up a row. Following the
program listing is the output from running the program.

Listing 2.2: Reading array data

1 import java.util.Scanner;

2 public class DriversTrips

3 {

4 public static void main(String [] args){

5 // 2D array with varying number

6 // of elements per row

7 int [][] trips ={

8 {25, 29, 30, 40},

9 {44, 25},

10 {22, 27, 55, 33, 80},

11 {55, 57, 45},

12 {31, 42, 49, 46}

13 };

14 System.out.println("\n\t\tDriver Trips");

2.2. RAGGED ARRAYS 33

15 // number of drivers = number of rows

16 // is trips.length

17 for (int i=0; i<trips.length; i++){

18 System.out.print("driver: "+i+"\t");

19 // number of trips for ith driver

20 // is trips[i]. length

21 for (int j=0;j<trips[i]. length;j++){

22 System.out.print(trips[i][j]+"\t");

23 }

24 System.out.println ();

25 }

26 }

27
28 }

Figure 2.5: Output: DriversTrips.

34 CHAPTER 2. ARRAYS OF ARRAYS

2.3 Examples

Example 1 Accessing a specific array element

Consider the following program that displays the snowfall for a specific year
and a month obtained from the user. The program converts the year and
month into appropriate subscript (int) values. The output for a sample run
follows.

Listing 2.3: Display a specific cell in a 2D array

1 import java.util.Scanner;

2 import java.io.File;

3 import java.io.FileNotFoundException;

4
5 public class DisplaySnowfall

6 {

7 public static void main(String [] args)

8 throws FileNotFoundException {

9 // initialize the snowfall array

10 double [][] snowfall = new double [15][12];

11 Scanner f = new Scanner(

12 new File("SnowfallInInches.txt"));

13 for (int i=0; i<snowfall.length; i++){

14 // inner loop controls the column ac

15 for (int j=0;j<snowfall[i]. length;j++){

16 snowfall[i][j] = f.nextDouble ();

17 }

18 }

19 // prompt user ... display snowfall

20 System.out.println("Enter the year as "+

21 "an integer , "+

22 "\nthen the name of the month:");

23 Scanner kb = new Scanner(System.in);

24 // convert year to proper subscript

25 int year = kb.nextInt () -2000;

26 String month = kb.next();

27 // convert month to proper subscript

28 int monthInt = convertMonth(month);

29 System.out.print("The snowfall for "+

2.3. EXAMPLES 35

30 month+" in "+ (2000+ year)+" is "+

31 snowfall[year][monthInt]+" inches");

32 }

33
34 public static int convertMonth(String month){

35 int monthInt;

36 switch (month.toLowerCase ()){

37 case "january": monthInt = 0; break;

38 case "february": monthInt = 1; break;

39 case "march": monthInt = 2; break;

40 case "april": monthInt = 3; break;

41 case "may": monthInt = 4; break;

42 case "june": monthInt = 5; break;

43 case "july": monthInt = 6; break;

44 case "august": monthInt = 7; break;

45 case "september": monthInt = 8; break;

46 case "october": monthInt = 9; break;

47 case "november": monthInt = 10; break;

48 case "december": monthInt = 11; break;

49 default: monthInt = -1; // bad month

name

50 }

51 return monthInt;

52 }

53 }

Figure 2.6: Output: Sample run for DisplaySnowfall.

36 CHAPTER 2. ARRAYS OF ARRAYS

Example 2 Accessing all elements in a row

Consider the following program that displays the total snowfall for 2005.
This program accesses all elements in a specific row. Of particular impor-
tance to this program is the use of the enhanced for in lines 24-25 to access
the elements in the row for 2005:

for (double s : snowfall[year])

total+=s;

Listing 2.4: Display a specific cell in a 2D array

1 import java.util.Scanner;

2 import java.io.File;

3 import java.io.FileNotFoundException;

4
5 public class TotalSnowfall2005

6 {

7 public static void main(String [] args)

8 throws FileNotFoundException {

9 // initialize the snowfall array

10 double [][] snowfall = new double [15][12];

11 Scanner f = new Scanner(

12 new File("SnowfallInInches.txt"));

13 for (int i=0; i<snowfall.length; i++){

14 // inner loop controls the column ac

15 for (int j=0;j<snowfall[i]. length;j++){

16 snowfall[i][j] = f.nextDouble ();

17 }

18 }

19 // display snowfall for 2005

20 // convert year to proper subscript

21 int year = 2005 -2000;

22 // get total of values in the row for 2005

23 double total = 0;

24 for (double s : snowfall[year])

25 total +=s;

26 System.out.print("The snowfall for 2005 "+

27 " is "+total+" inches");

28 }

29 }

2.3. EXAMPLES 37

Example 3 Accessing all elements in a column

Consider the following program that displays the average snowfall for the
month of February. In lines 22-23 this program accesses elements in the
second column of each row.

Listing 2.5: Display a specific cell in a 2D array

1 import java.util.Scanner;

2 import java.io.File;

3 import java.io.FileNotFoundException;

4
5 public class AverageFebruarySnowfall

6 {

7 public static void main(String [] args)

8 throws FileNotFoundException {

9 // initialize the snowfall array

10 double [][] snowfall = new double [15][12];

11 Scanner f = new Scanner(

12 new File("SnowfallInInches.txt"));

13 for (int i=0; i<snowfall.length; i++){

14 // inner loop controls the column ac

15 for (int j=0;j<snowfall[i]. length;j++){

16 snowfall[i][j] = f.nextDouble ();

17 }

18 }

19 // get total of values in for Februar

20 // by accessing second element of each row

21 double total = 0;

22 for (int i=0; i<snowfall.length; i++)

23 total += snowfall[i][1];

24 System.out.print("The average February "+

25 "snowfall is "+(total/snowfall.length)+

26 " inches");

27 }

28 }

38 CHAPTER 2. ARRAYS OF ARRAYS

Example 4 Ragged arrays:using row length

Consider the following program that displays the number of trips per driver.
In lines 14-15 this program determines the number of trips for driver i by
just using the length field for the array comprising row i.

Listing 2.6: Display total number of trips for each driver.

1 import java.util.Scanner;

2 public class TripsPerDriver

3 {

4 public static void main(String [] args){

5 int [][] trips ={

6 {25, 29, 30, 40},

7 {44, 25},

8 {22, 27, 55, 33, 80},

9 {55, 57, 45},

10 {31, 42, 49, 46}

11 };

12 // one line for each driver

13 for (int i=0; i<trips.length; i++){

14 System.out.println("driver "+i+

15 " made "+trips[i]. length+

16 " deliveries");

17 }

18 }

19
20 }

2.3. EXAMPLES 39

Example 5 Representing a matrix

In mathematics there is a structure called a matrix that, in Java terms, is
just a two dimensional array. Operations such as addition and multiplication
are defined for matrices where certain properties of the matrices involved
must be true. For example, two matrices with the same number of rows and
columns can be added together to produce a third matrix. The following
program initializes two matrices A and B, and then adds them producing a
third matrix, C.

In this program examine the loops in lines 25-27 where corresponding ele-
ments are added. The program uses a method displayMatrix, lines 33-41,
that accepts 2 parameters: a heading to display, and a matrix to display.

Listing 2.7: Display a specific cell in a 2D array

1 import java.util.Scanner;

2 public class MatrixAddition

3 {

4 public static void main(String [] args) {

5 int [][] a ={

6 {1, 2, 3, 4},

7 {1, 2, 3, 4},

8 {1, 2, 3, 4}

9 };

10 int [][] b ={

11 {1, 2, 3, 4},

12 {5, 6, 7, 8},

13 {9, 10, 11, 12}

14 };

15 int [][] c ={

16 {0, 0, 0, 0},

17 {0, 0, 0, 0},

18 {0, 0, 0, 0}

19 };;

20 // C = A + B

21 // For each c[i][j] in C

22 // c[i][j] = a[i][j]+b[i][j]

23 // A and B must have the same

24 // number of rows and columns

25 for (int i=0; i< a.length; i++)

40 CHAPTER 2. ARRAYS OF ARRAYS

26 for (int j=0; j<a[i]. length; j++)

27 c[i][j] =a [i][j] + b[i][j];

28 // display the 3 matrices

29 displayMatrix("A = ",a);

30 displayMatrix("B = ",b);

31 displayMatrix("C = ",c);

32 }

33 public static void displayMatrix(

34 String heading ,int [][] m){

35 System.out.println(heading);

36 for (int i=0; i<m.length; i++){

37 for (int j=0; j<m[i]. length; j++)

38 System.out.print(m[i][j]+"\t");

39 System.out.println ();

40 }

41 }

42 }

2.4 Higher Dimensions

You can define and use arrays with any number of dimensions. For instance
suppose we are recording values for each second of each minute of each hour
in a day, we could use a 3-dimensional array such as:

double [][][] obs = new double[24][60][60];

Of course the storage structure used in this case would involve an array of
24 elements, where each of those is an array of 60 elements and where each
of those is an array of 60 elements.

2.5. EXERCISES 41

2.5 Exercises

1. Write a program that displays the names of the months for the year
2005 when the snowfall in Denver exceeded 1 inch.

2. Write a program that displays the name of the month in the year 2005
when Denver received the greatest amount of snow.

3. Write a program that calculates and displays the total number of kilo-
metres driven by each driver.

4. Write a program that calculates and displays the total number of kilo-
metres driven (totalled over all drivers).

5. Write a program that displays each driver’s name and the total number
of kilometres driven. As well as the two dimensional array trips,
your program must include a one dimensional array containing driver
names.

6. Modify the program in Example 5 so that it forms the product of
A and B. If A has n rows and m columns and B has m rows and p
columns, then the product A×B yields a third matrix of n rows and
p columns. Each element of C is a sum of products involving the ith

row of A and the jth column of B:
ci,j =

∑n
k=1 ai,k bk,j

7. Suppose A and B are two matrices as described in the previous ques-
tion. However now let A be an m ×m identity matrix. An identity
matrix is one that has 1s on the diagonal and 0s everywhere else. That
is,
Ai,j = 1 where i = j and
Ai,j = 0 where i 6= j
For example, if m = 4 we have A =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

The program then multiplies matrix A by the matrix B . . . the result
should be B.

8. Write a method initSequentialValues(. . . } that sets the values of
the elements of a matrix to the values 1, 2, 3, For example suppose

42 CHAPTER 2. ARRAYS OF ARRAYS

A is a matrix of 4 rows and 5 columns. Then the result of calling
initSequentialValues(A)

we have A =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

9. Similar to the previous question, but place the sequential values in
column order. Write a method initSequentialValues(. . . } that sets
the values of the elements of a matrix to the values 1, 2, 3, For
example suppose A is a matrix of 4 rows and 5 columns. Then the
result of calling initSequentialValues(A)

we have A =

1 5 9 13 17
2 6 10 14 18
3 7 11 15 19
4 8 12 16 20

Chapter 3

Validation and Text
Manipulation

In this chapter we look at issues related to verifying the correctness of your
program, verifying the validity of argument values passed into a method,
verifying the validity of field values, and the general concern of manipulating
textual data.

3.1 Testing and the assert statement

When we develop a program there is the important task of verifying the pro-
gram works as required. Often a programmer will insert multiple println

statements to display program data, or to track the progression of some
algorithm. In addition to debugging a program this way a programmer can
also use the Java assert statement. This statement has two forms:

• assert expression1;
• assert expression1 : expression2;

where expression1 is a boolean expression and expression2 is a value. If
expression1 evaluates to false then your Java progam will terminate imme-
diately with an Assertion error. If the expression1 evaluates to true then
nothing happens. In the second form of the assert statement expression2

provides a message to be displayed when the program is terminated.

43

44 CHAPTER 3. VALIDATION AND TEXT MANIPULATION

Example 1. Calculate age

Suppose we need to calculate a person’s age in years. Given a person’s birth-
date we can easily make this calculation. In Java 1.8 two classes introduced
were LocalDate and Period. These classes model dates according to the
ISO-8601 calendar system. Using LocalDate we can instantiate an instance
representing a particular date such as today, or, someone’s birthday. Period
can be used to create an interval that has a start date and an end date, such
as the period between someone’s birthday and today. Period has several
utility methods; for instance getYears() returns the number of years in a
period. The following method, given someone’s date of birth in the format
YYYY-MM-DD calculates age in years.

1 /**

2 * getAge - determines age in years

3 *

4 * @param yyyymmdd birthdate YYYY -MM-DD

5 * @return age in years

6 */

7 public static int getAge(String yyyymmdd){

8 int yyyy =

Integer.parseInt(yyyymmdd.substring (0,4));

9 int mm =

Integer.parseInt(yyyymmdd.substring (5,7));

10 int dd =

Integer.parseInt(yyyymmdd.substring (8,10));

11 // age is difference between today and the

birthday

12 LocalDate birthday = LocalDate.of(yyyy , mm,

dd);

13 LocalDate today = LocalDate.now();

14 Period p = Period.between(birthday , today);

15 return p.getYears (); // age in years

16 }

Please study the code above to know how it works; it does perform the
calculation properly. However there are cases where we can get a result we
consider to be inappropriate. For example, suppose we use this method in
a situation where we are calculating ages of employees. In this situation we
expect someone’s age to be positive - a non-positive age indicates something

3.1. TESTING AND THE ASSERT STATEMENT 45

is wrong with our logic or with our data.

In the program CalculateAge below we include an assert statement to
trap the case where the calculated age is not positive (we have used the
birth date 2090-01-01). The result of executing this code is shown after
the program listing. Note that the program has been terminated with an
Assertion error.

Listing 3.1: Use assert to recognize a problem

1 import java.util.Scanner;

2 import java.time.LocalDate;

3 import java.time.Period;

4 public class CalculateAge

5 {

6 public static void main(String [] args){

7 int age = getAge("2090 -01 -01");

8 assert age > 0 : "age must be positive";

9 System.out.println(age);

10 }

11
12 /**

13 * getAge - determines age in years

14 *

15 * @param yyyymmdd birthdate YYYY -MM-DD

16 * @return age in years

17 */

18 public static int getAge(String yyyymmdd){

19 int yyyy =

Integer.parseInt(yyyymmdd.substring (0,4));

20 int mm =

Integer.parseInt(yyyymmdd.substring (5,7));

21 int dd =

Integer.parseInt(yyyymmdd.substring (8,10));

22 // age is difference between today and the

birthday

23 LocalDate birthday = LocalDate.of(yyyy , mm,

dd);

24 LocalDate today = LocalDate.now();

25 Period p = Period.between(birthday , today);

26 return p.getYears (); // age in years

46 CHAPTER 3. VALIDATION AND TEXT MANIPULATION

27 }

28 }

Figure 3.1: Assertion error on running CalculateAge.

Assert statements are used by programmers when they are developing and
testing code. They should not be used in production code. BlueJ, by default,
enables assertions. This default behaviour is reasonable for an environment
that is a learning environment, but assertions can be turned off. At the time
of writing assertions can be disabled by changing a flag in the BlueJ defs

file from ea to da.

3.2. VALIDATING PARAMETERS 47

3.2 Validating parameters

When a method has been coded there is an expectation that the argument
values passed in are appropriate. For instance, the getAge method in the
previous section expects a string argument to contain a valid date. What
happens if it does not? Examine that code and you should agree that the
method will fail and the program will terminate. The programmer would
then need to investigate to determine why the program failed. Instead of
leaving things that way we can redevelop getAge so it checks its parameters
and when they are invalid it could fail, but indicate to us the nature of the
problem, and the programmer who is debugging the code will know where
to begin her/his investigation.

Whenever you develop a method that has parameters you should know what
constitutes valid values. You should develop code to check for improper
values and, if that is the case, terminate execution in a planned way instead
of an unplanned way.

Example 2. Throwing an illegal argument exception

getAge requires the value of yyyymmdd to be a string that has 4 digits,
a dash, 2 digits (00 to 12), a dash, followed by 2 more digits (00 to 31,
depending on the month). We will base our validation on some character
processing techniques we are aware of. We consider the following rules for
a valid yyyymmdd value:

• yyyy, mm, dd are separated by a single dash
• yyyymmdd is a string of length 10
• yyyy can be any 4 digits
• mm can be any 2 digits (really these should be in the range 01 . . . 12)
• dd can be any 2 digits (really these should be appropriate for the

month)
• we ignore leap years

Some sample values that are invalid according to the above are:

• "1990-1-1" is not 10 characters long
• "abcd-01-01" has non-numeric digits
• "2010/01/01" has / as a separator instead of a dash

We have seen before that certain errors result in exceptions that cause a

48 CHAPTER 3. VALIDATION AND TEXT MANIPULATION

program to terminate abruptly. For instance, if an array subscript is out
of bounds the program is terminated with an ArrayOutOfBoundsException
exception. The getAge method in the program below introduces the Java
exception IllegalArgumentException; this exception is thrown if the ar-
gument passed in does not pass the checks performed. If this exception is
thrown then a program terminates immediately.

Listing 3.2: Throwing an exception

1 import java.util.Scanner;

2 import java.time.LocalDate;

3 import java.time.Period;

4 import java.lang.IllegalArgumentException;

5 public class CheckArgumentValue

6 {

7 public static void main(String [] args){

8 // bad value passed to getAge

9 int age = getAge("2090 -01 -1");

10 assert age > 0 : "age must be positive";

11 System.out.println(age);

12 }

13
14 /**

15 * getAge - determines age in years

16 *

17 * @param yyyymmdd birthdate YYYY -MM -DD

18 * @return age in years

19 */

20 public static int getAge(String yyyymmdd){

21 String arg = yyyymmdd;

22 // check length

23 boolean valid = arg.length () ==10;

24 if (!valid)

25 throw new

IllegalArgumentException("yyyymmdd

has wrong length");

26 // check for dashes

27 valid = arg.charAt (4)==’-’ &&

arg.charAt (7)==’-’ ;

28 if (!valid)

29 throw new

3.2. VALIDATING PARAMETERS 49

IllegalArgumentException("yyyymmdd

does not have dashes in correct

places");

30 // check digit positions are numeric

31 for (int i=0; i<arg.length () && valid; i++)

32 valid = ((i==4 || i==7) ||

Character.isDigit(arg.charAt(i)));

33 if (! valid)

34 throw new

IllegalArgumentException("yyyymmdd is

not numeric");

35 // the following executes only if no

exception was thrown above

36 arg = arg.replaceAll("-",""); // remove

dashes

37 int yyyy =

Integer.parseInt(yyyymmdd.substring (0,4));

38 int mm =

Integer.parseInt(yyyymmdd.substring (5,7));

39 int dd =

Integer.parseInt(yyyymmdd.substring (8,10));

40 // age is difference between today and the

birthday

41 LocalDate birthday = LocalDate.of(yyyy , mm,

dd);

42 LocalDate today = LocalDate.now();

43 Period p = Period.between(birthday , today);

44 return p.getYears (); // age in years

45 }

46 }

Below is the output produced when the program runs. Note the exception
includes the informative message and the line number where the exception
was thrown.

50 CHAPTER 3. VALIDATION AND TEXT MANIPULATION

Figure 3.2: Illegal argument detected at run time.

3.3. MANIPULATING TEXT 51

3.3 Manipulating Text

In Part 1 of this text several methods of the String and Character classes
were presented and used. Here we introduce two more methods of the String
class which are quite useful in practical coding. Following this we discuss
the StringBuilder class that provides capabilities similar to String.

3.3.1 split and toCharArray

toCharArray is used to convert a string into an array of char. For instance
the code snippet below counts the number of numeric characters in a string
s.

1 // count the number of digits in s

2 char[] x = s.toCharArray ();

3 int count = 0;

4 for (char c: x)

5 if (Character.isDigit(c)) count ++;

The split method is used to split a string into an array of strings based
on a splitting expression. For example the following code snippet creates 3
strings based on "-" as a delimiter.

1 // split a string based on the delimiter "-"

2 String course = "ACS -2814 -050";

3 String [] parts = course.split("-");

4 for (String p: parts) System.out.println(p);

The output of the code snippet follows - the string "ACS-2814-050" was
split into 3 strings, each stored as an element of the array parts:

The argument provided to the split method is formally called a regular
expression. Regular expressions are string patterns that can be used for
matching purposes. Regular expressions range from simple to very complex

52 CHAPTER 3. VALIDATION AND TEXT MANIPULATION

- at some time you may be interested in pursuing some more advanced
expressions, but for the time being we list a few simpler patterns below.
Note that [and] are used to specify any character within the brackets,
"+" is used to specify one or more of a preceding character, and - is used
to specify a range of characters.

required purpose pattern

to match a comma ","

to match a space " "

to match multiple spaces " +"

to match a dash "-"

to match a dash followed by a comma "-,"

to match a dash or a comma "[-,]"

to match a digit "[0-9]"

to match a letter "[a-zA-Z]"

3.3. MANIPULATING TEXT 53

Example 3. Capitalize and compress words

Suppose we have a line of text where words are separated by spaces. We
want to form a new word which is the catenation of the original words and
where only the first letter of each word is is capitalized. For instance if the
line is
retail sales tax

then the program creates the word
RetailSalesTax

The following program uses the simple regular expression " " (a pattern for
a single space) and the split method to split the line of text into an array
of strings. Each word is then catenated in turn to the result (with its first
letter forced to be a capital letter).

Listing 3.3: splitting text on a space

1 public class CatenateWords

2 {

3 public static void main(String [] args){

4 String course = "retail sales tax";

5 String result = formNewWord(course);

6 System.out.println(result);

7 }

8
9 public static String formNewWord(String line){

10 String newWord = "";

11 // for each word

12 for(String s: line.split(" +"))

13 // catenate to previous result

14 newWord +=

Character.toUpperCase(s.charAt (0)) +

s.substring (1).toLowerCase ();

15 return newWord;

16 }

17 }

54 CHAPTER 3. VALIDATION AND TEXT MANIPULATION

Example 4. Validating the format of a SIN

Suppose we want to verify that a social insurance number is properly com-
posed as 3 digits, a dash, 3 digits, a dash, 3 digits. For example, "659-123-999"
is a properly formatted SIN. The following program splits the SIN into parts
based on a dash ("-"), and then checks to see that each part consists of 3
digits.

Listing 3.4: splitting text on a dash and validating elements are numeric

1 public class ValidateFormat

2 {

3 public static void main(String [] args){

4 String sin = "659 -123 -999";

5 if (validateSIN(sin))

6 System.out.println(sin+" is correctly

formed");

7 else

8 System.out.println(sin+" is not

correctly formed");

9 }

10
11 public static boolean validateSIN(String sin){

12 // ensure a value was passed in

13 boolean valid = !(sin == null);

14 if (valid) {

15 String [] sinParts;

16 sinParts = sin.split("-");

17 // must have 3 parts

18 valid &= sin.length ()==11;

19 valid &= sinParts.length ==3;

20 if (valid) {

21 // remove the dashes

22 String temp = sin.replace("-","");

23 for (char c: temp.toCharArray ())

24 valid &= Character.isDigit(c);

25 }

26 }

27 return valid;

28 }

29 }

3.3. MANIPULATING TEXT 55

3.3.2 StringBuilder

Java strings are said to be immutable; this means that a string value, once
initialized, cannot be changed. Of course we have seen that a variable of type
String can have one value and then through, say an assignment statement,
have its value changed. Consider the statements

String s = "Good";

String d = " day";

s += d;

After the first statement is executed s references a location containing the
word "Good". As a result of the second statement the variable d references
a location containing " day". From the programmer’s perspective the third
statement clearly causes the value associated with s to change. The JVM
performs the following steps when the third statement executes:

• another area of memory is allocated for s - large enough to hold the
result of the catenation
• the contents of the string that s currently refers to is copied into the

new area ("Good" is copied)
• the contents of the string that d refers to then copied into the new

area (" day" is copied)
• the variable s is changed so it references the new area.

We can visualize the above steps with the following diagram.

56 CHAPTER 3. VALIDATION AND TEXT MANIPULATION

Figure 3.3: When a string variable gets a new value, a new area of memory
is allocated.

3.3. MANIPULATING TEXT 57

For many programming situations immutable strings work very well; for in-
stance when a line of output is being established through catenation. How-
ever, if a program may do a great deal of string manipulation there is another
class, StringBuilder, which for many operations does not have the same
overhead as String.

An instance of StringBuilder is created using constructors. We show three
ways to instantiate an instance of StringBuilder:

// a StringBuilder instance has an

// initial space allotment.

// that space can grow larger as necessary.

// If no arguments

// ... space for 16 characters

StringBuilder sb1 = new StringBuilder ();

// If a string is provided

// ... space for that string plus 16

StringBuilder sb2 = new

StringBuilder("Good");

// If a number is provided

// ... space for the size specified

StringBuilder sb3 = new StringBuilder (8);

Some StringBuilder methods are listed in the next table. Note many of
these are the same or similar to those of the String class; the last five
methods listed starting with append are not defined for String.

Following the table we give an example using StringBuilder to build up a
string through catenation. With StringBuilder we cannot use the catena-
tion operator (”+”), instead we use the append method.

58 CHAPTER 3. VALIDATION AND TEXT MANIPULATION

Useful StringBuilder methods

method name type description

charAt(. . .) char returns the character at a spec-
ified position

length() int returns the length of a string

indexOf(. . .) int determines where a string
starts

substring(. . .) String returns a substring

append(. . .) String appends a string to the current
string

insert(. . .) String inserts a string

delete() String removes a string

replace() String replaces a substring

reverse() String the instance is replaced by its
reverse

Table 3.1: Some of the useful StringBuilder methods

3.3. MANIPULATING TEXT 59

Example 5. Catenating strings

This example reads the file Readme.txt token-by-token catenating each to-
ken to the next. The append method is used to append strings to the current
contents of the StringBuilder instance.

Listing 3.5: Catenate strings with StringBuilder.

1 import java.util.Scanner;

2 import java.io.File;

3 import java.io.IOException;

4 public class CatenateStringsWithStringBuilder

5 {

6 public static void main(String [] args)

7 throws IOException {

8 Scanner f = new Scanner(

9 new File("ReadMe.txt"));

10 StringBuilder result =

11 new StringBuilder (1000);

12 while (f.hasNext ()){

13 result.append(f.next());

14 }

15 System.out.println(result);

16 }

17 }

The output from CatenateStringsWithStringBuilder is one long line:

Figure 3.4: Using StringBuilder’s append method.

60 CHAPTER 3. VALIDATION AND TEXT MANIPULATION

Example 6. Checking for a palindrome.

You may have noted the reverse method of StringBuilder. If you have
not programmed reversing a string, you should - that is a good exercise in
programming. However, now that you know there is a method to perform
the reversing of a string we expect you would, if needed, use reverse in the
future. Consider the following program that gets a string from the user and
determines if it is a palindrome.

Listing 3.6: Check for a palindrome with StringBuilder.

1 import java.util.Scanner;

2 public class ReverseString

3 {

4 public static void main(String [] args) {

5 Scanner kb = new Scanner(System.in);

6 System.out.println("Enter a string");

7 // two instances of StringBuilder

8 StringBuilder original =

9 new StringBuilder(kb.next());

10 StringBuilder reversed =

11 new StringBuilder(original);

12 // reverse one of these

13 reversed.reverse ();

14 System.out.println("original :"

15 +original.toString ());

16 System.out.println("reversed :"

17 +reversed.toString ());

18 // test for equality

19 // need to compare strings

20 // because StringBuilder does not

21 // override equals in Object

22 if

23 (original.toString ().equals(reversed.toString ()))

24 System.out.println("a palindrome");

25 else

26 System.out.println("not a palindrome");

27 }

28 }

3.4. EXERCISES 61

3.4 Exercises

1. Write a program that counts the number of digits in a string. The
program must use a method that begins
public static int countDigits(String line)

It is possible for the method to be called with a null argument. For
example, countDigits(null).

(a) Write the method countDigits so that it tests the argument to
verify that it is not null. Use an assert statement.

(b) Write the method countDigits so that it tests the argument to
verify that it is not null. If it is null your code must throw an
IllegalArgumentException.

2. At some universities courses are coded in three parts separated by a
punctuation character such as a dash. For instance ”ACS-2814-050”
specifies a course 2814, section 050, offered by the ACS department.
Write a program that obtains a string from the end user and then
determines if the string properly designates a course where there must
be 3 letters, a dash, 4 digits, a dash, and 3 more digits.

3. Modify the program CheckArgumentValue so that it does more error
checking. That is, verify the value of mm is between 01 and 12, and
that the value of dd is appropriate for the month.

4. Write a program that accepts some words from the end user and cre-
ates an acronym from those words. Allow for multiple spaces to appear
between words. The acronym comprises the first letter of each word
and is all uppercase. For instance if the user entered
retail sales tax

then the acronym is
RST

62 CHAPTER 3. VALIDATION AND TEXT MANIPULATION

5. Consider the program CatenateStringsWithStringBuilder. Modify
the program to display the amount of time it takes to run. Do this by
adding this code at the beginning:
long tStart = System.currentTimeMillis();

and this code at the end:
long tEnd = System.currentTimeMillis();

long tDelta = tEnd - tStart;

double elapsedSeconds = tDelta / 1000.0;

System.out.println("elapsedSeconds "+elapsedSeconds);

6. Again, consider CatenateStringsWithStringBuilder and rewrite the
program to use String instead of StringBuilder. Replace the con-
tents of ReadMe.txt with something quite long, say one of Shake-
speare’s plays. Incorporate the timing code from the above question
and compare the results of the two programs. This was done by the
author at the time of writing with the text of Romeo and Juliet ; the
elapsed time using StringBuilder was about 100 times faster than
with String. The text Effective Java by Joshua Bloch (ISBN: 978-
0-321-35668-0; Publisher: Addison-Wesley) discusses the difference in
performance between String and StringBuilder in Item 51.

Chapter 4

Enumeration Classes
(Enums)

To enumerate is to list all values. There are many situations where a Java
application works with a well-defined set of values. Consider these examples:

1. days of the week: Sunday, Monday,. . .

2. months of the year: January, February, . . .

3. planets of the solar system: Mercury, Venus, . . .

4. suits in a deck of cards: Spades, Hearts, . . .

5. card faces in a deck of cards: Ace, Deuce, Three, . . .

6. states of a door: open, closed

7. four directions: north, south, east, west

8. grades: A, B, . . .

63

64 CHAPTER 4. ENUMERATION CLASSES (ENUMS)

Enums were added to the Java language in release 1.5. To create an enum
using BlueJ: you click the New Class button and then, in the pop-up window
you select Enum instead of Class, give a name to the enum, and click OK.
See Figure 4.1 where a new enum named Day is to be created.

Figure 4.1: Create an enum with BlueJ

In the following sections we introduce programming with enumerations:

• Defining the simplest of enums: A usable enum requires very few lines
of code.

• The values() method: this pre-defined method for enums returns a
list of values that is convenient for iteration.

• Comparing enum values: Enum instances can be compared using the
== operator.

• The valueOf(...) method: given a string value, this pre-defined
method returns the enum constant with that name.

• Enums are objects: Enum is a special type of class in the Java lan-
guage, but an enum can have data and methods.

4.1. THE BASIC ENUM 65

4.1 The basic Enum

Figure 4.2 shows the default code placed in an enum by the BlueJ editor.
This code is generated for any enum and happens to be exactly what some-
one would use (or start with) for an enum to represent the 7 days of the
week. If we were creating a different enum we would need to edit the code
appropriately.

Figure 4.2: Code generated by BlueJ

Note how the declaration of an enum is similar to that of a class with the
word class replaced by enum:

public enum Day {

Figure 4.2 shows a complete enum in its simplest form . . . just an enumera-
tion of values. Note how the values are in upper case; this is a convention of
coding - not necessary, but it is a common practice to name constants using
upper case characters.

public enum Day

{

MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY, SUNDAY

}

In a program it is usual for these constants to be referenced with a prefix
”Day.” For example: Day.MONDAY. Given that an enum Day has been defined
one can now make other declarations such as

Day today; \\ declare today to be of type Day

today = Day.MONDAY;\\ assign today a value

66 CHAPTER 4. ENUMERATION CLASSES (ENUMS)

4.2 values() method

Java provides several methods that are pre-defined for enums. Here we con-
sider the values() method which returns an array of values for an enum.
For instance if we coded

Day[] mydays = Day.values();

we would have the set of days as elements of an array named mydays. Con-
sider Listing 4.1 where we iterate through an enum’s values. Figure 4.3
shows the output.

Listing 4.1: Use values() to get all of the enum constants.

1 /**

2 * Use values () to get the enum values

3 */

4 public class EnumValues

5 {

6 public static void main(String [] args){

7 Day[] daysOfWeek = Day.values ();

8 System.out.println("Days of the week:");

9 for (Day d: daysOfWeek)

10 System.out.println(d);

11 }

12 }

Figure 4.3: Displaying the elements returned from values()

4.3. COMPARING ENUM VALUES 67

4.3 Comparing enum values

In this example we use enum Day and a method calcPay() to determine
gross pay. If an employee works on the weekend their rate of pay is doubled.
In Listing 4.2 the for statement iterates through enum values, and the if

statement tests enum values with ==. output follows in Figure 4.4

Listing 4.2: Testing for the day of the week.

1 /**

2 * Show gross pay for different days

3 *

4 */ public class CalculatePay

5 {

6 public static void main(String [] args){

7 for (Day d: Day.values ()){

8 System.out.println("$"

9 +calcPay (10.0 , 20, d)+" for "+d);

10 }

11 }

12 private static double calcPay(

13 double rate , int hours , Day day){

14 double gross;

15 if (day==Day.SATURDAY || day==Day.SUNDAY)

16 gross = 2*rate*hours;

17 else

18 gross = rate * hours;

19 return gross;

20 }

21 }

Figure 4.4: Gross pay depends on day of week.

68 CHAPTER 4. ENUMERATION CLASSES (ENUMS)

4.4 valueOf(. . .) method

Consider an application where the user is prompted for the rate of pay,
the hours and the day for calculating gross pay. The value entered by the
user for the day is a text value that indirectly identifies an enum. The
method valueOf(...) takes an argument, a string, and returns the enum
constant of that name. For instance the result of Day.valueOf("MONDAY")
is Day.MONDAY. Consider Listing 4.3 where the user supplies the arguments
for gross pay calculation.

Listing 4.3: Testing for the day of the week.

1 import java.util.Scanner;

2 /**

3 * Calculate gross for a specific rate , hours , day

4 *

5 */ public class CalculatePayForOneDay

6 {

7 public static void main(String [] args){

8 Scanner kb = new Scanner(System.in);

9 System.out.println("Enter rate hours day:");

10 double rate = kb.nextDouble ();

11 int hours = kb.nextInt ();

12 // the day as a string

13 String dayStr = kb.next().toUpperCase ();

14 // the day as an enum constant

15 Day day = Day.valueOf(dayStr);

16 System.out.println("gross is $"

17 +calcPay(rate , hours , day));

18 }

19 private static double calcPay(

20 double rate , int hours , Day day){

21 double gross;

22 if (day==Day.SATURDAY || day==Day.SUNDAY)

23 gross = 2*rate*hours;

24 else

25 gross = rate * hours;

26 return gross;

27 }

28 }

4.5. ENUM CONSTANTS ARE OBJECTS 69

4.5 Enum constants are objects

Enums are different from other classes we have used up to this point as there
are a fixed number of objects automatically created - one object for each
enum constant. In our example involving the days of the week there are
7 constants and so there are exactly 7 objects. Using a UML diagram we
illustrate the objects in Figure 4.5

Figure 4.5: Enum objects

Because enums are represented by objects they can have data and methods.
In this section we introduce an enum with data and fields. The enum is
EnhancedDay . . . our previous Day enum modified to have a field to indicate
if a day is a weekend. Consider the code for EnhancedDay shown in Listing
4.4, and the following points:

1. Line 9 is a list of enum constants with boolean values in parentheses
and the list is ended with a semicolon. The values will be passed to
the constructor as the JVM creates the enum objects.

2. Line 10 declares a field weekend which is assigned a value when the
constructor executes.

3. Lines 11-13 define a constructor that sets the value of weekend. The
constructor is automatically called; the programmer does not use new.

4. Lines 14-16 define a method to return the value of weekend. isWeekend()
can be used by an application.

70 CHAPTER 4. ENUMERATION CLASSES (ENUMS)

Listing 4.4: An enum with a data and methods.

1 /**

2 * EnhancedDay is a day with

3 * a field: weekend

4 * a constructor: sets value of weekend

5 * a method: isWeekend ()

6 */

7 public enum EnhancedDay

8 {

9 MONDAY(false), TUESDAY(false),

WEDNESDAY(false), THURSDAY(false),

FRIDAY(false), SATURDAY(true), SUNDAY(true);

10 private boolean weekend;

11 private EnhancedDay (boolean indicator){

12 weekend = indicator;

13 }

14 public boolean isWeekend (){

15 return weekend;

16 }

17 }

Now in Figure 4.6 we show objects for the EnhancedDay.

Figure 4.6: Enum objects with fields

4.5. ENUM CONSTANTS ARE OBJECTS 71

The program is Listing 4.5 has a method to calculate the gross pay and
uses the enum EnhancedDay. Note line 21 where isWeekend() is used to
determine if the day is a weekend day or not.

Listing 4.5: An enum with a data and methods.

1 import java.util.Scanner;

2 /**

3 * Calculate gross for a specific rate , hours , day

4 *

5 */ public class CalculatePayForEnhancedDay

6 {

7 public static void main(String [] args){

8 Scanner kb = new Scanner(System.in);

9 System.out.println("Enter rate hours day:");

10 double rate = kb.nextDouble ();

11 int hours = kb.nextInt ();

12 EnhancedDay day=

13 EnhancedDay.valueOf(kb.next().toUpperCase ());

14 System.out.println("gross is $"

15 +calcPay(rate , hours , day));

16 }

17 private static double calcPay(

18 double rate , int hours , EnhancedDay day){

19 double gross;

20 // Double time on weekend

21 if (day.isWeekend ())

22 gross = 2*rate*hours;

23 else

24 gross = rate * hours;

25 return gross;

26 }

27 }

72 CHAPTER 4. ENUMERATION CLASSES (ENUMS)

4.6 Summary

In the table below we list common methods used with enums.

Useful methods for enums

method example comment

values() Day.values() Returns the list of enum con-
stants for Day.

valueOf(...) Day.valueOf("TUESDAY") Returns the constant
Day.TUESDAY which has
the name "TUESDAY".

toString() day.toString() Returns the name of the
enum. Automatically invoked
by a print statement. Of
course, toString() can be
overridden by the program-
mer.

In a discussion on enums many texts will also include a method named
ordinal(). On the surface, ordinal() is simple in that it returns the
position of an enum constant within the list of enum values; for instance,
the ordinal values for Day and EnhancedDay are 0, 1, ...6 for MONDAY,

TUESDAY, ...SUNDAY.
However, the official Java documentation states:

Most programmers will have no use for this method. It is de-
signed for use by sophisticated enum-based data structures, such
as EnumSet and EnumMap.

and so we do not include it. In a later chapter we do discuss Java map
structures and we will revisit enums at that time. A problem associated
with using ordinal() is that the values are dependent on the ordering of
the enum constants in the list which defines them . . . if maintenance modifies
the order then it can be that existing code may break. A further reference on
enums is the book, mentioned in the last chapter, Effective Java by Joshua
Bloch.

Java enums are said to be typesafe because the programmer has listed all
possible values and given the set a name. It then becomes impossible to
assign a value to an enum that is not part of the set. Suppose instead of an
enum a programmer used a set of, say, int values. For instance, instead of
declaring an enum for the days of the week a programmer could define a set

4.6. SUMMARY 73

of constants, for example:
public static final int MONDAY = 0;

public static final int TUESDAY = 1;

public static final int WEDNESDAY = 2;

Note the final qualifier which means that once set to the value shown,
the value cannot be changed. So, once MONDAY has the value 0, that value
cannot be altered. That is a good thing, but problems can arise. Consider
the following program where ints are used in calcPay() instead of an enum.
It is easy to pass in an improper value (in this case the value 99).

Listing 4.6: No enum is used ... integers used instead.

1 /**

2 * calculate gross pay

3 * calcPay uses ints for days

4 *

5 */ public class CalculatePayWithoutEnum

6 {

7 public static final int MONDAY = 0;

8 public static final int TUESDAY = 1;

9 public static final int WEDNESDAY = 2;

10 public static final int THURSDAY = 3;

11 public static final int FRIDAY = 4;

12 public static final int SATURDAY = 5;

13 public static final int SUNDAY = 6;

14 public static void main(String [] args){

15 // bad call to calcPay

16 // day is out of range

17 System.out.println(calcPay (10.0, 20, 99));

18 }

19 private static double calcPay(

20 double rate , int hours , int day){

21 double gross;

22 if (day== SATURDAY || day== SUNDAY)

23 gross = 2*rate*hours;

24 else

25 gross = rate * hours;

26 return gross;

27 }

28 }

74 CHAPTER 4. ENUMERATION CLASSES (ENUMS)

4.7 Exercises

1. Develop an enum named Month that includes the months of the year:
January, . . . , December. Test your enum with a program similar to
EnumValues.

2. Develop a program to print the number of days in each month. This
program uses a switch statement to determine the number of days in
a month. Of course, ignore the concept of leap year . . . February will
have 28 days.

3. Now develop an enum EnhancedMonth that incorporates a field, days,
which is initialized to the number of days in the month. Test EnhancedMonth
with a program that calls getDays() to obtain the number of days in
the month.

4. Develop an enum to represent Grades A, B, C, D, and F. Each grade
has a data field, the grade point value: 4, 3, 2, 1, and 0. Test your
enum with a program that displays each grade and its corresponding
grade point value.

5. Develop two enums: Suit and Face that represent the suits in a card
deck (Hearts, Spades, Diamonds, Clubs) and the faces of the cards
(Ace, Deuce, Three, . . . King).

6. Develop a class named Card that has two fields: suit and face. The
definition of Card begins:

public class Card {

private Suit suit;

private Face face;

public Card(Suit s, Face f){

suit = s;

face = f;

}

Develop a program that creates and displays a deck of cards. This
program declares the card deck as:

ArrayList<Card> deck = new ArrayList();

and then adds cards to the deck using:
for (Suit s: Suit.values())

for (Face f: Face.values())

deck.add(new Card(s, f));

4.7. EXERCISES 75

7. Extend the program of the previous exercise to deal a hand of 5 cards
to the user. The program must shuffle the deck first. The Collections
class has a method, shuffle(...), that randomly rearranges the Ar-
rayList that is passed as an argument. For instance, to shuffle an
ArrayList named deck one uses the statement:

Collections.shuffle(deck);

After executing the statement above, the contents of deck are rear-
ranged to be some random order. Now, the program just has to deal
the first five cards of the deck.

8. In some card games a hand has a value . . . the cards in the hand are
counted in some way according to the rules of the game. Suppose we
must determine the value of a hand by summing the individual values
of each card in the hand. The value of a card is determined by its
face; for example, an Ace is worth 1, a Deuce is worth 2, . . . a Nine is
worth 9, and the others are worth 10 each. The enum Face could be
modified to account for this:
public enum Face {

DEUCE(2), THREE(3), FOUR(4), FIVE(5), SIX(6),

SEVEN(7), EIGHT(8), NINE(9), TEN(10), JACK(10),

QUEEN(10), KING(10), ACE(1);

Modify the enum Face to include a field, faceValue, and pertinent
methods. Extend the program of the previous exercise to deal five
cards from a shuffled deck, display the cards that are dealt, and the
value of the hand.

76 CHAPTER 4. ENUMERATION CLASSES (ENUMS)

Chapter 5

Hierarchies

When systems are being designed and there are several classes it is typical
to see similarities amongst some classes. The type of similarity we consider
here is generalization / specialization.

For instance, suppose a medical system involves doctors and pharmacists.
When requirements are being gathered we could determine that for a phar-
macist we would have a field for place of employment, and for a doctor a field
for specialty (i.e. Dermatology, Pediatrics, . . .). But there would be other
fields such as first name, last name, and gender that can be seen as common
to doctors and to pharmacists. Noting such similarities we could generalize
and propose three classes: Practitioner, Doctor, and Pharmacist. In Java we
can define Practitioner as a generalization of Doctor and Pharmacist (this
also means that Doctor and Pharmacist are specializations of Practitioner
. . . the two terms, generalization and specialization, go hand-in-hand).

Generalization and specialization are important topics and there are several
related concepts that we will introduce in this chapter, including:

• IS-A associations,
• superclasses
• subclasses
• inheritance
• overriding
• polymorphism
• abstract classes
• the Object class

77

78 CHAPTER 5. HIERARCHIES

5.1 IS-A

If we generalize and make statements such as:

• a doctor is a practitioner
• a pharmacist is a practitioner

then we say there is an IS-A relationship between Practitioner and Doc-IS-A
tor and between Practitioner and Pharmacist. Figure 5.1 is a BlueJ class
diagram showing Practitioner as a superclass and Doctor and Pharmacistsuperclass
as its subclasses. The lines joining the superclass to its subclasses have asubclass
triangle shape below Practitioner to indicate Practitioner is the superclass.class hierarchy
A structure like this is called a class hierarchy. The example is a simple
one . . . in general a hierarchy can have many levels and involve a substantial
number of classes.

Figure 5.1: BlueJ Class Diagram for the Practitioner Hierarchy.

Distinguishing characteristics of a hierarchy are:

• there is only one class that has no superclass and that class is referred
to as the root of the hierarchy;root
• each class (except the root) has one other class that is its superclass.

Synonyms for superclass and subclass are base class and derived class re-base and derived classes
spectively.

Now let us consider the Practitioner hierarchy in more detail. The class
diagram in Figure 5.2 shows 3 compartments (rectangles) for each class:
class name, fields, and methods.

5.1. IS-A 79

Figure 5.2: UML Class Diagram for the Practitioner hierarchy.

In the field and method compartments for Practitioner we show fields and
methods that are common to doctors and pharmacists. The Doctor class
contains only what distinguishes a doctor from other types, and similarly for
Pharmacist - only what is necessary to distinguish pharmacists from other
types.

In the next section we discuss Practitioner in more detail, and include a
program that instantiates practitioners. Following that we consider Doctor
and Pharmacist and present a program that instantiates all three types.

80 CHAPTER 5. HIERARCHIES

5.2 The Practitioner Hierarchy

In this section we discuss each of the classes in the hierarchy.

Practitioner

The Practitioner class (next page) is straightforward. There is nothing
here to indicate it is part of a class hierarchy.

• There are three fields that all practitioners have.
• There are two constructors.
• There are getter and setter methods for each field, and we have in-

cluded toString() and getName() methods.

Below is a Java class and its output - the program creates two practitioners.

Listing 5.1: Create practitioners.

1 /**

2 * Demonstration class to create practitioners

3 */

4 public class CreatePractitioners

5 {

6 public static void main(String [] args){

7 Practitioner john = new Practitioner ();

8 Practitioner tom = new

Practitioner("Tom","Smith","male");

9 System.out.println("Practitioners :\n"+john+"\n"+tom);

10 }

11 }

Figure 5.3: Output.

5.2. THE PRACTITIONER HIERARCHY 81

Listing 5.2: The Practitioner class - root of the hierarchy.

1 public class Practitioner {

2 private String firstName;

3 private String lastName;

4 private String gender;

5 public Practitioner () {

6 firstName = lastName = gender = "unknown";

7 }

8 public Practitioner(String firstName , String

lastName , String gender) {

9 this.firstName = firstName;

10 this.lastName = lastName;

11 this.gender = gender;

12 }

13 public String getFirstName (){

14 return firstName;

15 }

16 public String getLastName (){

17 return lastName;

18 }

19 public String getGender (){

20 return gender;

21 }

22 public void setFirstName(String firstName){

23 this.firstName = firstName;

24 }

25 public void setLastName(String lastName){

26 this.lastName = lastName;

27 }

28 public void setGender(String gender){

29 this.gender = gender;

30 }

31 public String toString (){

32 return getName ()+" "+gender;

33 }

34 public String getName (){

35 return firstName+" "+lastName;

36 }

37 }

82 CHAPTER 5. HIERARCHIES

Pharmacist

The first thing to notice about the Pharmacist class is the extends clause
(line 6); this is how we specify that Pharmacist is a subclass of Practitioner.

Line 8 One field is defined for pharmacists: location. However, sinceinheritance
Pharmacist is a subclass of Practitioner, Pharmacist inherits all
fields defined in Practitioner. Therefore, a pharmacist object has
four fields: first name, last name, gender, location.

lines 9-16 The no-arg constructor simply sets location to ”unknown”. Whatno-arg constructors
we do not see is the default action performed by Java for a no-arg con-
structor: prior to executing this constructor the no-arg constructor of
the superclass, Practitioner, is automatically called and the other 3
fields will be set.

lines 18-26 This constructor begins by calling a Practitioner construc-
tor, as specified by:

super(firstName, lastName, gender);super
To invoke a specific constructor in the superclass you must use the
keyword super with the proper arguments. Such a call must be the
first statement of the constructor. If you review the Practitioner

constructors you see there is one that accepts those 3 fields.

Lines 27-34 The other methods are the standard getter and setter for the
location field. However, as Pharmacist inherits all the fields and meth-
ods of Practitioner a program can use any of those fields and meth-inheritance
ods too with reference to an Pharmacist object. For instance if p is a
reference to a pharmacist object then we can code p.getFirstName().

5.2. THE PRACTITIONER HIERARCHY 83

Listing 5.3: The Pharmacist class - subclass of Practititioner.

1 /**

2 * The Pharmacist class

3 * - a subclass of Practitioner

4 * - a pharmacist "is a" practitioner

5 */

6 public class Pharmacist extends Practitioner

7 {

8 private String location;

9 /**

10 * by default , the no-arg constructor calls

11 * the no-arg constructor in Practitioner

12 */

13 public Pharmacist ()

14 {

15 location = "unknown";

16 }

17
18 /**

19 * constructor for when information is available

20 */

21 public Pharmacist(String firstName , String

lastName , String gender , String location)

22 {

23 // note the explicit call to a Practitioner

constructor

24 super(firstName , lastName , gender);

25 this.location = location;

26 }

27 // getters

28 public String getLocation (){

29 return location;

30 }

31 // setters

32 public void setLocation(String location){

33 this.location = location;

34 } }

84 CHAPTER 5. HIERARCHIES

Doctor

The Doctor class has an extends clause (line 6) and so it is a subclass of
Practitioner.

Line 7 One additional field is defined for doctors: their area of specialty.
However, since Doctor is a subclass of Practitioner, doctors inheritinheritance
all fields defined in Practitioner. Therefore, a doctor object has four
fields: first name, last name, gender, and specialty. Doctors have four
fields as do pharmacists but the last field is different.

lines 8-15 The no-arg constructor for the superclass is called first which
simply sets specialty to ”unknown”; What we do not see is theno-arg
default action performed by Java for a no-arg constructor: prior to
executing this constructor the no-arg constructor of the superclass,
Practitioner, is automatically called causing the other 3 fields to be
set.

lines 16-23 The other constructor begins by calling a Practitioner con-
structor, as specified by:

super(firstName, lastName, gender);super
To invoke a specific constructor in the superclass you use the keyword
super with the proper arguments. Such a call must be the first state-
ment of the constructor. If you review the Practitioner constructors
you see one that sets the values for those 3 fields.

Lines 24-29 The standard getter and setter methods are defined for the
specialty field. However, Doctor inherits all the fields and methodsinheritance
of Practitioner and so a program can use any of the Practitionerinheritance
fields and methods too with reference to a Doctor object. For instance
if d is a doctor object then we can code d.getFirstName().

Lines 30-32 Doctor has a method getName() which is the same method
name and parameter list as getName() in Practitioner. We say the sub-
class method overrides the method in the superclass. When getName()method override
is executed for a Doctor instance, it is this method that will execute,
and not the method defined in Practitioner.

5.2. THE PRACTITIONER HIERARCHY 85

Listing 5.4: The Doctor class - subclass of Practititioner.

1 /**

2 * The Doctor class

3 * - a subclass of Practitioner

4 * - an instructor "is a" practitioner

5 */

6 public class Doctor extends Practitioner {

7 private String specialty;

8 /**

9 * no -arg constructor , recall default call

10 * to Practitioner no-arg constructor

11 */

12 public Doctor ()

13 {

14 specialty = "unknown";

15 }

16 /**

17 * constructor with firstname etc

18 */

19 public Doctor(String firstName , String

lastName , String gender , String specialty)

{

20 // note call to superclass constructor

21 super(firstName , lastName , gender);

22 this.specialty = specialty;

23 }

24 public String getSpecialty (){

25 return specialty;

26 }

27 public void setSpecialty(String specialty){

28 this.specialty = specialty;

29 }

30 public String getName (){

31 return "Dr. "+getFirstName ()+"

"+getLastName ()+", "+getSpecialty ();

32 }

33 }

86 CHAPTER 5. HIERARCHIES

5.2.1 Creating and using objects of the hierarchy

Given the hierarchy, when an instance of Doctor is created that instance
is (at the same time) an instance of Practitioner, and so a Doctor instance
includes all the properties of Practitioner. Similarly when an instance of
Pharmacist is created, that instance is (at the same time) an instance of
Practitioner and includes all the properties of Practitioner. This means, for
our example, that a doctor (or pharmacist) includes first name, last name,
and gender, and includes all the methods defined for Practitioner. However
if we explicitly instantiate a Practitioner object that object is an instance of
Practitioner, and not an instance of Doctor (or Pharmacist). To sum this
up:

• an instance of Doctor is also (at the same time) an instance of Prac-
titioner

• an instance of Pharmacist is also (at the same time) an instance of
Practitioner

• an instance of Doctor is not an instance of Pharmacist

• an instance of Pharmacist is not an instance of Doctor,

• a Practitioner instance may be an instance of Doctor, or may be in-
stance of Pharmacist, but cannot be an instance of both.

• an instance of Practitioner may be an instance of neither Doctor nor
Pharmacist

Next, we consider a program that instantiates instances from each part of
the hierarchy.

5.2. THE PRACTITIONER HIERARCHY 87

The Java class in Listing 5.5 creates practitioner, doctor, and pharmacist ob-
jects, then adds them to an ArrayList of Practitioners, and then displays
their first names. Some important points about the code:

Lines 7-9. Objects of the three types are created.

Lines 10-12. Objects are added to an ArrayList of Practitioners. The
objects are of different types, but they are (at the same time) instances
of a base class Practitioner, and so they are valid objects to be added
to an ArrayList of Practitioners.

Lines 13-18. The loop iterates through the collection and displays each ob-
ject’s type and the instance’s first name. The method getFirstName()

is defined in Practitioner and nowhere else . . . so it is this method
that executes for each object (each object is an instance of Practitioner).

The Java operator instanceof is used to determine an object’s type. instanceof
instanceof is a binary operator that tests an object (the first ar-
gument) and returns true if the object is an instance of the second
argument (a Java class), and returns false otherwise.

The Java class, Practitioners, that creates practitioner, doctor, and phar-
macist objects appears on the next page in Listing 5.5; its output is below
in Figure 5.4.

Figure 5.4: Output from Practitioners.

88 CHAPTER 5. HIERARCHIES

Listing 5.5: Programming example with a class hierarchy.

1 import java.util.ArrayList;

2 public class Practitioners {

3 public static void main(String [] args){

4 // List of practitioners

5 ArrayList <Practitioner > practitioners = new

ArrayList ();

6 // Create some practitioners

7 Practitioner pr = new

Practitioner("Sam","Smith","female");

8 Doctor dr = new

Doctor("Jill","Jones","female","Dermatology");

9 Pharmacist ph = new

Pharmacist("Eddy","Edwards","male","Drugco");

10 practitioners.add(pr);

11 practitioners.add(dr);

12 practitioners.add(ph);

13 for (Practitioner p: practitioners) {

14 String type="practitioner";

15 if (p instanceof Doctor) type="doctor";

16 if (p instanceof Pharmacist)

type="pharmacist";

17 System.out.println(type+"

"+p.getFirstName ());

18 }

19 }

20 }

5.3. OVERRIDING METHODS 89

5.3 Overriding methods

The Practitioner hierarchy has two methods with the same header:
public String getName()

One of these is defined in Practitioner and the other is defined in Doctor.
That is, one is in the superclass and the other is in a subclass.

• In the Practitioner class the method getName() returns the first name
follwed by the last name:

public String getName(){

return firstName+""+lastName;

}

If p refers to a Practitioner instance (not a Doctor instance) then
p.getName(), causes this method to execute.

• In the Doctor class the method getName() returns the doctor’s name
with a prefix "Dr." and a suffix, the doctor’s specialty:

public String getName(){

return "Dr. "+getFirstName()+""+getLastName()

+", "+getSpecialty();

}

If d refers to a Doctor instance then d.getName() causes this method
to execute. In this situation we say that getName() in Doctor over- overrides
rides getName() in Practitioner.

Overriding methods is one way to specialize a subclass. Listing 5.6 creates
the same objects as Listing 5.5 and displays the names using getName().
The output is shown in Figure 5.5 - you will see that getName() in Doctor

has overridden the method defined in Practitioner.

Figure 5.5: Output showing use of overriden method.

90 CHAPTER 5. HIERARCHIES

Listing 5.6: getName() in Doctor overrides getName() in Practitioner.

1 import java.util.ArrayList;

2 public class Practitioners1 {

3 public static void main(String [] args){

4 // List of practitioners

5 ArrayList <Practitioner > practitioners = new

ArrayList ();

6 // Create some practitioners

7 Practitioner pr = new

Practitioner("Sam","Smith","female");

8 Doctor dr = new

Doctor("Jill","Jones","female","Dermatology");

9 Pharmacist ph = new

Pharmacist("Eddy","Edwards","male","Drugco");

10 practitioners.add(pr);

11 practitioners.add(dr);

12 practitioners.add(ph);

13 for (Practitioner p: practitioners) {

14 // display name

15 // getName () in Doctor overrides

16 // getName () in Practitioner

17 System.out.println(p.getName ());

18 }

19 }

20 }

5.3. OVERRIDING METHODS 91

5.3.1 Calling an overridden superclass method

The Doctor class includes a getName() method that overrides getName() in
Practitioner. We saw that this method was automatically invoked by the
JVM when referenced by an object of type Doctor. Now suppose you want
to invoke the overridden method instead. In order to do this you prefix the
method with super. For instance we can rewrite the getName() method as
follows:

public String getName(){

return "Dr. "+ super.getName()+", "+getSpecialty();

}

Note that the prefix super is required in order to explicitly call the getName()
method in the superclass. If you mistakenly coded:

public String getName(){

return "Dr. "+ getName()+", "+getSpecialty();

}

then the call to getName() in the return statement would be a recursive
call to the method being defined in Doctor - recursion is covered in a later
chapter.

92 CHAPTER 5. HIERARCHIES

5.4 Exercises

1. Develop another subclass of the Practitioner hierarchy (Dentist).
Demonstrate your new subclass with a class that instantiates Dentist
objects.

2. Override the toString method in the subclasses of Practitioner and
demonstrate the effect of your overriding methods.

3. Develop a set of classes that form a hierarchy for persons where a per-
son can be a student and where a person can be an instructor. Include
fields that are common to students and instructor in a Person class.
Include fields that distinguish students and instructors in Student

and Instructor subclasses. All fields must have getters and setters.
Demonstrate your hierarchy with a class that instantiates an instance
of each type.

5.5. ABSTRACT CLASSES AND METHODS 93

5.5 Abstract Classes and Methods

In the practitioner hierarchy example we instantiated objects of all three
classes. If our system only deals with doctors and pharmacists and if there
is no need to ever explicitly instantiate a practitioner then we can ensure this
can never happen if we make Practitioner an abstract class. An abstract abstract class
class cannot be instantiated - only a non-abstract subclass can be instanti-
ated.

If you are using the BlueJ IDE, then when you create a class, you can choose
to make the class abstract - see Figure 5.6.

Figure 5.6: BlueJ Create New Class window - Abstract Class selected.

If you compare the code generated by BlueJ for a regular class and an
abstract class the only difference you will see is the keyword abstract ap-
pearing in the class header. If Practitioner was defined as an abstract

class the class header is:
public abstract class Practitioner

instead of
public class Practitioner

94 CHAPTER 5. HIERARCHIES

An abstract class can have one or more methods that are abstract too. An
abstract method declared as abstract has no body - only a semicolon, for
example:

public abstract String getName();

The reason for defining a method as abstract is to force each subclass to
define the method since there is no default code in the superclass. In the
next section we consider a shape hierarchy where the superclass is abstract
with an abstract method.

Example: A shape hierarchy

Consider a class hierarchy of shapes. Figure 5.7 shows the Shape hierarchy
as depicted in BlueJ. In the diagram it is clear that Shape is abstract and
the triangular symbols make it clear that Square and Circle are subclasses.

Figure 5.7: The Shape Hierarchy.

Listing 5.7 lists the classes that define this hierarchy with an abstract super-
class Shape (lines 1-5), a subclass Circle (lines 6-15) and a subclass Square
(lines 16-25). The class UseShapes (lines 26-36) creates a circle and a square
but treats both as shapes.

Shape is abstract with an abstract method area. Each shape must have a
different formula and so the pertinent formula is defined only in subclasses.
The advantage of having a superclass is that all shapes can be included in
the same ArrayList and be treated alike.

5.5. ABSTRACT CLASSES AND METHODS 95

Some points to observe:

Lines 3-5. Shape is abstract and has an abstract method named area.

Lines 6-15. Circle is a subclass of Shape - it extends the Shape class.
Circle contains an implementation of area().

Lines 16-25. Square is a subclass of Shape - it extends the Shape class.
Square contains an implementation of area().

Lines 27-34. UseShapes creates a square and a circle, and both are added
to an ArrayList that holds shapes. For each shape in the ArrayList

the shape and its area are printed. The proper area method is chosen
at runtime according to the type of object.

UseShapes displays each shape using the following for statement (lines
32-33):

for (Shape s: shapes)

System.out.println("area of "+s+"is "+s.area());

The println displays the shape, s, and its area. Shape, Circle and
Square do not include a toString() method and so the default toString()
method executes . . . the output for a shape object is just the name of
the class it belongs to and its memory location. Thus the output does
show the type of the object and its area - shown in Figure 5.8 below.

Figure 5.8: Output showing area of each shape.

96 CHAPTER 5. HIERARCHIES

Listing 5.7: Shapes hierarchy and use.

1 // Abstract superclass

2
3 public abstract class Shape {

4 public abstract double area();

5 }

6 // subclass Circle

7 public class Circle extends Shape {

8 private int radius;

9 public Circle (int radius) {

10 this.radius = radius;

11 }

12 public double area() {

13 return Math.PI*radius*radius;

14 }

15 }

16 // subclass Square

17 public class Square extends Shape {

18 private int length;

19 public Square(int length) {

20 this.length = length;

21 }

22 public double area() {

23 return length*length;

24 }

25 }

26 // Create shapesimport java.util.ArrayList;

27 public class UseShapes {

28 public static void main(String [] args) {

29 ArrayList <Shape > shapes = new ArrayList ();

30 shapes.add(new Square (5));

31 shapes.add(new Circle (5));

32 for (Shape s: shapes)

33 System.out.println("area of "+s+" is

"+s.area());

34 }

35 }

5.6. EXERCISES 97

5.6 Exercises

1. Consider the Shape hierarchy. Include a new subclass (Triangle) and
include its area method. To demonstrate your new subclass, write a
class that creates triangles and displays their areas.

2. Modify the Practitioner class making it an abstract class. Write a
class to demonstrate your Practitioner class. What happens if you
include a statement such as the following?

Practitioner p = new Practitioner();

98 CHAPTER 5. HIERARCHIES

5.7 Summary

• We have seen that Java classes can be ogranized into hierarchies. In
fact all classes in Java do extend one class either directly or indi-
rectly; this is the Object class. The Object class is a special classObject class
that provides methods that all classes inherit; some of these we have
encountered, such as equals and toString.

• A UML class diagram has a line from a superclass to a subclass. Where
the line connects to the superclass one uses a triangle symbol to des-
ignate the superclass.

• An object instantiated from a class hierarchy is automatically an in-
stance of that class and at the same time it is an instance of its su-
perclass (and its superclass’ superclass, etc. . . . all the way up to the
root of the hierarchy).

• Any method defined in a superclass can be used by an object of a
subclass.

• For any object and class you can test for the object being an instance of
that class. instanceof is a binary operator that produces a booleaninstanceof
result. The syntax is:

object instanceof class name

If an object say, x, is a Doctor then ”x instanceof Practitioner”
and ”x instanceof Doctor” are both true, and ”x instanceof

Pharmacist” is false.

• When a subclass defines a method of the same name and parameters
as the superclass we say the subclass is overriding the method in the
superclass. In Doctor we included a getName() method that overridesoverriding
the getName() method in Practitioner. That is, if getName() must
execute for an object that is an instance of Doctor then getName()

in Doctor will be executed instead of getName() in the superclass,
Practitioner.

5.7. SUMMARY 99

• A typical dictionary definition of the word polymorphism is ”the qual- polymorphism
ity or state of existing in or assuming different forms”. The Java
language implements forms of polymorphism. Consider the for loop
where the type of p is Practitioner:

for (Practitioner p: practitioners){

System.out.println(p.getName());

The for loop iterates over the objects and for each object getName()
is executed. We know that these objects are of types Practitioner,
Doctor and Pharmacist; p takes many forms - p is polymorphic. The
JVM selects the getName() that is appropriate to the object - in par-
ticular the JVM selects the overriding method in the case of an Doctor

object. We say at runtime the JVM polymorphically selects the be-
haviour appropriate to the object.

• We have seen that some classes cannot be instantiated; these are called
abstract classes. The keyword abstract appears in the class header.

• It is possible to specify some methods as abstract. Such methods
have no body, and somewhere lower in the class hierarchy abstract

methods must have a definition. At the lowest levels of a hierarchy
there must be classes that can be instantiated - these cannot be ab-
stract.

• A Java class can have an extends clause where a single class can
be named as the superclass. This is called single inheritance. The
extends clause is used then to define a class hierarchy. A class hier-
archy is where each class, except the root class, has one superclass. In
the next chapter we look at interfaces; it is possible for a class to
implement several interfaces.

• It is usually the case that some methods are fully defined in an abstract
class, but it is possible for an abstract class to have only abstract
methods. Such abstract classes are similar to interfaces, but more
limited due to single inheritance.

• Enums cannot be included as part of a class hierarchy.

100 CHAPTER 5. HIERARCHIES

5.8 Exercises

1. Develop a hierarchy for vehicles. Include subclasses Mortorized and
NonMortorized. Subclass each of these so you can include Mortocycle,
Car and Truck as subclasses of Mortorized, and Bicycle as the
only subclass of NonMortorized. All classes except Mortorcyle, Car,
Truck and Bicycle are abstract.

2. Develop a hierarchy for certain products that are sold in a store. In-
clude classes for CDs (music) and DVDs (movies). Common fields
include title and cost. CDs have a field artist, and DVDs have a field
director. Make the superclass abstract. Demonstrate your hierarchy
with a class that instantiates some CDs and DVDs. The class then
calculates the total cost of those objects.

Chapter 6

Interfaces

An interface is a class-like construct considered to be a reference type. This
means that an object may be of the interface type and referenced as such.
A Java interface can include any of:

Constants. Fields and their values can be specified. The values are treated
as constants - their values cannot be changed. The Java term used to
describe something that cannot be altered is final.

Method signatures. Methods are named, their return type and param-
eter lists are specified. Prior to Java 8 these methods could only be
abstract.

Default methods. As of Java 8 it is possible to specify an implementa-
tion for a method. These methods are declared as default methods.
An implementing class can choose to override - and so they are called
optional methods. Optional methods in an interface provide a mecha-
nism for interfaces to be altered in the future without breaking existing
implementations.

If you were to examine the Java class libraries you would notice there is
extensive use of interfaces. One interface that we have used (without drawing
this to your attention previously) is named Comparable. Comparable is an
interface that is used to provide what is termed the natural ordering for
objects. We discuss this interface and demonstrate in the first two examples
how we can compare and sort strings. Examples 1 and 2 could be examined
by the reader now, and they can make perfect sense based on previous study
in Java. In Example 1 a String method named compareTo is used. This

101

102 CHAPTER 6. INTERFACES

method compares two strings and returns a negative value, a positive value,
or 0 according to whether one string is less than, greater than, or equal to
another. Example 2 creates an array of strings and sorts the strings using
the sort method of the Arrays class. The two examples, on their own, do
not explicitly state anything about interfaces. But as we will explain later
the method compareTo is part of the Comparable interface, the String class
implements Comparable, and it this feature that the sort method relies on
for sorting strings.

Then we consider two further examples where we present a Person class.
When you develop a class, it is up to you to decide if the objects have
an ordering. What characteristic (or characteristics) would you choose to
determine if one object is less than another object? As a person has a name
we will implement a natural ordering on persons based on names. To achieve
this, Person will implement Comparable and then we will demonstrate how
simple it is to sort an array of persons.

In the second section we consider a situation involving teams and players.
We will present a Team class that depends on an interface named Player

. . . a team is made up of several players. Then we will reuse the Person

class (mentioned above), modifying it to implement Player. The Player

interface is a connection of sorts between Team and Person.

Lastly, we discuss another interface from the Java class libraries, Comparator.
This interface has similarities to Comparable. Comparable is used to pro-
vide a natural ordering for objects, but Comparator can be used to provide
one or more alternate orderings for objects.

6.1. COMPARABLE INTERFACE 103

6.1 Comparable interface

Consider Figure 6.1 that is taken from the Comparable documentation (we
have excluded some content to keep our discussion focussed). The numbered
points of the figure are disussed below.

Figure 6.1: Excerpt from Comparable documentation.

1. The documentation begins by naming the interface Comparable:
public interface Comparable < T >

The syntax element <T> indicates that we can name a specific class to
which Comparable applies.

2. The general description states Comparable imposes a total ordering
on the objects of the class implementing it.

3. Further, and we will use this information later, it is mentioned that
Collections.sort and Arrays.sort can be used to sort lists and
arrays of objects where the objects belong to a class that implements
Comparable.

4. Next there is a list of all known implementing classes. There are very,
very, many such classes; we have omitted all but one: String. We are
very familiar with the String class - it was introduced in Part 1.

5. In the detail section we see that compareTo returns an int.

104 CHAPTER 6. INTERFACES

String implements Comparable

The String class has a compareTo method that implements the required
behaviour for Comparable:

int compareTo(String anotherString)

The character sequence represented by this String object is compared
lexicographically to the character sequence represented by the argument
string, anotherString. The result is a negative integer if this String

object lexicographically precedes anotherString. The result is a positive
integer if this String object lexicographically follows anotherString.
The result is zero if the strings are equal; compareTo returns 0 exactly
when the equals method would return true.

Lexicographic ordering:

A language dictionary is also called a lexicon. So, lexicographical ordering
is an ordering of strings in dictionary order. The String implementation
of this ordering is based on the numeric encoding of characters. For
example suppose there are two strings, s1 and s2, that are different but
of equal length. At some index (let k be the smallest such index) the
characters are different:
If s1.charAt(k)< s2.charAt(k) then s1 lexicographically precedes s2.
If s1.charAt(k)> s2.charAt(k) then s2 lexicographically precedes s1.
To learn more try reading the official documentation on String and its
compareTo method.

6.1. COMPARABLE INTERFACE 105

Example 1, compareTo values

For a first example we present a simple program that displays the value of
compareTo when one string is compared to another. Examine the program
and output and you will get a sense of the ordering defined by String. The
output indicates "123" is less than "124", "124" is less than "12A", "12A" is
less than "PROGRAM", "PROGRAM" is less than "program", and "programming"

is greater than "program". This should not be surprising given the underly-
ing integer values the system uses to represent characters: in general digits
are less than capital letters, and capital letters are less than lowercase letters.

Listing 6.1: Comparing strings lexicographically.

1 /**

2 * Specific strings are compared using the

3 * compareto method of the String class

4 */

5 public class StringCompareto

6 {

7 public static void main(String [] args){

8 System.out.println("123".compareTo("124"));

9 System.out.println("124".compareTo("12A"));

10 System.out.println("124".compareTo("PROGRAM"));

11 System.out.println(

12 "PROGRAM".compareTo("program"));

13 System.out.println(

14 "programming".compareTo("program"));

15 }

16 }

Figure 6.2: Output from StringCompareto.

106 CHAPTER 6. INTERFACES

Example 2, Sorting an array of strings

Recall in Section 1.7 on array utilities we discussed the sort method in
the Arrays class. Arrays.sort() can work with an array of strings since
String implements Comparable. Consider Listing 6.2 where the array names

is displayed, sorted, and displayed again; output is shown in Figure 6.3.

Listing 6.2: Sorting strings is easy since they are naturally ordered.

1 import java.util.Arrays;

2 /**

3 * Sort an array of strings using Arrays.sort

4 */

5 public class SortingStrings

6 {

7 public static void main(String [] args){

8 String [] names =

9 {"Joe", "Linda", "Peter", "Mary", "Lee"};

10 System.out.println("Unsorted:");

11 for (String n: names)

12 System.out.print(n+" ");

13 Arrays.sort(names);

14 System.out.println("\nSorted:");

15 for (String n: names)

16 System.out.print(n+" ");

17 }

18 }

Figure 6.3: Sorting strings output.

6.1. COMPARABLE INTERFACE 107

Example 3, A natural ordering for persons

In this example we use a class to represent persons (Listing 6.3). To impose
a natural ordering on persons we have chosen to order persons based on
their names (examples: ”Peter” is less than ”Susan”, ”Susan” is less than
”Susanna”). This natural ordering will be implemented as part of the Com-
parable interface (line 1) and the compareTo method (lines 8-12). Note how
in line 11, because the name field is of type String, we can utilize String’s
implememtation of compareTo.

Listing 6.3: Person class implements Comparable.

1 public class Person implements Comparable <Person > {

2 private String name;

3 private int year; // year of birth

4 public Person(String n, int y) {

5 name = n;

6 year = y;

7 }

8 public int compareTo (Person p) {

9 // compare the name of this object

10 // to the name of object p

11 return name.compareTo(p.name);

12 }

13 public String getName (){

14 return name;

15 }

16 public void setName(String n){

17 name = n;

18 }

19 public int getYear (){

20 return year;

21 }

22 public void setYear(int y){

23 year = y;

24 }

25 public String toString (){

26 return name;

27 }

28 }

108 CHAPTER 6. INTERFACES

Example 4, Sorting using Comparable

Here we show a class (Listing 6.4) that utilizes the fact that we can easily
sort an array of persons - lines 5-8 initiallize the array people so it holds
references to Person objects. The main method displays persons, calls Ar-
rays.sort in line 12, and displays the persons again (output shown in Figure
6.4).

Listing 6.4: Person implements Comparable and can be sorted.

1 import java.util.Arrays;

2 public class SortingPersons

3 {

4 public static void main(String [] args){

5 Person [] people = {

6 new Person("Sam" ,1972),

7 new Person("Linda", 1974),

8 new Person ("Mary", 1957)};

9 System.out.println("Unsorted:");

10 for (Person p: people)

11 System.out.print(p+" ");

12 Arrays.sort(people);

13 System.out.println("\nSorted by name:");

14 for (Person p: people)

15 System.out.print(p+" ");

16 }

17 }

Figure 6.4: Sorting Persons output.

6.2. DEFINING AN INTERFACE 109

6.2 Defining an interface

Complex systems of course involve several classes. To help reduce the overall
complexity a development strategy is to design to an interface rather than
an implementation.

In this section we consider a sports application where we have two basic
concepts of team and player. It is common for a large system to be created
by groups of developers. For instance we could have one group tasked with
developing software relating to teams and another group tasked with devel-
oping software pertinent to players. To assist these groups an interface can
be specified for player-related functionality.

Our examples will use a Team class, a Player interface, and we will reuse
the Person class modifying it to implement Player. As you will see the
Team class will be coded so it depends on the Player interface and not the
Person class. By doing this it would be possible to easily replace, if the
need arises, the Person class by some other implementation. Figure 6.5 is a
UML class diagram showing that a team has members who are players. The
Person class is shown to implement two interfaces: Player and Comparable.

Figure 6.5: UML diagram for Team, Player, Person, Comparable.

Before presenting the code examples we briefly discuss how to use BlueJ to
create an interface.

110 CHAPTER 6. INTERFACES

Creating an interface with BlueJ

To create an interface using BlueJ click on the New Class button and choose
Interface as shown in Figure 6.6.

Figure 6.6: Create an interface with BlueJ.

When you create an interface using BlueJ there is some initial code provided,
see Figure 6.7. The initial code can be edited in the BlueJ code editor to
contain the necessary definition of, say, the Player interface shown later in
Listing 6.5.

6.2. DEFINING AN INTERFACE 111

Figure 6.7: Initial code provided by the BlueJ editor.

112 CHAPTER 6. INTERFACES

Example 5, Player interface

To keep our example simple we have the Player interface as defined in
Listing 6.5:

Listing 6.5: Player interface.

1 /**

2 * The Player interface

3 */

4 public interface Player

5 {

6 String getName ();

7 String getPosition ();

8 int getJerseyNumber ();

9 void setPosition(String p);

10 void setJerseyNumber(int j);

11 }

Line 4 gives the interface the name Player.

Lines 6-10 specify the names, return type, and parameters of five methods:
getName, getPosition, getJerseyNumber, setPosition, and setJerseyNumber.

A developer of, say, the Team class knows there can be references to objects
of type Player and that those objects can respond to requests for their name,
position, etc.

6.2. DEFINING AN INTERFACE 113

Example 6, Team class

Given the Player interface in Listing 6.5 a development group could develop
a Team class as shown in Listing 6.6. Things to note in this listing are:

• A team comprises players - in line 8 a list members is defined as a list
of Player. Any object can be treated as an instance of Player as long
as the object’s class implements the Player interface.
• The addPlayer method in lines 15-18 is used to add players to a team.
• The display method in lines 20-26 iterates through the list of players

using interface methods to get information from each player.

Listing 6.6: Team consists of players.

1 import java.util.ArrayList;

2 /**

3 * A team comprises several players

4 */

5 public class Team

6 {

7 private String teamName;

8 private ArrayList <Player > members;

9 public Team(String name)

10 {

11 teamName = name;

12 members = new ArrayList ();

13 }

14
15 public void addPlayer(Player p)

16 {

17 members.add(p);

18 }

19
20 public void display (){

21 System.out.println(teamName);

22 for (Player p: members)

23 System.out.println(p.getName ()

24 +" \t"+ p.getJerseyNumber ()

25 +" \t"+ p.getPosition ());

26 }

27 }

114 CHAPTER 6. INTERFACES

Example 7, Persons can be players

Suppose the developer group tasked with developing Player-related software
realizes the Person class has some of the capabilites of a player and can be
modified for the rest (see Listing 6.7). The group just has to modify the code
adding more fields (position and jersey number) and any missing methods
of the Player interface. Some points to note in the listing are:

• Line 2 states that Person implements two interfaces: Player and
Comparable.
• Lines 12-26 implementation of Player interface.
• Lines 28-30 implementation of Comparable interface.

Listing 6.7: Person modified to be a player.

1 public class Person

2 implements Comparable <Person >, Player {

3 private String name;

4 private int year; // year of birth

5 private String position;

6 private int jerseyNumber;

7 public Person(String n, int y) {

8 name = n;

9 year = y;

10 }

11 // methods of the Player interface

12 public String getName (){

13 return name;

14 }

15 public String getPosition (){

16 return position;

17 }

18 public int getJerseyNumber (){

19 return jerseyNumber;

20 }

21 public void setPosition(String p){

22 position = p;

23 }

24 public void setJerseyNumber(int j){

25 jerseyNumber = j;

26 }

6.2. DEFINING AN INTERFACE 115

27 // methods of the Comparable interface

28 public int compareTo (Person p) {

29 return name.compareTo(p.name);

30 }

31 // original methods of Person

32 public void setName(String n){

33 name = n;

34 }

35 public int getYear (){

36 return year;

37 }

38 public void setYear(int y){

39 year = y;

40 }

41 public String toString (){

42 return name;

43 }

44 }

116 CHAPTER 6. INTERFACES

Example 8, Creating a team of players

To complete our sports example we present the class below in Listing 6.8
and its output in Figure 6.8. The main method instantiates Person objects
and adds those Person objects as Players to a team. In lines 5-19 there
are five Person objects instantiated but the variables p0, p1, p2, p3, p4 are
of type Player. Because Person implements Player those objects can be
referenced using Player variables. The Team display method is called in
line 28.

Listing 6.8: Create persons that are added as players to a team.

1 public class CreateTeam {

2 private Team team;

3 public static void main(String [] args) {

4 // create 5 persons but know them as Players

5 Player p0 = new Person("Jim" ,1978);

6 p0.setPosition("Centre");

7 p0.setJerseyNumber (1);

8 Player p1 = new Person("Sue" ,1962);

9 p1.setPosition("Left Wing");

10 p1.setJerseyNumber (3);

11 Player p2 = new Person("Sam" ,1975);

12 p2.setPosition("Right Wing");

13 p2.setJerseyNumber (8);

14 Player p3 = new Person("Tom" ,1975);

15 p3.setPosition("Left Defence");

16 p3.setJerseyNumber (4);

17 Player p4 = new Person("Deb" ,1966);

18 p4.setPosition("Right Defence");

19 p4.setJerseyNumber (9);

20 // create a team

21 Team rr = new Team("Red River CC");

22 // add players to the team and display

23 rr.addPlayer(p0);

24 rr.addPlayer(p1);

25 rr.addPlayer(p2);

26 rr.addPlayer(p3);

27 rr.addPlayer(p4);

28 rr.display ();

29 }

6.2. DEFINING AN INTERFACE 117

30 }

The output of CreateTeam is the list of players on the team:

Figure 6.8: Display of team members.

118 CHAPTER 6. INTERFACES

6.3 Comparator Interface

Recall the Comparable interface is a way of implementing a natural ordering
for a collection of objects. However, there are times when one needs to
compare objects based on some other criteria. Perhaps we usually sort
our persons by name, but there could be times when it is required to sort
based on height, weight, age, etc. This is when the Comparator interface
becomes useful. We can use the Comparator interface and implement an
alternate ordering for a class of objects. The Comparator interface, like
Comparable, specifies one method that must be implemented. This method
is named compare. The compare method returns an int, just as compareTo,
to indicate for two objects, say o1 and o2, which of the following is true:

o1 less than o2

o1 equals o2

o1 greater than o2

Suppose we want to order our persons based on their year of birth instead of
name. To arrange for such an ordering we can define the Comparator class
as shown in Listing 6.9:

Listing 6.9: A comparator for year of birth.

1 import java.util.Comparator;

2 public class OrderByYear

3 implements Comparator <Person >

4 {

5 public int compare(Person o1 , Person o2) {

6 return o1.getYear ()-o2.getYear ();

7 }

8 }

Some comments regarding the above comparator:

Line 1 For the code to compile we must specify an import for Comparator.
Line 2 We have named our Comparator class OrderByYear.
Line 3 We indicated this is a Comparator for Person objects.
Line 5 This begins the definition of a compare method for persons. Note

there are two arguments . . . two objects of type Person.
Line 6 We must return an int. The expression o1.getYear()-o2.getYear()

will yield an int that is
• Negative . . . o1’s year of birth < o2’s year of birth
• Positive . . . o1’s year of birth > o2’s year of birth
• Zero . . . o1’s year of birth == o2’s year of birth

6.3. COMPARATOR INTERFACE 119

Example 9, Using a Comparator

Now we will show how to use a comparator for sorting purposes. There are
overloaded versions for Arrays.sort and Collections.sort that provide
for a second argument, an object of type Comparator. Consider Listing 6.10
that creates, sorts (according to year of birth), and then displays the sorted
objects. Note the call to sort in line 12 with the additional parameter, the
comparator instance.

Listing 6.10: Sort persons by year of birth.

1 import java.util.Arrays;

2 public class SortingPersonsByYearWithComparator

3 {

4 public static void main(String [] args){

5 Person [] people = {

6 new Person("Mary", 1957),

7 new Person("Terry" ,1972),

8 new Person ("Zeke", 1957),

9 new Person("Sammy" ,1972),

10 new Person("Linda", 1971)};

11 // sort with a comparator

12 Arrays.sort(people , new OrderByYear ());

13 for (Person p: people)

14 System.out.println(p.getYear ()+" "+p);

15 }

16 }

The output lists the persons in sequence from oldest to youngest:

Figure 6.9: Sorting persons by year.

120 CHAPTER 6. INTERFACES

6.4 Summary

One of the things that is special about interfaces is that a class can imple-
ment any number of interfaces. If we have a class that implements several
interfaces then we can treat objects of that class as multiple types. If we
develop an interface, say Passenger, and we have that Person implements
both Passenger and Player, then we can say that some Person object can
be referenced as a passenger, and/or, referenced as a player. We illustrate
this with a UML class diagram:

Figure 6.10: UML diagram showing Person implementing 2 interfaces.

When complex software is being developed there may be several groups
involved developing different parts. If different programming groups are
working to implement a system, then if they agree on a set of interfaces then
the groups can work independently to develop their own code. Interfaces can
be considered a sort of contract which defines how to interact with software.
In this chapter we saw a Team class that depends only on something called
Player. The Team class knows nothing about the implementation of Player
- Team is not aware of the Person class. In the future Person could be
replaced by some other class and Team would continue to function as long
as the replacing class implements the methods of Player.

Figure 6.11: UML diagram, Team depends only only on Player.

6.4. SUMMARY 121

There are many examples of interfaces in the Java class libraries. For in-
stance if you examine the documentation for the String class you would see
it implements 3 interfaces, Serializable and CharSequence in addition to
Comparable.

Comparator is another useful interface as it provides a modular approach a
programmer can adopt to provide alternate orderings for objects. For any
class we can define several comparators.

We have not given any examples of constants or default methods. The
interested reader is referred to other texts such as Java in a Nutshell and
Effective Java.

122 CHAPTER 6. INTERFACES

6.5 Exercises

1. Example 3 uses a natural ordering based on names. Modify the Person
class in Listing 6.3 so the natural ordering is based on year of birth,
but where two or more persons have the same year of birth they are
ordered by name. Verify your implementation using Listing 6.11. In
the listing note the import for Arrays in line 1, the definition of people
in lines 5-10, and the use of sort in line 11.

Listing 6.11: Create, display, sort, display practitioners.

1 import java.util.Arrays;

2 public class SortingPersonsByYearAndName

3 {

4 public static void main(String [] args){

5 Person [] people = {

6 new Person("Terry" ,1972),

7 new Person("Linda", 1972),

8 new Person ("Zeke", 1957),

9 new Person("Sammy" ,1972),

10 new Person ("Barb", 1957)};

11 Arrays.sort(people);

12 System.out.println("Sorted by year , then

name:");

13 for (Person p: people)

14 System.out.println(p.getYear ()+" "+p);

15 }

16 }

The output should be:

Figure 6.12: Persons sorted by year of birth, then name.

6.5. EXERCISES 123

2. Consider the Practitioner hierarchy in Chapter 5.
Modify Practitioner so it implements Comparable. The ordering of
practitioners should be based on last names and first names: Where
two or more practitioners have the same last name then those should
be in sequence by first name. You can use Listing 6.12 to verify
your implementation. In the listing note the import statement for
Collections in line 1, and the use of the sort method in line 16. Note
also that the list practitioners holds objects of type Practitioner,
Doctor, and Pharmacist (lines 6-13).

Listing 6.12: Create, display, sort, display practitioners.

1 import java.util.Collections;

2 import java.util.ArrayList;

3 public class SortPractitioners {

4 public static void main(String [] args){

5 // List of practitioners

6 ArrayList <Practitioner > practitioners =

new ArrayList ();

7 // Create some practitioners

8 practitioners.add(new

Practitioner("Sid","Smith","female"));

9 practitioners.add(new

Practitioner("Sam","Smith","male"));

10 practitioners.add(new

Doctor("Jill","Jones","female",

11 "Dermatology"));

12 practitioners.add(new

Pharmacist("Eddy","Jones","male",

13 "Drugco"));

14 // Collections class contains the sort

15 // method for array lists

16 Collections.sort(practitioners);

17 for (Practitioner p: practitioners)

18 System.out.println(p);

19 }

20 }

124 CHAPTER 6. INTERFACES

3. Consider the Practitioner hierarchy in Chapter 5 again.
Create a Comparator class that defines an ordering for practitioners
based on gender. Where practitioners are of the same gender, they
must by ordered by last name, and where they have the same last name
practitioners are ordered by first name. Develop this comparator and
then test your code using a class similar to Listing 6.12 but where the
call to sort is changed appropriately.

4. Suppose we need to display the members of a team in jersey num-
ber order. We could provide for this by creating a comparator that
compares two players based on their jersey numbers. Develop this
comparator and then modify the display method in the Team class
so that sort is called prior to displaying the members. Test your code
using the CreateTeam class in Listing 6.8.

5. Develop the Bus class and the Passenger interface indicated in the
UML diagram below, and make any necessary changes to Person so
that person objects can be passengers on a bus. Add necessary features
suggested for buses such as a name for a bus, a method to add a
passenger to a bus, and a method to display the names of a bus’s
passengers. Develop a class to test your code. You must add several
persons to the passenger list of a bus and then display the names of
those passengers.

Figure 6.13: Buses have several passengers.

6. Develop a comparator for Passenger that provides an ordering for pas-
sengers based on their names. Develop a class to test your code. You
must add several persons to the passenger list of a bus and then display
the names of those passengers in alphabetical order.

Chapter 7

Files

In this chapter we discuss storage and retrieval of Java data and objects
in files. A useful way to categorize files is whether they are binary files or
text files. We are quite familiar with the notion of a text file as these are
generally considered to be human-readable. For instance when you edit the
source code for a Java class we say that the source is stored in a text file.
You could open a .java file in many editors and see exactly what you expect
to see - readable Java statements. In contrast to text files there are binary
files where information is stored as it exists in memory. If the data is say,
an int, then the data is encoded in 32 bits as a binary number. Unless
you are very familiar with binary numbers, you will have great difficulty
understanding what is present. When Java source code is compiled and
a .class file is generated we would say that the .class file is a binary file -
understandable only by the JVM.

Previously in Part I of these notes (2.6.2 Redirecting System.out and 4.3
Scanner) we saw that we could use print and println to write to a text file,
and that we can read information in from a text file. In this chapter we
will expand our knowledge regarding files. We will consider binary files and
XML files. XML is an encoding that yields self-describing data.

First we examine the reading and writing of primitive data (int, double,
etc.) and strings and show how to accomplish this for binary and XML files.
Then we examine how we can read and write objects.

125

126 CHAPTER 7. FILES

7.1 Primitive data and strings

We are concerned in this section with strings and primitive data fields of
type int, double, boolean, We begin with writing and reading for binary
files and then we consider XML files.

7.1.1 Binary files

A binary file contains data encoded as it would be in memory. As such
these files hold the data in a compact form. Being a binary format, the data
is generally unreadable by humans, but well-suited to computers. In this
section our examples work with a file named myData.ser.

Writing primitive data and strings to a binary file

If we can write data to a binary file then we are storing data in a most effi-
cient way in terms of space and time. Essentially the data is just transferred
from memory to disk.

The technique we present here is based on the use of two classes:
FileOutputStream and DataOutputStream. The methods we use from
DataOutputStream are specific to the type of data we are writing. For
instance to write data of type int we use writeInt, and to write out data
of type String we use writeUTF - see the table following the program list-
ing. An example appears in Listing 7.1. Some points of interest for this
program are:

Lines 1-3. There are imports for DataOutputStream, FileOutputStream,
and IOException.

Lines 8-10 A DataOutputStream object named os references myData.ser.

Line 11. Five int values are written using writeInt.

Line 12. The file is closed to free resources and allow other programs to
use the file.

7.1. PRIMITIVE DATA AND STRINGS 127

Listing 7.1: Writing data out to a binary file.

1 import java.io.DataOutputStream;

2 import java.io.FileOutputStream;

3 import java.io.IOException;

4 public class WriteBinary {

5 public static void main(String [] args)

6 throws IOException {

7 int[] myData = {5, 20, 30, 2, 7};

8 DataOutputStream os

9 = new DataOutputStream(

10 new FileOutputStream("myData.ser"));

11 for (int i=0; i<5; i++)

os.writeInt(myData[i]);

12 os.close ();

13 }

14 }

The table below lists the methods available for writing primitive data types
and strings. writeUTF encodes string data using UTF-8. This approach
means that any character in the Unicode standard can be represented, and
each character is represented in 1, 2, 3, or 4 bytes.

Methods of DataOutputStream

close()

writeBoolean(boolean b)

writeByte(byte b)

writeChar(int c)

writeDouble(double d)

writeFloat(float f)

writeInt(int i)

writeLong(long m)

writeShort(short s)

writeUTF(string s)

128 CHAPTER 7. FILES

Reading primitive data and strings from a binary file

In the previous section we showed how to write data to a file and now
we present how we can retrieve the data back in a separate program at a
later time. The Java classes we need mirror the ones we used for output:
DataInputStream and FileInputStream. The methods are similar too: for
reading an int we use readInt() and so on. These are listed in the table
following the program listing.

Listing 7.2 reads the data in myData.ser into an int array. The values are
displayed and the output is shown in Figure 7.1. Points of interest in this
program are:

Lines 1-3. There are imports for DataInputStream, FileInputStream,
and IOException.

Lines 8-10 A data DataInputStream object references myData.ser.

Lines 12-13. Five int values are read using readInt.

Line 15 The values are displayed

Line 16. The file is closed.

Listing 7.2: Reading data from a binary file.

1 import java.io.DataInputStream;

2 import java.io.FileInputStream;

3 import java.io.IOException;

4 public class ReadBinary {

5 public static void main(String [] args)

6 throws IOException {

7 int[] myData = new int [5];

8 DataInputStream is

9 = new DataInputStream(

10 new FileInputStream("myData.ser"));

11 // get values from file into array

12 for (int i=0; i<5; i++)

13 myData[i] = is.readInt ();

14 // display values in array

15 for (int i: myData)System.out.println(i);

16 is.close();

17 }

18 }

7.1. PRIMITIVE DATA AND STRINGS 129

Figure 7.1: The values previously written are obtained from the binary file.

In the table below note the method readUTF - it is used to read string data.

Methods of DataInputStream

close()

readBoolean()

readByte()

readChar()

readDouble()

readFloat()

readInt()

readLong()

readShort()

readUTF()

130 CHAPTER 7. FILES

7.1.2 XML files

XML is a text format for self-describing and human-readable information.
The XML format serves many purposes - for example as a medium for
transferring data between applications. Here we are concerned with writing
data of primitive types and strings out to an XML formatted file and being
able to retrieve that data later on in a separate program. Our examples use
a file named myData.xml

Writing primitive data and strings to XML

The two Java classes we will use are XMLEncoder and FileOutputStream.
To write data we will use the writeObject method. The program in Listing
7.3 creates a file and writes the same array of int we used previously. Some
points of interest for this program are:

Lines 1-3. There are imports for XMLEncoder, FileOutputStream, and
IOException.

Line 7 An XMLEncoder object is created to reference myData.xml.

Lines 9-10. Five int values are written using writeObject.

Line 11. The file is closed.

Listing 7.3: Writing data out to an XML file.

1 import java.beans.XMLEncoder;

2 import java.io.FileOutputStream;

3 import java.io.IOException;

4 public class WritePrimitiveDataToXML {

5 public static void main(String [] args)

6 throws IOException{

7 XMLEncoder encoder = new XMLEncoder(new

FileOutputStream("myData.xml"));

8 int[] myData = {5, 20, 30, 2, 7};

9 for (int i=0; i<5; i++)

10 encoder.writeObject(myData[i]);

11 encoder.close();

12 }

13 }

7.1. PRIMITIVE DATA AND STRINGS 131

The content of the file myData.xml is shown in Figure 7.2. As you can see
it is human-readable, and its easy to see where and how the int values are
encoded. Next we will examine how to read such information back into a
program.

Figure 7.2: The contents of an XML file.

132 CHAPTER 7. FILES

Reading primitive data and strings from XML

In the previous section we showed how to write primitive data to an XML file
and now we consider retrieving the same data back in a separate program at
a later time. The Java classes we need mirror the ones we used for output:
XMLDecoder and FileInputStream. To read data in we use readObject.

Listing 7.4 reads the data in myData.xml into an int array. The readObject
method gets the next data encoded in the file, but to use such a value in a
program we must cast the object to its type. The values are displayed and
the output is shown in Figure 7.3. Points of interest in this program are:

Lines 1-3. Imports for XMLDecoder, FileInputStream, and IOException.

Line 8. An XMLDecoder object is created that references myData.xml.

Lines 11-12. Five int values are read using the readObject method and
cast to int.

Lines 14-15. The values are displayed

Line 17. The file is closed.

Listing 7.4: Reading primitive data from an XML file.

1 import java.beans.XMLDecoder;

2 import java.io.FileInputStream;

3 import java.io.IOException;

4 public class ReadPrimitiveDataFromXML {

5 public static void main(String [] args)

6 throws IOException{

7 // decoder object references the XML file

8 XMLDecoder decoder = new XMLDecoder(new

FileInputStream("myData.xml"));

9 // get the five int values

10 int[] myData = new int [5];

11 for (int i=0; i<5; i++)

12 myData[i] = (int) decoder.readObject ();

13 // display the array and close the file

14 for (int i: myData)

15 System.out.println(i);

16 decoder.close();

17 }

18 }

7.1. PRIMITIVE DATA AND STRINGS 133

Figure 7.3 is the output from the program - the values displayed are the
same values written to the file previously in Listing 7.3

Figure 7.3: The values previously written are read from the XML file.

134 CHAPTER 7. FILES

7.2 Objects

In this section we consider two techniques a programmer can use to save,
and restore, the state of Java objects. When an object is converted into a
sequence of bytes we say the object is serialized. Serializing an object can
be to a binary form or to an XML form. The general idea is to write the
state of objects out to a file, and then at some later time, restore the objects
by reading the objects back in.

When an object is written/read, it is the entire object graph which starts
with the object that is processed. An object graph has, as its root, one
object and includes all the objects that are reachable. The object graph
includes all objects that are referenced from the root object, plus all those
objects referenced from those, and so on until there are no further referenced
objects.

We will work with an example that involves practitioners (recall the Prac-
titioner hierarchy from Section 5.2). The object graph we will process is
shown in Figure 7.5.

Figure 7.4: An object graph.

The first technique we cover serializes the objects in a binary form and the
second stores objects in an XML form. The XML form is human-readable -
the binary form is not.

7.2. OBJECTS 135

7.2.1 Binary files

To serialize an object to a binary file the objects must belong to a class that
implements the interface Serializable. This interface has no methods -
it is a so-called marker interface. As such, the compiler and JVM know a
class can be serialized.

In our examples below we use a binary file named practitioners.ser. The
first example will create a binary file and the second example shows that we
can read that file and re-instantiate objects at a later time.

Writing objects to a binary file

To serialize objects to a binary format we use the Java classes
FileOutputStream and ObjectOutputStream, and we use the writeObject
method in ObjectOutputStream. Recall Listing 5.2 where Practitioner.java
is defined; we need to alter the Practitioner class so it implements Serial-
izable. So the class header becomes:

public class Practitioner implements Serializable

and now we are able to write the practitioners to a binary file.

Recall Listing 5.5; we can modify this to write out the whole list of practi-
tioners - see Listing 7.5 Some important points about this listing are:

Lines 1-3. Import statements included for ObjectOutputStream,
FileOutputStream, IOException.

Line 17. An ObjectOutputStream object references practitioners.ser.

Line 20. The writeObject method is used to write an object graph.

Line 21. The file is closed.

136 CHAPTER 7. FILES

Listing 7.5: Writing practitioners to a binary file.

1 import java.io.ObjectOutputStream;

2 import java.io.FileOutputStream;

3 import java.io.IOException;

4 import java.util.ArrayList;

5 public class PractitionersToBinary {

6 public static void main(String [] args) throws

IOException {

7 // List of practitioners

8 ArrayList <Practitioner > practitioners = new

ArrayList ();

9 // Create some practitioners

10 Practitioner pr = new

Practitioner("Sam","Smith","female");

11 Doctor dr = new

Doctor("Jill","Jones","female","Dermatology");

12 Pharmacist ph = new

Pharmacist("Eddy","Edwards","male","Drugco");

13 practitioners.add(pr);

14 practitioners.add(dr);

15 practitioners.add(ph);

16 // create an object to reference

practitioners.ser

17 ObjectOutputStream os = new

ObjectOutputStream(new

FileOutputStream("practitioners.ser"));

18 // write out the object grapsh

19 // that begins with the ArrayList

20 os.writeObject(practitioners);

21 os.close();

22 }

23 }

7.2. OBJECTS 137

Reading objects from a binary file

The previous program in Listing 7.5 creates a binary file that holds an
ArrayList of three practitioners. Listing 7.6 shows that a binary file can be
read to re-instantiate objects. Some important points about the program
are:

Lines 1-3. Import statements included for
ObjectInputStream, FileInputStream, IOException.

Line 6. As well as the chance of throwing an IOException, the class could
possibly throw a ClassNotFoundException. This can arise if the bi-
nary file indicates an object should be instantiated from a class the
JVM is not aware of.

Line 7. An ObjectInputStream object references practitioners.ser.

Line 12. The readObject method is used to obtain an object graph. This
is of type Object and is cast into the appropriate type, ArrayList.
When the ArrayList is instantiated all objects it holds are instantiated
- that is, the object graph is instantiated. Hence, for our example a
total of four objects are created.

Line 13. The file is closed.

Lines 14-19. The practitioner objects are displayed - the output is the
same as that shown in Figure 5.4.

138 CHAPTER 7. FILES

Listing 7.6: Obtaining practitioners from a binary file.

1 import java.io.ObjectInputStream;

2 import java.io.FileInputStream;

3 import java.io.IOException;

4 import java.util.ArrayList;

5 public class PractitionersFromBinary {

6 public static void main(String [] args) throws

IOException , ClassNotFoundException{

7 ObjectInputStream is = new ObjectInputStream(

new FileInputStream("practitioners.ser"));

8 // The JVM only knows the object read as

being of type Object.

9 // Since we know the object being read is of

type ArrayList

10 // we include a cast to type ArrayList to

the right of

11 // the assignment operator.

12 ArrayList <Practitioner > practitioners =

(ArrayList) is.readObject ();

13 is.close();

14 for (Practitioner p: practitioners) {

15 String type="practitioner";

16 if (p instanceof Doctor) type="doctor";

17 if (p instanceof Pharmacist)

type="pharmacist";

18 System.out.println(type+"

"+p.getFirstName ());

19 }

20 }

21 }

7.2. OBJECTS 139

7.2.2 XML files

In this section we consider serializing objects to XML. Our examples will
use an XML file named practitioners.xml, and the same object graph as
in the previous section, shown again below. The first example will create

Figure 7.5: An object graph.

the XML file and the second example shows that we can read that file and
re-instantiate objects at a later time.

Writing objects to XML

We will use the XMLEncoder class again. In order to write objects using
XMLEncoder we must have objects instantiated from clases that have:

• a no-arg constructor
• getters
• setters

Recall Listing 5.5; with a few small changes to Practitioners.java we can
write the practitioners array list out to an XML file (see Listing 7.7 where
PractitionersToXML.java is defined). Some important points about this
listing are:

Lines 1-3. Import statements included for XMLEncoder, FileOutputStream,
IOException.

Line 17-18. An XMLEncoder object references practitioners.xml.

Line 20. The writeObject method is used to write an object graph.

Line 22. The file is closed.

140 CHAPTER 7. FILES

Listing 7.7: Writing practitioners to XML.

1 import java.beans.XMLEncoder;

2 import java.io.FileOutputStream;

3 import java.io.IOException;

4 import java.util.ArrayList;

5 public class PractitionersToXML {

6 public static void main(String [] args) throws

IOException{

7 // List of practitioners

8 ArrayList <Practitioner > practitioners = new

ArrayList ();

9 // Create some practitioners

10 Practitioner pr = new

Practitioner("Sam","Smith","female");

11 Doctor dr = new

Doctor("Jill","Jones","female","Dermatology");

12 Pharmacist ph = new

Pharmacist("Eddy","Edwards","male","Drugco");

13 practitioners.add(pr);

14 practitioners.add(dr);

15 practitioners.add(ph);

16 // the encoder object references the file

17 XMLEncoder encoder = new XMLEncoder(

18 new FileOutputStream("practitioners.xml"));

19 // write out the practitioner object graph

20 encoder.writeObject(practitioners);

21 // close the xml file

22 encoder.close();

23 }

24 }

In Figure 7.6 we show the first few lines of the XML file created by Practi-
tionersToXML.java. Typically you can double-click on the file name (using
for example, Windows Explorer) and the XML file will be presented in your
web browser. It is human-readable. The information contained is essentially
the information required to re-create objects. For instance, the first object
to create is an ArrayList and then the add method must be used to add an
object.

7.2. OBJECTS 141

Figure 7.6: The first few lines of the XML file.

142 CHAPTER 7. FILES

Reading objects from XML

To read objects from an XML file we use the XMLDecoder class. When an
object is read it is an object graph that is read.

Recall Listing 5.5 (Practitioners.java) where there is a for loop which steps
through the list displaying information about each practitioner. Listing 7.8
(PractitionersFromXML.java) obtains the ArrayList of practitioners from
the XML file practitioners.xml and then displays those practitioners.
Some important points about this program:

Lines 1-3. Import statements for XMLDecoder, FileInputStream, and
IOException.

Line 8. The XMLDecoder object references practitioners.xml.

Lines 13-14. The readObject method obtains the object graph. In our ex-
ample readObject executes once and four objects are obtained. When
an object is read it is considered to be of type Object. So in the state-
ment:

ArrayList<Practitioner> practitioners =

(ArrayList)decoder.readObject();

we use a cast (ArrayList) so the Java compiler accepts the assign-
ment to the variable practitioners which is of type ArrayList.

Line 15. The file is closed.

Lines 17-22. The practitioners are displayed generating the output shown
in Figure 7.7

7.2. OBJECTS 143

Listing 7.8: Retrieving practitioners from XML.

1 import java.beans.XMLDecoder;

2 import java.io.FileInputStream;

3 import java.io.IOException;

4 import java.util.ArrayList;

5 public class PractitionersFromXML {

6 public static void main(String [] args) throws

IOException{

7 // decoder object references the xml file

8 XMLDecoder decoder = new XMLDecoder(new

FileInputStream("practitioners.xml"));

9 // The JVM only knows the object read as

being of type Object.

10 // Since we know the object being read is of

type ArrayList

11 // we include a cast to type ArrayList to

the right of

12 // the assignment operator.

13 ArrayList <Practitioner > practitioners =

14 (ArrayList) decoder.readObject ();

15 decoder.close();

16 // display the practitioners , doctors , etc.

17 for (Practitioner p: practitioners) {

18 String type="practitioner";

19 if (p instanceof Doctor) type="doctor";

20 if (p instanceof Pharmacist)

type="pharmacist";

21 System.out.println(type+"

"+p.getFirstName ());

22 }

23 }

24 }

144 CHAPTER 7. FILES

The output from the program is shown in Figure 7.7 and is exactly the same
as that of Practitioners.java in Chapter 5.

Figure 7.7: Practitioners retrieved are from the file.

7.3. SUMMARY 145

7.3 Summary

• In this chapter we have considered how we can write individual values
(primitive data and strings) to a file and retrieve those values later on
in a separate program.

• We have also handled objects where the writing and reading was done
on an object graph basis. When an object is read in it is only known
as being of type Object and so it is necessary to use casting to assign
the object to a variable of a specific type.

• We have considered both binary and XML files.

• In a later chapter we cover Exceptions. We will see then how we can
use try and catch blocks to process a complete file without knowing
how much data or lines are present.

• We have only introduced file processing; there is much more to pro-
cessing files than covered here. The following are some topics you
might follow up on at a later time in your studies.

– By default we have been processing files sequentially - from the
beginning to the end. Java has facilities to process binary files
randomly where you can, for instance, read a portion of a file
without having to read through all the data preceding the data
you are after. Random access to data is particularly important
in database systems.

– In our examples a new file has been created each time the program
was writing data out to a file. If the file existed previously the
file’s previous content was deleted. In contrast there is a way to
write data out to a file preserving its contents - in this case one
is appending data to an existing file.

146 CHAPTER 7. FILES

7.4 Exercises

1. Consider the Practitioner class. Each practitioner has a first name,
last name, and gender. Create some practitioners and then for each
one write these strings to a file. Then, read the values back in and
display them. Do not write out Practitioner objects, rather write
out strings.

a) do this with a binary file

b) do this with an XML file

2. Consider the Person class in Listing 6.3 from chapter 6 Interfaces.
Each person has a name and a year of birth. Write programs to seri-
alize Person objects as indicated below.

a) Write a program to create some persons and serialize the objects
to a binary file. You will need to specify that Person implements
Serializable. Write another program to recreate the persons
from the binary file. Display each person to verify you have suc-
cessfully reinstantiated those objects.

b) Write a program to create some persons and serialize the objects
to an XML file. The Person class has the necessary getters and
setters, but you will need to add a no-arg constructor. Write an-
other program to recreate the persons from the XML file. Display
each person to verify you have successfully reinstantiated those
objects.

Chapter 8

Exception Handling

An exception is an event that occurs during program execution that disrupts
the normal flow. When an exception occurs an exception object is created
that contains information about the situation and the state of the program
at that time. The creation of an exception object, and its handoff to the
Java runtime system, is called throwing an exception.

When an exception is thrown, the runtime system searches for a method to
handle the exception. If one is not found the program is terminated with a
stack trace. Up to now, this is the way we have handled exceptions. This
approach is fine for the category of exceptions called unchecked exceptions.
Unchecked exceptions are generally considered to be something that should
never occur, and so if one does occur the program should terminate. An
example of this is the ArrayIndexOutOfBounds exception. If an index value
goes beyond the bounds of an array there must be a logic error in the
program.

Another category of exception is called checked. These represent situations
for which a program can be expected to recover from. An example of a
checked exception is EOFException; another example is FileNotFoundEx-
ception. When we encountered these cases before we saw that we needed to
include a throws phrase to indicate we were aware of a possible error such
as file not found. These events are situations where a program can easily
recover. For example:

• An EOFException is a normal situation when a program is reading
a file and the program cannot know how much data is available - the

147

148 CHAPTER 8. EXCEPTION HANDLING

exception indicates to such a progam that all the information in the
file has been accessed.

• The FileNotFound exception arises when a program tries to access a
file that does not exist. Upon recognizing this situation a program
might try looking elsewhere, or perhaps prompt the user for another
name and/or location.

Figure 8.1 shows some classes that belong to the Exception Hierarchy. This
chapter will focus on checked exceptions; we will cover how to catch an ex-
ception using a try statement, and how to create your own custom exception
class.

Figure 8.1: Some classes in the Exception hierarchy.

8.1. CATCHING AN EXCEPTION 149

8.1 Catching an exception

If a checked exception could occur in a program then that program must
either include a throws clause for it or include a try that catches the excep-
tion. Consider Listing 7.2 (ReadBinary) in the previous chapter on Files.
In that program we used the DataInputStream class to read objects from a
file. In that example we included a throws clause for IOException. In Fig-
ure 8.1 you can see IOException has two subclasses FileNotFoundException
and EOFException. If a program has a throws for IOException then that
also includes its subclasses FileNotFoundException and EOFException.

If the main method in Listing 7.2 executes and if the file myData.ser does not
exist then a FileNotFoundException is thrown and the program terminates
abruptly with a FileNotFoundException. Instead of letting that happen
the program can include a try statment to catch and handle the exception.
Handling FileNotFoundException is covered in Example 1 below.

Listing 7.2 reads exactly 5 integers. If there were fewer than 5 integers in
the file then an EOFException would be thrown and the program would
terminate abruptly with a EOFException. Instead of letting that happen
we can include a try/catch to handle that type of error, and then we can
have a program that is able to read a file with any number of integers in it.
Reading a file until end-of-file is covered in Example 2.

To catch checked exceptions and respond to them Java provides the try
statement; its general form is:

try {

some Java statements

}

catch (one or more exceptions){

some Java statements

}

finally {

some Java statements

}

As shown in Figure 8.2 the try-block executes first. If, during the execu-
tion of the try-block an exception occurs then the try-block is terminated
immediately, and if that exception is listed in a catch-block, then control
transfers to the catch-block. Regardless, the finally-block contains code to
be executed before execution resumes at the statement following the try.

150 CHAPTER 8. EXCEPTION HANDLING

If an exception occurs and if the exception is not listed in the catch, then the
method containing the try is terminated, the runtime environment searches
for a handler in the calling routing and invokes that handler. If no handler
is found then the program is terminated with a trace showing the called
methods.

Figure 8.2: Execution of a try statement.

8.1. CATCHING AN EXCEPTION 151

Example 1, File not found

Listing 8.1 prompts the user for a file name and attempts to create a ref-
erence to the file. The program uses message dialogs to get a file name, to
display a message regarding the file’s existence, and then displays a message
dialog to show the finally-block executing. For example, if the file does exist
the user sees message dialogs as shown in Figure 8.3.

Figure 8.3: Message dialogs.

Interesting points regarding this program are:

• There is an import for FileNotFoundException in line 3.
• The try statement in lines 10-22 has a try-block where a
DataInputStream is created if the file exists. If the file does not exist
then the system throws FileNotFoundException.

– If creating a file reference works then line 12 executes - a success
message appears.

– If creating a file reference fails then FileNotFoundException is
thrown immediately, line 12 does not execute - the catch-block

152 CHAPTER 8. EXCEPTION HANDLING

for the FileNotFoundException executes and an error message
appears.

• Regardless, whether the file exists or not, the finally-block executes.
The last dialog message will always appear. As indicated in the com-
ments this is where many programs would close any open files - we
have left this issue until the next example.

Listing 8.1: Handling file not found.

1 import java.io.DataInputStream;

2 import java.io.FileInputStream;

3 import java.io.FileNotFoundException;

4 import javax.swing.JOptionPane;

5 public class HandleFileNotFound {

6 public static void main(String [] args)

7 {

8 String fileName =

JOptionPane.showInputDialog("Enter file

name:");

9 DataInputStream is = null;

10 try {

11 is = new DataInputStream(new

FileInputStream(fileName));

12 JOptionPane.showMessageDialog(null ,

"Success , file found");

13 }

14 catch (FileNotFoundException e){

15 JOptionPane.showMessageDialog(null ,

"Error , file not found");

16 }

17 finally{

18 JOptionPane.showMessageDialog(null ,

"finally clause executing");

19 // Normally we would close open files

here , but for DataInputStream

20 // that involves another exception , and

so we leave that to a later

21 // example.

22 }

23 }

24 }

8.1. CATCHING AN EXCEPTION 153

Example 2, Reading a binary file until end-of-file

In listing 7.1 an array of 5 integers was written to a binary file. In Listing 7.2
the array was read back in using a for statement that was executed exactly
5 times. That worked because we knew in advance how many integers had
been written to the file.

If we do not know how many integers had been written then we must read in-
tegers until there are none left - that is, until end-of-file. Unlike the Scanner
class, DataInputStream does not have a hasNext method to inform us if
there are more objects. We must read objects using readInt until the
EOFException occurs - which we can catch. If you read the documentation
for DataInputStream you will see there is one more exception that can oc-
cur when a program executes readInt. This other exception is IOException
that will cover any other unexpected problems when an integer is read.

In general, when reading until end-of-file we need a code structure illustrated
as:

Figure 8.4: Basic structure to read until end-of-file.

154 CHAPTER 8. EXCEPTION HANDLING

The program in Listing 8.2 reads a binary file obtaining each integer and
accumulating a total. There are imports for EOFException, IOException,
and FileNotFoundException. The program uses JOptionPane to commu-
nicate with the user. To simplify we have used a main method that calls
three methods:

1. Line 10, call getFile: to get the name of the file from the user.

This method has a try statement that catches FileNotFoundException.
A reference to a DataInputStream object is returned, or null if the file
does not exist.

2. Line 13, call getTotal: to read the file accumulating a total until
end-of-file.

If you read the documentation for DataInputStream you will see there
is a possibility of two exceptions being thrown when a program exe-
cutes readInt. These two exceptions are IOException and
EOFException. Recall from Figure 8.1 that IOException is the super-
class of EOFException, and being the superclass IOException is more
general and includes EOFException.

This method has a try statement with two catch-blocks. The first catch
is for EOFException, and the second is for IOException. Because
EOFException is more specific that IOException, its catch-block is
listed before the catch-block for IOException. When an exception
occurs, the catch-blocks are examined in the order listed to find the
first one that covers the exception.

Regardless of which exception occurs the variable endOfFile is set to
true so the while loop will terminate. If IOException occurs there is
an addtional error message displayed to the user.

3. Line 14, call closeFile: to close the file.

If you examine the documentation for DataInputStream you will see
that when close is executed there is a possibility of an IOException

occurring, and so the try statement includes a catch-block for
IOException.

8.1. CATCHING AN EXCEPTION 155

Listing 8.2: Retrieving objects until end-of-file.

1 import java.io.DataInputStream;

2 import java.io.FileInputStream;

3 import java.io.EOFException;

4 import java.io.IOException;

5 import java.io.FileNotFoundException;

6 import javax.swing.JOptionPane;

7 public class ReadFromBinaryUntilEndOfFile {

8 public static void main(String [] args)

9 {

10 DataInputStream is = getFile ();

11 int total = 0;

12 if (is!=null){

13 total = getTotal(is);

14 closeFile(is);

15 }

16 JOptionPane.showMessageDialog(null , "total

= "+total);

17 }

18
19 public static DataInputStream getFile (){

20 String fileName =

JOptionPane.showInputDialog("Enter file

name:");

21 DataInputStream is = null;

22 try {

23 is = new DataInputStream(new

FileInputStream(fileName));

24 JOptionPane.showMessageDialog(null ,

"Success , file found");

25 }

26 catch (FileNotFoundException e){

27 JOptionPane.showMessageDialog(null ,

"Error , file not found");

28 is = null;

29 }

30 return is;

31 }

32

156 CHAPTER 8. EXCEPTION HANDLING

33 public static int getTotal(DataInputStream is){

34 int total = 0;

35 // read integers until there are none left

36 boolean endOfFile = false;

37 int i;

38 while (! endOfFile){

39 try{

40 // readInt can throw EOFException

or an IOException

41 i = is.readInt ();

42 total += i;

43 }

44 catch (EOFException e){

45 // force loop to terminate

46 endOfFile = true;

47 }

48 catch (IOException e){

49 JOptionPane.showMessageDialog(null ,

"Error , an IOException occurred

reading the file");

50 endOfFile = true;

51 }

52 }

53 return total;

54 }

55 public static void closeFile (DataInputStream

is){

56 // close may throw an IOException

57 try{

58 is.close();

59 JOptionPane.showMessageDialog(null ,

"program terminated normally");

60 }

61 catch (IOException e){

62 JOptionPane.showMessageDialog(null ,

"Error , an IOException occurred

closing the file");

63 }

64 }

65 }

8.2. DESIGNING A CUSTOM EXCEPTION 157

8.2 Designing a custom exception

Exceptions in Java are organized in a class structure. It is certainly possible
for a programmer to define their own Exception subclass for the purposes
of an application. In general this is not recommended. Before developing a
separate exception class the extensive set of subclasses of Throwable should
be examined for one that fits.

But if the need does arise it is fairly straightfoward to develop a custom
Exception class. As an example, suppose the Human Resources (HR) de-
partment requires a system that involves employees. It has been decided
that an employee will be described by 3 text fields : a social insurance num-
ber (SIN), a name, and a position. The HR department requires the SIN to
be a valid SIN whenever an employee object is created.

We develop a custom exception for the case where there is an attempt to
instantiate an employee with an invalid SIN. The constructor for an employee
can recognize this case and include a statement such as

throw new InvalidSINException(sin);

The program that attempts to create an employee could include a try/catch
such as:

try {

e = new Employee("123456789","Joe Who","instructor");

}

catch (InvalidSINException e){

System.out.println("Employee could not be created."+

"The provided SIN, "+ e.getSin()+"is invalid ");

}

Normally a custom exception is defined as a Java class which extends either
Exception or RuntimeException:

• You should subclass Exception if you require a checked exception

• You should subclass Runtime if you require an unchecked exception.

158 CHAPTER 8. EXCEPTION HANDLING

Example 3, Handling an invalid SIN

Our example involves three classes shown below in a BlueJ project:

Figure 8.5: Employee can throw an InvalidSINException project.

1. InvalidSINException, Listing 8.3.

The custom exception class has a field for the social insurance number,
a constructor, and a getter for sin.

2. Employee, Listing 8.4.

The constructor validates the social insurance number field. If you
wish to consider the details of the validiation you can consult the
Wikipedia page on SIN - in brief a weighted sum is calculated that
must be evenly divisible by 10. If the validation fails the constructor
throws an exception. In line 6 note the constructor declares that is
can throw an InvalidSINException, and in line 7 if validate(sin)
returns false the exception is thrown - note the exception is created
using the new operator.

3. TestNewException, Listing 8.5

8.5 is a test program that creates two employees - the second create will
fail. Note the catch-block uses the printStackTrace method defined
in the superclass Throwable; this method prints the standard trace
showing where the program failed.

Figure 8.6 shows the output when Listing 8.5 runs. Note the first instanti-
ation of an employee works, but the second one fails with a call trace.

8.2. DESIGNING A CUSTOM EXCEPTION 159

Listing 8.3: Custom exception for social insurance number.

1 /**

2 * Exception for invalid social insurance number

3 * as a subclass of Exception , and so a calling

4 * program must use try/catch or a throws clause.

5 */

6 public class InvalidSINException extends Exception

7 {

8 private String sin;

9 /**

10 * Constructor that accepts a SIN

11 */

12 public InvalidSINException(String s)

13 {

14 sin = s;

15 }

16 /**

17 * getter for SIN that caused the exception

18 */

19 public String getSin (){

20 return sin;

21 }

22 }

160 CHAPTER 8. EXCEPTION HANDLING

Listing 8.4: Employee class that throws InvalidSINException.

1 public class Employee

2 {

3 private String sin;

4 private String name;

5 private String position;

6 public Employee (String sin , String name ,

String position) throws InvalidSINException{

7 if (! validate(sin)) throw new

InvalidSINException(sin);

8 this.sin = sin;

9 this.name = name;

10 this.position = position;

11 }

12
13 public String getSin (){

14 return sin;

15 }

16
17 public String getName (){

18 return name;

19 }

20
21 public String getPosition (){

22 return position;

23 }

24
25 public void setName(String name){

26 this.name = name;

27 }

28
29 public void setPosition(String position){

30 this.position = position;

31 }

32
33 public String toString (){

34 return "Employee "+getSin ()+",

"+getName ()+", "+getPosition ();

35 }

8.2. DESIGNING A CUSTOM EXCEPTION 161

36
37 public boolean validate(String sin){

38 // validate SIN using rules in Wikipedia

39 if (sin == null || sin.length ()!=9) return

false;

40 char[] sinChars = sin.toCharArray ();

41 // validate the check sum for a SIN

42 int total = 0;

43 for (int i=0; i<9; i++){

44 char c = sinChars[i];

45 if (! Character.isDigit(c)) return false;

46 int digit =

Character.getNumericValue(c);

47 // double every second digit

48 if (i%2 == 1) digit *= 2;

49 // correction if 10 or more

50 if (digit > 9) digit -= 9;

51 total += digit;

52 // System.out.println(i+" "+c+"

"+ digit+" "+ total);

53 }

54 return (total %10 == 0);

55 }

56 }

162 CHAPTER 8. EXCEPTION HANDLING

Listing 8.5: Testing the custom exception.

1 /**

2 * Create two employees.

3 * catch -block displays a stack trace if creating

an employee fails.

4 */

5 public class TestNewException

6 {

7 public static void main(String [] args)

8 {

9 try {

10 // a valid SIN.

11 System.out.println("Attempting to

create employee 046454286");

12 Employee e1 = new Employee("046454286",

"Joe Who", "instructor");

13 System.out.println("Create OK: "+e1);

14 // not valid SIN.

15 // An exception will be thrown

16 System.out.println("\nAttempting to

create employee 123456789");

17 Employee e2 = new Employee("123456789",

"Steve Stephens", "instructor");

18 System.out.println("Create OK: "+e2);

19 }

20
21 catch (InvalidSINException e){

22 System.out.println("Error creating

employee. "+

23 "The provided SIN , "+ e.getSin ()+"

is invalid ");

24 e.printStackTrace ();

25 }

26 }

27 }

8.2. DESIGNING A CUSTOM EXCEPTION 163

Figure 8.6: Output showing a stack trace.

164 CHAPTER 8. EXCEPTION HANDLING

Exercises

1. Consider the program HandleFileNotFound in Listing 8.1. The main

method gets a file name from the user and attempts to create a refer-
ence to it in line 11, then displays a message indicating success or not,
and then terminates. Write a program that keeps prompting the user
for a file name if the file cannot be found. When a file reference can
be made (line 11) successfully the program terminates.

2. Consider the program in Listing 8.6 below. This program computes the
sum of the integers entered by the user. When this program runs the
user signals end-of-input with ctrl-z on Windows (ctrl-d on unix/Mac),
which causes the Scanner method hasNext to return false. A user
can easily mistype an integer (say, pressing a non-numeric key) and the
program would fail abruptly at line 10 with a NumberFormatException.
This exception is documented for parseInt on the page for class
Integer which appears below in Figure 8.7 - you can find this by
using the BlueJ Help menu, selecting Java Class Libraries, and open-
ing the page for Integer. Modify the program to handle such an
error: inform the user that the input was invalid and prompt the user
to re-enter the number.

Listing 8.6: Sum integers until end of input.

1 import java.util.Scanner;

2 public class Q2Source

3 {

4 public static void main(String [] args){

5 int total = 0;

6 Scanner kb = new Scanner(System.in);

7 System.out.println("enter a number: ");

8 while (kb.hasNext ()){

9 String number = kb.next();

10 int n = Integer.parseInt(number);

11 total += n;

12 System.out.println("enter a number:

");

13 }

14 System.out.println("total of numbers is

"+total);

15 }

16 }

8.2. DESIGNING A CUSTOM EXCEPTION 165

Figure 8.7: Documentation for parseInt.

3. In Listing 8.4 the Employee class appears. Note there is no set-
ter method for social insurance number. Modify Employee to in-
clude the setSin method. However, this method must throw the
InvalidSINException if setSin is called with an invalid social in-
surance number.

4. In Listing 7.6 in Java with BlueJ Part I the Student class is defined.
The no-arg constructor sets the gender field to ’?’; and the other con-
structor sets the gender to whatever value has been passed in. Develop
an InvalidGenderException exception that is to be thrown if there
is an attempt to instantiate a student with a gender that is not one of
’?’, ’m’, ’f’. Code a main method to verify the exception is thrown.

166 CHAPTER 8. EXCEPTION HANDLING

5. Consider the program in Listing 7.3. This program reads the file
myData.xml and displays the integers in the file. On the documenta-
tion page for XMLDecoder you will find that exceptions can arise when
this program runs:

• FileNotFoundException: when the XMLDecoder object is cre-
ated.

• ArrayIndexOutOfBoundsException: when the input stream has
no more objects. For this exception you need the import:

java.lang.ArrayIndexOutOfBoundsException

Modify this program in two ways:

(a) it should terminate with a message ”file not found” if a FileNot-
FoundException occurs.

(b) assume you do not know how many integers are in the file - it
should read as many integers as the file holds.

Chapter 9

Recursion

Recursion as an approach that applies to methods and to data structures:

• A recursive method is a method that, directly or indirectly, calls itself.

• A recursive data structure is a structuring of classes so an instance
can have a reference to another instance of the same class.

9.1 Recursive methods

We design methods to solve problems. A recursive method is a method that
breaks a problem into smaller problems of the same problem type that can
be combined to form a solution. The decomposition into smaller problems
must be constructed is such a way as to terminate in a finite number of
steps, and to end as a basic form that has a known solution.

167

168 CHAPTER 9. RECURSION

Example 1, Factorials

Let us consider a classic example, the computation of n! Consider the defi-
nition:

0! = 1

n! = n * (n-1)! for n>0
These two expressions are exactly what we need to code a recursive method:

• The first expression is called a base case, one where the value is known:
0!=1.

• The second expression defines the problem, calculation of n!, in terms
of a smaller problem, the calculation of (n-1)!.

The method to calculate n! is straightforward to express in Java - see Listing
9.1:

Listing 9.1: factorial method.

1 public class Factorial {

2 public int factorial (int n){

3 if (n==0)

4 return 1;// base case is solved

5 return n*factorial(n-1);// smaller problem

6 }

7 }

When the method factorial above is called there are two outcomes. Either
the method returns 1, or the method calls itself to calculate (n-1)!.

9.1. RECURSIVE METHODS 169

The Call Stack

To control the execution of methods the JVM uses a memory structure called
the Call Stack. When method A calls method B the JVM

• ensures the field values of method A are in A’s area of the stack,

• notes the location in method A to which control will return,

• allocates a new area on top of what has been used so far for the newly
called method B.

When method B finishes and returns control to method A the space method
B has occupied on the stack is released and control resumes in method A
from the point where A called B including, if B is value-returning, the value
method B returns. Consider the scenario for methods A and B in Figure 9.1

Figure 9.1: Call Stack: method A calls method B.

Call Stack: factorials

Consider the factorial method shown above. Suppose factorial is called with
n=4, then we can visualize the call stack growing and shrinking as in Figure
9.2. One of the concerns with recursive calls is the stack space that can be
used up. If your program has a bug in it, and never can reach a base case,
your program will run out of stack space eventually and be terminated by
the JVM.

170 CHAPTER 9. RECURSION

Figure 9.2: Call stack growing and shrinking for factorial(3).

9.1. RECURSIVE METHODS 171

Example 2, Fibonacci Numbers

The Fibonacci sequence can be defined as:

f0 = 0

f1 = 1

fn = fn−1 + fn−2

This is the infinite sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . where successive
terms are just the sum of the previous 2 terms. The definition gives us two
base cases where recursion will terminate. Consider Listing 9.2 and these
points:

• Line 4: The if tests for the first base case and simply returns 0.

• Line 5: The if tests for the second base case and simply returns 1.

• Line 6: This statement call fibonacci recursively two times, once
with n-1 and then with n-2.

Listing 9.2: Fibonacci method.

1 public class Fibonacci

2 {

3 public int fibonacci (int n){

4 if (n==0) return 0; // first base case

5 if (n==1) return 1; // second base case

6 return fibonacci(n-1) + fibonacci(n-2); //

two simpler problems

7 }

8 }

The definition of the Fibonacci sequence is simple enough and easy to im-
plement but it does not lead an efficient computation. Consider Figure 9.3
that shows the recursion involved for f4:

The amount of time required to calculate fn will vary according to the
specifications of a system you are using. However, run the program a few
times, say for f10, f20, f30, f40, . . . and see if you notice a degradation in
performance.

172 CHAPTER 9. RECURSION

Figure 9.3: Recursive calls for fibonacci(4).

9.1. RECURSIVE METHODS 173

Example 3, Drawing Mondrian-esque graphics

The following image was produced by a recursive program that continuously
and randomly subdivides a canvas vertically or horizontally. Piet Mondrian
was an artist (1872 - 1944) whose works are easily discovered using internet
browser searches. Some of the artworks he produced have inspired a number
of programmers to attempt similar works.

The example in this section uses an approach where the canvas (a Java
CanvasPane) is subdivided (vertically or horizontally) in a continuous man-
ner. Each subdivision creates a new rectangle on the canvas - with a colour
chosen by the program.

Figure 9.4: A Mondrian-esque graphic.

Our interest here is to illustrate a recursive program, but one that is not
just an interesting mathematical definition. Listings 9.3 (Mondrianesque)
and 9.4 (MRectangle) are shown later. We refer you to the comments in
Mondrianesque.java for the details of its specific design choices. To run
the example you must also download and compile in the same project, Can-
vas.java, which is the central class of the BlueJ Shapes example.

174 CHAPTER 9. RECURSION

Mondrianesque starts with a canvas (aka rectangle) of random colour. Then,
method subdivide is called with this first rectangle.

subdivide : input - one rectangle, output - two rectangles.
This method replaces a rectangle R with two rectangles R1 and R2.
Together R1+R2 are equal to R.

1. Choose D - the axis for subdivision (vertical or horizontal). R
will be subdivided either vertically or horizontally.

2. Choose a point along D for subdivision - this determines the
lengths and widths of R1 and R2.

3. Choose colours for R1 and R2.

4. Create a black border to separate R1 and R2.

9.1. RECURSIVE METHODS 175

Listing 9.3: Mondrianesque contains the recursive method subdivide.

1 import java.util.Random;

2 /**

3 * The main method creates an intial rectangle ,

4 * and then calls subdivide to have it recursively

5 * subdivided.

6 */

7 public class Mondrianesque

8 {

9 // a maximum depth of 4 recursive calls

10 private static final int MAX_DEPTH = 4;

11 private static int depth = 1;

12 private static Random r = new Random ();

13 public static void main(String [] args){

14 // the initial canvas (rectangle)

15 MRectangle m = new

MRectangle (0,0,500,300, chooseColor ());

16 m.makeVisible ();

17 subdivide (m);

18 }

19
20 /**

21 * subdivide: replaces one rectangle by two

rectangles ,

22 * and also a black border line to separate

them.

23 * The black border is a narrow black rectangle.

24 *

25 * @param r2 a rectangle

26 */

27 public static void subdivide(MRectangle r2){

28 // The original rectangle R is replaced by

two rectangles

29 // R1 and R2.

30 // r2 is the incoming rectangle that will

be resized

31 // r1 is generated below.

32 //

33 // choose the x or y axis for subdivision

176 CHAPTER 9. RECURSION

34 Axes axis = Axes.xAxis;

35 boolean toSubdivide = (r2.xlen >250 ||

r2.ylen >150);

36 MRectangle r1 = null;

37 MRectangle border = null;

38 if (toSubdivide){

39 // if both sides of the rectangle are

reasonably long , choose one randomly

40 if (r2.xlen >250 && r2.ylen >150)

41 if (0 == r.nextInt (2)) axis =

Axes.xAxis;

42 else axis = Axes.yAxis;

43 // if only the x side is long enough

choose X axis

44 else if (r2.xlen >250) axis = Axes.xAxis;

45 // if only the y side is long enough

choose Y axis

46 else axis = Axes.yAxis;

47
48 // handle split on the X axis

49 if (axis == Axes.xAxis){

50 // choose where to split along the

X axis

51 int deltaX = r.nextInt (250);

52 // choose a colour for this

rectangle ... the other

rectangle will have the original

colour

53 String color = chooseColor ();

54 while (color.equals(r2.color))

color = chooseColor ();

55 // R1 is a new rectangle

56 r1= new

MRectangle(r2.xPosition+deltaX+4,r2.yPosition ,r2.xlen -deltaX -4,r2.ylen ,color);

57 r1.makeVisible ();

58 // R2 obtained by just changing

size of original rectangle

59 r2.changeX(deltaX);

60 // create the black border along

the axis

9.1. RECURSIVE METHODS 177

61 border=new

MRectangle(r2.xPosition+deltaX ,r2.yPosition ,4,r2.ylen ,"black");

62 border.makeVisible ();

63 }

64 // handle the subdivision along the Y

axis

65 else {

66 // choose point along Y axis for

splitting

67 int deltaY = r.nextInt (150);

68 // pick a colour

69 String color = chooseColor ();

70 while (color.equals(r2.color))

color = chooseColor ();

71 // R1 is the new rectangle

72 r1= new

MRectangle(r2.xPosition ,r2.yPosition+deltaY+4,r2.xlen ,r2.ylen -deltaY -4,color);

73 r1.makeVisible ();

74 // R2 obtained by just changing

size of original rectangle

75 r2.changeY(deltaY);

76 // create the black border along

the axis

77 border = new

MRectangle(r2.xPosition ,r2.yPosition+deltaY ,r2.xlen ,4,"black");

78 border.makeVisible ();

79 }

80 depth ++;

81 // do not recurse any more than maximum

set

82 if (depth <MAX_DEPTH){

83 subdivide(r1);

84 subdivide(r2);

85 }

86 }

87 // c

88 }

89
90 public static String chooseColor (){

91 String choice = "white";

178 CHAPTER 9. RECURSION

92 switch (r.nextInt (13)) {

93 case 0: choice = "red";

94 break;

95 case 1: choice = "green";

96 break;

97 case 2: choice = "blue";

98 break;

99 case 3: choice = "black";

100 break;

101 case 4: choice = "yellow";

102 break;

103 case 5: choice = "magenta";

104 break;

105 case 6: choice = "white";

106 break;

107 case 7: choice = "red";

108 break;

109 case 8: choice = "orange";

110 break;

111 case 9: choice = "pink";

112 break;

113 case 12: choice = "gray";

114 break;

115 }

116 return choice;

117 }

118
119 public enum Axes {xAxis , yAxis};

120 }

9.1. RECURSIVE METHODS 179

Listing 9.4: The basic rectangle.

1 import java.awt .*;

2 /**

3 * This class is a simple rectangle that is

designed to work with

4 * the Shapes example from BlueJ - in particular

the Canvas class.

5 */

6 public class MRectangle

7 {

8 public int xlen;

9 public int ylen;

10 public int xPosition;

11 public int yPosition;

12 public String color;

13 private boolean isVisible;

14
15 /**

16 * Create a new rectangle.

17 */

18 public MRectangle(int x, int y, int xlen , int

ylen , String color)

19 {

20 this.xlen = xlen;

21 this.ylen = ylen;

22 xPosition = x;

23 yPosition = y;

24 this.color = color;

25 isVisible = true;

26 }

27
28 /**

29 * Make this square visible. If it was already

visible , do nothing.

30 */

31 public void makeVisible ()

32 {

33 isVisible = true;

34 draw();

180 CHAPTER 9. RECURSION

35 }

36
37 /**

38 * Change the size to the new size (in pixels).

Size must be >= 0.

39 */

40 public void changeX(int newXlen)

41 {

42 erase ();

43 xlen = newXlen;

44 draw();

45 }

46 public void changeY(int newYlen)

47 {

48 erase ();

49 ylen = newYlen;

50 draw();

51 }

52
53 /**

54 * Draw the square with current specifications

on screen.

55 */

56 private void draw()

57 {

58 if(isVisible) {

59 Canvas canvas = Canvas.getCanvas ();

60 canvas.draw(this , color ,

61 new Rectangle(xPosition ,

yPosition , xlen , ylen));

62 canvas.wait (10);

63 }

64 }

65
66 /**

67 * Erase the square on screen.

68 */

69 private void erase()

70 {

71 if(isVisible) {

9.2. RECURSIVE DATA STRUCTURES 181

72 Canvas canvas = Canvas.getCanvas ();

73 canvas.erase(this);

74 }

75 }

76 }

9.2 Recursive data structures

In Part 1 Chapter 7, Designing Java Classes, we learned how to implement
associations between classes. If we have an association that involves the
same class at both ends of the association then we say the association is
recursive, or reflexive. Recursive associations arise in many situations, for
example:

• a team plays against another team

• a person is a parent of another person

• an employee reports to another employee

Consider the class diagram in Figure 9.5 for the case of an employee reporting
to another employee. A role name is shown to indicate that one employee
is known as the supervisor.

Figure 9.5: An employee reports to another employee.

A binary association such as this can be viewed in two ways:

1. an employee reports to another employee, and
2. an employee may supervise many other employees.

We are ignoring the second one above for simplicity reasons. To implement
the first view above we just need a field in Employee such as:

Employee supervisor;

182 CHAPTER 9. RECURSION

Consider the code in Listing 9.5. The class is fairly simple: there are 3 fields
and so 3 getters and 3 setters. The interesting aspect of the class is that the
supervisor field can have a value that references another Employee.

Listing 9.5: An Employee class that references an employee.

1 /**

2 * The Employee class

3 * that implements the recursive association

4 * "an employee reports to another employee"

5 */

6 public class Employee

7 {

8 private Employee supervisor;

9 private String firstName;

10 private String lastName;

11 public Employee ()

12 {

13 firstName="unknown";

14 lastName="unknown";

15 supervisor = null;

16 }

17 // getters

18 public String getFirstName (){

19 return firstName;

20 }

21 public String getLastName (){

22 return lastName;

23 }

24 public Employee getSupervisor (){

25 return supervisor;

26 }

27 // setters

28 public void setFirstName(String first){

29 firstName = first;

30 }

31 public void setLastName(String last){

32 lastName = last;

33 }

34 public void setSupervisor(Employee s){

35 supervisor = s;

9.2. RECURSIVE DATA STRUCTURES 183

36 }

37 }

In a large company there are many employees and a reporting structure
could be very long. For example, suppose we have:

1. John Smith reports to Peter Jones

2. Peter Jones reports to Susan Darwin

3. Susan Darwin reports to Tom Evans

4. Tom Evans reports to April Barnes

The above lists 5 employees where one might say John Smith is at the
bottom of the reporting structure and April Barnes is at the top (she does
not have a supervisor). We can create this reporting structure quite easily.
Assuming that the five objects exists (say, john, peter, susan, tom, april)
we just need to execute the following four statements to set their supervisor
fields:

john.setSupervisor(peter);

peter.setSupervisor(susan);

susan.setSupervisor(tom);

tom.setSupervisor(april);

Figure 9.6 illustrates this chain of objects using a UML object diagram.

Figure 9.6: A chain of objects where each references the next.

184 CHAPTER 9. RECURSION

Now, if we need to display the name of someone’s supervisor, say the super-
visor for employee john, we just need to code:

Employee aSuper = peter.getSupervisor();

System.out.println(aSuper.getFirstName()

+" "+aSuper.getLastName());

A program that creates these five employees, sets up their reporting struc-
ture, and displays someone’s supervisor is shown in Listing 9.6.

Recursive data structures are a topic in advanced programming courses
where structures such as linked lists and trees are discussed. The struc-
ture we have implemented here is a linked list. This section is just an
introduction.

Listing 9.6: Creating a reporting structure.

1
2 /**

3 *

4 * Create 5 employees and set up a

5 * reporting structure

6 *

7 */

8 public class Create5Employees

9 {

10 public static void main(String [] args){

11 //

12 // create 5 employees

13 Employee john = new Employee ();

14 john.setFirstName("John");

15 john.setLastName("Smith");

16 Employee peter = new Employee ();

17 peter.setFirstName("Peter");

18 peter.setLastName("Jones");

19 Employee susan = new Employee ();

20 susan.setFirstName("Susan");

21 susan.setLastName("Darwin");

22 Employee tom = new Employee ();

23 tom.setFirstName("Tom");

24 tom.setLastName("Evans");

25 Employee april = new Employee ();

26 april.setFirstName("April");

27 april.setLastName("Barnes");

9.2. RECURSIVE DATA STRUCTURES 185

28 //

29 // set the supervisors for

30 // john , peter , susan , and tom

31 john.setSupervisor(peter);

32 peter.setSupervisor(susan);

33 susan.setSupervisor(tom);

34 tom.setSupervisor(april);

35 //

36 // display Peter’s supervisor

37 Employee aSuper = peter.getSupervisor ();

38 System.out.println(aSuper.getFirstName ()+"

"+aSuper.getLastName ());

39 }

40 }

186 CHAPTER 9. RECURSION

9.3 Exercises

1. The tribonacci numbers are like the Fibonacci numbers, but instead
of starting with two predetermined terms, the sequence starts with
three predetermined terms and each term afterwards is the sum of the
preceding three terms. The first few tribonacci numbers are:

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81

Write a recursive method that calculates the nth tribonacci number.

2. Consider Listing 9.2. What is the sequence of calls to fibonacci for
fibonacci(4)? That is, what is the order in which Fibonacci numbers
are calculated?

3. A drawback to the recursive fibonacci method in Listing 9.2 is that
it recalculates so many Fibonacci numbers, and with that comes the
overhead of recursive calls. Figure 9.3 shows in the calculation of f4, f2
was calculated twice and f1 was calculated 3 times. In situations like
this there is a technique that can be used called memoization. Mem-
oization is an optimization approach where values are stored so they
may be used again (simply retrieved and not recalculated). To apply
this to the Fibonacci numbers we can use an array of ints to store
Fibonacci numbers. We represent this new approach in pseudocode:

Step 1. Initialize an array of Fibonacci numbers to zeros. The array
is of some fixed, but large enough size.

Step 2. fibonacci(n):
2.1 if n is 0 then return 0
2.2 if n is 1 then return 1
2.3 if fib[n] is not 0 then return fib[n]
2.4 fib[n] = fibonacci(n-1) + fibonacci(n-2)
2.5 return fib[n]

The method outlined above calculates and saves a Fibonacci number
the first time that number is required (step 2.4), but after that it will
simply return the value that was pre-calculated (step 2.3). Develop
this approach in a Java program.

4. The ratio of successive Fibonacci numbers is the golden ratio which is
1.6180339... Write a non-recursive program that displays this ratio for
the first 20 Fibonacci numbers.

9.3. EXERCISES 187

5. Write a recursive method reverse that reverses a string. If we execute
System.out.println(reverse("Fibonacci"));

the output will be:
iccanobiF

6. Write a recursive method count that counts the number of ’x’s in a
string. If we execute

System.out.println(count("xerox"));

the output will be:
2

7. Modify the subdivide method of Mondrianesque to use some differ-
ent rule for stopping the recursive subdivision process. For instance
consider not subdividing if the current rectangle has an area that is
less than some fixed value.

8. Suppose we have a class Person; objects of Person represent peo-
ple. Suppose we must implement the association Person married to
Person. Develop a class Person with attributes first name, last name,
and gender. Also, include an attribute:

Person spouse;

which implements the married to association. Implement the following
people and relationships:

• Peter Smith is married to Susan Darwin

• Tom Lee is married to Barbara Eck

• Linda Lee is married to Sammy Barnes

• David Chan, but he is not married.

Test your implementation by displaying each person and their spouse
(or dashes if they have no spouse). The output for the sample data
would be:

Person Spouse

Peter Smith Susan Darwin
Susan Darwin Peter Smith
Tom Lee Barbara Eck
Barbara Eck Tom Lee
Linda Lee Sammy Barnes
Sammy Barnes Linda Lee
David Chan —————

188 CHAPTER 9. RECURSION

Chapter 10

Sorting and Searching

For lots of reasons lists need to be placed into order. Email is listed by
date, phone contacts listed alphabetically, class rosters sequenced by student
number or by last name, etc.

It may not be important how we go about organizing a small list, but when
the lists are lengthy the approach (i.e. algorithm) can be critical. In this
chapter we consider a number of sorting algorithms: selection, insertion,
bubble, and quicksort. To simplify we consider sorting lists of integers into
ascending order.

We also consider algorithms for searching a list. If we know a list is sequenced
we can use that knowledge when we want to find a specific element.

Next we discuss each sorting algorithm from a conceptual perspective. Then
we present implementations of each technique. Next we show how to imple-
ment sorting for objects. Lastly, we consider algorithms for searching a list
to locate a specific entry or to determine that the entry is not present.

The implementations we give use arrays. A convenience method we have
used is toString of Arrays that displays all elements of the array. How-
ever, if you are working with ArrayLists you can use methods in the
Collections, Arrays, and ArrayList classes to convert from one type to
the other. For instance, to add all elements of an array to a list you can use

Collections.addAll(toList, fromArray);

Also, there are methods asList in the Arrays class and a method toArray

in the ArrayList class.

189

190 CHAPTER 10. SORTING AND SEARCHING

10.1 Sorting Algorithms

For many algorithms a list is conceptually partitioned into a sorted sublist
and an unsorted sublist. At an intermediate stage a list is partially sorted:
for example, a sorted sublist on the left and an unsorted sublist on the
right. The nature of the algorithm eventually reduces the unsorted sublist
to nothing and the sorted sublist comprises all elements. For simplicity
and consistency in our presentation we consider sorting lists of integers in
ascending sequence.

Figure 10.1: A list comprising a sorted sublist and an unsorted sublist.

These algorithms use some basic operations such as swapping two elements
and shifting of elements. Consider the diagram below where swapping (in-
terchanging) two elements is illustrated. In this case the 3rd and the 6th
elements (22 and 55) are swapped.

Figure 10.2: 3rd and 6th elements swap positions.

In some algorithms elements are shifted to the left or right to make room
for an element. Consider the diagram below where the 6th element is moved
to the 3rd position and so the 3rd through 5th elements are shifted right.

Figure 10.3: 6th element moves to 3rd positions; others shift right.

10.1. SORTING ALGORITHMS 191

10.1.1 Selection Sort

This algorithm is very straightforward. The sorted sublist begins as the
empty list, and the unsorted sublist comprises all n elements.

Figure 10.4: Sorted sublist is empty; Unsorted sublist has all elements.

The algorithm begins by finding the smallest entry in the unsorted list and
then swaps that entry with the first entry of the unsorted list. At this point
we say the sorted sublist comprises that first element and the unsorted
sublist consists of the remaining n− 1 elements.

Figure 10.5: Sorted sublist has smallest; Unsorted sublist of n− 1 elements.

As a next step, the algorithm finds the smallest entry of the unsorted sublist
and then swaps that entry with the first element of the unsorted sublist. At
this point a list of n elements has a sorted sublist of 2 elements and an
unsorted sublist of n− 2 elements.

This process continues until the unsorted sublist has one remaining element.
That one entry is the largest, and so the whole list is now sorted. If there
are n elements in the list, then finding the smallest and swapping is done
n− 1 times. We outline the basic algorithm in pseudocode below.

Selection Sort (list):

1. Sorted sublist ← empty.

2. Unsorted sublist ← list to be sorted.

3. Iteration: Repeat until the unsorted sublist comprises a single element:

a) find the smallest entry in the unsorted sublist, call this X.

b) swap the first entry of the unsorted sublist with X.

c) X is now part of the sorted sublist and the unsorted sublist has 1
fewer elements.

192 CHAPTER 10. SORTING AND SEARCHING

Example

Consider the list below as it slowly changes from unsorted to sorted through
the application of the Selection sort algorithm. The list is 4 elements long
and 3 iterations of Step 3 are required to complete the sort. The unsorted
elements appear shaded, and the sorted elements are not shaded.

Figure 10.6: Finding smallest and swapping with first element of unsorted
sublist.

10.1. SORTING ALGORITHMS 193

10.1.2 Insertion Sort

This algorithm partitions a list into a sorted sublist followed by the unsorted
sublist. Initially the sorted sublist consists of the first element (a list of one
element is a sorted sublist). The unsorted sublist is the following n − 1
elements.

Figure 10.7: Sorted sublist is the first element; Unsorted sublist is the next
n− 1 elements.

The Insertion Sort involves iterations where, in each iteration, the first un-
sorted element is moved into its proper position amongst the sorted sublist
and the unsorted sublist shrinks by 1 element. After n−1 iterations the list
is totally sorted. We outline the basic algorithm in pseudocode below.

Insertion Sort (list):

1. Sorted sublist ← first element of list.

2. Unsorted sublist ← remaining n− 1 elements of list.

3. Iteration: Repeat until the unsorted sublist is empty.

(a) Let X be the first element in the unsorted list

(b) Shift entries that are greater than X to the right making room
for X in its proper position in the sorted sublist.

(c) X is now part of the sorted sublist and the unsorted sublist is 1
element shorter

194 CHAPTER 10. SORTING AND SEARCHING

Example

Consider the list below as it slowly changes from unsorted to sorted through
the application of the Insertion Sort algorithm. The list is 4 elements long
and 3 iterations of Step 3 to complete the sorting. The unsorted elements
appear shaded, and the unsorted elements are not shaded.

Figure 10.8: Inserting the first unsorted element into the sorted sublist
involves shifting already sorted elements.

10.1. SORTING ALGORITHMS 195

10.1.3 Bubble Sort

This algorithm partitions a list into an unsorted sublist followed by a sorted
sublist. Initially the unsorted sublist is the whole list, and the sorted sublist
is empty.

Figure 10.9: Unsorted sublist has all n elements; Unsorted sublist is empty.

The Bubble Sort involves iterations where the entire unsorted sublist is
scanned pairwise, pair-by-pair: each pair of elements are compared, and if
the pair is out of order they are swapped. This has the effect of moving
larger elements towards the end of the unsorted sublist, and it moves the
largest element to the end of the unsorted sublist.

Figure 10.10: Larger elements move right; largest is included in the sorted
sublist.

The notion that larger elements move via swapping of two adjacent elements
gives rise to bubble in the name of this algorithm. After a pass of the
unsorted sublist, the unsorted sublist shrinks by 1 element and the sorted
sublist grows by 1 element. After n − 1 iterations the list is totally sorted.
We outline the basic algorithm in pseudocode below.

Bubble Sort (list):

1. Unsorted sublist ← the original list.

2. Sorted sublist ← an empty list.

3. Iteration: Repeat until the unsorted sublist is empty.

(a) Scanning forward from the beginning of the unsorted list, consider
the elements pairwise (a1 and a2, then a2 and a3, etc.). For each
pair where ai > ai+1, swap ai and ai+1. After a scan the largest
element has moved to the end of the unsorted list.

(b) The unsorted sublist shrinks by 1 element; sorted sublist increases
by 1 element.

196 CHAPTER 10. SORTING AND SEARCHING

Example

Consider the list below as it slowly changes from unsorted to sorted through
the application of the Bubble sort algorithm. The unsorted elements appear
shaded, and the unsorted elements are not shaded.

Figure 10.11: With each pass of the unsorted sublist larger elements move
towards the end; the largest moves to the end.

10.1. SORTING ALGORITHMS 197

10.1.4 Quicksort

The Quicksort algorithm is different from the previous algorithms in that
it continuously subdivides a list into 2 sublists separated by a pivot value.
The essential idea is that a pivot value, say X, is chosen from the current
list and then the remaining elements are rearranged into lists: one where all
elements are < X, and another where all elements are >= X. This process
continues recursively on each new sublist until all lists consist of one, or zero,
elements - at this point the list is sorted. The general process is shown below.

Figure 10.12: A list is subdivided into two sublists based on a pivot. The
subdivision recurs until all sublists have <= 1 element.

We outline the basic algorithm in pseudocode below.
Quicksort (list):

1. If list of length <= 1 return.

2. Choose a pivot value X.

3. Rearrange the elements of list: left sublist L with elements < X; right
sublist R with elements >= X.

4. Quicksort(L)
Quicksort(R)

198 CHAPTER 10. SORTING AND SEARCHING

Example

Below we show a list continuously subdivided producing a sorted list. In
this example the first element of a list is always chosen as the pivot value.

Figure 10.13: Subdivisions of lists until the sublists are of size 1 (0 length
sublists not shown).

10.1. SORTING ALGORITHMS 199

10.1.5 Implementation

In the previous section we introduced each algorithm at a conceptual level.
Now we consider an implementation of each. The code is commented to
guide your understanding.

In practice and further study you will encounter variations and improve-
ments on all of these algorithms. Sorting has been studied by researchers
and practitioners for decades. If you view the implementation code for the
Java class libraries you will see the sort procedures for Arrays and Collec-
tions use variations of these techniques and other algorithms as well (such
as Timsort and Merge Sort).

The analysis of algorithms is an important study in computer science. You
may encounter further courses or study that discusses the expected perfor-
mance of these algorithms in terms of the worst case, average case, and best
case scenarios. For instance, how long does it take to sort an already sorted
list? At this time in your study it should not be too difficult to set up a
simulation study with small and large lists to see how much time it takes to
sort lists that are randomly organized, or already sorted.

As is usual for sorting algorithms, we consider the implementation in terms
of one-dimensional arrays. The following listings comprise Java code for
each algorithm.

10.1.6 Listings

• Selection sort - Listing 10.1

• Insertion sort - Listing 10.2

• Bubble sort - Listing 10.3

• Quicksort - Listing 10.4

200 CHAPTER 10. SORTING AND SEARCHING

Listing 10.1: Selection Sort.

1 import java.util.Arrays;

2 public class SelectionSort

3 {

4 public static void main(String [] args){

5 int [] toSort = {35, 55, 25, 15};

6 System.out.println(Arrays.toString(toSort));

7 selectionSort(toSort);

8 System.out.println(Arrays.toString(toSort));

9 }

10 public static void selectionSort(int[] a){

11 int n = a.length;

12 // n-1 passes of the unsorted sublist

13 for (int i=0; i<n-1; i++) {

14 // find the index of the smallest

element in the unsorted sublist

15 int iSmallest = i;

16 // test against successive elements

17 for (int j=i+1; j<n; j++) {

18 // update the index of the smallest

19 if (a[j] < a[iSmallest]) {

20 // found new smallest

21 iSmallest = j;

22 }

23 }

24 // swap the smallest element with the

start of the unsorted sublist

25 if(iSmallest != i) {

26 int temp = a[i];

27 a[i] = a[iSmallest];

28 a[iSmallest] = temp;

29 }

30 }

31 }

32 }

10.1. SORTING ALGORITHMS 201

Listing 10.2: Insertion Sort.

1 import java.util.Arrays;

2 public class InsertionSort

3 {

4 public static void main(String [] args){

5 int [] toSort = {55, 35, 25, 15};

6 System.out.println(Arrays.toString(toSort));

7 insertionSort(toSort);

8 System.out.println(Arrays.toString(toSort));

9 }

10 public static void insertionSort(int[] a){

11 int n = a.length;

12 // initially sorted list is a[0]

13 // initially unsorted list is a[1], a[2],

...

14 // i is index of first element in the

unsorted list

15 for (int i=1; i<n; i++) {

16 // x is the element to be placed in its

proper position within the sorted

list

17 int x = a[i];

18 // shift elements to the right to find

the position for x

19 int j=i-1;

20 while (j>=0 && a[j]>x){

21 a[j+1] = a[j];

22 j--;

23 }

24 a[++j]=x;

25 }

26 }

27 }

202 CHAPTER 10. SORTING AND SEARCHING

Listing 10.3: Bubble Sort.

1 import java.util.Arrays;

2 public class BubbleSort

3 {

4 public static void main(String [] args){

5 int [] toSort = {45, 35, 25, 55, 15};

6 System.out.println(Arrays.toString(toSort));

7 bubbleSort(toSort);

8 System.out.println(Arrays.toString(toSort));

9 }

10 public static void bubbleSort(int[] a){

11 int n = a.length;

12 // initially sorted list is empty

13 // initially unsorted list is a[0], a[1],

a[2], ...

14 // i is index of first element in the

unsorted list

15 for (int i=0; i<n-1; i++) {

16 // scan the unsorted sublist to bubble

the largest to the end

17 for (int j=0; j<n-i-1; j++){

18 if (a[j] > a[j+1]) {

19 // pair is out of order so swap

them

20 int temp = a[j];

21 a[j] = a[j+1];

22 a[j+1] = temp;

23 }

24 }

25 }

26 }

27 }

10.1. SORTING ALGORITHMS 203

Listing 10.4: Quicksort.

1 import java.util.Arrays;

2 public class Quicksort

3 {

4 public static void main(String [] args){

5 int [] toSort = {6, 5, 9, 0, 11, 8, 4, 10,

2, 1, 12, 7, 3};

6 System.out.println("before:

"+Arrays.toString(toSort));

7 quicksort(toSort , 0, toSort.length -1);

8 System.out.println("after:

"+Arrays.toString(toSort));

9 }

10
11 public static void quicksort(int[] a, int

start , int end){

12 // check for list of 0 or 1 elements

13 if (start >= end) return;

14 // the pivot is chosen as the first element

15 int pivot = a[start];

16 // the list is partitioned into a

17 // left sublist and a right sublist.

18 // left sublist has values < pivot.

19 // right sublist has values >= pivot.

20 int left = start;

21 int right = end;

22 // move larger elements to a right sublist

23 // move smaller elements to a left sublist

24 while (left < right){

25 // search from the right to find

26 // a value that is less than pivot

27 // and move it to the left.

28 while (right > left && a[right]>=pivot){

29 right --;

30 }

31 // if a lesser value is not found

32 // then exit.

33 if(left== right) break;

34 // move a value smaller than pivot

204 CHAPTER 10. SORTING AND SEARCHING

35 // to left of pivot.

36 a[left]=a[right];

37 left ++;

38 // search from the left for a value

39 // larger than pivot.

40 while (right > left && a[left] <=

pivot){

41 left ++;

42 }

43 // if a larger value is not found

44 // then exit.

45 if(left == right) break;

46 // move the value larger than pivot

47 // to the right of the pivot.

48 a[right]=a[left];

49 right --;

50 }

51 // the pivot is moved to a position

52 // separating left and right.

53 a[right]=pivot;

54 // apply quicksort to the sublists.

55 quicksort(a, start , right -1);

56 quicksort(a, right+1, end);

57 }

58 }

10.2. SORTING OBJECTS 205

10.2 Sorting Objects

The examples and implementations above considered sorting integers. It
is fairly simple to modify the algorithms for other primitive types or for
objects.

Below we present code for a Duck class and a Selection Sort for objects. To
sort ducks we only need to ensure the Duck class follows the convention:

• Duck must implement the Comparable interface - it must have a
compareTo method for comparing one duck to another duck.

In our example we have used the weight of ducks for comparisons, and so
after sorting they appear in order from lightest to heaviest. We have included
a toString method so we could display the ducks before and after sorting.

The listings that follow include:

• Duck class, Listing 10.5

• Selection Sort adapted for objects, Listing 10.6

– Note the type of the array passed in is Comparable.

– Note when two ducks are swapped that the variable temp is de-
clared as Comparable.

The output from running 10.6 is shown below; the first line is before sorting
and the second line shows the ducks in sequence by weight.

Figure 10.14: Output showing ducks being sorted by weight.

206 CHAPTER 10. SORTING AND SEARCHING

Listing 10.5: Duck.

1 /**

2 * Ducks that can be sorted:

3 * - the class must implement Comparable

4 * - there must be a method compareTo

5 * - for convenience a toString method

6 */

7 public class Duck implements Comparable

8 {

9
10 private String name;

11 private int weight;

12
13 public Duck(String n, int w)

14 {

15 name = n;

16 weight = w;

17 }

18 // comparing ducks

19 public int compareTo(Object d)

20 {

21 Duck aDuck = (Duck) d;

22 return this.weight -aDuck.weight;

23 }

24 // printing of ducks

25 public String toString (){

26 return name+" "+weight;

27 }

28 }

10.2. SORTING OBJECTS 207

Listing 10.6: Selection Sort for Objects.

1 import java.util.Arrays;

2 public class SelectionSortForObjects

3 /*

4 * Modifying Selection sort for int to a selection

sort for objects requires:

5 * - the array to be an array of Comparable

6 * - comparisons to be made using the compareTo

method

7 * - swapping requires a temp variable of type

Object

8 */

9 {

10 public static void main(String [] args){

11 Duck[] toSort = {new Duck("Hewie", 50), new

Duck("Dewie", 60), new Duck("Lewie",

40)};

12 System.out.println(Arrays.toString(toSort));

13 selectionSortForObjects(toSort);

14 System.out.println(Arrays.toString(toSort));

15 }

16 public static void

selectionSortForObjects(Comparable [] a){

17 int n = a.length;

18 // n-1 passes of the unsorted sublist

19 for (int i=0; i<n-1; i++) {

20 // find the index of the smallest

element in the unsorted sublist

21 int iSmallest = i;

22 // test against successive elements

23 for (int j=i+1; j<n; j++) {

24 // update the index of the smallest

25 // for objects

26 if (a[j]. compareTo(a[iSmallest])

<0) {

27 // found new smallest

28 iSmallest = j;

29 }

30 }

208 CHAPTER 10. SORTING AND SEARCHING

31 // swap the smallest element with the

start of the unsorted sublist

32 if(iSmallest != i) {

33 System.out.println("swapping

"+a[i]+" "+a[iSmallest]);

34 // swapping objects of type

Comparable

35 Comparable temp = a[i];

36 a[i] = a[iSmallest];

37 a[iSmallest] = temp;

38 }

39 }

40 }

41 }

10.3. SEARCHING ALGORITHMS 209

10.3 Searching Algorithms

If a phone directory was a list, and we needed to locate a contact then we
would search the list for the pertinent element. Suppose we need to locate
entry X. If the list was not sorted then we would need to examine elements
of the list one-by-one until we find X, or, if we reach the end of the list then
we know X was not there. If the list is known to be sorted then we would
not need to examine all entries there are other approaches that can be taken
discussed later. As with the sections on sorting, we consider ordered lists
where the values are integers and in ascending sequence.

10.3.1 Searching an Unordered List

Suppose we need to determine if an element X is in a list. If the list is not
sorted then we can sequentially examine elements until we find X or until
we have considered all elements of the list. The algorithm to search for the
value X in the list is straightforward; in pseudocode:

Search(list, X):

1. Let i reference the start of the list

2. While i <= end of list

(a) If listi equals X then return found at position i

(b) Increment i to reference the next element of the list

3. Return not found

The search algorithm above is simple enough that we leave coding as an
exercise.

210 CHAPTER 10. SORTING AND SEARCHING

10.3.2 Searching an Ordered List

When a list is sorted in accordance with the criteria of the search two obvious
algorithms can be used:

• sequential search

• binary search.

Sequential Search

This approach examines every element of the list, one-by-one, until either
the element is found, or the end of the list is reached. In pseudocode we
express searching an ordered list for a value X:

Sequential Search (list, X):

1. Let i reference the first element of the list.

2. While i <= end of list

(a) If listi > X then return not found

(b) If listi equals X then return found at position i

(c) Increment i to reference the next element of the list

3. Return not found

This algorithm is very similar to the previous one - searching an unordered
list. There is one important point though. Step 2.a) recognizes a case where
the current element is larger than the search value. If this is true then the
search value cannot appear in the list since the list is ordered.

Again, we leave the coding of this method as an exercise.

10.3. SEARCHING ALGORITHMS 211

Binary Search

This search algorithm considers the list to be sorted and differs from the
Sequential Search above - this algorithm does not examine entries sequen-
tially.

Instead, the binary search partitions the list into a left sublist and a right
sublist that are separated by the value at the mid point of the list. If the
search value is less than the midpoint value then the binary search is called
recursively on the left sublist. If the search value is greater than the midpoint
value then the binary search is called recursively on the right sublist. Lastly,
if the search value equals the midpoint value the element has been found
and the search ends successfully. If the method is called with an empty list
then the search ends unsuccessfully - the search value is not in the list.

We express this algorithm in pseudocode, followed its implementation in
Java.

BinarySearch (list, X):

1. If the list L is empty then return not found

2. Determine the midpoint of the list

3. Determine the value at the midpoint of the list

4. if X < midpoint value call BinarySearch(left sublist, X)

5. otherwise if X > midpoint value call BinarySearch(right sublist, X))

6. otherwise if X = midpoint value then return found at position mid-
point

The Java code for Binary Search appears as a method in Listing 10.7. Writ-
ing Binary Search as a non-recursive method is left as an exercise.

212 CHAPTER 10. SORTING AND SEARCHING

Listing 10.7: The method binarySearch searches for searchValue in the
array a.

1 import java.util.Arrays;

2 public class BinarySearch

3 {

4 public static void main(String [] args){

5 // the sorted array to be searched

6 int[] sorted = {1, 3, 5, 7, 9};

7 System.out.println("array to search:

"+Arrays.toString(sorted));

8 // exhaustive set of search values

9 performSearch(sorted ,0);

10 performSearch(sorted ,2);

11 performSearch(sorted ,4);

12 performSearch(sorted ,6);

13 performSearch(sorted ,8);

14 performSearch(sorted ,10);

15 performSearch(sorted ,1);

16 performSearch(sorted ,3);

17 performSearch(sorted ,5);

18 performSearch(sorted ,7);

19 performSearch(sorted ,9);

20 }

21
22 /*

23 * Utility method to call binary search

24 * and report results

25 */

26 public static void performSearch(int[] a, int

searchFor){

27 int result = binarySearch(a, 0, a.length -1,

searchFor);

28 if (result >= 0)

29 System.out.println("found "+searchFor+"

in position "+result);

30 else

31 System.out.println(searchFor+" not

found");

32 }

10.3. SEARCHING ALGORITHMS 213

33
34 /*

35 * binary search of a sorted array

36 * - continuously bisect a list

37 * looking for search value

38 * - Return -1 if the list is empty ,

39 * ... value not found

40 * - determine midpoint of list

41 * - get value at midpoint

42 * - compare midpoint value & search value

43 * - Return midpoint ... value found

44 * - recursive call with left or

45 * right sublist

46 */

47 public static int binarySearch (int[] a, int

start , int end , int searchValue){

48 // when called with a sublist that is

empty , end is greater than start

49 if (start > end) return -1;

50 // determine midpoint of sublist

51 // and the value at the midpont

52 int midPoint = (start + end) / 2;

53 int midValue = a[midPoint];

54 // check midpoint for value

55 if (midValue == searchValue)

56 return midPoint; // found

57 else if (midValue < searchValue)

58 // search left sublist

59 return binarySearch(a, midPoint + 1,

end , searchValue);

60 else // (midValue > searchValue)

61 // search right sublist

62 return binarySearch(a, start , midPoint

- 1, searchValue);

63 }

64 }

214 CHAPTER 10. SORTING AND SEARCHING

10.4 Exercises

1. Show using a diagram the iteration(s) required to sort the list
{ 6, 5, 4, 3, 2, 1, 0 } using

(a) Selection sort

(b) Insertion sort

(c) Bubble sort

(d) Quicksort

2. Show using a diagram the iteration(s) required to sort the list
{ 4, 5, 6, 3, 2, 1, 0 } using

(a) Selection sort

(b) Insertion sort

(c) Bubble sort

(d) Quicksort

3. Develop a program that generates 1,000 integers placing them in an
array and then uses Selection Sort to sort the array.

4. Modify the program in the previous question so it counts the number
of comparisons and the number of swaps that are performed.

5. Develop a program that generates 1,000 integers placing them in an
array and then uses Insertion Sort to sort the array.

6. Modify the program in the previous question so it counts the number
of elements that are shifted.

7. Develop a program that generates 1,000 integers placing them in an
array and then uses Bubble Sort to sort the array.

8. Modify the program in the previous question so it counts the number
of comparisons and the number of swaps that are performed.

9. Develop a program that generates 1,000 integers placing them in an
array and then uses Quicksort to sort the array.

10. Using the pseudocode for a guide, develop the search method for an
unordered list.

10.4. EXERCISES 215

11. Using the pseudocode for a guide, develop the sequential search method
for an ordered list.

12. Using the pseudocode and the recursive implementations as guides,
develop a non-recursive binary search method for an ordered list.

