
Jan. 2017

Elementary Graph Algorithms

• Graph representation

• Graph traversal
 - Breadth-first search

 - Depth-first search

• Parenthesis theorem

graphs-1 - 2

Graphs

 Graph G = (V, E)

» V = set of vertices

» E = set of edges  (VV)

 Types of graphs

» Undirected: edge (u, v) = (v, u); for all v, (v, v)  E (No self
loops.)

» Directed: (u, v) is edge from u to v, denoted as u  v. Self loops
are allowed.

» Weighted: each edge has an associated weight, given by a weight
function w : E  R.

» Dense: |E|  |V|2.

» Sparse: |E| << |V|2.

 |E| = O(|V|2)

graphs-1 - 3

Graphs

 If (u, v)  E, then vertex v is adjacent to vertex u.

 Adjacency relationship is:

» Symmetric if G is undirected.

» Not necessarily so if G is directed.

 If G is connected:

» There is a path between every pair of vertices.

» |E|  |V| – 1.

» Furthermore, if |E| = |V| – 1, then G is a tree.

 Other definitions in Appendix B (B.4 and B.5) as needed.

graphs-1 - 4

Representation of Graphs

 Two standard ways.

» Adjacency Lists.

» Adjacency Matrix.

a

d c

b

a

d c

b
1 2

3 4

 1 2 3 4

1 0 1 1 1

2 1 0 1 0

3 1 1 0 1

4 1 0 1 0

a

b

c

d

b

a

d

d c

c

a b

a c

graphs-1 - 5

Adjacency Lists

 Consists of an array Adj of |V| lists.

 One list per vertex.

 For u  V, Adj[u] consists of all vertices adjacent to u.

 a

d c

b

a

b

c

d

b

c

d

d c

a

d c

b

If weighted, store weights also in

adjacency lists.

a

b

c

d

b

a

d

d c

c

a b

a c

graphs-1 - 6

Storage Requirement

 For directed graphs:

» Sum of lengths of all adj. lists is

 out-degree(v) = |E|

vV

» Total storage: (|V| + |E|)

 For undirected graphs:

» Sum of lengths of all adj. lists is

 degree(v) = 2|E|

vV

» Total storage: (|V| + |E|)

No. of edges leaving v

No. of edges incident on v. Edge (u,v) is incident

on vertices u and v.

graphs-1 - 7

Pros and Cons: adj list

 Pros

» Space-efficient, when a graph is sparse.

» Can be modified to support many graph variants.

 Cons

» Determining if an edge (u, v) G is not efficient.

• Have to search in u’s adjacency list. (degree(u)) time.

• (V) in the worst case.

graphs-1 - 8

Adjacency Matrix

 |V|  |V| matrix A.

 Number vertices from 1 to |V| in some arbitrary manner.

 A is then given by:



 


otherwise0

),(if1
],[

Eji
ajiA ij

a

d c

b
1 2

3 4

 1 2 3 4

1 0 1 1 1

2 0 0 1 0

3 0 0 0 1

4 0 0 0 0

a

d c

b
1 2

3 4

 1 2 3 4

1 0 1 1 1

2 1 0 1 0

3 1 1 0 1

4 1 0 1 0

A = AT for undirected graphs.

graphs-1 - 9

Space and Time

 Space: (V2).

» Not memory efficient for large graphs.

 Time: to list all vertices adjacent to u: (V).

 Time: to determine if (u, v)  E: (1).

 Can store weights instead of bits for weighted graph.

graphs-1 - 10

Graph-searching Algorithms

 Searching a graph:

» Systematically follow the edges of a graph

to visit the vertices of the graph.

 Used to discover the structure of a graph.

 Standard graph-searching algorithms.

» Breadth-first Search (BFS).

» Depth-first Search (DFS).

graphs-1 - 11

Breadth-first Search

 Input: Graph G = (V, E), either directed or undirected,
and source vertex s  V.

 Output:

» d[v] = distance (smallest # of edges, or shortest path) from s to v,
for all v  V. d[v] =  if v is not reachable from s.

» [v] = u such that (u, v) is last edge on shortest path s v.

• u is v’s predecessor.

» Builds breadth-first tree with root s that contains all reachable
vertices.

Definitions:

Path between vertices u and v: Sequence of vertices (v1, v2, …, vk) such that

u=v1 and v =vk, and (vi,vi+1)  E, for all 1 i  k-1.

Length of the path: Number of edges in the path.

Path is simple if no vertex is repeated.

graphs-1 - 12

Breadth-first Search

 Expands the frontier between discovered and
undiscovered vertices uniformly across the breadth
of the frontier.

» A vertex is “discovered” the first time it is encountered
during the search.

» A vertex is “finished” if all vertices adjacent to it have
been discovered.

 Colors the vertices to keep track of progress.

» White – Undiscovered.

» Gray – Discovered but not finished.

» Black – Finished.

graphs-1 - 14

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u]  

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q  

9 enqueue(Q,s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u]

13 do if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q,v)

18 color[u]  black

white: undiscovered

gray: discovered

black: finished

Q: a queue of discovered

vertices

color[v]: color of v

d[v]: distance from s to v

[u]: predecessor of v

initialization

access source s

graphs-1 - 15

Example (BFS)

 0

  

 



r s t u

v w x y

Q: s

 0

graphs-1 - 16

Example (BFS)

1 0

1  

 



r s t u

v w x y

Q: w r

 1 1

graphs-1 - 17

Example (BFS)

1 0

1 2 

2 



r s t u

v w x y

Q: r t x

 1 2 2

graphs-1 - 18

Example (BFS)

1 0

1 2 

2 

2

r s t u

v w x y

Q: t x v

 2 2 2

graphs-1 - 19

Example (BFS)

1 0

1 2 

2 3

2

r s t u

v w x y

Q: x v u

 2 2 3

graphs-1 - 20

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v u y

 2 3 3

graphs-1 - 21

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u y

 3 3

graphs-1 - 22

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y

 3

graphs-1 - 23

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: 

graphs-1 - 24

Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree

graphs-1 - 25

Analysis of BFS

 Initialization takes O(|V|).

 Traversal Loop
» After initialization, each vertex is enqueued and dequeued at most

once, and each operation takes O(1). So, total time for queuing is
O(|V|).

» The adjacency list of each vertex is scanned at most once. The
sum of lengths of all adjacency lists is (|E|).

 Summing up over all vertices => total running time of BFS
is O(|V| + |E|), linear in the size of the adjacency list
representation of graph.

 Correctness Proof
» We omit for BFS and DFS.

» Will do for later algorithms.

graphs-1 - 26

Breadth-first Tree

 For a graph G = (V, E) with source s, the predecessor

subgraph of G is G = (V , E) where

» V ={vV : [v]  nil}  {s}

» E ={([v], v)  E : v  V - {s}}

 The predecessor subgraph G is a breadth-first tree

if:

» V consists of the vertices reachable from s and

» for all v  V , there is a unique simple path from s to v in G

 that is also a shortest path from s to v in G.

 The edges in E are called tree edges.

|E| = |V| - 1.

graphs-1 - 27

Depth-first Search (DFS)

 Explore edges out of the most recently discovered

vertex v.

 When all edges of v have been explored, backtrack to

explore other edges leaving the vertex from which v

was discovered (its predecessor).

 “Search as deep as possible first.”

 Continue until all vertices reachable from the original

source are discovered.

 If any undiscovered vertices remain, then one of them

is chosen as a new source and search is repeated from

that source.

graphs-1 - 28

Depth-first Search

 Input: G = (V, E), directed or undirected. No source

vertex given!

 Output:

» 2 timestamps on each vertex. Integers between 1 and 2|V|.

• d[v] = discovery time (v turns from white to gray)

• f [v] = finishing time (v turns from gray to black)

» [v] : predecessor of v = u, such that v was discovered during

the scan of u’s adjacency list.

 Coloring scheme for vertices as BFS. A vertex is

» “discovered” the first time it is encountered during the search.

» A vertex is “finished” if it is a leaf node or all vertices adjacent

to it have been finished.

graphs-1 - 29

Pseudo-code

DFS(G)

1. for each vertex u  V[G]

2. do color[u]  white

3. [u]  NIL

4. time  0

5. for each vertex u  V[G]

6. do if color[u] = white

7. then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

1. color[u]  GRAY // White vertex u

 has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK // Blacken u;

 it is finished.

9. f[u]  time  time + 1

graphs-1 - 30

Example (DFS)

1/

u v w

x y z

graphs-1 - 31

Example (DFS)

1/ 2/

u v w

x y z

graphs-1 - 32

Example (DFS)

1/

3/

2/

u v w

x y z

graphs-1 - 33

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

graphs-1 - 34

Example (DFS)

1/

4/ 3/

2/

u v w

x y z

B

graphs-1 - 35

Example (DFS)

1/

4/5 3/

2/

u v w

x y z

B

graphs-1 - 36

Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B

graphs-1 - 37

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B

graphs-1 - 38

Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B F

graphs-1 - 39

Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

B F

graphs-1 - 40

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

B F

graphs-1 - 41

Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

B F C

graphs-1 - 42

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

B F C

graphs-1 - 43

Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

B F C

B

graphs-1 - 44

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

B F C

B

graphs-1 - 45

Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

B F C

B

graphs-1 - 46

Analysis of DFS

 Loops on lines 1-2 & 5-7 take (V) time, excluding time

to execute DFS-Visit.

 DFS-Visit is called once for each white vertex vV

when it’s painted gray the first time. Lines 3-6 of DFS-

Visit is executed |Adj[v]| times. The total cost of

executing DFS-Visit is vV|Adj[v]| = (E)

 Total running time of DFS is (|V| + |E|).

graphs-1 - 47

Parenthesis Theorem

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u

nor v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

 So d[u] < d[v] < f [u] < f [v] cannot happen.

 Like parentheses:

 OK: () [] ([]) [()]

 Not OK: ([)] [(])

Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].

(

d[v]

)

f[v]
(

d[v]

)

f[v]

d[u]

[

f[u]

]

graphs-1 - 48

Example (Parenthesis Theorem)

3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

graphs-1 - 49

Depth-First Trees

 Predecessor subgraph defined slightly different from

that of BFS.

 The predecessor subgraph of DFS is G = (V, E)

where E ={([v], v) : v  V and [v]  nil}.

» How does it differ from that of BFS?

» The predecessor subgraph G forms a depth-first forest

composed of several depth-first trees. The edges in E are

called tree edges.

Definition:

Forest: An acyclic graph G that may be disconnected.

graphs-1 - 50

White-path Theorem

 Theorem 22.9

 v is a descendant of u in DF-tree if and only if at time d[u], there

is a path u v consisting of only white vertices. (Except for u,

which was just colored gray.)

graphs-1 - 51

Classification of Edges

 Tree edge: in the depth-first forest. Found by exploring
(u, v).

 Back edge: (u, v), where u is a descendant of v (in the
depth-first tree).

 Forward edge: (u, v), where v is a descendant of u, but
not a tree edge.

 Cross edge: any other edge. Can go between vertices in
same depth-first tree or in different depth-first trees.

Theorem:

In DFS of an undirected graph, we get only tree and back edges.

No forward or cross edges.

