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Elementary Graph Algorithms 

• Graph representation 

• Graph traversal 
 - Breadth-first search 

 - Depth-first search 

• Parenthesis theorem 
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Graphs 

 Graph G = (V, E) 

» V = set of vertices 

» E = set of edges  (VV) 

 Types of graphs 

» Undirected: edge (u, v) = (v, u); for all v, (v, v)  E (No self 
loops.) 

» Directed: (u, v) is edge from u to v, denoted as u  v. Self loops 
are allowed. 

» Weighted: each edge has an associated weight, given by a weight 
function w : E  R. 

» Dense: |E|  |V|2. 

» Sparse: |E| << |V|2. 

 |E| = O(|V|2) 
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Graphs 

 If (u, v)  E, then vertex v is adjacent to vertex u. 

 Adjacency relationship is: 

» Symmetric if G is undirected. 

» Not necessarily so if G is directed. 

 If G is connected: 

» There is a path between every pair of vertices. 

» |E|  |V| – 1. 

» Furthermore, if |E| = |V| – 1, then G is a tree. 

 

 Other definitions in Appendix B (B.4 and B.5) as needed. 
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Representation of Graphs 

 Two standard ways. 

» Adjacency Lists. 
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Adjacency Lists 

 Consists of an array Adj of |V| lists. 

 One list per vertex. 

 For u  V, Adj[u] consists of all vertices adjacent to u. 
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Storage Requirement 

 For directed graphs: 

» Sum of lengths of all adj. lists is 

           out-degree(v) = |E| 

             
vV  

» Total storage: (|V| + |E|) 

 For undirected graphs: 

» Sum of lengths of all adj. lists is 

           degree(v) = 2|E| 

             
vV  

» Total storage: (|V| + |E|) 

No. of edges leaving v 

No. of edges incident on v. Edge (u,v) is incident 

on vertices u and v. 
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Pros and Cons: adj list  

 Pros 

» Space-efficient, when a graph is sparse. 

» Can be modified to support many graph variants. 

 Cons 

» Determining if an edge (u, v) G is not efficient. 

• Have to search in u’s adjacency list. (degree(u)) time. 

• (V) in the worst case. 
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Adjacency Matrix 

 |V|  |V| matrix A. 

 Number vertices from 1 to |V| in some arbitrary manner. 

 A is then given by: 



 


otherwise0

),( if1
],[

Eji
ajiA ij

a 

d c 

b 
1 2 

3 4 

    1   2   3   4 

1  0   1   1   1 

2  0   0   1   0 

3  0   0   0   1 

4  0   0   0   0 

a 

d c 

b 
1 2 

3 4 

    1   2   3   4 

1  0   1   1   1 

2  1   0   1   0 

3  1   1   0   1 

4  1   0   1   0 

A = AT for undirected graphs. 
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Space and Time 

 Space: (V2). 

» Not memory efficient for large graphs. 

 Time: to list all vertices adjacent to u: (V). 

 Time: to determine if (u, v)  E: (1). 

 Can store weights instead of bits for weighted graph. 
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Graph-searching Algorithms 

 Searching a graph: 

» Systematically follow the edges of a graph  

to visit the vertices of the graph. 

 Used to discover the structure of a graph. 

 Standard graph-searching algorithms. 

» Breadth-first Search (BFS). 

» Depth-first Search (DFS). 
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Breadth-first Search 

 Input: Graph G = (V, E), either directed or undirected,  
and source vertex s  V. 

 Output:  

» d[v] = distance (smallest # of edges, or shortest path) from s to v, 
for all v  V. d[v] =  if v is not reachable from s. 

» [v] = u such that (u, v) is last edge on shortest path s      v. 

• u is v’s predecessor. 

» Builds breadth-first tree with root s that contains all reachable 
vertices. 

 

 

 

Definitions: 

Path between vertices u and v: Sequence of vertices (v1, v2, …, vk) such that 

u=v1 and v =vk, and (vi,vi+1)  E, for all 1 i  k-1. 

Length of the path: Number of  edges in the path. 

Path is simple if no vertex is repeated. 
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Breadth-first Search 

 Expands the frontier between discovered and 
undiscovered vertices uniformly across the breadth 
of the frontier. 

» A vertex is “discovered” the first time it is encountered 
during the search. 

» A vertex is “finished” if all vertices adjacent to it have 
been discovered. 

 Colors the vertices to keep track of progress. 

» White – Undiscovered. 

» Gray – Discovered but not finished. 

» Black – Finished. 
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BFS(G,s) 

1. for each vertex u in V[G] –  {s} 

2  do color[u]  white 

3       d[u]   

4       [u]  nil 

5 color[s]  gray 

6 d[s]  0 

7  [s]  nil 

8 Q   

9 enqueue(Q,s) 

10 while Q   

11  do u  dequeue(Q) 

12   for each v in Adj[u] 

13    do if color[v] = white 

14     then color[v]  gray 

15              d[v]  d[u] + 1 

16              [v]  u 

17              enqueue(Q,v) 

18   color[u]  black 

 

white: undiscovered 

gray: discovered 

black: finished 

Q: a queue of discovered 

vertices 

color[v]: color of v 

d[v]: distance from s to v 

[u]: predecessor of v 

initialization 

access source s 
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Example (BFS) 

 0 

   

  

 

r s t u 

v w x y 

Q:  s 

      0 
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Example (BFS) 

1 0 

1   

  

 

r s t u 

v w x y 

Q:  w  r 

       1  1 
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Example (BFS) 

1 0 

1 2  

2  

 

r s t u 

v w x y 

Q:  r   t  x 

      1  2  2 
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Example (BFS) 

1 0 

1 2  

2  

2 

r s t u 

v w x y 

Q:  t  x  v 

      2  2  2 
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Example (BFS) 

1 0 

1 2  

2 3 

2 

r s t u 

v w x y 

Q:  x  v  u 

      2  2  3 
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Example (BFS) 

1 0 

1 2 3 

2 3 

2 

r s t u 

v w x y 

Q:  v  u  y 

      2  3  3 
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Example (BFS) 

1 0 

1 2 3 

2 3 

2 

r s t u 

v w x y 

Q:  u  y 

      3  3 
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Example (BFS) 

1 0 

1 2 3 

2 3 

2 

r s t u 

v w x y 

Q:  y 

      3 
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Example (BFS) 

1 0 

1 2 3 

2 3 

2 

r s t u 

v w x y 

Q:   
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Example (BFS) 

1 0 

1 2 3 

2 3 

2 

r s t u 

v w x y 

BF Tree 
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Analysis of BFS 

 Initialization takes O(|V|). 

 Traversal Loop 
» After initialization, each vertex is enqueued and dequeued at most 

once, and each operation takes O(1).  So, total time for queuing is 
O(|V|). 

» The adjacency list of each vertex is scanned at most once.  The 
sum of lengths of all adjacency lists is (|E|). 

 Summing up over all vertices => total running time of BFS 
is O(|V| + |E|), linear in the size of the adjacency list 
representation of graph.  

 Correctness Proof 
» We omit for BFS and DFS. 

» Will do for later algorithms. 
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Breadth-first Tree 

 For a graph G = (V, E) with source s, the predecessor 

subgraph of G is G = (V , E) where  

»  V ={vV : [v]  nil}  {s} 

»  E ={([v], v)  E : v  V  - {s}}  

 The predecessor subgraph G is a breadth-first tree  

if: 

»  V  consists of the vertices reachable from s and 

»  for all v  V , there is a unique simple path from s to v in G 

 that is also a shortest path from s to v in G.   

 The edges in E are called tree edges.   

|E| = |V| - 1. 
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Depth-first Search (DFS) 

 Explore edges out of the most recently discovered 

vertex v. 

 When all edges of v have been explored, backtrack to 

explore other edges leaving the vertex from which v 

was discovered (its predecessor). 

 “Search as deep as possible first.” 

 Continue until all vertices reachable from the original 

source are discovered. 

 If any undiscovered vertices remain, then one of them 

is chosen as a new source and search is repeated from 

that source. 
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Depth-first Search 

 Input: G = (V, E), directed or undirected. No source 

vertex given! 

 Output: 

»  2 timestamps on each vertex. Integers between 1 and 2|V|. 

• d[v] = discovery time (v turns from white to gray) 

• f [v] = finishing time (v turns from gray to black) 

» [v] : predecessor of v = u, such that v was discovered during 

the scan of u’s adjacency list. 

 Coloring scheme for vertices as BFS. A vertex is 

» “discovered” the first time it is encountered during the search. 

» A vertex is “finished” if it is a leaf node or all vertices adjacent 

to it have been finished. 
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Pseudo-code 

DFS(G) 

1.  for each vertex u  V[G] 

2.       do color[u]  white 

3.            [u]  NIL 

4.  time  0 

5.  for each vertex u  V[G] 

6.        do if color[u] = white 

7.                 then DFS-Visit(u) 

Uses a global timestamp time. 

DFS-Visit(u) 

1. color[u]  GRAY  // White vertex u  

  has been discovered 

2. time  time + 1 

3.  d[u]  time 

4.  for each v  Adj[u] 

5.        do if color[v] = WHITE 

6.                  then [v]  u 

7.                           DFS-Visit(v) 

8.   color[u]  BLACK     // Blacken u;   

   it is finished. 

9.   f[u]  time  time + 1 
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Example (DFS) 

1/ 

u v w 

x y z 
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Example (DFS) 

1/ 2/ 

u v w 

x y z 
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Example (DFS) 

1/ 

3/ 

2/ 

u v w 

x y z 
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Example (DFS) 

1/ 

4/ 3/ 

2/ 

u v w 

x y z 
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Example (DFS) 

1/ 

4/ 3/ 

2/ 

u v w 

x y z 

B 
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Example (DFS) 

1/ 

4/5 3/ 

2/ 

u v w 

x y z 

B 



graphs-1 - 36 

Example (DFS) 

1/ 

4/5 3/6 

2/ 

u v w 

x y z 

B 
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Example (DFS) 

1/ 

4/5 3/6 

2/7 

u v w 

x y z 

B 
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Example (DFS) 

1/ 

4/5 3/6 

2/7 

u v w 

x y z 

B F 
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Example (DFS) 

1/8 

4/5 3/6 

2/7 

u v w 

x y z 

B F 
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Example (DFS) 

1/8 

4/5 3/6 

2/7 9/ 

u v w 

x y z 

B F 
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Example (DFS) 

1/8 

4/5 3/6 

2/7 9/ 

u v w 

x y z 

B F C 
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Example (DFS) 

1/8 

4/5 3/6 10/ 

2/7 9/ 

u v w 

x y z 

B F C 
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Example (DFS) 

1/8 

4/5 3/6 10/ 

2/7 9/ 

u v w 

x y z 

B F C 

B 
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Example (DFS) 

1/8 

4/5 3/6 10/11 

2/7 9/ 

u v w 

x y z 

B F C 

B 
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Example (DFS) 

1/8 

4/5 3/6 10/11 

2/7 9/12 

u v w 

x y z 

B F C 

B 
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Analysis of DFS 

 Loops on lines 1-2 & 5-7 take (V) time, excluding time 

to execute DFS-Visit. 
 

 DFS-Visit is called once for each white vertex vV 

when it’s painted gray the first time.  Lines 3-6 of DFS-

Visit is executed |Adj[v]| times. The total cost of 

executing DFS-Visit is vV|Adj[v]| = (E)  
 

 Total running time of DFS is (|V| + |E|). 
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Parenthesis Theorem 

Theorem 22.7 

For all u, v, exactly one of the following holds: 

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u 

nor v is a descendant of the other. 

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u. 

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v. 

 
 So d[u] < d[v] < f [u] < f [v] cannot happen. 

 Like parentheses: 

 OK: ( ) [ ] ( [ ] ) [ ( ) ] 

 Not OK: ( [ ) ] [ ( ] ) 

Corollary 

v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u]. 

 

( 

d[v] 

) 

f[v] 
( 

d[v] 

) 

f[v] 

d[u] 

[ 

f[u] 

] 
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Example (Parenthesis Theorem) 

3/6 

4/5 7/8 12/13 

2/9 1/10 

y z s 

x w v 

B F 

14/15 

11/16 

u 

t 

C C C 

C B 

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t) 
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Depth-First Trees 

 Predecessor subgraph defined slightly different from 

that of BFS. 

 The predecessor subgraph of DFS is G = (V, E) 

where E ={([v], v) : v  V and [v]  nil}. 

» How does it differ from that of BFS? 

»  The predecessor subgraph G forms a depth-first forest 

composed of several depth-first trees.  The edges in E are 

called tree edges. 

 
 

Definition: 

Forest: An acyclic graph G that may be disconnected. 
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White-path Theorem 

    Theorem 22.9 

    v is a descendant of u in DF-tree if and only if at time d[u], there  

is a path u      v consisting of only white vertices. (Except for u, 

which was just colored gray.) 
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Classification of Edges 

 Tree edge: in the depth-first forest. Found by exploring 
(u, v). 

 Back edge: (u, v), where u is a descendant of v (in the 
depth-first tree). 

 Forward edge: (u, v), where v is a descendant of u, but 
not a tree edge. 

 Cross edge: any other edge. Can go between vertices in 
same depth-first tree or in different depth-first trees. 

 
Theorem: 

In DFS of an undirected graph, we get only tree and back edges. 

No forward or cross edges. 


