Elementary Graph Algorithms |

» Graph representation

 Graph traversal
- Breadth-first search
- Depth-first search

e Parenthesis theorem

Jan. 2017

Graphs

¢ Graph G =(V, E)
» V = set of vertices
» E =set of edges < (VxV)
* Types of graphs
» Undirected: edge (u, v) = (v, u); for all v, (v, v) ¢ E (No self
loops.)

» Directed: (u, v) Is edge from u to v, denoted as u — v. Self loops
are allowed.

» Welghted: each edge has an associated weight, given by a weight
functionw : E - R.

» Dense: |E| = |V|°.
» Sparse: |E| << |V|%.
* |[E[=O(V[?)

graphs-1- 2

Graphs

* |If (u, v) € E, then vertex v Is adjacent to vertex u.
+ Adjacency relationship is:

» Symmetric If G Is undirected.

» Not necessarily so if G is directed.

+ |f G IS connected:

» There is a path between every pair of vertices.
» |E[> V|- 1.
» Furthermore, If [E|=|V| -1, then G is a tree.

¢ Other definitions in Appendix B (B.4 and B.5) as needed.

graphs-1-3

Representation of Graphs

+ Two standard ways.
» Adjacency Lists.

" b " d C
9@ 2 ==
' b fa | +——{c |
N\ c| Tld | +—|a b
(—d dm T
» Adjacency Matrix.
2
1234
9"@ 10 1 1 1
2011010
G‘ 3110 1
3 4 41010

graphs-1-4

Adjacency Lists

+ Consists of an array Adj of |V| lists.
¢ One list per vertex.

¢ Foru € V, Adj[u] consists of all vertices adjacent to u.

@v@ a gL iy WO By ey
b C— : : :

G"@ . ; If weighted, store weights also in
: — adjacency lists.

@'@ a| T b= 1d =

' b a_ | - C_ |

G‘@ c d_ | +—|a v [/

d a | T "|cC

graphs-1-5

Storage Requirement

+ For directed graphs:
» Sum of lengths of all adj. lists is

2 out-degree(v) = |E|

veV

No. of edges leaving v

» Total storage: ©(|V| + |E|)

¢ For undirected graphs:
» Sum of lengths of all adj. lists is
> degree(v) = 2|E|

Yy T No. of edges incident on v. Edge (u,v) is incident
on vertices u and v.

» Total storage: O(|V| + |E|)

graphs-1-6

Pros and Cons: adj list

¢ Pros

» Space-efficient, when a graph is sparse.

» Can be modified to support many graph variants.
+ Cons

» Determining if an edge (u, v) €G is not efficient.
» Have to search in u’s adjacency list. ®(degree(u)) time.
* O(V) In the worst case.

graphs-1-7

Adjacency Matrix

* V| x |V| matrix A.
* Number vertices from 1 to |V| in some arbitrary manner.
+ Ais then given by:

.. 1 if(1,])eE
Al Jl=a; = (J).

0 otherwise
1 B 1234 %) 2 1234
v 10 1 1 1 ' 10 1 1 1
200 0 1 0 ‘ 211 0 10
G“ 310 0 0 1 ® 3110 1
3 4 40000 3 4 41010

A = AT for undirected graphs.

graphs-1-8

Space and Time

* Space: O(V?).
» Not memory efficient for large graphs.
¢ Time: to list all vertices adjacent to u: O(V).
¢ Time: to determine Iif (u, v) € E: ©(1).
+ Can store weights instead of bits for weighted graph.

graphs-1-9

Graph-searching Algorithms

¢ Searching a graph:

» Systematically follow the edges of a graph
to visit the vertices of the graph.

+ Used to discover the structure of a graph.
+ Standard graph-searching algorithms.

» Breadth-first Search (BFS).
» Depth-first Search (DFS).

graphs-1- 10

Breadth-first Search

¢ |Input: Graph G = (V, E), either directed or undirected,
and source vertexs € V.

¢ Output:

» d[v] = distance (smallest # of edges, or shortest path) from s to v,
forall v e V. d[v] = « if v is not reachable from s.

» z]v] = usuch that (u, v) is last edge on shortest path s v.
e U IsV’s predecessor.

» Builds breadth-first tree with root s that contains all reachable
vertices.

Definitions:

Path between vertices u and v: Sequence of vertices (vq, V,, ..., V,) such that
u=v, and v =v,, and (v;,v;,,) € E, for all 1<1 <k-1.

Length of the path: Number of edges in the path.

Path is simple if no vertex is repeated.

graphs-1-11

Breadth-first Search

¢ Expands the frontier between discovered and
undiscovered vertices uniformly across the breadth
of the frontier.

» A vertex IS “discovered” the first time It IS encountered
during the search.

» A vertex Is “finished” If all vertices adjacent to it have
been discovered.

+ Colors the vertices to keep track of progress.
» \White — Undiscovered.
— Discovered but not finished.
» Black — Finished.

graphs-1- 12

© 0 ~NOoO U~ WN R

11
12
13
14
15
16
17
18

BES(G,s)

for each vertex u in V[G] — {s}
do color[u] <« white
dfu] « «
n[u] < nil
color[s] < gray
dfs] « 0
nt[S] < nil
Qe
enqueue(Q,s)

10 while Q # @

do u <« dequeue(Q)
for each v in Adj[u]

Iinitialization

dCCeSS Source S

do if color[v] = white

color[u] « black

graphs-1-14

then color[v] « gray
d[v] « d[u] +1
n[v] <« u
enqueue(Q,v)

white: undiscovered
gray: discovered

black: finished

Q: a queue of discovered
vertices

color[v]: color of v

d[v]: distance from s to v
n[u]: predecessor of v

graphs-1 - 15

Example (BES)

® & G

Vv W X

8

Example (BFS)

r t u
1 *)—(=)
() (o
O, O,
Y W X y
Q: wr
11

graphs-1 - 16

Example (BFS)

u

1 ©
0 /oo
? y

graphs-1-17

Example (BFS)

u

O,

-
y

8

graphs-1- 18

Example (BFS)

N X
N <
W

graphs-1-19

Example (BFS)

graphs-1 - 20

Example (BFS)

graphs-1- 21

Example (BFS)

graphs-1 - 22

Example (BFS)

Q: &

graphs-1 - 23

graphs-1-24

Example (BES)

BF Tree

Analysis of BFS

+ Initialization takes O(|V|).

* Traversal Loop

» After initialization, each vertex Is enqueued and dequeued at most
once, and each operation takes O(1). So, total time for queuing is
O(VI).

» The adjacency list of each vertex Is scanned at most once. The
sum of lengths of all adjacency lists is O(|E|).

¢ Summing up over all vertices => total running time of BFS
IS O(|V| + |E[), linear in the size of the adjacency list
representation of graph.

¢ Correctness Proof

» We omit for BFS and DFS.
» Will do for later algorithms.

graphs-1 - 25

Breadth-first Tree

¢ For agraph G = (V, E) with source s, the predecessor
subgraphof GisG_= (V_, E) where
» V_={veV : r[v] #nil} U {s}
» E_={(n[v],v) e E:veV_-{s}}

¢ The predecessor subgraph G _is a breadth-first tree
If:
» V _consists of the vertices reachable from s and

» forall v e V_, there is a unique simple path fromstovin G,
that Is also a shortest path fromsto v in G.

* The edges in E_are called tree edges.
|E7z| = |V7z| - 1.

graphs-1 - 26

Depth-first Search (DES)

+ Explore edges out of the most recently discovered
vertex v.

+ When all edges of v have been explored, backtrack to
explore other edges leaving the vertex from which v
was discovered (its predecessor).

¢ “Search as deep as possible first.”

¢ Continue until all vertices reachable from the original
source are discovered.

+ |f any undiscovered vertices remain, then one of them
IS chosen as a new source and search Is repeated from
that source.

graphs-1 - 27

Depth-first Search

¢ |Input: G = (V, E), directed or undirected. No source
vertex given!

¢ Output:

» 2 timestamps on each vertex. Integers between 1 and 2|V/|.
 d[v] = discovery time (v turns from white to gray)
 f[v] = finishing time (v turns from gray to black)
» m[v] : predecessor of v = u, such that v was discovered during
the scan of u’s adjacency list.

+ Coloring scheme for vertices as BFS. A vertex Is
» “discovered” the first time it is encountered during the search.

» A vertex Is “finished” if it is a leaf node or all vertices adjacent
to it have been finished.

graphs-1 - 28

Pseudo-code

DES(G)

1. for each vertex u e V[G]

2. docolor[u] « white

3. n[u] < NIL

4. time <0

5. for each vertex u € V[G]

6. do if color[u] = white
7. then DFS-Visit(u)

Uses a global timestamp time.

graphs-1 - 29

DES-Visit(u)

1. color[u] « GRAY // White vertex u
has been discovered

2. time<«time+1

3. d[u] < time

4, for each v € Adj[u]

5. do if color[v] = WHITE

6. then wt[v] < u

7. DFS-Visit(v)

8. color[u] « BLACK // Blacken u;

it is finished.
Q. flu] < time <« time + 1

Example (DES)

graphs-1 - 30

Example (DES)

graphs-1 - 31

Example (DES)

graphs-1 - 32

Example (DES)

graphs-1 - 33

Example (DES)

graphs-1-34

Example (DES)

graphs-1 - 35

Example (DES)

W

graphs-1 - 36

Example (DES)

W

graphs-1 - 37

Example (DES)

graphs-1 - 38

Example (DES)

graphs-1 - 39

Example (DES)

graphs-1 - 40

Example (DES)

graphs-1-41

Example (DES)

graphs-1- 42

Example (DES)

’ @
4
e
4
e
4
7
4
4
4
4
d
4
d
e
4
e
4
e
V SN
N
Y
AY
\
1
1
1
N
S _,”

Z

graphs-1-43

Example (DES)

graphs-1-44

Example (DES)

graphs-1 - 45

Analysis of DFS

* Loops on lines 1-2 & 5-7 take ©(V) time, excluding time
to execute DFS-Visit.

+ DFS-Visit is called once for each white vertex veV
when it’s painted gray the first time. Lines 3-6 of DFS-
Visit is executed |Adj[v]| times. The total cost of
executing DFS-Visitis >_,_,|Adj[V]| = ©(E)

¢ Total running time of DFS is ©(|V| + |E]).

graphs-1 - 46

Parenthesis Theorem

Theorem 22.7
For all u, v, exactly one of the following holds:

1. d[u] < f[u] <d]v] <f[v] ord[v] <f][v]<d[u]<f][u]and neither u
nor v iIs a descendant of the other.

2. d[u] <d[v] <f[v] <f[u]andv is a descendant of u.
3.d[v] <d[u] <f[u] <f[v]andu is a descendant of v.

¢ So d[u] <d[v] < f[u] < f[v] cannot happen.

¢ Like parentheses: T d[u] flu]

-
-~

-~
~

* OK:(O)[I(IDH O] () ([) 1

* NotOK:([)][(]) div] f[v] d[v] flv]
Corollary
Vv IS a proper descendant of u if and only If dfu] < d[v] < f[v] <f [u].

graphs-1 - 47

Example (Parenthesis Theorem)

(s (z(y (xx)y) (Ww) z)s) (t(vv) (uu)t)

graphs-1 - 48

Depth-First Trees

* Predecessor subgraph defined slightly different from
that of BFS.

¢ The predecessor subgraph of DFSisG_=(V, E)
where E_={(r[v], v) : v € Vand =[v] = nil}.
» How does it differ from that of BFS?

» The predecessor subgraph G_forms a depth-first forest
composed of several depth-first trees. The edges in E_are
called tree edges.

Definition:
Forest: An acyclic graph G that may be disconnected.

graphs-1 - 49

White-path Theorem

Theorem 22.9

v Is a descendant of u in DF-tree if and only if at time d[u], there
IS a path u ~~=v consisting of only white vertices. (Except for u,
which was just colored gray.)

graphs-1 - 50

Classification of Edges

¢ Tree edge: In the depth-first forest. Found by exploring
(u, v).

¢ Back edge: (u, v), where u Is a descendant of v (in the
depth-first tree).

¢ Forward edge: (u, v), where v Is a descendant of u, but
not a tree edge.

+ Cross edge: any other edge. Can go between vertices In
same depth-first tree or in different depth-first trees.

Theorem:
In DFS of an undirected graph, we get only tree and back edges.
No forward or cross edges.

graphs-1- 51

