
Jan. 2025 Yangjun Chen ACS-4902 1

Database

In
d
ex

 T
ech

n
iq

u
es

D
atab

ase B
asics

S
Q

L
 L

an
g
u
ag

e an
d
 JD

B
C

S
tatic H

ash
in

g
 an

d
 D

y
n
am

ic

H
ash

in
g

Not covered

Jan. 2025 Yangjun Chen ACS-4902 2

Client-Server Database Architecture

Entity-Relationship Data Modeling

ER-to-Relation-Mapping

Jan. 2025 Yangjun Chen ACS-4902 3

Interface

Database client

Database

Database server
Database

management

network

• Client-server database system Architecture

Jan. 2025 Yangjun Chen ACS-4902 4

employee

department

project

dependent

Example:

works for

manages

works on

dependents of

controls

supervision

bdate

ssn

name

lnameminitfname

sex address salary

birthdatename sex relationship

name number location

name number location

number of
employeesstartdate

hours

1

1

1

N

supervisor

supervisee M

N

1

1

NN
degree

1 N

partial constraint

total constraint

Jan. 2025 Yangjun Chen ACS-4902 5

• ER-to-Relational mapping

1. Create a relation for each strong entity type

• For each atomic attribute associated with the entity

type, an attribute in the relation will be created.

• Composite attributes are not included. However the

atomic attributes comprising the composite attribute

must appear in the pertinent relation.

2. Create a relation for each weak entity type

• include primary key of owner (an FK - foreign key)

• owner’s PK + partial key becomes PK

3. For each binary 1:1 relationship choose an entity and

include the other’s PK in it as an FK. Include any

attributes of the relationship

Jan. 2025 Yangjun Chen ACS-4902 6

4. For each binary 1:n relationship, choose the n-side entity

and include an FK with respect to the other entity. Include any

attributes of the relationship

5.For each binary M:N relationship, create a relation for the

relationship

• include PKs of both participating entities and any attributes

of the relationship

• PK is the concatenation of the participating entity PKs

6.For each multivalued attribute create a new relation

• include the PK attributes of the entity type

• PK is the PK of the entity type and the multivalued attribute

Jan. 2025 Yangjun Chen ACS-4902 7

7.For each n-ary relationship, create a relation for the

relationship

• include PKs of all participating entities and any attributes of

the relationship

• PK is the concatenation of the participating entity PKs

Jan. 2025 Yangjun Chen ACS-4902 8

student

graduate undergraduate

• Specialization and Generalization

• Specialization is the process of defining a set of sub-entities of some entity

type. Generalization is the opposite approach/process of determining a

supertype based on certain entities having common characteristics.

• e.g. employees may be paid by the hour or a salary (part vs full-time)

• e.g. students may be part-time or full-time; graduate or undergraduate

• these are similar to 1:1 relationships, but they always involve entities of one

(super)type

• these are ‘is-a’ relationships

d

Jan. 2025 Yangjun Chen ACS-4902 9

student

graduate undergraduate

d

The arc implies graduate

and undergraduate are

subtypes of student

The bubble and the d

imply disjoint subtypes

• Participation of supertype may be mandatory or optional

• Subtypes may be disjoint or overlapping

• a predicate (on an attribute) determines the subtype: e.g. attribute

Student_class

Student_class = ‘graduate’; Student_class = ‘undergraduate’

Student_class

Jan. 2025 Yangjun Chen ACS-4902 10

Part

Manufacture_Part Purchased_Part

o

PartNo Description

manufactureDate

Supplier

BatchNo

DrawingNo
ListPrice

The bubble and the o

imply overlap subtype)

Jan. 2025 Yangjun Chen ACS-4902 11

• Mapping to a relational database

4 choices:

1. Create separate relations for the supertype and each of the

subtypes.

2. Create relations for the subtypes only - each contains

attributes from the supertype.

3. (disjoint subtypes) Create only one relation - includes all

of the attributes for the supertype and all for the subtypes,

and one discriminator attribute.

4. (overlapping subtypes) Create only one relation -

includes all of the attributes for the supertype and all for the

subtypes, and one logical discriminator attribute per subtype.

PK is always the same - determined from the supertype

Jan. 2025 Yangjun Chen ACS-4902 12

SECRETARY ENGINEER

d

Example for super- &

sub-types: choice 1

TECHNICIAN

name

lnameminitfname

Ssn bDates Address JobType

TypingSpeed

TGrade
EngType

fname, minit, lname, ssn, bdate, address, JobType

EMPLOYEE

Essn, TypingSpeed

SECRETARY

Essn, TGrade

TECHNICIAN

Essn, EngType

ENGINEER

EMPLOYEE

Jan. 2025 Yangjun Chen ACS-4902 13

CAR TRUCK

d

Example for super- &

sub-types: choice 2

VehicleId Price LicensePlate

TNoOfPassengers
NoOfAxles

VehicleId, LicensePlate, Price, MaxSpeed, NoOfPassenger

CAR

VehicleId, LicensePlate, Price, NoOfAxles, Tonnage

TRUCK

MaxSpeed Tonnage

Vehicle

Jan. 2025 Yangjun Chen ACS-4902 14

SECRETARY ENGINEER

d

Example for super- &

sub-types: choice 3

TECHNICIAN

name

lnameminitfname

Ssn bDates Address JobType

TypingSpeed

TGrade
EngType

fname, minit, lname, ssn, bdate, address, JobType, TypingSpeed, Tgrade, EngType

EMPLOYEE

EMPLOYEE

12345 … … 1 … …

56463 … … 2 … …

55554 … 3 … …

Jan. 2025 Yangjun Chen ACS-4902 15

Part

Manufacture_Part Purchased_Part

o

Example for super- &

sub-types: choice 4
PartNo Description

manufactureDate

Supplier

PartNo, Desription, MFlag, Drawing, ManufactureDate, BatchNo, Pflag, Supplier, ListPrice

Part

BatchNo

DrawingNo
ListPrice

1 screw 1 … … … …

2 Bolt 1 … …

3 Axes 1 1

Jan. 2025 Yangjun Chen ACS-4902 16

Shared SubClass

– a subclass with more than one superclass

– leads to the concept of multiple inheritance:

engineering manager inherits attributes of

engineer, manager, and salaried employee

engineer manager salaried-emp

engineering-manager

Rule: an engineering-
manager must be an
engineer, a manager, and a
salaried-emp.

Rule: an engineer might be
an engineering manager, etc.

Jan. 2025 Yangjun Chen ACS-4902 17

Models a single class/subclass with more than one

super class of different entity types

person bank company

owner

Rule: an owner is either a
person, a bank, or a
company.

Rule: a person might be an
owner, etc. Note: owner is a

category

Note: set union symbol

Categories

Jan. 2025 Yangjun Chen ACS-4902 18

A category can be either total or partial

company

account-holder

partial category

Rule: an account holder is either a
person or a company.

Rule: a person may, or may not,
be an account owner

Rule: a company may, or may not,
be an account holder

person

Categories

Jan. 2025 Yangjun Chen ACS-4902 19

A category can be either total or partial

building

property

total category

Rule: a property is either a
building or a lot

Rule: a building is a
property

Rule: a lot is a property

lot

Categories

Jan. 2025 Yangjun Chen ACS-4902 20

Mapping of Categories

Generate a table for each entity type

involved

Superclasses with different key

Specify a new key called surrogate key for

the category, which will also be included in

the tables for the superclasses as foreign

keys

Superclasses with the same keys

No need of a surrogate key

Jan. 2025 Yangjun Chen ACS-4902 21

Categories - Superclasses with different keys

Person (SSN, DrLicNo, Name, Address, Ownerid)

Bank (Bname, BAddress, Ownerid)

Company (CName, CAddress, Ownerid)

Owner (Ownerid)

person bank company

owner

Jan. 2025 Yangjun Chen ACS-4902 22

Categories - Superclasses with the same keys

Registered Vehicle (VehicleID, LicensePlateNo)

Car (VehicleID , Cstyle, CMake, CModel,CYear)

Truck (VehicleID , TMake, TModel,TYear, Tonnage)

car truck

registered vehicle

VehicleIdVehicleId

LicensePlateNo

Tonnage

Cstyle

...

...

Jan. 2025 Yangjun Chen ACS-4902 23

Outline: SQL and JDBC

•DDL

- creating schemas

- modifying schemas

•DML

- select-from-where clause

- group by, having, order by

- update

- view

•JDBC – Java Database Connectivity

Jan. 2025 Yangjun Chen ACS-4902 24

DDL - creating schemas

•Create schema schemaname authorization user;

•Create table tablename …

•attributes, data types

•constraints:

•primary keys

•foreign keys

•on delete set null|cascade|set default

•on update set null|cascade|set default

•on insert set null|cascade|set default

•uniqueness for secondary keys

•Create domain domainname …

Jan. 2025 Yangjun Chen ACS-4902 25

DDL - Examples:

•Create schema:

Create schema COMPANY authorization JSMITH;

•Create table:

Create table EMPLOYEE

(FNAME VARCHAR(15) NOT NULL,

MINIT CHAR,

LNAME VARCHAR(15) NOT NULL,

SSN CHAR(9) NOT NULL,

BDATE DATE,

ADDRESS VARCHAR(30),

SEX CHAR,

SALARY DECIMAL(10, 2),

SUPERSSN CHAR(9),

DNO INT NOT NULL,

PRIMARY KEY(SSN),

FOREIGN KEY(SUPERSSN) REFERENCES EMPLOYEE(SSN),

FOREIGN KEY(DNO) REFERENCES DEPARTMENT(DNUMBER));

Jan. 2025 Yangjun Chen ACS-4902 26

DDL - Examples:

•Specifying constraints:

Create table EMPLOYEE

(…,

DNO INT NOT NULL DEFAULT 1,

CONSTRAINT EMPPK

PRIMARY KEY(SSN),

CONSTRAINT EMPSUPERFK

FOREIGN KEY(SUPERSSN) REFERENCES EMPLOYEE(SSN)

ON DELETE SET NULL ON UPDATE CASCADE,

CONSTRAINT EMPDEPTFK

FOREIGN KEY(DNO) REFERENCES DEPARTMENT(DNUMBER)

ON DELETE SET DEFAULT ON UPDATE CASCADE);

•Create domain:

CREATE DOMAIN SSN_TYPE AS CHAR(9);

Jan. 2025 Yangjun Chen ACS-4902 27

Strategies to maintain data consistency: set null or cascade

Employee

delete

ssn supervisor... ...

123456789 234589710

234589710 null

... ...

Employee

delete

ssn supervisor... ...

123456789 234589710

234589710 null

... ...

not reasonable

cascade

delete

Jan. 2025 Yangjun Chen ACS-4902 28

Employee

set null

ssn supervisor... ...

123456789 null

234589710 null

... ...

Employee

delete

ssn supervisor... ...

123456789 234589710

234589710 null

... ...

delete

reasonable

Strategies to maintain data consistency: set null or cascade

Jan. 2025 Yangjun Chen ACS-4902 29

Strategy to maintain data consistency: set default

Department

DNUMBER … …... ...

1 … …

4 … …

... ...

Employee

ssn DNO... ...

123456789 4

234589710 … …

... ...

delete

change this

value to the

default value

1.

Jan. 2025 Yangjun Chen ACS-4902 30

Strategy to enforce referential integrity: cascade

123456789

ssn ...

...

Employee

delete

Delete cascading.

Works_On

20

ssn pno

...
123456789

hours

...

Works_On

ssn pno

...

hours

Jan. 2025 Yangjun Chen ACS-4902 31

DML - Queries (the Select statement)

select attribute list

from table list

where condition

group by expression

having expression

order by expression ;

Select fname, salary from employee where salary > 30000

 fname, salary(salary>30000(Employee))

Jan. 2025 Yangjun Chen ACS-4902 32

Select salary from employee; Salary

30000

40000

25000

43000

38000

25000

25000

55000

Select fname, salary from employee where salary > 30000;

Fname Salary

Franklin 40000

Jennifer 43000

Ramesh 38000

James 55000

Jan. 2025 Yangjun Chen ACS-4902 33

Correlated Subquery example:

Suppose we want to find out who is working on a project that is not

located where their department is located.

•Note that the Project table has the location for the project

•Note that the Works_on relates employees to projects

•Note that the Employee table has the department number for an

employee, and that Dept_locations has the locations for the

department

We’ll do this in two parts:

•a join that relates employees and projects (via works_on)

•a subquery that obtains the department locations for a given

employee

Jan. 2025 Yangjun Chen ACS-4902 34

fname, minit, lname, ssn, bdate, address, sex, salary, superssn, dno

Dnumber, dlocation

Pname, pnumber, plocation, dnum

Essn, pno, hours

EMPLOYEE

DEPT _LOCATIONS

WORKS_ON

PROJECT

Jan. 2025 Yangjun Chen ACS-4902 35

fname, minit, lname, ssn, bdate, address, sex, salary, superssn, dno

Dname, dnumber, mgrssn, mgrstartdate

Dnumber, dlocation

Pname, pnumber, plocation, dnum

Essn, pno, hours

Essn, dependentname, sex, bdate, relationship

EMPLOYEE

DEPARTMENT

DEPT _LOCATIONS

WORKS_ON

PROJECT

DEPENDENT Figure 7-7:

reference integrity

Jan. 2025 Yangjun Chen ACS-4902 36

Correlated Subqueries:

A 3-way join to bring related employee and project data together:

SELECT employee.ssn, employee.fname, employee.lname,

project.pnumber, project.plocation

FROM employee, project, works_on

WHERE

employee.ssn = works_on.essn and

project.pnumber = works_on.pno

A 3-way join

We’ll see this join again where

Inner Joins are discussed

Jan. 2025 Yangjun Chen ACS-4902 37

Correlated Subqueries:

Now we incorporate a correlated subquery to restrict the result to

those employees working on a project that is not where their

department is located:

SELECT employee.ssn, employee.fname, employee.lname,

project.pnumber, project.plocation

FROM employee, project, works_on

WHERE

employee.ssn = works_on.essn and

project.pnumber = works_on.pno and

plocation NOT IN

(SELECT dlocation FROM dept_locations WHERE

dnumber=employee.dno);

Jan. 2025 Yangjun Chen ACS-4902 38

Correlated Subqueries:

Now we incorporate a correlated subquery to restrict the result to

those employees working on a project that is not where their

department is located:

SELECT employee.ssn, employee.fname, employee.lname,

project.pnumber, project.plocation

FROM employee x, project, works_on

WHERE

employee.ssn = works_on.essn and

project.pnumber = works_on.pno and

plocation NOT IN

(SELECT dlocation FROM dept_locations y WHERE

y.dnumber = x.dno);

Jan. 2025 Yangjun Chen ACS-4902 39

Subqueries with Exists and Not Exists:

Who is working on every project?

SELECT e.ssn, e.fname, e.lname

FROM employee AS e

WHERE

NOT EXISTS

(SELECT * FROM project AS p WHERE

NOT EXISTS

(SELECT * FROM works_on AS w WHERE w.essn=e.ssn

AND w.pno=p.pno));

There is no project that the employee does not work on.

Jan. 2025 Yangjun Chen ACS-4902 40

ssn fname lname

1

2

3

… … … …

… … … …

… … … …

EMPLOYEE

essn PNo hours

1 1 ...

1 2 ...

2 3 ...

3 1 ...

3 2 ...

3 3 ...

WORK_ON

PNo Pname

1

2

3

… … …

… … …

… … …

PROJECT

…

Example:

Jan. 2025 Yangjun Chen ACS-4902 41

To develop a database application, JDBC or ODBC should

be used.

JDBC – JAVA Database Connectivity

ODBC – Open Database Connectivity

JDBC-ODBC Bridge

ODBC Driver

Database Client

Client

Database

Server

Jan. 2025 Yangjun Chen ACS-4902 42

Connection to a database:

1. Loading driver class

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

2. Connection to a database

String url = “jdbc:odbc:<databaseName>”;

Connction con =

DriverManager.getConnection(url, <userName>,

<password>)

Jan. 2025 Yangjun Chen ACS-4902 43

3. Sending SQL statements

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(“SELECT *

FROM Information WHERE Balance >= 5000”);

4. Getting results

while (rs.next())

{ …

}

Jan. 2025 Yangjun Chen ACS-4902 44

import java.sql.*;

public class DataSourceDemo1

{ public static void main(String[] args)

{ Connection con = null;

try

{//load driver class

Class.forName{“sun.jdbs.odbs.JdbcOdbcDriver”);

//data source

String url = “jdbs:odbc:Customers”;

//get connection

con = DriverManager.getConnection(url,

“sa”, “ “)

Jan. 2025 Yangjun Chen ACS-4902 45

//create SQL statement

Statement stmt = con.createStatement();

//execute query

Result rs = stmt.executeQuery(“SELECT *

FROM Information WHERE Balance >= 5000”);

String firstName, lastName;

Date birthDate;

float balance;

int accountLevel;

Jan. 2025 Yangjun Chen ACS-4902 46

while(rs.next())

{firstName = rs.getString(“FirstName”);

lastName = rs.getString(“lastName”);

balance = rs.getFloat(“Balance”);

System.out.println(firstName + “ “ +

lastName + “, balance = “ + balance);

}

}

catch(Exception e)

{e.printStackTrace();}

finally

{try{con.close();}

catch(Exception e){ }

}

}

}

Jan. 2025 Yangjun Chen ACS-4902 47

Programming in a dynamical environment:

Disadvantage of DataSourceDemo1:

If the JDBC-ODBC driver, database, user names, or

password are changed, the program has to be modified.

Solution:

Configuration file:

config.driver=sun.jdbc.odbc.JdbcOdbcDriver

config.protocol=jdbc

config.subprotocol=odbc

config.dsname=Customers

config.username=sa

config.password=… …

file name: datasource.config

<property> = <property value>

config – datasource name

Jan. 2025 Yangjun Chen ACS-4902 48

import java.sql.*;

import java.io.*;

import java.util.Properties;

public class DatabaseAccess

{ private String configDir;

//directory for configuration file

private String dsDriver = null;

private String dsProtocol = null;

private String dsSubprotocol = null;

private String dsName = null;

private String dsUsername = null;

private String dsPassword = null;

Jan. 2025 Yangjun Chen ACS-4902 49

public DatabaseAccess(String configDir)

{ this.configDir = configDir; }

public DatabaseAccess()

{ this(“.”); }

//source: data source name

//configFile: source configuration file

public Connection getConnection(String source,

String configFile) throws SQLException, Exception

{ Connection con = null;

try

{Properties prop = loadConfig(ConfigDir, ConfigFile);

Jan. 2025 Yangjun Chen ACS-4902 50

if (prop != null)

{dsDriver = prop.getProperty(source + “.driver”);

dsProtocol = prop.getPropert(source + “.protocol”);

dsSubprotocol = prop.getPropert(source +

“.subprotocol”);

if (dsName == null)

dsName = prop.getProperty(source +

“.dsName”);

if (dsUsername == null)

dsUsername = prop.getProperty(source +

“.username”);

if (dsPassword == null)

dsPassword = prop.getProperty(source +

“.password”);

Jan. 2025 Yangjun Chen ACS-4902 51

//load driver class

Class.forName(dsDriver);

//connect to data source

String url = dsProtocol + “:” + dsSubprotocol + “:”

+ dsName;

con = DriverManager.getConnection(url, dsUsername,

dsPassword)

}

else

throw new Exception(“* Cannot find property file +

configFile);

return con;

}

catch (ClassNotFoundException e)

{ throw new Exception(“* Cannot find driver class “ +

dsDriver + “!”); }

}

Jan. 2025 Yangjun Chen ACS-4902 52

//dir: directory of configuration file

//filename: file name

public Properties loadConfig(String dir, String filename)

throws Exception

{ File inFile = null;

Properties prop = null;

try

{ inFile = new File(dir, filename);

if (inFile.exists()

{ prop = new Properties();

prop.load(new FileInputStream(inFile));

}

else throw new Exception(“* Error in finding “ +

inFile.toString());

}

finally {return prop;}

}

}

Jan. 2025 Yangjun Chen ACS-4902 53

Using class DatabaseAccess, DataSourceDemo1 should be

modified a little bit:

DatabaseAccess db = new databaseAccess();

con = db.getConnection(“config”,

“datasource.config”);

Jan. 2025 Yangjun Chen ACS-4902 54

Database updating:

import java.sql.*;

public class UpdateDemo1

{ public static void main(String[] args)

{ Connection con = null;

try

{

//get connection

Databaseaccess db = new DatabaseAccess();

con = db.getConnection(“config”,

“datasource.config”);

Jan. 2025 Yangjun Chen ACS-4902 55

//execute update

Statement stmt = con.CreateStatement();

int account = stmt.executeUpdate(“UPDATE

Information SET Accountlevl = 2 WHERE

Balance >= 50000”);

System.out.println(account + “ record has been

updated”);

//execute insert

account = stmt.executeUpdate(“INSERT INTO

Information VALUE (‘David’, ‘Feng’, ’05/05/1975’,

2000, 1)”);

System.out.println(account + “ record has been

inserted”);

}

catch (Exception e) {e.printStackTrace(); }

finally {try{con.close(); catch(Exception e){ }}

}

}

Jan. 2025 Yangjun Chen ACS-4902 56

Outline: Hashing (5.9, 5.10, 3rd. ed.; 13.8, 4th, 5th ed.; 17.8, 6th ed.)

• external hashing

• static hashing & dynamic hashing

• hash function

• mathematical function that maps a key to a bucket
address

• collisions

• collision resolution scheme

• open addressing

• chaining

• multiple hashing

• linear hashing

Jan. 2025 Yangjun Chen ACS-4902 57

Mapping a table into a file

ssn name bdate sex address salary

… ...

Employee

file

mapping

• Block (or page)

- access unit of operating system

- block size: range from 512 to 4096 bytes

• Bucket

- access unit of database system

- A bucket contains one or more blocks.

• A file can be considered as a collection of buckets.

Each bucket has an address.

Jan. 2025 Yangjun Chen ACS-4902 58

External Hashing

• Consider a file comprising a primary area and an

overflow area

Records hash to one of

many primary buckets

Records not fitting into

the primary area are

relegated to overflow

• Common implementations are static - the number of primary

buckets is fixed - and we expect to need to reorganize this

type of files on a regular basis.

Jan. 2025 Yangjun Chen ACS-4902 59

External Hashing

•Consider a static hash file comprising M primary buckets

•We need a hash function that maps the key onto {0, 1, … M-1}

•If M is prime and Key is numeric then

Hash(Key)= Key mod M

can work well

•A collision may occur when more than one records hash to the
same address

•We need a collision resolution scheme for overflow handling
because the number of collisions for one primary bucket can
exceed the bucket capacity

• open addressing

• chaining

Jan. 2025 Yangjun Chen ACS-4902 60

Overflow handling

• Open addressing

• subsequent buckets are examined until an open record position

is found

• no need for an overflow area

• consider records being inserted R1, R2, R3, R4, R5, R6, R7

with bucket capacity of 2 and hash values 0, 1, 2, 1, 1, 0, 3

0 1 2 3 4

How do we

handle retrieval,

deletion?

Jan. 2025 Yangjun Chen ACS-4902 61

• consider records being inserted R1, R2, R3, R4, R5, R6, R7

with bucket capacity of 2 and hash values 0, 1, 2, 1, 1, 0, 3

0 1 2 3 4

R1

R1 R2

R1 R2 R3

Jan. 2025 Yangjun Chen ACS-4902 62

R1, R2, R3, R4, R5, R6, R7

hash values: 0, 1, 2, 1, 1, 0, 3

0 1 2 3 4

R1 R2 R3R4

R1 R2 R3R4 R5

R6R1 R2 R3R4 R5

R6R1 R2 R3R4 R5 R7

Jan. 2025 Yangjun Chen ACS-4902 63

Overflow handling

• Chaining

• a pointer in the primary bucket points to the first overflow

record

• overflow records for one primary bucket are chained together

• consider records being inserted R1, R2, R3, R4, R5, R6, R7,

R8, R9, R10, R11.

• with bucket capacity of 2 and hash values 1, 2, 3, 2, 2, 1, 4,

2, 3, 3, 3.

• deletions?

0 1 2 3 4
Primary Area Overflow Area

Jan. 2025 Yangjun Chen ACS-4902 64

Jan. 2024

R1 R2 R3R4 R5

R1 R2 R3R4 R5R6 R7 R8

Jan. 2017R1 R2 R3R4 R5R6 R7 R8R9 R10 R11

R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11

1, 2, 3, 2, 2, 1, 4, 2, 3, 3, 3

Jan. 2025 Yangjun Chen ACS-4902 65

Overflow handling

• Multiple Hashing

• when collision occurs a next hash function is tried to find an

unfilled bucket

• eventually we would resort to chaining

• note that open addressing can suffer from poor performance

due to islands of full buckets occurring and having a tendency

to get even longer - using a second hash function helps avoid

that problem

Jan. 2025 Yangjun Chen ACS-4902 66

Linear Hashing

• A dynamic hash file:

grows and shrinks gracefully

• initially the hash file comprises M primary buckets numbered 0,
1, … M-1

• the hashing process is divided into several phases (phase 0,
phase 1, phase 2, …). In phase j, records are hashed according
to hash functions hj(key) and hj+1(key)

• hj(key) = key mod (2j*M)

phase 0: h0(key) = key mod (20*M), h1(key) = key mod (21*M)

phase 1: h1(key) = key mod (21*M), h2(key) = key mod (22*M)

phase 2: h2(key) = key mod (22*M), h3(key) = key mod (23*M)

… ...

Jan. 2025 Yangjun Chen ACS-4902 67

Linear Hashing

• hj(key) is used first; to split, use hj+1(key)

• splitting a bucket means to redistribute the records into two

buckets: the original one and a new one. In phase j, to determine

which ones go into the original while the others go into the new

one, we use hj+1(key) = key mod 2j+1*M to calculate their

address.

• splitting buckets

splitting occurs according to a specific rule such as

- an overflow occurring, or

- the load factor reaching a certain value, etc.

• a split pointer keeps track of which bucket to split next

• split pointer goes from 0 to 2j*M - 1 during the jth phase, j= 0, 1,

2, … ...

Jan. 2025 Yangjun Chen ACS-4902 68

Linear Hashing

1. What is a phase?

2. When to split a bucket?

3. How to split a bucket?

4. What bucket will be chosen to split next?

5. How do we find a record inserted into a linear hashing file?

Jan. 2025 Yangjun Chen ACS-4902 69

Linear Hashing, example

• initially suppose M=4

• h0(key) = key mod M; i.e. key mod 4 (rightmost 2 bits)

• h1(key) = key mod 2*M

0 1 2 3

0 1 2 3 4

Capacity of a bucket is 2.

As the file grows, buckets

split and records are

redistributed using h1(key)

= key mode 2*M.n=0

n=1 after the split

Jan. 2025 Yangjun Chen ACS-4902 70

Linear Hashing, example

• collision resolution strategy: chaining

• split rule: if load factor > 0.70

• insert the records with key values:

0011, 0010, 0100, 0001, 1000, 1110, 0101, 1010, 0111, 1100

0 1 2 3 4 5 6 7

Buckets to be added during the expansion

Jan. 2025 Yangjun Chen ACS-4902 71

Linear Hashing, example

• when inserting the sixth record (using h0 = Key mod M) we

would have

0100

1000
0001

0010

1110

0 1 2 3

0011

n=0 before the split

(n is the split point,

i.e., the point to the

bucket to be split.)

0011, 0010, 0100, 0001, 1000, 1110, 0101, 1010, 0111, 1100

Jan. 2025 Yangjun Chen ACS-4902 72

Linear Hashing, example

• when inserting the sixth record (using h0 = Key mod M) we

would have

• but the load factor 6/8= 0.75 > 0.70 and so bucket 0 must be

split (using h1 = Key mod 2M):

0100

1000
0001

0010

1110

0 1 2 3

0011

1000 0001
0010

1110
0011 0100

n=0 before the split

(n is the point to the

bucket to be split.)

n=1 after the split

load factor: 6/10=0.6

no split

Jan. 2025 Yangjun Chen ACS-4902 73

Linear Hashing, example

0 1 2 3 4

1000 0001
0010

1110
0011 0100

n=1

load factor: 7/10=0.7

no split

insert(0101)

1000
0001

0101

0010

1110
0011 0100

0 1 2 3 4

Jan. 2025 Yangjun Chen ACS-4902 74

Linear Hashing, example

0 1 2 3 4

1000
0001

0101

0010

1110
0011 0100

n=1

load factor: 8/10=0.8

split using h1.

insert(1010)

1000
0001

0101

0010

1110
0011 0100

1010

overflow

Jan. 2025 Yangjun Chen ACS-4902 75

Linear Hashing, example

0 1 2 3 4 5

1000 0001
0010

1110
0011 0100

n=2

load factor:

8/12=0.66

no split

1010

overflow

0101

Jan. 2025 Yangjun Chen ACS-4902 76

Linear Hashing, example

n=2

load factor:

9/12=0.75

split using h1.

1000 0001
0010

1110
0011 0100

1010

overflow

0101

0 1 2 3 4 5

1000 0001
0010

1110

0011

0111
0100

1010

overflow

0101

insert(0111)

Jan. 2025 Yangjun Chen ACS-4902 77

Linear Hashing, example

n=3

load factor: 9/14=0.642

no split.

1000 0001
0010

1010

0011

0111
0100 0101 1110

1000 0001
0010

1010

0011

0111
0100 0101 1110

insert(1100)

Jan. 2025 Yangjun Chen ACS-4902 78

Linear Hashing, example

n=3

load factor: 10/14=0.71

split using h1.

1000

1100
0001

0010

1010

0011

0111
0100 0101 1110

1000

1100
0001

0010

1010
0011 0100 0101 1110 0111

Jan. 2025 Yangjun Chen ACS-4902 79

Linear Hashing, example

n=4

load factor: 10/16=0.625

no split.

• At this point, all the 4 (M) buckets are split. The size of the primary

area becomes 2M. n should be set to 0. It begins a second phase.

• In the second phase, we will use h1 to insert records and h2 to split

a bucket.

- note that h1(K) = K mod 2M and h2(K) = K mod 4M.

1000

1100
0001

0010

1010
0011 0100 0101 1110 0111

Jan. 2025 80Yangjun Chen ACS-4902

How to find a KEY in a linear hash file?

M – the size of the initial primary area

j – the last phase

n – the next bucket to be split

if j = 0 then return h0(KEY) = KEY mod M;

else

BUCKET_LOC := hj-1(KEY) = KEY mod 2j-1M;

if BUCKET_LOC < n then return hj(KEY)

else return BUCKET_LOC;

Algorithm find(KEY, M, j, n)

Jan. 2025 Yangjun Chen ACS-4902 81

Database Index Techniques

• B+ - tree

• Multiple-key indexes

• kd – tree

• Quad - tree

• R – tree

• Bitmap

• Inverted files

Jan. 2025 Yangjun Chen ACS-4902 82

B+-tree Structure

non-leaf node (internal node or a root)

• < P1, K1, P2, K2, …, Pq-1, Kq-1, Pq > (q pinternal)

• K1 < K2 < ... < Kq-1 (i.e. it’s an ordered set)

• For any key value, X, in the subtree pointed to by Pi

•Ki-1 < X Ki for 1 < i < q

•X K1 for i = 1

•Kq-1 < X for i = q

• Each internal node has at most pinternal pointers.

• Each node except root must have at least pinternal/2 pointers.

• The root, if it has some children, must have at least 2 pointers.

Jan. 2025 Yangjun Chen ACS-4902 83

A B+-tree

5

3 7 8

6 7 9 125 81 3

pinternal = 3,

pleaf = 2.

1 5 6 12 9 7 3 8 data file

Jan. 2025 Yangjun Chen ACS-4902 84

B+-tree Structure

leaf node (terminal node)

• < (K1, Pr1), (K2, Pr2), …, (Kq-1, Prq-1), Pnext >

• K1 < K2 < ... < Kq-1

• Pri points to a record with key value Ki, or Pri points to a page

containing a record with key value Ki.

• Maximum of pleaf key/pointer pairs.

• Each leaf has at least pleaf/2 keys.

• All leaves are at the same level (balanced).

• Pnext points to the next leaf node for key sequencing.

Jan. 2025 Yangjun Chen ACS-4902 85

5

3

1 3

5

7 8

6 7

8

9 12

B+-tree stored in a file:

1 5 6 12 9 7 3 8Data file:

0 1 2 3

0

1

2

3

4

5

6

7

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

Jan. 2025 Yangjun Chen ACS-4902 86

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

5

3

1 0 3

5 0

5 7 6 8 7

6 1 7 2

8 3

9 2 12 1

1 5 6 12 9 7 3 8Data file:

1 4

2 3

3

0 1 2 3

0

1

2

3

4

5

6

7

B+-tree stored in a file:

Jan. 2025 Yangjun Chen ACS-4902 87

Store a B+-tree on hard disk

Algorithm:

push(root, -1, -1);

while (S is not empty) do

{ x := pop();

store x.data in file F;

assume that the address of x in F is ad;

if x.address-of-parent -1 then {

y := x.address-of-parent;

z := x.position;

write ad in page y at position z in F;

}

let x1, …, xk be the children of x;

for (i = k to 1) {push(xi, ad, i)};

}

data address-of-

parent

position

stack: S

data: all the key values in a node

address-of-parent: a page number

in the file F, where the parent of the

node is stored.

position: a number indicating what

is the ranking of a child. That is,

whether it is the first, second, …,

child of its parent.

Jan. 2025 Yangjun Chen ACS-4902 88

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

5

0 1 2 3

0

1

2

3

4

5

6

7

B+-tree stored in a file:

5
3 0 1

7, 8 0 2

Stack:

-1 -1

Jan. 2025 Yangjun Chen ACS-4902 89

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

3 0 1

7, 8 0 2
5 1 2

1, 3 1 1

7, 8 0 2

5

3

10

1

2

3

4

5

6

7

Jan. 2025 Yangjun Chen ACS-4902 90

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

5 1 2

7, 8 0 2
5 1 2

1, 3 1 1

7, 8 0 2

5

3

1 0 3

1

2

3

0

1

2

3

4

5

6

7

Jan. 2025 Yangjun Chen ACS-4902 91

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

5 1 2

7, 8 0 2 7, 8 0 2

5

3

1 0 3

5 0

1

2 3

3

0

1

2

3

4

5

6

7

Jan. 2025 Yangjun Chen ACS-4902 92

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

7, 8 0 2
8 4 2

6, 7 4 1

9,12 4 3

5

3

1 0 3

5 0

7 8

1 4

2 3

3

0

1

2

3

4

5

6

7

Jan. 2025 Yangjun Chen ACS-4902 93

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

5

3

1 0 3

5 0

5 7 8

6 1 7 2

1 4

2 3

3

0

1

2

3

4

5

6

7

8 4 2

9,12 4 3
8 4 2

6, 7 4 1

9,12 4 3

Jan. 2025 Yangjun Chen ACS-4902 94

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

8 4 2

9,12 4 3 9,12 4 3

5

3

1 0 3

5 0

5 7 6 8

6 1 7 2

8 3

1 4

2 3

3

0

1

2

3

4

5

6

7

Jan. 2025 Yangjun Chen ACS-4902 95

5

3 7 8

6 7 9 125 81 3

p1 k1
p2 k2

p3

1 5 6 12 9 7 3 8Data file:

0 1 2 3

B+-tree stored in a file:

9,12 4 3 empty stack

5

3

1 0 3

5 0

5 7 6 8 7

6 1 7 2

8 3

9 2 12 1

1 4

2 3

3

0

1

2

3

4

5

6

7

Jan. 2025 Yangjun Chen ACS-4902 96

Index Structures for Multidimensional Data

• Multiple-key indexes

• kd-trees

• Quad trees

• R-trees

• Bit map

Indexes over texts

• Inverted files

Jan. 2025 Yangjun Chen ACS-4902 97

Multiple-key indexes

(Indexes over more than one attributes)

Employee

ename ssn age salary dnumber

Aaron, Ed

Abbott, Diane

Adams, John

Adams, Robin

Jan. 2025 Yangjun Chen ACS-4902 98

Multiple-key indexes

(Indexes over more than one attributes)

Index on age
Index on salary

Jan. 2025 Yangjun Chen ACS-4902 99

Multiple-key indexes

25

30

45

50

60

70

85

60

400

60

350

260

75

100

120

275

260

110

140

D
ata file

pointer to an index over

a set of salaries of all

those employees of age

between 50 and 60

Jan. 2025 Yangjun Chen ACS-4902 100

kd-Trees

(A generalization of binary search trees)

A kd-tree is a binary tree in which interior nodes have an associated

attribute a and a value v that splits the data points into two parts:

those with a-value less than v and those with a-value equal to or

larger than v.

Jan. 2025 Yangjun Chen ACS-4902 101

Jan. 2025 Yangjun Chen ACS-4902 102

kd-trees

0

500k

100

salary

age

Jan. 2025 Yangjun Chen ACS-4902 103

3-dimensional data division

salary

age

Jan. 2025 Yangjun Chen ACS-4902 104

Insert a new entry into a kd-tree:

insert(35, 500):
salary 150

age 60 age 47

salary 80 salary 300

age 38

70, 110

85, 140

50, 275

60, 260

50, 100

50, 120

30, 260 25, 400

45, 350

25, 60 45, 60

50, 75

Jan. 2025 Yangjun Chen ACS-4902 105

Insert a new entry into a kd-tree:

salary 150

age 60 age 47

salary 80 salary 300

age 38

70, 110

85, 140

50, 275

60, 260

50, 100

50, 120

30, 260

25, 400

35, 500
25, 60 45, 60

50, 75

insert(35, 500):

45, 350

age 35

Jan. 2025 Yangjun Chen ACS-4902 106

Quad-trees

In a Quad-tree, each node corresponds to a square region in two

dimensions, or to a k-dimensional cube in k dimensions.

• If the number of data entries in a square is not larger than what

will fit in a block, then we can think of this square as a leaf node.

• If there are too many data entries to fit in one block, then we treat

the square as an interior node, whose children correspond to its

four quadrants.

Jan. 2025 Yangjun Chen ACS-4902 107

Quad-trees

0

400k

100

salary

age

name age salary… …

… 25 400… …

Jan. 2025 Yangjun Chen ACS-4902 108

Quad-trees

50, 200

50, 75

50, 100

25, 60

46, 60
75, 100 25, 300

50, 275

60, 260

85, 140 50, 120

70, 110

30, 260 25, 400

45, 350

SW
SE NE

NW

SW – south-west

SE – south-east

NW – north-west

NE – north-east

0 100

400k

Jan. 2025 Yangjun Chen ACS-4902 109

R-trees

An R-tree is an extension of B-trees for

multidimensional data.

• In an R-tree, any interior node corresponds to some interior

regions, or just regions, which are usually a rectangle

• An R-tree corresponds to a whole area (a rectangle for two-di-

mensional data.)

• Each region x in an interior node n is associated with a link to a

child of n, which corresponds to all the subregions within x.

Jan. 2025 Yangjun Chen ACS-4902 110

R-trees

In an R-tree, each interior node

contains several subregions.

In a B+-tree, each interior node

contains a set of keys that divides

a line into segments.

k1 k2 kj kj+1 kqkj-1

Jan. 2025 Yangjun Chen ACS-4902 111

Suppose that the local cellular phone company adds a POP (point

of presence, or base station) at the position shown below.

0 100

100

school POP

house1

house2road1
ro

ad
2

pipeline

Jan. 2025 Yangjun Chen ACS-4902 112

R-trees

((0, 0), (60, 50)) ((20, 20), (100, 80))

road1 road2 house1 school house2 pipeline pop

0 100

100

school
POP

house1

house2road1
ro

ad
2

pipeline

Records in a file

Jan. 2025 Yangjun Chen ACS-4902 113

Insert a new region r into an R-tree.

0 100

100

school POP

house1

house2road1

ro
ad

2
pipeline

house3

((70, 5), (95, 15))

Jan. 2025 Yangjun Chen ACS-4902 114

Insert a new region r into an R-tree.

1. Search the R-tree, starting at the root.

2. If the encountered node is internal, find a subregion into which

r fits.

• If there is more than one such region, pick one and go to its

corresponding child.

• If there is no subregion that contains r, choose any subregion

such that it needs to be expanded as little as possible to contain

r.

((0, 0), (60, 50)) ((20, 20), (100, 80))

road1 road2 house1 school house2 pipeline pop

((70, 5), (95, 15))

Jan. 2025 Yangjun Chen ACS-4902 115

((0, 0), (95, 50)) ((20, 20), (100, 80))

school house2 pipeline pop

Two choices:

• If we expand the lower subregion, corresponding to the first

leaf, then we add 1050 square units to the region.

• If we extend the other subregion by lowering its bottom by 15

units, then we add 1200 square units.

road1 road2 house1 house3

Jan. 2025 Yangjun Chen ACS-4902 116

Insert a new region r into an R-tree.

0 100

100

school POP

house1

house2road1

ro
ad

2
pipeline

house3 ((40, 40), (50, 50))

Jan. 2025 Yangjun Chen ACS-4902 117

Insert a new region r into an R-tree.

3. If the encountered node v is a leaf, insert r into it. If there is no

room for r, split the leaf into two and distribute all subregions in

them as evenly as possible. Calculate the ‘parent’ regions for the

new leaf nodes and insert them into v’s parent. If there is the

room at v’s parent, we are done. Otherwise, we recursively split

nodes going up the tree.

((0, 0), (100, 100))

road1 road2 house1 school house2 pipeline

Add POP (point of

presence, or base

station)

Suppose that each

leaf has room for

6 regions.

Jan. 2025 Yangjun Chen ACS-4902 118

((0, 0), (60, 50)) ((20, 20), (100, 80))

road1 road2 house1 school house2 pipeline pop

• Split the leaf into two and distribute all the regions evenly.

• Calculate two new regions each covering a leaf.

Jan. 2025 Yangjun Chen ACS-4902 119

house1

((70, 5), (95, 15))
R =

((70, 5), (95, 15))

house1

Insert the first object into an R-tree:

Jan. 2025 Yangjun Chen ACS-4902 120

Bit map

1. Imagine that the records of a file are numbered 1, …, n.

2. A bitmap for a data field F is a collection of bit-vectors of

length n, one for each possible value that may appear in the

field F.

3. The vector for a specific value v has 1 in position i if the ith

record has v in the field F, and it has 0 there if not.

Jan. 2025 Yangjun Chen ACS-4902 121

Example

Employee

ename ssn age salary dnumber

Aaron, Ed

Abbott, Diane

Adams, John

Adams, Robin

Brian, Robin

Brian, Mary

Widom, Jones

30

30

40

50

55

55

60

60

60

75

75

78

80

100

Bit maps for age:

30: 1100000

40: 0010000

50: 0001000

55: 0000110

60: 0000001

Bit maps for salary:

60: 1100000

75: 0011000

78: 0000100

80: 0000010

100: 0000001

Jan. 2025 Yangjun Chen ACS-4902 122

Example

Employee

ename ssn age salary dnumber

Aaron, Ed

Abbott, Diane

Adams, John

Adams, Robin

Brian, Robin

Brian, Mary

Widom, Jones

30

30

40

50

55

55

60

60

60

75

75

78

80

100

Bit maps for age:

30: 1100000

40: 0010000

50: 0001000

55: 0000110

60: 0000001

Bit maps for salary:

60: 1100000

75: 0011000

78: 0000100

80: 0000010

100: 0000001

Jan. 2025 Yangjun Chen ACS-4902 123

Range query evaluation

Select ename

From Employee

Where 40 age 50 and 50 salary 78

We first find the bit-vectors for the age values in (30, 50); there are only two:

0010000 and 0001000 for 40 and 50, respectively.

Take their bitwise OR: 0010000 0001000 = 0011000.

Next find the bit-vectors for the salary values in (50, 78) and take their bitwise

OR: 1100000 0011000 0000100 = 1111100.

0011000

1111100

0011000
The 3rd and 4th tuples are the answer.

Jan. 2025 Yangjun Chen ACS-4902 124

Compression of bitmaps

Suppose we have a bitmap index on field F of a file with n records,

and there are m different values for field F that appear in the file.

v1

.

.

.

v2

.

.

.

vm

.

.

.… …n bits O(mn) space

Jan. 2025 Yangjun Chen ACS-4902 125

Compression of bitmaps

Run-length encoding:

Run in a bit vector: a sequence of i 0’s followed by a 1.

000000010001

Run compression: a run r is represented as another bit string r’

composed of two parts.

part 1: i expressed as a binary number, denoted as b1(i).

part 2: Assume that b1(i) is j bits long. Then, part 2 is a sequence

of (j – 1) 1’s followed by a 0, denoted as b2(i).

r’ = b2(i)b1(i).

This bit vector contains two runs.

Jan. 2025 Yangjun Chen ACS-4902 126

Compression of bitmaps

Run-length encoding:

Run in a bit vector s: a sequence of i 0’s followed by a 1.

000000010001

r’ = b2(i)b1(i).

This bit vector contains two runs.

r1 = 00000001

b11 = 7 = 111, b12 = 110

r2 = 0001

b11 = 3 = 11, b12 = 10

r1’ = 110111

r2’ = 1011

Jan. 2025 Yangjun Chen ACS-4902 127

000000010001

r1’ r2’ = 1101111011

Decoding a compressed sequence s:

1. Scan s from the beginning to find the first 0.

2. Let the first 0 appears at position j. Check the next j bits. The

corresponding value is a run.

3. Remove all these bits from s. Go to (1).

Starting at the beginning, find the first 0

at the 3rd bit, so j = 3. The next 3 bits are

111, so we determine that the first integer

is 7. In the same way, we can decode1011.

Jan. 2025 Yangjun Chen ACS-4902 128

r2’ = 1011 r1r2= 000000010001

r1= 00000001

r2= 0001

r1’ r2’ = 1101111011

Uncompression:

Jan. 2025 Yangjun Chen ACS-4902 129

Inverted files

An inverted file - A list of pairs of the form: <key word, pointer>

cat

dog

… the cat is

fat

… was raining

cats and dogs …

… Fido the

Dogs …
a bucket of pointers

L(cat) = {1, 3, 5} L(dog) = {3, 5, 8, 9}

L(cat dog) = {1, 3, 5} {3, 5, 8, 9} = {3, 5}

Jan. 2025 Yangjun Chen ACS-4902 130

Inverted files

When we use “buckets” of pointers to occurrences of each word,

we may extend the idea to include in the bucket array some

information about each occurrence.

cat

dog

… the cat is

Fat …

… was raining

cats and dogs …

… Fido the

Dogs …

title

header

anchor

text

5

10

3

57

type position
…

…

…

…

Jan. 2025 Yangjun Chen ACS-4902 131

Web Databases

• Web database

• System architecture

• Web programming language:

- PHP

- Node.js

Not included in the mid-term

Jan. 2025 Yangjun Chen ACS-4902 132

• What is a web database?

- A database accessed from the Internet

- E-commence and other Internet applications are designed to

interact with the user through web interfaces

- An online flight ticket booking system

web interface:

input - customer information: time, location, airport, destination

output – departure time, arrival time, flight number, price

database access:

query evaluation

Jan. 2025 Yangjun Chen ACS-4902 133

• Three-tier architecture:

Gui

Web interface

Application Programs

Web pages (HTML)

DB management system

Presentation

layer

Business

logic layer

DB service layer

Client

Application server

or

Web server

Database server

Jan. 2025 Yangjun Chen ACS-4902 134

• Web server language (script language): PHP

- PHP – a script language, used to generate

dynamic HTML pages.

PHP programs are executed on Web server computers.

(This is in contrast to some scripting languages, such as

JavaScript, which are executed on client computers.)

- PHP 5 and later versions can work with a MySQL database

using:

▪ MySQLi extension (the ‘i’ stands for improved)

▪ PDO (PHP Data Objects)

- The official PHP website has installation instructions for

PHP: http://PHP.org.net

Jan. 2025 Yangjun Chen ACS-4902 135

• A simple PHP example

- The program prompts a user to enter the first and last name

and then prints a welcome message to that user.

<?PHP

//Printing a welcome message if the user submitted his/her name

//through the PHP form

if ($_post[‘user_name’]) {

print(“Welcome, “);

print($_post[‘user_name’]); }

else { print <<<_HTML_

<FORM method=“post” action=“$_SERVER[‘PHP_SELF’]”>

Enter your name: <input type=“text” name=“user_name”>

<INPUT type=“submit” value=“SUBMIT NAME”></FORM>

HTML;

}

?>

Jan. 2025 Yangjun Chen ACS-4902 136

Yangjun Chen GACS-7102

SUBMIT NAME

Enter your name:

John Smith

SUBMIT NAME

Enter your name

Welcome, John Smith

Jan. 2025 Yangjun Chen ACS-4902 137

- A PHP script is enclosed with a pair of tags:

start tag: <?php

end tag: ?>

Stored in a file, named, for example,

greeting.php,

and located in an address, for example,

http://www.myserver.com/examples/greeting.php.

- You can also put it is a HTML file.

Jan. 2025 Yangjun Chen ACS-4902 138

post: (data transfer through post array)

http://www.myserver.com/examples/greeting.php

form

data

Web server

in

PHP-script

input

form created

DB$_post

Web client

Jan. 2025 Yangjun Chen ACS-4902 139

http://www.myserver.com/examples/another.php?mygrade=85

Data:

mygrade=85

Web server

in

PHP-script

input

DB
$_get

echo $_get[‘mygrade’]

//This will print 85.

get: (data transfer through get array)

Jan. 2025 Yangjun Chen ACS-4902 140

• Connecting to a database

require ‘DB.php’

$d = DB::connect{‘mysqli://acct1:pass12@www.host.com/db1’};

if (DB:isError($d)){die(“cannot connect …”, $d->getMessage());}

…

$q = $d->query(“CREATE TABLE EMPLOYEE

(Emp_id INT,

Name VARCHAR(15),

Job VARCHAR(10),

Dno INT)”);

if (DB:isError($q)) {die(“table creation not successful …”, $d->getMessage());

…

$d ->setErrorHandling();

…

$eid = $d->nextID(‘EMPLOYEE’);

$q = $d->query(“INSERT INTO EMPLOYEE VALUES

($eid,$_post[‘emp_name’], $_post[‘emp_job’], $_post[‘emp_dno’])”);

A form should be displayed here

to receive input data.

Jan. 2025 Yangjun Chen ACS-4902 141

What is Node.js?

• Node.js is a script language

• Node.js is an open source server environment

• Node.js runs on various platforms (Windows,

Linux, Unix, Mac OS X, etc.)

• Node.js uses JavaScript on the serve

Jan. 2025 Yangjun Chen ACS-4902 142

var http = require('http');

http.createServer(function (req, res) {

res.writeHead(200, {'Content-Type': 'text/html'});

res.end('Hello World!'); //write a response and then

//end the response

}).listen(8080);

myfirst.js

Save the file on your computer:

C:\Users\Your Name\myfirst.js

The code tells the computer to write "Hello World!"

if anyone (e.g. a web browser) tries to access your

computer on port 8080.

Jan. 2025 Yangjun Chen ACS-4902 143

• Command Line Interface

-Node.js files must be initiated in the "Command Line

Interface" program of your computer.

-Navigate to the folder that contains the file

"myfirst.js", the command line interface window

should look something like this:

C:\Users\Your Name>_

C:\Users\Your Name>node myfirst.js

Jan. 2025 Yangjun Chen ACS-4902 144

• Execution of myfirst.js

-Now, your computer works as a server!

-If anyone tries to access your computer on port 8080,

they will get a "Hello World!" message in return!

-Start your internet browser, and type in address:

http://localhost:8080

Jan. 2025 Yangjun Chen ACS-4902 145

• MySQL databases in a web server

- You can download a free MySQL database at

http://www.mysql.com/downloads/

- Install MySQL Driver

• Once you have MySQL up and running on your

computer, you can access it by using Node.js.

• To access a MySQL database with Node.js, you need a

MySQL driver.

• Install MySQL from nmp.

Jan. 2025 Yangjun Chen ACS-4902 146

• To download and install the "mysql" module, open the

Command Terminal and execute the following:

C:\Users\Your Name>npm install mysql

npm - a package manager for installing Node.js packages.

Jan. 2025 Yangjun Chen ACS-4902 147

• Create Connection

demo_db_connection.js

C:\Users\Your Name>node demo_db_connection.js

var mysql = require('mysql');

var con = mysql.createConnection({

host: "localhost",

user: "yourusername",

password: "yourpassword"

});

con.connect(function(err) {

if (err) throw err;

console.log("Connected!");

});

Jan. 2025 Yangjun Chen ACS-4902 148

var mysql = require('mysql');

var con = mysql.createConnection({

host: "localhost",

user: "yourusername",

password: "yourpassword"

});

con.connect(function(err) {

if (err) throw err;

console.log("Connected!");

con.query("CREATE DATABASE mydb", function (err,

result) {if (err) throw err;

console.log("Database created"); }); });

• Creating a Database

- Create a database named "mydb”

Save the code above in a file

called "demo_create_db.js“

C:\Users\Your Name>node

demo_create_db.js

Jan. 2025 Yangjun Chen ACS-4902 149

• Creating a table

- Create a table named “customers”

var mysql = require('mysql');

var con = mysql.createConnection({

host: "localhost", user: "yourusername“,

password: "yourpassword", database: "mydb"});

con.connect(function(err) {

if (err) throw err;

console.log("Connected!");

var sql = "CREATE TABLE customers (name

VARCHAR(255), address VARCHAR(255))";

con.query(sql, function (err, result) {

if (err) throw err;

console.log("Table created");});

Jan. 2025 Yangjun Chen ACS-4902 150

var mysql = require('mysql');

var con = mysql.createConnection({

host: "localhost",

user: "yourusername",

password: "yourpassword",

database: "mydb"

});

con.connect(function(err) {

if (err) throw err;

console.log("Connected!");

var sql = "INSERT INTO customers (name, address)

VALUES ('Company Inc', 'Highway 37')";

con.query(sql, function (err, result) {

if (err) throw err;

console.log("1 record inserted");

});

}).listen(8080);

Jan. 2025 Yangjun Chen ACS-4902 151

• Query a Database

- Use SQL statements to read from (or write to) a

MySQL database

… …

con.connect(function(err) {

if (err) throw err;

console.log("Connected!");

database: “mydb”

var sql = “select * from customers where name = 'David'";

con.query(sql, function (err, result) {

if (err) throw err;

console.log("Result: " + result);

});

});

Jan. 2025 Yangjun Chen ACS-4902 152

Semistructured-Data Model

• Semistructured data

• XML

• DTD (Document type definitions)

• XML schema

Jan. 2025 Yangjun Chen ACS-4902 153

Semistructured Data

The semistructured-data model plays a special role in database

systems:

1. It serves as a model suitable for integration of databases, i.e.,

for describing the data contained in two or more databases

that contain similar data with different schemas.

2. It serves as the underlying model for notations such as XML

that are being used to share information on the web.

The semistructured data model can represent information more

flexibly than the other models – E-R, UML, relational model,

ODL (Object Definition Language).

Jan. 2025 Yangjun Chen ACS-4902 154

Semistructured Data representation

A database of semistructured data is a collection of nodes.

• Each node is either a leaf or interior

• Leaf nodes have associated data; the type of this data can be any

atomic type, such as numbers and strings.

• Interior nodes have one or more arcs out. Each arc has a label,

which indicates how the node at the head of the arc relates to the

node at the tail.

• One interior node, called the root, has no arcs entering and

represents the entire database.

Jan. 2025 Yangjun Chen ACS-4902 155

sw

movie

title

year

Carrie

Fisher
street

city street city

Maple H’wood Locust Malibu

Mark

Hamill
Oak B’wood 1977

cf mh

root

star star

name name
address

address
street

city

starIn

starOf

starIn

starOf

Star War

ad1 ad2

Jan. 2025 Yangjun Chen ACS-4902 156

Semistructured Data representation

A label L on the arc from node N to node M can play one of two roles.

1. It may be possible to think of N as representing an object or

entity, while M represents one of its attributes. Then, L represents

the name of the attribute.

2. We may be able to think of N and M as objects or entities and L

as the name of a relationship from N to M.

Jan. 2025 Yangjun Chen ACS-4902 157

Semistructured Data model can be used to integrate information

Legacy-database problem: Databases tend over time to be used in so

many different applications that it is impossible to turn them off and

copy or translate their data into another database, even if we could

figure out an efficient way to transform the data from one schema to

another.

In this case, we will define a semistructured data model over all

the legacy databases, working as an interface for users. Then,

any query submitted against the interface will be translated

according to local schemas.

Jan. 2025 Yangjun Chen ACS-4902 158

legacy

database

legacy

database

some other

applications

some other

applications

Interfaceuser

Stars(name, address(street, city)) Stars(name, street, city)

root

star star

star1
name

address
star2

name

street

city

street city

Jan. 2025 159Yangjun Chen ACS-4902

root

star star

star1
name

address
star2

name

street

city

street city

Integrated interface:

for $m in root/star

where $m//city = ‘Malibu’

return <star>{$m/name}</star>
X-Query

decomposing
select name

from Stars

where address.city = ‘Malibu’

select name

from Stars

where address.city = ‘Malibu’

Jan. 2025 Yangjun Chen ACS-4902 160

XML (Extensible Markup Language)

XML is a tag-based notation designed originally for marking

documents, much like HTML. While HTML’s tags talk about the

presentation of the information contained in documents – for

instance, which portion is to be displayed in italics or what the

entries of a list are – XML tags intended to talk about the

meanings of pieces of the document.

Tags:

opening tag - < …. >, e.g., <Foo>

closing tag - </ … >, e.g., </Foo>

A pair of matching tags and everything that comes between them is

called an element.

Jan. 2025 Yangjun Chen ACS-4902 161

XML with and without a schema

XML is designed to be used in two somewhat different modes:

1. Well-formed XML allows you to invent your own tags, much

like the arc-labels in semistructured data. But there is no

predefined schema. However, the nesting rule for tags must be

obeyed, or the document is not well-formed.

2. Valid XML involves a DTD (Document Type Definition) that

specifies the allowed tags and gives a grammar for how they

may be nested. This form of XML is intermediate between the

strict-schema such as the relational model, and the completely

schemaless world of semistructured data.

Jan. 2025 Yangjun Chen ACS-4902 162

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<StarMovieData>

<Star>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street><City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street><City>Malibu</City>

<Address>

</Star>

<Star>

<Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Star>

<Movie>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData>

prologue

Jan. 2025 Yangjun Chen ACS-4902 163

Attributes

As in HTML, an XML element can have attributes (name-value

pairs) with its opening tag. An attribute is an alternative way to

represent a leaf node of semistructured data. Attributes, like tags,

can represent labeled arcs in a semisructured-data graph.

<Movie year = 1977>

<Title>“Star Wars”</title>

</Movie>

<Movie title = “Star War” year = 1977>

</Movie>

<Movie>

<Title>“Star Wars”</title>

<Year>1977</Year>

</Movie>

Jan. 2025 Yangjun Chen ACS-4902 164

Attributes that connect elements

An important use for attributes is to represent connections in a

semistructured data graph that do not form a tree.

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

… …

</Star>

<Star starID = “mh” starredIn = “sw”>

… …

</Star>

<Movie movieID = “sw” starsOf = “cf”, “mh”>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData>

Jan. 2025 Yangjun Chen ACS-4902 165

Namespace

There are situations in which XML data involves tags that come from two or

more different sources. So we may have conflicting names. For example, we

would not want to confuse an HTML tag used in a text with an XML tag that

represents the meaning of that text. To distinguish among different vocabularies

for tags in the same document, we can use a namespace for a set of tags.

To indicate that an element’s tag should be interpreted as part of a certain space,

we use the attribute xmlns in its opening tag:

xmlns: name = <Universal Resource Identifier>

Example:

<md : StarMoviedata xmlns : md = http://infolab.stanford.edu/movies>

Jan. 2025 Yangjun Chen ACS-4902 166

XML storage

There are three approaches to storing XML to provide some efficiency:

1. Store the XML data in a parsed form, and provide a library of tools to navigate

the data in that form. Two common standards are called SAX (Simple API for

XML), and DOM (Document Object Model).

2. MongoDB – non-tabular databases

In Mongo DB, a document is stored as a set of property-value pairs (JSON format).

[{ title : “post1”,

body: “body of post 1”,

category: “news”,

time: Date()

}

{ title : “post2”,

body: “body of post 2”,

category: “events”,

time: Date()

}]

Jan. 2025 Yangjun Chen ACS-4902 167

3. Represent the document and their elements as relations, and use a conventional,

relational DBMS to store them.

In order to represent XML documents as relations, we should give each document

and each element of a document a unique ID. For each document, the ID could be

its URL or its path in a file system.

A possible relational database schema:

DocRoot(docID, rootElmentID)

ElementValue(elementID, value)

SubElement(parentID, childID, position)

ElementAttribute(elementID, name, value)

Jan. 2025 Yangjun Chen ACS-4902 168

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

< md : StarMovieData xmlns : md = http://infolab.stanford.edu/movies >

<Star starID = “cf” starredIn = “sw”>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street><City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street><City>Malibu</City>

<Address>

</Star>

<Star starID = “mh” starredIn = “sw”>

<Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Star>

<Movie movieID = “sw” starsOf = “cf”, “mh”>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData>

Jan. 2025 Yangjun Chen ACS-4902 169

Doc-id rootElementID

1 1

Doc-id element-id value

1 1 starMovieData

1 2 Star

1 3 Star

1 4 movie

… … …

parentId childId position

1.1 1.2 1

1.1 1.3 2

1.1 1.4 4

… … … … … …

elemenAttId attName value

1.1 xmlns : md http://... …

1.2 starId “mf”

1.2 starId “mh”

1.3 starredIn “sw”

1.3 starredIn “sw”

1.4 movieId “sw”

1.4 starsOf “sf”, “mh”

DocRoot
elementValue

subElement

elementAttribute

Jan. 2025 Yangjun Chen ACS-4902 170

Transform an XML document to a tree

<book>

<title>

“The Art of Programming”

</title>

<author>

“D. Knuth”

</author>

<year>

“1969”

</year>

</book>

<book>

<title> <author> <year>

“The Art of

Programming”

“D. Knuth” “1969”

Jan. 2025 Yangjun Chen ACS-4902 171

node_value Pointer_to_node

stack S:

Read a file into a character array A:

< b o o k > < t i t l e > “ T h e A r t …

Transform an XML document to a tree

Jan. 2025 Yangjun Chen ACS-4902 172

Algorithm:

Scan array A; Let A[i] be the character currently

encountered;

If A[i] is ‘<’ and A[i+1] is a character then {

generate a node x for A[i..j],

where A[j] is ‘>’ directly after A[i];

let y = S.top().pointer_to_node;

make x be a child of y; S.push(A[i..j], x);

If A[i] is ‘ ‘‘ ’, then {

genearte a node x for A[i..j],

where A[j] is ‘ ’’ ’ directly after A[i];

let y = S.top().pointer_to_node;

make x be a child of y;

If A[i] is ‘<’ and A[i+1] is ‘/’,

then S.pop();

Transform an XML document to a tree

Generating a node

for an opening tag.

Generating a

leaf node for a

string value.

Popping out the stack when

meeting a closing tag.

Jan. 2025 Yangjun Chen ACS-4902 173

Document Type Definition (DTD)

A DTD is a set of grammar-like rules to indicate how elements

can be nested.

DTD general form:

<!DOCTYPE root-tag [

<!ELEMENT element-name (components)>

… …

]>

Jan. 2025 Yangjun Chen ACS-4902 174

<!DOCTYPE Stars [

<!ELEMENT Stars (Star*)>

<!ELEMENT Star (Name, Address+, Movies)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City)>

<!ELEMENT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT Movies (Movie*)>

<!ELEMENT Movie (Title, Year)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

]>

Stars.dtd

<

escape symbol

Jan. 2025 Yangjun Chen ACS-4902 175

<Stars>

<Star>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street>

<City>Hollywood</City>

</Address>

<Movies>

<Movie>

<Title>Star Wars</Title>

<Year>1977</Year>

</Movie>

<Movie>

<Title>Empire Striker</Title>

<Year>1980</Year>

</Movie>

<Movie>

<Title>Return of the Jedi</Title><Year>1983</Year>

</Movie>

</Movies>

</Star>

<!DOCTYPE Stars [

<!ELEMENT Stars (Star*)>

<!ELEMENT Star (Name, Address+, Movies)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City)>

<!ELEMENT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT Movies (Movie*)>

<!ELEMENT Movie (Title, Year)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

]>

Jan. 2025 Yangjun Chen ACS-4902 176

<!DOCTYPE Stars [

<!ELEMENT Stars (Star*)>

<!ELEMENT Star (Name, Address+, Movies)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City)>

<!ELEMENT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT Movies (Movie*)>

<!ELEMENT Movie (Title, Year)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

]>

<Star>

<Name>Mark Hamill</Name>

<Address>

<Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Address>

<Movies>

<Movie>

<Title>Star Wars</Title>

<Year>1977</Year>

</Movie>

<Movie>

<Title>Empire Wars</Title>

<Year>1980</Year>

</Movie>

<Movie>

<Title>Return of the Jedi</Title>

<Year>1983</Year>

</Movie>

</Movie>

</Star>

</Stars>

Jan. 2025 Yangjun Chen ACS-4902 177

<!DOCTYPE Stars [

<!ELEMENT Stars (Star*)>

<!ELEMENT Star (Name, Address+, Movies)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City)>

<!ELEMENT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT Movies (Movie*)>

<!ELEMENT Movie (Title, Year)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

]>

This document does not confirm

to the DTD.

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Stars>

<Star>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street>

<City>Malibu</City>

<Address>

</Star>

<Star>

<Name>Mark Hamill</Nam>

<Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Star>

<Movie>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</Stars>

Jan. 2025 178Yangjun Chen ACS-4902

Attribute Lists

An element may be associated with an attribute list:

<!ELEMENT Movie EMPTY>

<!ATTLIST Movie

title CDATA #REQUIRED

year CDATA #REQUIRED

genre (comedy | drama | sciFi | teen) #IMPLIED

>

<Movie title = “Star Wars” year = “1977” genre = “sciFi”/>

<!ATTLIST element-name attribute-name type>

Jan. 2025 Yangjun Chen ACS-4902 179

Using a DTD

If a document is intended to conform to a certain DTD, we

b) In the opening line, refer to the DTD, which must be stored

separately in the file system accessible to the application that

is processing the document.

<?xml version = “1.0” encoding = “utf-8” standalone = “no”?>

<!DOCTYPE Star SYSTEM “star.dtd”>

SYSTEM – keyword indicating that the DTD can be find in file

star.dtd (this can also be a valid URL if the .dtd file is remote.)

a) Include the DTD itself as a preamble to the document, or

Jan. 2025 Yangjun Chen ACS-4902 180

<?xml version="1.0" ?>
<!DOCTYPE r [
<!ELEMENT r ANY >
<!ELEMENT a ANY >
<!ELEMENT b ANY >
<!ELEMENT c (a*)>
<!ELEMENT d (b*)>
]>
<r>

<a>

<a><a>

<c>

<a>

</c>
<a>

<a>

</r>

A DTD is included as a preamble.

Jan. 2025 Yangjun Chen ACS-4902 181

<?xml version = "1.0" encoding = "UTF-8" standalone = "no" ?>

<!DOCTYPE address SYSTEM "address.dtd">

<address>

<name>Tanmay Patil</name>

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

</address>

Jan. 2025 Yangjun Chen ACS-4902 182

Identifiers

and Reference

<!DOCTYPE StarMovieData [

<!ELEMENT StarMovieData (Star*, Movie*)>

<!ELEMENT Star (Name, Address+)>

<!ATTLIST Star

starId ID #REQUIRED

StarredIn IDREFS #IMPLIED

>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City)>

<!ELEMNT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT Movie (Title, Year)>

<!ATTLIST Movie

movieId ID #REQUIRED

startOf IDREFS #REQUIRED

>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

]>

Jan. 2025 Yangjun Chen ACS-4902 183

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street><City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street><City>Malibu</City>

<Address>

</Star>

<Star starID = “mh” starredIn = “sw”>

<Name>Mark Hamill</Name>

<address>

<Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</address>

</Star>

<Movie movieID = “sw” starOf = “cf mh”>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData>

Jan. 2025 Yangjun Chen ACS-4902 184

XML Schema

XML Schema is an alternative way to provide a schema for XML

documents.

More powerful – give the schema designer extra capabilities.

- allow us to declare types, such as integers or float for simple

elements.

- allow arbitrary restriction on the number of occurrences of

subelements.

- give us the ability to declare keys and foreign keys.

Jan. 2025 Yangjun Chen ACS-4902 185

The Form of an XML schema

• An XML schema description of a schema is itself an XML

document. It uses the namespace at the URL

http://www.w3.org/2001/XMLSchema

that is provided by the World-Wide-Web Consortium.

•Each XML-schema document has the form:

<? xml version = ‘1.0” encoding = “utf-8” ?>

<xs: schema xmlns: xs = “http://www.w3.org/2001/

XMLSchema”>

… …

</xs: schema>

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

Jan. 2025 Yangjun Chen ACS-4902 186

Elements

An important component in an XML schema is the element,

which is similar to an element definition in a DTD.

The form of an element definition in XML schema is:

<xs: element name = element name type = element type>

constraints and/or structure information

</xs: element>

<xs: element name = “Title” type = “xs: string” />

<xs: element name = “Year” type = “xs: integer” />

<!DOCTYPE root-tag [

… …

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Year (#PCDATA)>

… …

]>

DTD

Jan. 2025 Yangjun Chen ACS-4902 187

Complex Types

A complex type in XML Schema can have several forms, but the

most common is a sequence of elements.

<xs: complexType name = type name >

<xs: sequence>

list of element definitions

</xs: sequence>

</xs: complexType>

<xs: complexType name = type name >

list of attribute definitions

</xs: complexType>

<!DOCTYPE root-tag [

<!ELEMENT element-name (components)>

… …

]>

DTD

Jan. 2025 Yangjun Chen ACS-4902 188

<? Xml version = “1.0” encoding = “utf-8” ?>

<xs: schema xmlns: xs = “http://www.w3.org/2001/XMLSchema”>

<xs:complexType name = “movieType”>

<xs: sequence>

<xs: element name = “Title” type = “xs: string” />

</xs: element name = “Year” type = “xs: integer” />

</xs: sequence>

</xs: complexType>

<xs: element name = “Movies”>

<xs: complexTyp>

<xs: sequence>

<xs: element name = “Movie” type = “movieType””

minOccurs = “0” maxOcurs = “unbouned” />

</xs: sequence>

</xs: complexTyp>

</xs: element>

</xs: schema>

A schema for movies in XML schema.

Itself is a document.

Jan. 2025 Yangjun Chen ACS-4902 189

The above schema (in XML schema) is equivalent to the

following DTD.

<!DOCTYPE Movies [

<!ELEMENT Movies (Movie*) >

<!ELEMENT Movie (Title, Year) >

<!ELEMENT Title (#PCDATA) >

<!ELEMENT Year (#PCDATA) >

]>

Jan. 2025 Yangjun Chen ACS-4902 190

Attributes

A complex type can have attributes. That is, when we define a

complex type T, we can include instances of element <xs:

attribute>. Thus, when we use T as the type of an element E (in a

document), then E can have (or must have) an instance of this

attribute. The form of an attribute definition is:

<xs: attribute name = attribute name type = type name

other information about attribute />

<xs: attribute name = “title” type = “xs: integer” default = “0” />

<xs: attribute name = “year” type = “xs: integer” use = “required” />

Jan. 2025 Yangjun Chen ACS-4902 191

<? Xml version = “1.0” encoding = “utf-8” ?>

<xs: schema xmlns: xs = “http://www.w3.org/2001/XMLSchema”>

<xs: complexType name = “movieType”>

<xs: attribute name = “title” type = “xs: string” use = “required” />

<xs: attribute name = “year” type = “xs: integer” use = “required” />

</xs: complexType>

<xs: element name = “Movies”>

<xs: complexTyp>

<xs: sequence>

<xs: element name = “Movie” type = “movieType”

minOccurs = “0” maxOcurs = “unbouned” />

</xs: sequence>

</xs: complexTyp>

</xs: element>

</xs: schema>

A schema for movies in XML schema.

Itself is a document.

<xs:complexType name = “movieType”>

<xs: sequence>

<xs: element name = “Title” type = “xs: string” />

</xs: element name = “Year” type = “xs: integer” />

</xs: sequence>

</xs: complexType>

Jan. 2025 Yangjun Chen ACS-4902 192

The above schema (in XML schema) is equivalent to the

following DTD.

<!DOCTYPE Movies [

<!ELEMENT Movies (Movie*) >

<!ELEMENT Movie EMPTY >

<!ATTLIST Movie

Title CDATA #REQUIRED

Year CDATA #REQUIRED

>

]>

<!DOCTYPE Movies [

<!ELEMENT Movies (Movie*) >

<!ELEMENT Movie (Title, Year) >

<!ELEMENT Title (#PCDATA) >

<!ELEMENT Year (#PCDATA) >

]>

Jan. 2025 Yangjun Chen ACS-4902 193

Restricted Simple Types

It is possible to create a restricted version of a simple type such

as integer or string by limiting the values the type can take. These

types can then be used as the type of an attribute or element.

1. Restricting numerical values by using minInclusive to state the lower

bound, maxInclusive to state the upper bound.

2. Restricting values to an numerated type.

<xs: simpleType name = type name >

<xs: restriction base = base type >

upper and/or lower bounds

</xs: restriction>

</xs: simpleType>

<xs: enumeration value = some value />

Jan. 2025 Yangjun Chen ACS-4902 194

<xs: simpleType name = “movieYearType” >

<xs: restriction base = “xs: integer” >

<xs:minInclusive value = “1915” />

</xs: restriction>

</xs: simpleType>

<xs: simpleType name = “genretype” >

<xs: restriction base = “xs: string” >

<xs: enumeration value = “comedy” />

<xs: enumeration value = “drama” />

<xs: enumeration value = “sciFi” />

<xs: enumeration value = “teen” />

</xs: restriction>

</xs: simpleType>

Jan. 2025 Yangjun Chen ACS-4902 195

Keys in XML Schema

An element can have a key declaration, which is a field or several

fields to uniquely identify the element among a certain class C of

elements).

field: an attribute or a subelement.

selector: a path to reach a certain node in a

document tree.

<xs: key name = key name >

<xs: selector xpath = path description >

<xs: field xpath = path description >

more field specification

</xs: key>

Create table EMPLOYEE

(…,

DNO INT NOT NULL DEFAULT 1,

CONSTRAINT EMPPK

PRIMARY KEY(SSN),

CONSTRAINT EMPSUPERFK

FOREIGN KEY(SUPERSSN)

REFERENCES

EMPLOYEE(SSN)

ON DELETE SET NULL ON

UPDATE

CASCADE,

CONSTRAINT EMPDEPTFK

FOREIGN KEY(DNO) REFERENCES

DEPARTMENT(DNUMBER)

ON DELETE SET DEFAULT

ON UPDATE CASCADE);

Jan. 2025 Yangjun Chen ACS-4902 196

<? Xml version = “1.0” encoding = “utf-8” ?>

<xs: schema xmlns: xs = “http://www.w3.org/2001/XMLSchema”>

<xs: simpleType name = “genretype” >

<xs: restriction base = “xs: string” >

<xs: enumeration value = “comedy” />

<xs: enumeration value = “drama” />

<xs: enumeration value = “sciFi” />

<xs: enumeration value = “teen” />

</xs: restriction>

</xs: simpleType>

<xs: complexType name = “movieType”>

<xs: attribute name = “title” type = “xs: string” />

<xs: attribute name = “year” type = “xs: integer” />

<xs: attribute name = “Genre” type = “genreType”

minOccurs = “0” maxOccurs = “1” />

</xs: complexType>

Jan. 2025 Yangjun Chen ACS-4902 197

<xs: element name = “Movies”>

<xs: complexTyp>

<xs: sequence>

<xs: element name = “Movie” type = “movieType”

minOccurs = “0” maxOcurs = “unbouned” />

</xs: sequence>

</xs: complexTyp>

<xs: key name = “movieKey”>

<xs: selector xpath = “Movie” />

<xs: field xpath = “@Title” />

<xs: field xpath = “@Year” />

</xs: key>

</xs: element>

</xs: schema>
<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

… …

<Movie Title = “Star Wars” Year = 1977 Genre = “comedy” />

… …

</Movies>

/Movies/Movie

/Movies/Movie@Title

/Movies/Movie@Year

Jan. 2025 Yangjun Chen ACS-4902 198

Foreign Keys in XML Schema

We can declare that an element has, perhaps deeply nested within

it, a field or fields that serve as a reference to the key for some

other element. It is similar to what we get with ID’s and IDREF’s

in DTD.

In DTD: untyped references

In XML schema: typed references

<xs: keyref name = foreign-key name

refer = key name>

<xs: selector xpath = path description >

<xs: field xpath = path description >

more field specification

</xs: keyref>

Create table EMPLOYEE

(…,

DNO INT NOT NULL DEFAULT 1,

CONSTRAINT EMPPK

PRIMARY KEY(SSN),

CONSTRAINT EMPSUPERFK

FOREIGN KEY(SUPERSSN)

REFERENCES

EMPLOYEE(SSN)

ON DELETE SET NULL ON

UPDATE

CASCADE,

CONSTRAINT EMPDEPTFK

FOREIGN KEY(DNO) REFERENCES

DEPARTMENT(DNUMBER)

ON DELETE SET DEFAULT

ON UPDATE CASCADE);

Jan. 2025 Yangjun Chen ACS-4902 199

<? Xml version = “1.0” encoding = “utf-8” ?>

<xs: schema xmlns: xs = “http://www.w3.org/2001/XMLSchema”>

<xs: element name = “Stars”>

<xs: complxType>

<xs: sequence>

<xs: element name = “Star” minOccurs = “1” maxOccurs = “unbounded”>

<xs: complexType>

<xs: sequence>

<xs: element name = “Name” type = “xs: string” />

<xs: element name = “Address” type = “xs: string” />

<xs: element name = “StarredIn” minOccurs = “0” maxOccurs = “1”>

<xs: complexType>

<xs: attribute name = “title” type = “xs: string” />

<xs: attribute name = “year” type = “xs: integer” />

</xs: complexType>

</xs: element>

</xs: sequence>

</xs: complexType>

</xs: element>

</xs: sequence>

</xs: complexType>

Jan. 2025 Yangjun Chen ACS-4902 200

<xs: keyref name = “movieRef” refers = “movieKey”>

<xs: selector xpath = “Star/StarredIn” />

<xs: field xpath = “@title” />

<xs: field xpath = “@year” />

</xs: keyref>

</xs: element>

</xs: schema> <? Xml version = “1.0” encoding = “utf-8” standalone =

“yes” ?>

<Stars>

<Star>

<Name>Mark Hamill</Name>

<Address>456 Oak Rd. Brentwood</Address>

<StarredIn title = “star war” year = “1977”/>

</Star>

… …

</Stars>

Jan. 2025 Yangjun Chen ACS-4902 201

About usage of XML schema

<?xml version="1.0"?>

<note xmlns: xsi = "http://www.w3.org/2001/XMLSchema-instance"

xsi: schemaLocation = "https://www.w3schools.com/xml note.xsd">

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

Jan. 2025 Yangjun Chen ACS-4902 202

The following example is an XML Schema file called

"note.xsd" that defines the elements of the above XML

document ("note.xml"):

<?xml version="1.0"?>

<xs: schema xmlns: xs = "http://www.w3.org/2001/XMLSchema">

<xs: element name = "note">

<xs:complexType>

<xs:sequence>

<xs:element name = "to" type = "xs:string"/>

<xs:element name = "from" type = "xs:string"/>

<xs:element name = "heading" type = "xs:string"/>

<xs:element name = "body" type = "xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Jan. 2025 Yangjun Chen ACS-4902 203

Programming Languages for XML

• XPath

• XQuery

• Extensible StyleSheets Language (XSLT)

Jan. 2025 Yangjun Chen ACS-4902 204

XPath

XPath is a simple language for describing sets of similar paths in a

graph of semistrucured data.

The XPath Data Model

Sequence of items corresponds to a set of tuples in the relational

algebra.

An item is either:

1. A value of primitive type: integer, real, boolean, or string.

2. A node (three kinds of nodes)

Jan. 2025 Yangjun Chen ACS-4902 205

Three kinds of nodes:

(a) Documents. These are files containing an XML document,

perhaps denoted by their local path name or URL.

(b) Elements. These are XML elements, including their opening

tags, their matching closing tags if there is one, and everything

in between (i.e., below them in the tree of semistructured data

that an XML document represents).

(c) Attributes. These are found inside opening tags.

The items in a sequence needn’t be all of the same type although

often they will be.

Jan. 2025 Yangjun Chen ACS-4902 206

A sequence of five items:

10

“ten”

10.0

<Number base = “8”>

<Digit>1</Digit>

<Digit>2</Digit>

</Number>

@val=“10”

Jan. 2025 Yangjun Chen ACS-4902 207

Document Nodes

It is common to apply XPath to documents that are files. We can

make a document node from a file by applying the function:

doc(file name)

The named file should be an XML document. We can name a file

either by giving its local name or a URL if it is remote.

doc(“movie.xml”)

doc(“/usr/slly/data/movies.xml”)

doc(“infolab.stanford.edu/~hector/movies.xml”)

Jan. 2025 Yangjun Chen ACS-4902 208

Path Expressions

An XPath expression starts at the root of a document and gives a

sequence of tags and slashes (/).

doc(file name)/T1/T2/…/Tn

Evaluation of XPath expressions:

1. Start with a sequence of items consisting of one node: the

document node.

2. Then, process each of T1, T2, …, Tn in turn.

3. To process Ti, consider the sequence of items that results from

processing the previous tag, if any. Examine those items, in

order, and find each of all its subelements whose tag is Ti.

doc(“movie.xml”)/StarMoviedata/Star/Name

Jan. 2025 Yangjun Chen ACS-4902 209

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street><City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street><City>Malibu</City>

<Address>

</Star>

<Star starID = “mh” starredIn = “sw”>

<Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Star>

<Movie movieID = “sw” starOf = “cf mh”>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData> doc(“movie.xml”)/StarMoviedata/Star/Name

Jan. 2025 Yangjun Chen ACS-4902 210

/StarMoviedata/Star/Name

<Name>Carrie Fisher</Name>

<Name>Mark Hamill</Name>

<? Xml version = “1.0” … ?>

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

<Name>Carrie Fishes</Name>

… …

</Star>

<Star starID = “mh” starredIn = “sw”>

<Name>Mark Hamill</Name>

</Star>

<Movie>

… ..

</Movie>

</StarMovieData>

In the following discussion, the document node is not

included in an XPath for simplicity.

Jan. 2025 Yangjun Chen ACS-4902 211

Relative Path Expressions

In several contexts, we shall use XPath expressions that are relative

to the current node or sequence of nodes.

<xs: element name = “Movies”>

<xs: complexTyp>

<xs: sequence>

<xs: element name = “Movie” type = “movieType”>

minOccurs = “0” maxOcurs = “unbouned” />

</xs: sequence>

</xs: complexTyp>

<xs: key name = “movieKey”>

<xs: selector xpath = “Movie” />

<xs: field xpath = “@Title” />

<xs: field xpath = “@Year” />

</xs: key>

</xs: element>

</xs: schema>

a current node

a relative path, equal to

/StartMovieData/Movies/Movie

/StarMovieData/Movies

/StartMovieData/Movies/Movie/@Title

/StartMovieData/Movies/Movie/@Year

Jan. 2025 Yangjun Chen ACS-4902 212

Attribute in Path Expressions

• Path expressions allow us to find all the elements within a

document that are reached from the root along a particular path.

/T1/T2/…/Tn/@A

/StarMovieData/Star/@starID

• We can also end a path by an attribute name preceded by an

at-sign.

/T1/T2/…/Tn

Jan. 2025 Yangjun Chen ACS-4902 213

Axes

So far, we have only navigated though semistructured-data graphs in

two ways: from a node to its children or to an attribute. In fact,

XPath provides several axes to navigate a graph in different ways.

Two of these axes are child (the default axis) and attribute, for which

@ is really a shorthand.

Axes used in Xpath expressions: /axis::

Self

Parent

descendant

Ancestor

Next-sibling

Following

Preceding

/self::

/parent::

/descendant::

/ancestor::

/next-sibling::

/following::

/preceding::

/child::

/attribute::

/child::StarMovieData/descentend::Star/attribute::starID

Jan. 2025 Yangjun Chen ACS-4902 214

self Selects the current node

parent Selects the parent of the current node

descendant Selects all descendants (children, grandchildren, etc.)

of the current node

ancestor Selects all ancestors (parent, grandparent, etc.) of the

current node

next-sibling Select the next sibling

following Selects everything in the document after the closing tag

of the current node

preceding Selects all nodes that appear before the current node in

the document, except ancestors, attribute nodes and

namespace nodes

child Selects all children of the current node

attribute Selects all attributes of the current node

Jan. 2025 Yangjun Chen ACS-4902 215

• All the children of the current node are referred to

as siblings.

• All those nodes visited after the current node during

a DFS search are referred as the following nodes.

• All those nodes visited before the current node

during a DFS search are referred as the preceding

nodes.

Jan. 2025 Yangjun Chen ACS-4902 216

Abbreviated axes

/StarMovieData//Star/@starID

/child::StarMovieData/descentend::Star/attribute::starID

//City

/descendant::City
/StarMovieData//Star//City

produces the same results as //City.

. - stands for self

.. – stands for parent

// - stands for descendant

/ - stands for child

@ – stands for attribute

Jan. 2025 Yangjun Chen ACS-4902 217

Context of Expression

• By “context”, we mean an element in a document,

working as a reference point (current node).

• So it makes sense to apply axes like parent,

ancestor, or next-sibling to a current node.

Jan. 2025 Yangjun Chen ACS-4902 218

/StarMovieData//Star/self::node()

/StarMovieData//Star

• Two functions: text(), node()

- /child::text() – select all those children of the current

node, which are text nodes

- /child::node() – select all the children of the current

node, whatever their node type

- /self::node() – select the current node

Jan. 2025 Yangjun Chen ACS-4902 219

Conditions in Path Expressions

As we evaluate a path expression, we can restrict ourselves to follow

only a subset of the paths whose tags match the tags in the

expression. To do so, we follow a tag by a condition, surrounded by

square brackets. Such a condition can be anything that has a boolean

value. Values can be compared by comparison operators: = , >=, !=.

A compound condition can be constructed by connecting

comparisons with logic operations: , .

/StarMovieData/Star[.//City = “Malibu”]/Name

<Name>Carrie Fisher</Name>

StarMovieData

City

Star

Name

“Malibu” main path

Jan. 2025 Yangjun Chen ACS-4902 220

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

<Name>Carrie Fishes</Name>

<Address>

<Street>123 Maple St.</Street><City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street><City>Malibu</City>

<Address>

</Star>

<Star starID = “mh” starredIn = “sw”>

<Name>Mark Hamill</Name><Street>456 Oak Rd.</Street>

<City>Brentwood</City>

</Star>

<Movie movieID = “sw” starOf = “cf mh”>

<Title>Star Wars</title><Year>1977</Year>

</Movie>

</StarMovieData>
/StarMovieData/Star[.//City = “Malibu”]/Name

<Name>Carrie Fisher</Name>

Jan. 2025 Yangjun Chen ACS-4902 221

movie

title
year

Carrie

Fisher

street
city street

city

Maple H’wood Locust Malibu

Mark

Hamill
Oak B’wood 1977

starMovieData

star star

name
name

addr. addr. street

city

Star War

StarMovieData

City

Star

Name

“Malibu”

Name = “Carrie Fisher”

/StarMovieData/Star[.//City = “Malibu”]/Name

Jan. 2025 Yangjun Chen ACS-4902 222

Conditions in Path Expressions

As we evaluate a path expression, we can restrict ourselves to follow

only a subset of the paths whose tags match the tags in the

expression. To do so, we follow a tag by a condition, surrounded by

square brackets. Such a condition can be anything that has a boolean

value. Values can be compared by comparison operators: = , >=, !=.

A compound condition can be constructed by connecting

comparisons with operations: , .

/StarMovieData/Star[..//City = “Malibu”]/Name
StarMovieData

City Star

Name
“Malibu”

/StarMovieData/Star[.//City = “Malibu”]/Name

Jan. 2025 Yangjun Chen ACS-4902 223

movie

title
year

Carrie

Fisher

street
city street

city

Maple H’wood Locust Malibu

Mark

Hamill
Oak B’wood 1977

starMovieData

star star

name
name

addr. addr. street

city

Star War

StarMovieData

City

Star

Name

“Malibu”

Name = “Carrie Fisher”

/StarMovieData/Star[..//City = “Malibu”]/Name

Jan. 2025 Yangjun Chen ACS-4902 224

movie

title
year

Carrie

Fisher

street
city street

city

Maple H’wood Locust Malibu

Mark

Hamill
Oak B’wood 1977

starMovieData

star star

name
name

addr. addr. street

city

Star War

StarMovieData

City

Star

Name

“Malibu”

Name = “Mark Hamil”

/StarMovieData/Star[..//City = “Malibu”]/Name

Jan. 2025 Yangjun Chen ACS-4902 225

Conditions in Path Expressions

Several other useful forms of condition are:

• An integer [i] by itself is true only when applied the ith child of its

parent.

• A tag [T] by itself is true only for elements that have one or more

subelements with tag T.

• An attribute [A] by itself is true only for elements that have an

attribute A.

/StarMovieData/Stars/Star[2]

/StarMovieData/Stars/Star[Address]

/StarMovieData/Stars/Star[@startID]

Jan. 2025 Yangjun Chen ACS-4902 226

/Movies/Movie/Version[1]/@year

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

<Movie title = “King Kong” >

<Version year = “1933”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Bridegs</Star>

<Star>Jessica Lange</Star>

</Version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

/Movies/Movie/Version/Star?

Jan. 2025 Yangjun Chen ACS-4902 227

Wildcards

In an XPath expression, we can use * to say “any tag”. Likewise,

@* says “any attribute.”

/StarMovieData/*/@*

Results: “cf”, “sw”, “mh”, “sw”, “sw”, “cf mh”

<StarMovieData>

<Star starID = “cf” starredIn = “sw”>

… …

</Star>

<Star starID = “mh” starredIn = “sw”>

… …

</Star>

<Movie movieID = “sw” starOf = “cf mh”>

… …

</Movie>

</StarMovieData>

Jan. 2025 Yangjun Chen ACS-4902 228

The XPath expressions are mainly used in HTML,

XQuery and XSLT languages.

{doc(starMovie.xml)/StarMovieData/*/@*}

Example:

• Cf

• Sw

• Mh

• Sw

• Sw

• cf mh

Jan. 2025 Yangjun Chen ACS-4902 229

XQuery

• XQuery is an extension of XPath that has become a

standard for high-level querying of databases containing

XML data.

• XQuery is designed to take data from multiple

databases, from XML files, from remote Web

documents, even from CGI (common gate interface)

scripts, and to produce XML results that you can

process with XSLT.

Jan. 2025 Yangjun Chen ACS-4902 230

XQuery Basics

All values produced by XQuery expressions are sequences

of items.

Items:

primitive values

nodes: document, element, attribute nodes

XQuery is a functional language, which implies that any

XQuery expression can be used in any place that an

expression is expected.

Jan. 2025 Yangjun Chen ACS-4902 231

FLWR Expressions

FLWR (pronounced “flower”) expressions are in some sense

analogous to SQL select-from-where expressions.

An XQuery expression may involve clauses of four types, called

for-, let-, where-, and return-clauses (FLWR).

1. The query begins with zero or more for- and let-clauses. There

can be more than one of each kind, and they can be interlaced

in any order, e.g., for, for, let, for, let.

2. Then comes an optional where-clause.

3. Finally, there is exactly one return-clause.

Return <Greeting>“Hello World”</Greeting>

Jan. 2025 Yangjun Chen ACS-4902 232

• The intent of this clause is that the expression is evaluated and assigned to

the variable for the remainder of the FLWR expression.

• Variables in XQuery must begin with a dollar-sign.

• More generally, a comma-separated list of assignments to variables can appear.

let $stars := doc(“stars.xml”)

for Clause

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

for variable in expression

let $movies := doc(“movies.xml”)

$stars := doc(“stars.xml”)

let variable := expression

Let Clause

Jan. 2025 Yangjun Chen ACS-4902 233

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Stars>

<Star>

<Name>Carrie Fisher</Name>

<Address>

<Street>123 Maples St.</street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ave.</Street>

<City>Malibu</City>

</Address>

</Star>

… more stars

</Stars>

Stars.xml

Jan. 2025 Yangjun Chen ACS-4902 234

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

Movies.xml

Jan. 2025 Yangjun Chen ACS-4902 235

This clause is applied to an item, and the condition, which is an expression,

evaluates to true or false.

where condition

return Clause

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return $m/Version/Star

return expression

This clause returns the values obtained by evaluating expression.

<Star>Fay Wray</Star>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parker</Star>

where $s/Address/Street = “123 Maple St.” and

$s/Address/City = “Malibu”

Where Clause

Jan. 2025 Yangjun Chen ACS-4902 236

<? Xml version = “1.0” encoding = “utf-8” … ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return $m/Version/Star

<Star>Fay Wray</Star>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parker</Star>

Jan. 2025 Yangjun Chen ACS-4902 237

Replacement of variables by their Values

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return <Movie title = $m/@title>$m/Version/Star</Movie>

Not correct! The variable will not be replaced by its values.

<Movie title = $m/@title>$m/Version/Star</Movie>

<Movie title = $m/@title>$m/Version/Star</Movie>

<Movie title = $m/@title>$m/Version/Star</Movie>

… …

Jan. 2025 Yangjun Chen ACS-4902 238

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return <Movie title = {$m/@title}>{$m/Version/Star}</Movie>

<Movie title = “King Kong”><Star>Fay Wray</Star></Movie>

<Movie title = “King Kong”><Star>Jeff Brideges</Star></Movie>

<Movie title = “King Kong”><Star>Jessica Lange</Star></Movie>

<Movie title = “Footloose”><Star>Kevin Bacon</Star></Movie>

<Movie title = “Footloose”><Star>John Lithgow</Star></Movie>

<Movie title = “Footloose”><Star>Sarah Jessica Parker</Star></Movie>

… …

Jan. 2025 Yangjun Chen ACS-4902 239

Joins in XQuery

We can join two or more documents in XQuery in much the same

way as in SQL. In each case, we need variables, each of which

ranges over elements of one of the documents or tuples of one of

the relations, respectively.

1. In SQL, we use a from-clause to introduce the needed tuple

variables

2. In XQuery, we use a for-clause.

let $movies := doc(“movies.xml”)

$stars := doc(“stars.xml”)

for $s1 in $movies/Movies/Movie/Version/Star

$s2 in $Stars/Stars/Star

where data($s1) = data($s2/Name)

return $s2/Address/City

Select ssn, lname, Dname

From employees s1, departments s2

Where s1.dno = s2. Dnumber

Jan. 2025 Yangjun Chen ACS-4902 240

<? Xml version = “1.0” encoding = “utf-8” … ?>

<Stars>

<Star>

<Name>Fay Wray</Name>

<Address>

<Street>123 Maples St.</street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street>

<City>Mallibu</City>

</Address>

</Star>

… more stars

</Stars>

<? Xml version = “1.0” …. … ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

let $movies := doc(“movies.xml”)

$stars := doc(“stars.xml”)

for $s1 in $movies/Movies/Movie/Version/Star

$s2 in $Stars/Stars/Star

where data($s1) = data($s2/Name)

return $s2/Address/City

Jan. 2025 Yangjun Chen ACS-4902 241

XQuery Comparison Operators

A query: find all the stars that live at 123 Maple St., Malibu.

The following FLWR seems correct. But it does not work.

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star

where $s/Address/Street = “123 Maple St.”

and $s/Address/City = “Malibu”

return $s/Name

Correct query:

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star,

$s1 in $s/Address

where $s1/Street = “123 Maple St.” and

$s1//City = “Malibu”

return $s/Name

<? Xml version = “1.0” encoding = “utf-8” …

?>

<Stars>

<Star>

<Name>Fay Wray</Name>

<Address>

<Street>123 Maples St.</street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ave.</Street>

<City>Mallibu</City>

</Address>

</Star>

… more stars

</Stars>

Jan. 2025 Yangjun Chen ACS-4902 242

Elimination of Duplicates

XQuery allows us to eliminate duplicates in sequences of any kind,

by applying the built-in distinct values.

Example. The result obtained by executing the following first query

may contain duplicates. But the second not.

let $starsSeq := (

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return $m/Version/Star

)

return <Stars>{$starSeq}</Stars>

let $starsSeq := distinct-values(

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

return $m/Version/Star

)

return <Stars>{$starSeq}</Stars>

Select average(distinct salary) from employee;

Jan. 2025 Yangjun Chen ACS-4902 243

Quantification in XQuery

There are expressions that say, in effect, for all (), and

there exists ():

every variable in expression1 satisfies expression2

some variable in expression1 satisfies expression2

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star

where every $c in $s/Address/City

satisfies $c = “Hollywood”

return $s/Name

Find the stars who have houses only in

Hollywood.

let $stars := doc(“stars.xml”)

for $s in $stars/Stars/Star

where $c in $s/Address/City satisfies

$c = “Hollywood”

return $s/Name

Find the stars with a home in Hollywood.

(Key word some is not used.)

Jan. 2025 Yangjun Chen ACS-4902 244

Select ssn, fname, salary from employee where salary

> all (select salary from employee where dno = 4);

Select fname, lname

from employee

where

exists (select *

from dependent

where essn = ssn);

Jan. 2025 Yangjun Chen ACS-4902 245

Aggregation

XQuery provides built-in functions to compute the usual

aggregations such as count, average, sum, min, or max. They take

any sequence as argument. That is, they can be applied to the result

of any XPath expression.

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie

where count($m/Version) > 1

return $m

Find the movies with multiple versions.

Select s.ssn, s.lname, count(r.lname)

from employee s, employee r

where s.ssn = r.superssn

group by s.ssn, s.lname;

having count(s.name) < 3;

Jan. 2025 Yangjun Chen ACS-4902 246

Branching in XQuery Expressions

There is an if-then expression in Xquery of the form:

if (expression1) then (expression2)

let $kk := doc(“movies.xml”)/Movies/Movie/Movie[@title = “King Kong”]

for $v in $kk/Version

return if ($v/@year = max($kk/Version/@year))

then <Latest>{$v}</Latest>

else <Old>{$v}</Old>

Tag the version of King Kong.

<? Xml version = “1.0” …. … ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

Jan. 2025 Yangjun Chen ACS-4902 247

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

Movies.xml

Let $kk :=

doc(“movies.xml”)/Movies/Movie/Movie

[@title = “King Kong”]

For $v in $kk/Version

Return if ($v/@year =

max($kk/Version/@year))

then <Latest>{$v}</Latest>

else <Old>{$v}</Old>

<Latest><Version year = “1993”> … </Latest>

<Old><Version year = “1976”> … </Old>

Jan. 2025 Yangjun Chen ACS-4902 248

Ordering the Result of a Query

It is possible to sort the result as part of a FLWR query

order list of expressions

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie,

$v in $m/Version

order $v/@year

return <Movie title = “{$m/@title}” year = “{$v/@year}” />

Construct the sequence of title-year pairs, ordered by year.

Select *

From employees

order by ssn

Jan. 2025 Yangjun Chen ACS-4902 249

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

Movies.xml

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie,

$v in $m/Version

order $v/@year

return <Movie title = “{$m/@title}”

year = “{$v/@year}” />

<Movie title = “King Kong” year = “1976” />

<Movie title = “Footloose” year = “1984” />

<Movie title = “King Kong” year = “1993” />

Jan. 2025 Yangjun Chen ACS-4902 250

let $movies := doc(“movies.xml”)

for $m in $movies/Movies/Movie,

$v in $m/Version

order $m/@title, $v/@year

return <Movie title = “{$m/@title}” year = “{$v/@year}” />

<Movie title = “Footloose” year = “1984” />

<Movie title = “King Kong” year = “1976” />

<Movie title = “King Kong” year = “1993” />

Jan. 2025 Yangjun Chen ACS-4902 251

An XQuery expression can be embedded in an

HTML file.

.

.

.

{

for $x in doc("books.xml")/bookstore/book/title

order by $x

return {$x}

}

.
.
.

About usage of XQuery

Jan. 2025 Yangjun Chen ACS-4902 252

Extensible Stylesheet Language

XSLT (Extensible Stylesheet Language for Transformation) is a

standard of the World-Wide-Web Consortium.

- Its original purpose was to allow XML documents to be

transformed into HTML or similar forms that allowed the

document to be viewed or printed.

- In practice, XSLT is another query language for XML to extract

data from documents or turn one document form into another

form.

XSLT Basics

Like XML schema, XSLT specifications are XML documents,

called stylsheet. The tag used in XSLT are found in a name-space:

http://www.w3.org/1999/XSL/Transform.

Jan. 2025 Yangjun Chen ACS-4902 253

At the highest level, a stylesheet looks like:

<? Xml version = ‘1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

… …

</xsl:stylesheet>

Templates

A stylesheet will have one or more templates. To apply a stylesheet

to an XML document, we go down the list of templates until we

find one that matches the root.

<xsl:template match = “XPath expression”>

Jan. 2025 Yangjun Chen ACS-4902 254

Templates

XPath expression can be either rooted (beginning with a slash)

or relative. It describes the elements of XML documents to which

this template is applied.

<xsl:template match = “XPath expression”>

Rooted expression – the template is applied to every element of the

document that matches the path (absolute path).

Relative expression – part of an Xpath, evaluated relative to a

reference point (the current node).

Jan. 2025 Yangjun Chen ACS-4902 255

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

<xsl:template match = “/”>

<HTML>

<BODY>

This is a document

</BODY>

</HTML>

</xsl:template >

</xsl:stylesheet>

Applying the template, an XML document is transformed to a HTML file:

<HTML>

<BODY>

This is a document

</BODY>

</HTML>

Jan. 2025 Yangjun Chen ACS-4902 256

Obtaining Values from XML Data

<xsl:value-of select = “expression” />

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

<xsl:template match = “/Movies/Movie”>

<xsl:value-of select = “@title” />

</xsl:template >

</xsl:stylesheet>

This ability makes XSTL a

query language.

“King Kong”

“Footloose”

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

<version year = “2005” />

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr</Star>

</Version>

</Movie>

</Movies>

Jan. 2025 Yangjun Chen ACS-4902 257

Recursive Use of Templates

<xsl:apply-template select = “expression” />

Powerful transformations require recursive application

of templates at various elements of the input.

Jan. 2025 Yangjun Chen ACS-4902 258

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

<xsl:template match = “/Movies”>

<Movies>

<xsl:apply-templates />

</Movies>

</xsl:template >

<xsl:template match = “Movie”>

<Movie title = “<xsl:value-of select = “@title” />”>

<xsl:apply-templates />

</Movie>

</xsl:template>

<xsl:template match = “Version”>

<xsl:apply-template />

</xsl:template>

<xsl:template match = “Star”>

<Star name = “<xsl:value-of select = “.” />”/>

</xsl:template>

</xsl:stylesheet>

<? Xml version = “1.0” encoding = “utf-8”

standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica Parkr

</Star>

</Version>

</Movie>

</Movies>

use this

template

use this

template

use this

template

Jan. 2025 Yangjun Chen ACS-4902 259

<? Xml version = “1.0” encoding = “utf-8”

standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Star name = “Fay Wray” />

<Star name = “Jeff Brideges” />

<Star name = “Jessica Lange” />

</Movie>

<Movie title = “Footloose”>

<Star name = “Kevin Bacon” />

<Star name = “John Lithgow” />

<Star name = “Sarah Jessica Parkr” />

</Movie>

</Movies>

<? Xml version = “1.0” encoding = “utf-8”

standalone = “yes” ?>

<Movies>

<Movie title = “King Kong”>

<Version year = “1993”>

<Star>Fay Wray</Star>

</Version>

<Version year = “1976”>

<Star>Jeff Brideges</Star>

<Star>Jessica Lange</Star>

</version>

</Movie>

<Movie title = “Footloose”>

<Version year = “1984”>

<Star>Kevin Bacon</Star>

<Star>John Lithgow</Star>

<Star>Sarah Jessica

Parkr</Star>

</Version>

</Movie>

</Movies>

Jan. 2025 Yangjun Chen ACS-4902 260

Iteration in XSLT

<xsl:for-each select = “expression” >

We can put a loop within a template that gives us freedom

over the order in which we visit certain subelements of

the element to which the template is being applied.

The expression is an XPath expression whose value is a

sequence of items. Whatever is between the opening

<for-each> tag and its matching closing tag is executed

for each item, in turn.

Jan. 2025 Yangjun Chen ACS-4902 261

<? Xml version = “1.0” encoding = “utf-8” standalone = “yes” ?>

<Stars>

<Star>

<Name>Carrie Fisher</Name>

<Address>

<Street>123 Maples St.</street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street>

<City>Mallibu</City>

</Address>

</Star>

… more stars

</Stars>

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform >

<xsl:template match = “/”>

<0L>

<xsl:for-each select = “Stars/Star” >

<xsl:value-of select = “Name”>

</xsl:for-each>

</0L><P />

<0L>

<xsl:for-each select =

“Stars/Star/Address”>

<xsl:value-of select = “City”>

</xsl:for-each>

</0L>

</xsl:template >

</xsl:stylesheet>

1. Carrie Fishes

2. Mark Hamill

… …

1. Hollywood

2. Malibu

… …

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

<xsl:template match = “/”>

<0L>

<xsl:for-each select =

“Stars/Star” >

<xsl:value-of select =

“Name”>

</xsl:for-each>

</0L><P/>

<0L>

<xsl:for-each select =

“Stars/Star/Address”>

<xsl:value-of select =

“City”>

</xsl:for-each>

</0L>

</xsl:template >

</xsl:stylesheet>

Jan. 2025 Yangjun Chen ACS-4902 262

<Stars>

<Star>

<Name>Carrie Fisher</Name>

<Address>

<Street>123 Maples

St.</street>

<City>Hollywood</City>

</Address>

<Address>

<Street>5 Locust Ln.</Street>

<City>Mallibu</City>

</Address>

</Star>

… more stars

</Stars>

1. Carrie Fishes

2. Mark Hamill

… …

1. Hollywood

2. Malibu

… …

<0L>

Carrie Fisher

Mark Hamil

… more stars

</0L><P/>

<0L>

Hollywood

Malibu

… more cities

</0L>

Jan. 2025 Yangjun Chen ACS-4902 263

Conditions in XSLT

<xsl:if test = “boolean expression” >

We can introduce branching into our templates by using an if tag.

Whatever appears between its tag and its matched closing tag is

executed if and only if the boolean expression is true.

<? Xml version = “1.0” encoding = “utf-8” ?>

<xsl:stylesheet xmlns:xsl =

http://www.w3.org/1999/XSL/Transform>

<xsl:template match = “/”>

<TABLE border = “5”><TR><TH>Stars</TH><TR>

<xsl:for-each select = “Stars/Star” >

<xsl:if test = “Address/City = ‘Hollywood’”>

<TR><TD><xsl:value-of select = “Name”</TD>

</TR>

</xsl:if>

</xsl:for-each>

</TABLE>

</xsl:template >

</xsl:stylesheet>

Stars

Carrie Fishes

…

Jan. 2025 Yangjun Chen ACS-4902 264

<TABLE border = “5”><TR><TH>Stars</TH><TR>

<TR>

<TD>

Carrie Fishes

</TD>

</TR>

<TR>

<TD>

… …

</TD>

</TR>

… …

</TABLE>

Stars

Carrie Fishes

…

List all those stars

who have a house

in Hollywood.

Jan. 2025 Yangjun Chen ACS-4902 265

<html>

<body>

<table border="1">

<tr>

<th>Month</th>

<th>Savings</th>

</tr>

<tr>

<td>January</td>

<td>$100</td>

</tr>

</table>

</body>

</html>

Month Savings

January $100

Jan. 2025 Yangjun Chen ACS-4902 266

How to use XSTL to make document transformation?

In this example, creating the XML file that contains the information

about three students and displaying the XML file using XSLT.

<?xml version = "1.0" encoding = "UTF-8"?>
<?xml-stylesheet type = "text/xsl "href = “transform.xsl" ?>
<Student>
<s>
<name> David John Agarwal</name><branch> CSE</branch>
<age> 23</age><city> Manibu</city>
</s>
<s>
<name> Mary Chen</name><branch> CSE</branch>
<age> 17</age><city> New York</city>
</s>
<s>
<name> Christ Henry</name><branch> IT</branch>
<age> 25</age> <city> Washington</city>
</s>
</student>

students.xml

Jan. 2025 Yangjun Chen ACS-4902 267

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html> <body>

<h1 align="center">Students' Basic Details</h1>

<table border="3" align="center" >

<tr>

<th>Name</th>

<th>Branch</th>

<th>Age</th>

<th>City</th>

</tr>

<xsl:for-each select="student/s">

<tr>

<td><xsl:value-of select="name"/></td>

<td><xsl:value-of select="branch"/></td>

<td><xsl:value-of select="age"/></td>

<td><xsl:value-of select="city"/></td>

</tr>

</xsl:for-each>

</table> </body> </html> </xsl:template> </xsl:stylesheet>

transform.xsl

Jan. 2025 Yangjun Chen ACS-4902 268

Name Branch Age City

David John CSE 23 Malibu

Mary Chen CSE 21 New York

Christ

Henry

CSE 22 Washington

Jan. 2025 Yangjun Chen ACS-4902 269

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

public class Main {
public static void main(String args[]) throws Exception {

StreamSource source = new StreamSource(args[0]);
StreamSource stylesource = new StreamSource(args[1]);

TransformerFactory factory = TransformerFactory.newInstance();
Transformer transformer = factory.newTransformer(stylesource);

StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

}
}

How to use XSTL to make document transformation?

(in Java)

Jan. 2025 Yangjun Chen ACS-4902 270

XslTransform xslTran = new XslTransform();

xslTran.Load("transform.xsl");

XmlTextWriter writer = new XmlTextWriter("xslt_output.html",

System.Text.Encoding.UTF8);

xslTran.Transform(students.xml, null, writer);

How to use XSTL to make document transformation?

an XSTL sheet

create a file to store the output

a file containing an XML document to be transformed

Jan. 2025 271Yangjun Chen ACS-4902

The Architecture of a Search Engine

Page

Repository
Indexes

Query

Engine

user

Indexer

RankerCrawler

query

Ranked

pages

Web

Jan. 2025 272Yangjun Chen ACS-4902

The Architecture of a Search Engine

There are two main functions that a search engine must perform.

1. The Web must be crawled. That is, copies of many of the pages

on the Web must be brought to the search engine and processed.

2. Queries must be answered, based on the material gathered from

the Web. Usually, a query is in the form of a word or words that

the desired Web pages should contain, and the answer to a

query is a ranked list of the pages that contain all those words,

or at least some of them.

Jan. 2025 273Yangjun Chen ACS-4902

The Architecture of a Search Engine

Crawler – interact with the Web and find pages, which will be

stored in Page Repository.

Indexer – inverted file: for each word, there is a list of the pages that

contain the word. Additional information in the index for

the word may include its locations within the page or its

role, e.g., whether the word is in the header.

Query engine – takes one or more words and interacts with indexes,

to determine which pages satisfy the query.

Ranker – order the pages according to some criteria.

Jan. 2025 274Yangjun Chen ACS-4902

Web Crawler

A crawler can be a single machine that is started with a set S,

containing the URL’s of one or more Web pages to crawl. There is

a repository R of pages, with the URL’s that have already been

crawled; initially R is empty.

Algorithm: A simple Web Crawler

Input: an initial set of URL’s S.

Output: a repository R of Web pages

Jan. 2025 275Yangjun Chen ACS-4902

Web Crawler

Method: Repeatedly, the crawler does the following steps.

1. If S is empty, end.

2. Select a URL r from the set S to “crawl” and delete r from S.

3. Obtain a page p, using its URL r. If p is already in repository

R, return to step (1) to select another URL from S.

4. If p is not already in R:

(a) Add p to R.

(b) Examine p for links to other pages. Insert into S the URL of

each page q that p links to, but that is not already in R or S.

5. Go to step (1).

r: https://www.youtube.com/watch?v =EctlAlYVWwU →

r1

r2…

p:

https://www.youtube.com/watch?v=EctlAlYVWwU

Jan. 2025 276Yangjun Chen ACS-4902

Web Crawler

The algorithm raises several questions.

a) How to terminate the search if we do not want to search the

entire Web?

b) How to check efficiently whether a page is already in repository

R?

c) How to select a URL r from S to search next?

d) How to speed up the search, e.g., by exploiting parallelism?

Jan. 2025 277Yangjun Chen ACS-4902

Terminating Search

The search could go on forever due to dynamically constructed

pages.

• Set a limit on the number of pages to crawl.

Set limitation:

• Set a limit on the depth of the crawl.

Initially, the pages in set S have depth 1. If the page p selected

for crawling at step (2) of the algorithm has depth i, then any

page q we add to S at step 4-(b) is given depth i + 1. Moreover,

if p has depth equal to the limit, then do not examine links out

of p at all. Rather we simply add p to R if it is not already there.

The limit could be either on each site or on the total number of

pages.

Jan. 2025 278Yangjun Chen ACS-4902

r1

r2

rl

r11

r12

r1m

…
…

…

…

r11…1

r11…2

r11…n
…

depth

Jan. 2025 279Yangjun Chen ACS-4902

Managing the Repository

• When we add a new URL for a page p to the set S, we should

check that it is not already there.

• When we decide to add a new page p to R at step 4-(a) of the

algorithm, we should be sure the page is not already there.

• Hash each Web page to a signature of, say, 64 bits.

• The signatures themselves are stored in a hash table T, i.e., they

are further hashed into a smaller number of buckets, say one

million buckets.

Page signatures:

Jan. 2025 280Yangjun Chen ACS-4902

Hashing2

• Hash each Web page to a signature of, say, 64 bits.

• The signatures themselves are stored in a hash table T, i.e., they

are further hashed into a smaller number of buckets, say one

million buckets.

• When inserting p into R, compute the 64-bit signature h(p), and

see whether h(p) is already in the hash table T. If so, do not store

p; otherwise, store p in T.

Page signatures:

Signatures:

1111 0100 1100

… …

Pages: Hash table:
hashing1 hashing2

Hashing2(111101001100) = addr.

new

page
hashing1 (1111…100) = addr.1111 …100

Jan. 2025 281Yangjun Chen ACS-4902

Selecting the next URL from S

• Completely random choice of next page.

• Maintain S as a queue. Thus, do a breadth-first search of the Web

from the starting point or points with which we initialized S. Since

we presumably start the search from places in the Web that have

“important” pages, we are assured of visiting preferentially those

portions of the Web.

• Estimate the importance of page links in S, and to favor those pages

we estimate to be the most important.

- PageRank

- Priority queue

Jan. 2025 282Yangjun Chen ACS-4902

r1

r2

rl

r11

r12

r1m

…
…

…

…

r111

r112

r11n

…

…

…
…

…

S:

Jan. 2025 283Yangjun Chen ACS-4902

Speeding up the Crawl

• More than one crawling machine

• More crawling processes in a machine

• Concurrent access to S

Jan. 2025 284Yangjun Chen ACS-4902

Query Processing in Search Engine

• Search engine queries are word-oriented: a boolean combination

of words

• Answer: all pages that contain such words

• Method:

- The first step is to use the inverted index to determine those

pages that contain the words in the query.

- The second step is to evaluate the boolean expression:

The AND of bit vectors (a bit vector represents an inverted

list) gives the pages containing both words.

The OR of bit vectors gives the pages containing one or both.

(word1 word2) (word3 word4)

Jan. 2025 285Yangjun Chen ACS-4902

word1: 10 … 001 … 00

word2: 10 … 101 … 10

word1 appears in document i

10 … 001 … 00 Show all the documents

which contain word1 and word2

Inverted list

word3: 10 … 001 … 01

Word4: 10 … 101 … 11

10 … 001 … 01

(word1 word2) (word3 word4):

10 … 001 … 00

10 … 001 … 01

Jan. 2025 286Yangjun Chen ACS-4902

Trie-based Method for Query Processing

• A trie is a multiway tree, in which each path corresponds to a

string, and common prefixes in strings to common prefix paths.

• Leaf nodes include either the documents themselves, or links to

the documents containing the string that corresponds to the path.

Example:

s1: cfamp

s2: cbp

s3: cfabm

s4: fb

A trie constructed for

The following strings:

Jan. 2025 287Yangjun Chen ACS-4902

Trie-based Method for Query Processing

• Item sequences sorted (decreasingly) by appearance frequency

(af) in documents.

DocID Items Sorted item sequence

1 f, a, c, m, p c, f, a, m, p

2 a, b, c, f c, f, a, b

3 b, f f, b

4 b, c, p c, b, p

5 a, f, c, m, p, e c, f, a, m, p, e

• View each sorted item sequence as a string

• Construct a trie over them, in which each node is associated

with a set of document IDs each containing the substring

represented by the corresponding prefix.

af(w) =
No. of doc.

No. of doc. Containing w

Jan. 2025 288Yangjun Chen ACS-4902

Trie-based Method for Query Processing

• View each sorted item sequence as a string and construct a trie

over them.

items links

c

f

a

b

m

p

e

{1, 2, 4, 5}

{1, 2, 5}

{2}

{4} {3}

Header table:

{1, 2, 5}

{1, 5}

{1, 5}

{3}

{4}

{2}

Sorted item sequence DocID

1 c, f, a, m, p

2 c, f, a, b, m

3 f, b

4 c, b, p

5 c, f, a, m, p, e
e

{5}

Jan. 2025 289Yangjun Chen ACS-4902

Trie-based Method for Query Processing

• Evaluation of queries

- Let Q = word1 word2 … wordk be a query

- Sort increasingly the words in Q according to the appearance

frequency:

word i1
word ik

- Find a node in the trie, which is labeled with word i1

- If the path from the root to word i1
contains all wordi (i = 1, …, k),

return the document identifiers associated with word i1

- The check can be done by searching the path bottom-up, starting

from . In this process, we will first try to find , and

then , and so on.

word i1 word i2

word i3

 word i2
 …

Jan. 2025 290Yangjun Chen ACS-4902

Trie-based Method for Query Processing

• Example

query: c b f b f c
sorting

items links

c

f

a

b

m

P

e

Header table:

{1, 2, 4, 5}

{1, 2, 5}

{2}

{4} {3}

{1, 2, 5}

{1, 5}

{1, 5}

{3}

{4}

{2}

e
{5}

Jan. 2025 291Yangjun Chen ACS-4902

Ranker: ranking pages

Once the set of pages that match the query is determined, these

pages are ranked, and only the highest-ranked pages are shown to

the user.

• The presence of all the query words

• The presence of query words in important positions in the page

• Presence of several query words near each other would be a

more favorable indication than if the words appeared in the

page, but widely separated.

• Presence of the query words in or near the anchor text in links

leading to the page in question.

Measuring PageRank:

Jan. 2025 292Yangjun Chen ACS-4902

PageRank for Identifying Important Pages

One of the key technological advances in search is the PageRank

algorithm for identifying the “importance” of Web pages.

The Intuition behind PageRank

When you create a page, you tend to link that page to others that you

think are important or valuable

A Web page is important if many important pages link to it.

Jan. 2025 293Yangjun Chen ACS-4902

Recursive Formulation of PageRank

The Web navigation can be modeled as random walker move. So

we will maintain a transition matrix to represent links.

• Number the pages 1, 2, …, n.

• The transition matrix M has entries mij in row i and column j,

where:

1. mij = 1/r if page j has a link to page i, and there are a total

r 1 pages that j links to.

2. mij = 0 otherwise.

- If every page has at least one link out, then M is stochastic –

elements are nonnegative, and its columns each sum to exactly 1.

- If there are pages with no links out, then the column for that page

will be all 0’s. M is said to be substochastic if there are columns

sum to less than 1.

i j

…

Jan. 2025 294Yangjun Chen ACS-4902

½ ½ 0

½ 0 1

0 ½ 0

M =

p1 p2 p3

Let y, a, m represent the fractions of the time the random walker

spends at the three pages, respectively. We have

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

It is because after a large number of moves, the walker’s distribution

of possible locations is the same at each step.

The time that the random walker spends at a page is used as the

measurement of “importance”.

Yahoo

Amazon Microsoft

1

2 3

Jan. 2025 295Yangjun Chen ACS-4902

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

a = ½ y + 0 a + 1 m

y = ½ y + ½ a + 0 m

m = 0 y + ½ a + 0 m

Jan. 2025 296Yangjun Chen ACS-4902

a = ½ y + 0 a + 1 m

y = ½ y + ½ a + 0 m

m = 0 y + ½ a + 0 m

P(a) = ½ P(y) + 0 a P(a) + 1 P(y)

P(y) = ½ P(y) + ½ P(a) + 0 P(m)

P(m) = 0 P(y) + ½ P(a) + 0 P(m)

P(a) = P(a | y) P(y) + P(a | a) P(a) + P(a | m) P(m)

P(y) = P(y | y) P(y) + P(y | a) P(a) + P(y | m) P(m)

P(m) = P(m | y) P(y) + P(m | a) P(a) + P(m | m) P(m)

Conditional probability

Jan. 2025 297Yangjun Chen ACS-4902

Solutions to the equation:

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

• If (y0, a0, m0) is a solution to the equation, then (cy0, ca0, cm0)

is also a solution for any constant c.

• y0 + a0 + m0 = 1.

Gaussian elimination method – O(n3). If n is large, the method

cannot be used. (Consider billions pages!)

Jan. 2025 298Yangjun Chen ACS-4902

Approximation by the method of relaxation:

• Start with some estimate of the solution and repeatedly multiply

the estimate by M.

• As long as the columns of M each add up to 1, then the sum of

the values of the variables will not change, and eventually they

converge to the distribution of the walker’s location.

• In practice, 50 to 100 iterations of this process suffice to get very

close to the exact solution.

Suppose we start with (y, a, m) = (1/3, 1/3, 1/3). We have

½ ½ 0

½ 0 1

0 ½ 0

=

2/6

3/6

1/6

1/3

1/3

1/3

Jan. 2025 299Yangjun Chen ACS-4902

At the next iteration, we multiply the new estimate (2/6, 3/6, 1/6)

by M, as:

½ ½ 0

½ 0 1

0 ½ 0

=

5/12

4/12

3/12

2/6

3/6

1/6

If we repeat this process, we get the following sequence of vectors:

9/24

11/24

4/24

,
20/48

17/48

11/48

, ….,

2/5

2/5

1/5

Jan. 2025 300Yangjun Chen ACS-4902

Spider Traps and Dead Ends

• Dead ends. Some Web pages have no out-links. If the random

walker arrives at such a page, there is no place to go next, and the

walk ends.

- Any dead end is, by itself, a spider trap. Any page that links

only to itself is a spider trap.

- If a spider trap can be reached from outside, then the random

walker may wind up there eventually and never leave.

• Spider traps. There are sets of Web pages with the property that

if you enter that set of pages, you can never leave because there

are no links from any page in the set to any page outside the set.

Jan. 2025 301Yangjun Chen ACS-4902

Spider Traps and Dead Ends

Applying relaxation to the matrix of the Web with spider traps can

result in a limiting distribution where all probabilities outside a

spider trap are 0.

Problem:

Example.

½ ½ 0

½ 0 0

0 ½ 1

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3

Jan. 2025 302Yangjun Chen ACS-4902

Solutions to the equation:

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

Initially,
y

a

m

=
1/3

1/3

1/3

1/3

1/3

1/3

2/6

1/6

3/6

3/12

2/12

7/12

5/24

3/24

16/24

8/48

5/48

35/48

0

0

1

… …

This shows that with probability 1, the walker will eventually

wind up at the Microsoft page (page 3) and stay there.

Jan. 2025 303Yangjun Chen ACS-4902

Problem Caused by Spider Traps

• If we interpret these PageRank probabilities as “importance” of

pages, then the Microsoft page has gathered all importance to

itself simply by choosing not to link outside.

• The situation intuitively violates the principle that other pages,

not you yourself, should determine the importance of your page.

Jan. 2025 304Yangjun Chen ACS-4902

Problem Caused by Dead Ends

• The dead end also cause the PageRank not to reflect importance

of pages.

Example.

½ ½ 0

½ 0 0

0 ½ 0

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3

1/3

1/3

1/3

2/6

1/6

1/6

3/12

2/12

1/12

5/24

3/24

2/24

8/48

5/48

3/48

0

0

0

… …

Jan. 2025 Yangjun Chen ACS-4902 305

PageRank Accounting for Spider Traps and Dead Ends

We simulate the web navigation by a random walk. Each time a

walker goes to a page, we let the walker follow a random out-link,

if there is one, with probability (normally, 0.8 0.9). With

probability 1 - (called the taxation rate), we remove that walker

and deposit a new walker at a randomly chosen Web page.

• If the walker gets stuck in a spider trap, it doesn’t matter because

after a few time steps, that walker will disappear and be replaced

by a new walker.

• If the walker reaches a dead end and disappears, a new walker

will take over shortly.

Jan. 2025 Yangjun Chen ACS-4902 306

Example.

½ ½ 0

½ 0 0

0 ½ 1

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3

Let Pnew and Pold be the new and old distributions of the location of

the walker after one iteration, the relationship between these two

can be expressed as:

½ ½ 0

½ 0 0

0 ½ 1

Pnew = 0.8 Pold + 0.2
1/3

1/3

1/3

 1 -

Jan. 2025 307Yangjun Chen ACS-4902

The meaning of the above equation is:

With probability 0.8, we multiply Pold by the matrix of the Web to

get the new location of the walker, and with probability 0.2 we start

with a new walker at a random place.

If we start with Pold = (1/3, 1/3, 1/3) and repeatedly compute Pnew

and then replace Pold by Pnew, we get the following sequence of

approximation to the asymptotic distribution of the walker:

.333

.333

.333

.333

.200

.467

.280

.300

.520

.259

.179

.563

7/33

5/33

21/33

… …

Jan. 2025 Yangjun Chen ACS-4902 308

Example.

½ ½ 0

½ 0 0

0 ½ 0

M =

p1 p2 p3

Yahoo

Amazon Microsoft

1

2 3

½ ½ 0

½ 0 0

0 ½ 0

Pnew = 0.8 Pold + 0.2
1/3

1/3

1/3

 1 -

Jan. 2025 309Yangjun Chen ACS-4902

If we start with Pold = (1/3, 1/3, 1/3) and repeatedly compute Pnew

and then replace Pold by Pnew, we get the following sequence of

approximation to the asymptotic distribution of the walker:

.333

.333

.333

.333

.200

.200

.280

.200

.147

.259

.179

.147

35/165

25/165

21/165
, …,

Notice that these probabilities do not sum to one, and there is slightly

more than 50% probability that the walker is “lost” at any given

time. However, the ratio of the importance of Yahoo!, and Amazon

are the same as in the above example. That makes sense because in

both the cases there are no links from the Microsoft page to

influence the importance of Yahoo! or Amazon.

Jan. 2025 Yangjun Chen ACS-4902 310

Topic-Specific PageRank

The calculation o PageRank should be biased to favor certain pages.

Teleport Sets

Choose a set of pages about a certain topic (e.g., sport) as a teleport

set.

Yahoo

Amazon Microsoft

1

2 3

Assume that we are interested only in retail sales, so we choose a

teleport set that consists of Amazon alone.

Jan. 2025 311Yangjun Chen ACS-4902

½ ½ 0

½ 0 1

0 ½ 0

=

y

a

m

y

a

m

½ ½ 0

½ 0 1

0 ½ 0

= 0.8

y

a

m

y

a

m

0

1

0

+ 0.2

The entry for Amazon is set to 1.

Jan. 2025 312Yangjun Chen ACS-4902

Topic-Specific PageRank

The general rule for setting up the equations in a topic-specific

PageRank problem is as follows.

Pnew = MPold + (1 -)T

Suppose there are k pages in the teleport set. Let T be a column-

vector that has 1/k in the positions corresponding to members of the

teleport set and 0 elsewhere. Let M be the transition matrix of the

Web. Then, we must solve by relaxation the following iterative rule:

T =

0

1/k

0
.
.
.

1/k
.
.
.

