
9/3/2024

Asymptotic Notation,

Review of Functions &

Summations

asymp - 1

Asymptotic Complexity

 Running time of an algorithm as a function of

input size n for large n.

 Expressed using only the highest-order term in

the expression for the exact running time.

⬧ 7n5 + 2n4 + 3n3 + 9n2 + 4n + 6

⬧ Instead of exact running time, we use asymptotic

notations such as O(n5), Ω(n), Q(n2).

 Describes behavior of running time functions by setting

lower and upper bounds for their values.

asymp - 2

Asymptotic Notation

 Q, O, W, o, w

 Defined for functions over the natural numbers.

⬧ Ex: f(n) = Q(n2).

⬧ Describes how f(n) grows in comparison to n2.

 Define a set of functions; in practice used to compare

two function values.

 The notations describe different rate-of-growth

relations between the defining function and the

defined set of functions.

asymp - 3

Q-notation

Q(g(n)) = {f(n) :

 positive constants c1, c2, and n0,

such that n  n0,

we have 0  c1g(n)  f(n)  c2g(n)

}

For function g(n), we define Q(g(n)),

big-Theta of n, as a set:

g(n) is an asymptotically tight bound for any f(n) in the set.

Intuitively: Set of all functions that

have the same rate of growth as g(n).

g(n) = c (a constant), n, n2, n3, …

asymp - 4

Q-notation

Q(g(n)) = {f(n) :

 positive constants c1, c2, and n0,

such that n  n0,

we have 0  c1g(n)  f(n)  c2g(n)

}

For function g(n), we define Q(g(n)),

big-Theta of n, as the set:

Technically, f(n)  Q(g(n)).

Older usage, f(n) = Q(g(n)).

I’ll accept either of the forms.

f(n) and g(n) are nonnegative, for large n.

asymp - 5

Example

 10n2 - 3n = Q(n2)?

 What constants for n0, c1, and c2 will work?

 Make c1 a little smaller than the leading
coefficient, and c2 a little bigger.

 To compare orders of growth, look at the
leading term (highest-order term).

 Exercise: Prove that n2/2-3n = Q(n2)

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

asymp - 6

Example

• 10n2 - 3n = Q(n2)?

• To show that this equation holds, we find c1

= 9, c2 = 11, and n0 = 3 and for n ≥ n0, we

always have

9n2 ≤ 10n2 - 3n ≤ 11n2.

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

asymp - 7

Example

• 10n2 - 3n = Q(n2)

• 10n2 - 3n > 9n2 ⇒ n2 > 3n ⇒ n > 3

• 10n2 - 3n < 11n2 ⇒ n2 > - 3n ⇒ n > - 3

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

asymp - 8

Example

• n2/2-3n = Q(n2)?

• c1 = 1/3 ⇒ n2/2 - 3n > n2/3

⇒ n2/6 > 3n ⇒ n > 18

• c2 = 1 ⇒ n2/2 - 3n < n2

⇒ n2 > - 6n ⇒ n > - 6

• Then, for n > n0 = 18, we will definitely have

n2/3 < n2/2 - 3n < n2.

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

asymp - 9

Example

 Is 3n3  Q(n4)?

 How about 22n Q(2n)?

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

asymp - 10

Example

• Is 3n3  Q(n4)?

• If it is true, we can find c1, c2, and n0 such

that for n > n0, we have

c1n
4 ≤ 3n3 ≤ c2n

4.

c1n
4 ≤ 3n3 ⇒ n ≤ 3/c1.

• It is a contradiction. So, 3n3  Q(n4)?

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

asymp - 11

Example

• How about 22n Q(2n)?

• If it is true, we can find c1, c2, and n0 such

that for n > n0, we have

c12
n ≤ 22n ≤ c22

n.

22n ≤ c22
n ⇒ 2n ≤ c2 ⇒n ≤ log2 c2.

• It is a contradiction. So, 22n Q(2n)?

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

asymp - 12

O-notation

O(g(n)) = {f(n) :

 positive constants c and n0,

such that n  n0,

we have 0  f(n)  cg(n) }

For function g(n), we define O(g(n)),

big-O of n, as the set:

g(n) is an asymptotic upper bound for any f(n) in the set.

Intuitively: Set of all functions

whose rate of growth is the same as

or lower than that of g(n).

f(n) = Q(g(n))  f(n) = O(g(n)).

Q(g(n))  O(g(n)).

asymp - 13

Examples

 Any linear function an + b is in O(n2). How?

 Show that 3n3 = O(n4) for appropriate c and n0.

 Show that 3n3 = O(n3) for appropriate c and n0.

O(g(n)) = {f(n) :  positive constants c and n0,

such that n  n0, we have 0  f(n)  cg(n) }

asymp - 14

Examples

O(g(n)) = {f(n) :  positive constants c and n0,

such that n  n0, we have 0  f(n)  cg(n) }

.

asymp - 15

Examples

• Show that 3n3 = O(n4) for appropriate c and n0.

• The answer is obviously yes, since for any n > n0

= 4, we must have n4 > 3n3.

• Show that 3n3 = O(n3) for appropriate c and n0.

• The answer is also yes, since we can take c = 4,
and for any n > n0 = 1, we must have cn3 > 3n3.

O(g(n)) = {f(n) :  positive constants c and n0,

such that n  n0, we have 0  f(n)  cg(n) }

asymp - 16

W -notation

g(n) is an asymptotic lower bound for any f(n) in the set.

Intuitively: Set of all functions

whose rate of growth is the same

as or higher than that of g(n).

f(n) = Q(g(n))  f(n) = W(g(n)).

Q(g(n))  W(g(n)).

W(g(n)) = {f(n) :

 positive constants c and n0,

such that n  n0,

we have 0  cg(n)  f(n)}

For function g(n), we define W(g(n)),

big-Omega of n, as the set:

asymp - 17

Example

W(g(n)) = {f(n) :  positive constants c and n0, such

that n  n0, we have 0  cg(n)  f(n)}

asymp - 18

Relations Between Q, O, W

asymp - 19

Relations Between Q, W, O

 That is, Q(g(n)) = O(g(n))  W(g(n))

 In practice, asymptotically tight bounds are

obtained from asymptotic upper and lower bounds.

Theorem : For any two functions g(n) and f(n),

f(n) = Q(g(n)) iff

f(n) = O(g(n)) and f(n) = W(g(n)).

asymp - 20

Running Times

 “Running time is O(f(n))”  Worst case is O(f(n))

 O(f(n)) bound on the worst-case running time  O(f(n))
bound on the running time of every input.

 Q(f(n)) bound on the worst-case running time  Q(f(n))
bound on the running time of every input.

 “Running time is W(f(n))”  Best case is W(f(n))

 Can still say “Worst-case running time is W(f(n))”

⬧ Means worst-case running time is given by some
unspecified function g(n)  W(f(n)).

asymp - 21

Example

 Insertion sort takes Q(n2) in the worst case, so

sorting (as a problem) is O(n2). Why?

 Any sort algorithm must look at each item, so

sorting is W(n).

 In fact, using (e.g.) merge sort, sorting is Q(n lg n)

in the worst case.

⬧ Later, we will prove that we cannot hope that any

comparison sort to do better in the worst case.

asymp - 22

Asymptotic Notation in Equations

 Can use asymptotic notation in equations to
replace expressions containing lower-order terms.

 For example,

4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Q(n)

= 4n3 + Q(n2) = Q(n3). How to interpret?

 In equations, Q(f(n)) always stands for an
anonymous function g(n)  Q(f(n))

⬧ In the example above, Q(n2) stands for
3n2 + 2n + 1.

asymp - 23

o-notation

o(g(n)) = {f(n): c > 0, n0 > 0 such that
n  n0, we have 0  f(n) < cg(n)}.

For a given function g(n), the set little-o:

asymp - 24

o(g(n)) = {f(n):

c > 0, n0 > 0 such that n  n0,

we have 0  f(n) < cg(n)}.

little-o:

O(g(n)) = {f(n) :

 positive constants c and n0, such that n  n0,

we have 0  f(n)  cg(n) }

big-O:

asymp - 25

w(g(n)) = {f(n): c > 0, n0 > 0 such that
n  n0, we have 0  cg(n) < f(n)}.

w -notation

For a given function g(n), the set little-omega:

asymp - 26

w(g(n)) = {f(n): c > 0, n0 > 0 such that n  n0,
we have 0  cg(n) < f(n)}.

little-w:

W(g(n)) = {f(n) :

 positive constants c and n0, such that n  n0,

we have 0  cg(n)  f(n)}

big-W:

asymp - 27

Comparison of Functions

f  g  a  b

f (n) = O(g(n))  a  b

f (n) = W(g(n))  a  b

f (n) = Q(g(n))  a = b

f (n) = o(g(n))  a < b

f (n) = w (g(n))  a > b

asymp - 28

Limits

 lim [f(n) / g(n)] = 0  f(n)  o(g(n))
n→

 lim [f(n) / g(n)] <   f(n)  O(g(n))
n→

 0 < lim [f(n) / g(n)] <   f(n)  Q(g(n))
n→

 0 < lim [f(n) / g(n)]  f(n)  W(g(n))
n→

 lim [f(n) / g(n)] =   f(n)  w(g(n))
n→

 lim [f(n) / g(n)] undefined  can’t say
n→

asymp - 29

Properties
 Transitivity

f(n) = Q(g(n)) & g(n) = Q(h(n))  f(n) = Q(h(n))
f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n))
f(n) = W(g(n)) & g(n) = W(h(n))  f(n) = W(h(n))
f(n) = o (g(n)) & g(n) = o (h(n))  f(n) = o (h(n))

f(n) = w(g(n)) & g(n) = w(h(n))  f(n) = w(h(n))

 Reflexivity

f(n) = Q(f(n))

f(n) = O(f(n))

f(n) = W(f(n))

asymp - 30

Properties

 Symmetry

f(n) = Q(g(n)) iff g(n) = Q(f(n))

 Complementarity

f(n) = O(g(n)) iff g(n) = W(f(n))

f(n) = o(g(n)) iff g(n) = w((f(n))

9/3/2024

Common Functions

asymp - 32

Monotonicity

 f(n) is

⬧ monotonically increasing if m  n  f(m)  f(n).

⬧ monotonically decreasing if m  n  f(m)  f(n).

⬧ strictly increasing if m < n  f(m) < f(n).

⬧ strictly decreasing if m > n  f(m) > f(n).

asymp - 33

Exponentials

 Useful Identities:

 Exponentials and polynomials

nmnm

mnnm

aaa

aa

a
a

+

−

=

=

=

)(

11

)(

0lim

nb

n

b

n

aon

a

n

=

=
→

asymp - 34

Logarithms

x = logba is the

exponent for a = bx.

Natural log: ln a = logea

Binary log: lg a = log2a

lg2a = (lg a)2

lg lg a = lg (lg a)

ac

a

b

bb

c

c
b

b

n

b

ccc

a

bb

b

ca

b
a

aa

b

a
a

ana

baab

ba

loglog

log

log

1
log

log)/1(log

log

log
log

loglog

loglog)(log

=

=

−=

=

=

+=

=

asymp - 35

Logarithms and exponentials – Bases

 If the base of a logarithm is changed from one

constant to another, the value is altered by a

constant factor.

⬧ Ex: log10 n * log210 = log2 n.

⬧ Base of logarithm is not an issue in asymptotic

notation.

 Exponentials with different bases differ by a

exponential factor (not a constant factor).

⬧ Ex: 2n = (2/3)n*3n.

asymp - 36

Polylogarithms

 For a  0, b > 0, lim n→ (lga n / nb) = 0,

so lga n = o(nb), and nb = w(lga n)

⬧ Prove using L’Hopital’s rule repeatedly

 lg(n!) = Q(n lg n)

⬧ Prove using Stirling’s approximation (in the text) for lg(n!).

asymp - 37

Exercise

Express functions in A in asymptotic notation using functions in B.

A B

5n2 + 100n 3n2 + 2

A  Q(n2), n2  Q(B)  A  Q(B)

log3(n
2) log2(n

3)

logba = logca / logcb; A = 2lgn / lg3, B = 3lgn, A/B =2/(3lg3)

nlg4 3lg n

alog b = blog a; B =3lg n=nlg 3; A/B =nlg(4/3) →  as n→

lg2n n1/2

lim (lga n / nb) = 0 (here a = 2 and b = 1/2)  A  o (B)
n→

A  Q(B)

A  Q(B)

A  w(B)

A  o (B)

9/3/2024

Summations – Review

asymp - 39

Review on Summations

 Why do we need summation formulas?

For computing the running times of iterative

constructs (loops). (CLRS – Appendix A)

Example: Maximum Subvector

Given an array A[1…n] of numeric values (can be

positive, zero, and negative) determine the

subvector A[i…j] (1 i  j  n) whose sum of

elements is maximum over all subvectors.

1 -2 2 2

asymp - 40

Review on Summations

MaxSubvector(A, n)
maxsum  0;
for i  1 to n

do for j = i to n
sum  0
for k  i to j

do sum += A[k]
maxsum  max(sum, maxsum)

return maxsum

n n j

T(n) =    1
i=1 j=i k=i

NOTE: This is not a simplified solution. What is the final answer?

asymp - 41

Review on Summations

 Constant Series: For integers a and b, a  b,

 Linear Series (Arithmetic Series): For n  0,

 Quadratic Series: For n  0,


=

+−=
b

ai

ab 11

2

)1(
21

1

+
=+++=

=

nn
ni

n

i




=

++
=+++=

n

i

nnn
ni

1

2222

6

)12)(1(
21 

asymp - 42

Review on Summations

 Cubic Series: For n  0,

 Geometric Series: For real x  1,

For |x| < 1,


=

+
=+++=

n

i

nn
ni

1

22
3333

4

)1(
21 


=

+

−

−
=++++=

n

k

n
nk

x

x
xxxx

0

1
2

1

1
1 




= −
=

0 1

1

k

k

x
x

asymp - 43

Review on Summations

 Linear-Geometric Series: For n  0, real c  1,

 Harmonic Series: nth harmonic number, nI+,


=

++

−

+++−
=+++=

n

i

nn
ni

c

cnccn
ncccic

1
2

21
2

)1(

)1(
2 

n
Hn

1

3

1

2

1
1 ++++= 


=

+==
n

k

On
k1

)1()ln(
1

asymp - 44

Review on Summations

 Telescoping Series:

 Differentiating Series: For |x| < 1,


=

− −=−
n

k

nkk aaaa
1

01

()




= −
=

0
2

1k

k

x

x
kx

asymp - 45

Review on Summations

 Approximation by integrals:

⬧ For monotonically increasing f(n)

⬧ For monotonically decreasing f(n)

 How?

  
− =

+



n

m

n

mk

n

m

dxxfkfdxxf
1

1

)()()(

  
+

= −



1

1

)()()(

n

m

n

mk

n

m

dxxfkfdxxf

asymp - 46

Review on Summations

 nth harmonic number

 
=

+

+=
n

k

n

n
x

dx

k1

1

1

)1ln(
1

 
=

=
n

k

n

n
x

dx

k2 1

ln
1


=

+
n

k

n
k1

1ln
1

asymp - 47

Reading Assignment

 Chapter 4 of CLRS.

