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Asymptotic Complexity

 Running time of an algorithm as a function of 

input size n for large n.

 Expressed using only the highest-order term in 

the expression for the exact running time.

⬧ 7n5 + 2n4 + 3n3 + 9n2 + 4n + 6

⬧ Instead of exact running time, we use asymptotic 

notations such as O(n5), Ω(n), Q(n2).

 Describes behavior of running time functions by setting 

lower and upper bounds for their values.
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Asymptotic Notation

 Q, O, W, o, w

 Defined for functions over the natural numbers.

⬧ Ex: f(n)  =  Q(n2).

⬧ Describes how f(n) grows in comparison to n2.

 Define a set of functions; in practice used to compare 

two function values.

 The notations describe different rate-of-growth 

relations between the defining function and the 

defined set of functions.
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Q-notation

Q(g(n)) = {f(n) : 

 positive constants c1, c2, and n0,

such that n  n0,

we have 0  c1g(n)  f(n)  c2g(n)

}

For function g(n), we define Q(g(n)), 

big-Theta of n, as a set:

g(n) is an asymptotically tight bound for any f(n) in the set.

Intuitively: Set of all functions that

have the same rate of growth as g(n).

g(n) = c (a constant), n, n2, n3, …
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Q-notation

Q(g(n)) = {f(n) : 

 positive constants c1, c2, and n0,

such that n  n0,

we have 0  c1g(n)  f(n)  c2g(n)

}

For function g(n), we define Q(g(n)), 

big-Theta of n, as the set:

Technically, f(n)  Q(g(n)).

Older usage,  f(n) = Q(g(n)).

I’ll accept either of the forms.

f(n) and g(n) are nonnegative, for large n. 
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Example

 10n2 - 3n = Q(n2)?

 What constants for n0, c1, and c2 will work?

 Make c1 a little smaller than the leading 
coefficient, and c2 a little bigger.

 To compare orders of growth, look at the 
leading term (highest-order term).

 Exercise: Prove that n2/2-3n = Q(n2)

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}
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Example

• 10n2 - 3n = Q(n2)?

• To show that this equation holds, we find c1

= 9,  c2 = 11, and n0 = 3 and for n ≥ n0, we 

always have 

9n2 ≤ 10n2 - 3n ≤ 11n2.

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}
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Example

• 10n2 - 3n = Q(n2)

• 10n2 - 3n > 9n2 ⇒ n2 > 3n ⇒ n > 3

• 10n2 - 3n < 11n2 ⇒ n2 > - 3n ⇒ n > - 3

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}
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Example

• n2/2-3n = Q(n2)?

• c1 = 1/3 ⇒ n2/2 - 3n > n2/3

⇒ n2/6 > 3n ⇒ n > 18

• c2 = 1 ⇒ n2/2 - 3n < n2

⇒ n2 > - 6n ⇒ n > - 6

• Then, for n > n0 = 18, we will definitely have

n2/3 < n2/2 - 3n < n2.

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}
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Example

 Is 3n3  Q(n4)?

 How about 22n Q(2n)?

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}
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Example

• Is 3n3  Q(n4)?

• If it is true, we can find c1, c2, and n0 such 

that for n > n0, we have

c1n
4 ≤ 3n3 ≤ c2n

4.

c1n
4 ≤ 3n3 ⇒ n ≤ 3/c1.

• It is a contradiction. So, 3n3  Q(n4)?

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}
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Example

• How about 22n Q(2n)?

• If it is true, we can find c1, c2, and n0 such 

that for n > n0, we have

c12
n ≤ 22n ≤ c22

n.

22n ≤ c22
n ⇒ 2n ≤ c2 ⇒n ≤ log2 c2.

• It is a contradiction. So, 22n Q(2n)?

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}
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O-notation

O(g(n)) = {f(n) : 

 positive constants c and n0,

such that n  n0,

we have 0  f(n)  cg(n) }

For function g(n), we define O(g(n)), 

big-O of n, as the set:

g(n) is an asymptotic upper bound for any f(n) in the set.

Intuitively: Set of all functions 

whose rate of growth is the same as 

or lower than that of g(n).

f(n) = Q(g(n))  f(n) = O(g(n)).

Q(g(n))   O(g(n)).



asymp - 13

Examples

 Any linear function an + b is in O(n2). How?

 Show that 3n3 = O(n4) for appropriate c and n0.

 Show that 3n3 = O(n3) for appropriate c and n0.

O(g(n)) = {f(n) :  positive constants c and n0,

such that n  n0, we have 0  f(n)  cg(n) }
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Examples

O(g(n)) = {f(n) :  positive constants c and n0,

such that n  n0, we have 0  f(n)  cg(n) }

.
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Examples

• Show that 3n3 = O(n4) for appropriate c and n0.

• The answer is obviously yes, since for any n > n0 

= 4, we must have n4 > 3n3.

• Show that 3n3 = O(n3) for appropriate c and n0.

• The answer is also yes, since we can take c = 4, 
and for any n > n0 = 1, we must have cn3 > 3n3.

O(g(n)) = {f(n) :  positive constants c and n0,

such that n  n0, we have 0  f(n)  cg(n) }
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W -notation

g(n) is an asymptotic lower bound for any f(n) in the set.

Intuitively: Set of all functions 

whose rate of growth is the same 

as or higher than that of g(n).

f(n) = Q(g(n))  f(n) = W(g(n)).

Q(g(n))   W(g(n)).

W(g(n)) = {f(n) : 

 positive constants c and n0,

such that n  n0,

we have 0  cg(n)  f(n)}

For function g(n), we define W(g(n)), 

big-Omega of n, as the set:
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Example

W(g(n)) = {f(n) :  positive constants c and n0, such 

that n  n0, we have 0  cg(n)  f(n)}
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Relations Between Q, O, W
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Relations Between Q, W, O

 That is, Q(g(n)) = O(g(n))  W(g(n))

 In practice, asymptotically tight bounds are 

obtained from asymptotic upper and lower bounds.

Theorem : For any two functions g(n) and f(n),

f(n) = Q(g(n)) iff 

f(n) = O(g(n)) and f(n) = W(g(n)).
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Running Times

 “Running time is O(f(n))”  Worst case is O(f(n))

 O(f(n)) bound on the worst-case running time  O(f(n)) 
bound on the running time of every input.

 Q(f(n)) bound on the worst-case running time  Q(f(n)) 
bound on the running time of every input.

 “Running time is W(f(n))”  Best case is W(f(n))

 Can still say “Worst-case running time is W(f(n))”

⬧ Means worst-case running time is given by some 
unspecified function g(n)  W(f(n)).
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Example

 Insertion sort takes Q(n2) in the worst case, so 

sorting (as a problem) is O(n2).  Why?

 Any sort algorithm must look at each item, so 

sorting is W(n).

 In fact, using (e.g.) merge sort, sorting is Q(n lg n) 

in the worst case.

⬧ Later, we will prove that we cannot hope that any 

comparison sort to do better in the worst case.
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Asymptotic Notation in Equations

 Can use asymptotic notation in equations to 
replace expressions containing lower-order terms.

 For example,

4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Q(n) 

= 4n3 + Q(n2) = Q(n3). How to interpret?

 In equations, Q(f(n)) always stands for an 
anonymous function g(n)  Q(f(n))

⬧ In the example above, Q(n2) stands for 
3n2 + 2n + 1.
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o-notation

o(g(n)) = {f(n): c > 0, n0 > 0 such that 
n  n0, we have 0  f(n) < cg(n)}.

For a given function g(n), the set little-o:
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o(g(n)) = {f(n): 

c > 0, n0 > 0 such that n  n0, 

we have 0  f(n) < cg(n)}.

little-o:

O(g(n)) = {f(n) : 

 positive constants c and n0, such that n  n0, 

we have 0  f(n)  cg(n) }

big-O:
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w(g(n)) = {f(n): c > 0, n0 > 0 such that 
n  n0, we have 0  cg(n) < f(n)}.

w -notation

For a given function g(n), the set little-omega:
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w(g(n)) = {f(n): c > 0, n0 > 0 such that n  n0, 
we have 0  cg(n) < f(n)}.

little-w:

W(g(n)) = {f(n) : 

 positive constants c and n0, such that n  n0,

we have 0  cg(n)  f(n)}

big-W:
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Comparison of Functions

f  g   a  b

f (n) = O(g(n))  a   b

f (n) = W(g(n))  a   b

f (n) = Q(g(n))  a  =  b

f (n) = o(g(n))  a  < b

f (n) = w (g(n))  a  > b
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Limits

 lim [f(n) / g(n)] = 0  f(n)  o(g(n))
n→

 lim [f(n) / g(n)] <   f(n)  O(g(n))
n→

 0 < lim [f(n) / g(n)] <   f(n)  Q(g(n))
n→

 0 < lim [f(n) / g(n)]  f(n)  W(g(n))
n→

 lim [f(n) / g(n)] =   f(n)  w(g(n))
n→

 lim [f(n) / g(n)] undefined  can’t say
n→
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Properties
 Transitivity

f(n) = Q(g(n)) & g(n) = Q(h(n))  f(n) = Q(h(n))
f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n))
f(n) = W(g(n)) & g(n) = W(h(n))  f(n) = W(h(n))
f(n) = o (g(n)) & g(n) = o (h(n))  f(n) = o (h(n))

f(n) = w(g(n)) & g(n) = w(h(n))  f(n) = w(h(n))

 Reflexivity

f(n) = Q(f(n))

f(n) = O(f(n))

f(n) = W(f(n))
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Properties

 Symmetry

f(n) = Q(g(n)) iff g(n) = Q(f(n))

 Complementarity

f(n) = O(g(n)) iff g(n) = W(f(n))

f(n) =  o(g(n)) iff g(n) = w((f(n))
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Common Functions
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Monotonicity

 f(n) is 

⬧ monotonically increasing if m  n  f(m)  f(n).

⬧ monotonically decreasing if m  n  f(m)  f(n).

⬧ strictly increasing if m < n  f(m) < f(n).

⬧ strictly decreasing if m > n  f(m) > f(n).
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Exponentials

 Useful Identities:

 Exponentials and polynomials
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Logarithms 

x = logba is the 

exponent for a = bx.

Natural log: ln a = logea

Binary log: lg a = log2a

lg2a = (lg a)2

lg lg a = lg (lg a)
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Logarithms and exponentials – Bases 

 If the base of a logarithm is changed from one 

constant to another, the value is altered by a 

constant factor.

⬧ Ex: log10 n * log210 = log2 n.

⬧ Base of logarithm is not an issue in asymptotic 

notation.

 Exponentials with different bases differ by a 

exponential factor (not a constant factor).

⬧ Ex: 2n = (2/3)n*3n.
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Polylogarithms

 For a  0, b > 0, lim n→ ( lga n / nb ) = 0, 

so lga n = o(nb), and nb = w(lga n )

⬧ Prove using L’Hopital’s rule repeatedly

 lg(n!) = Q(n lg n)

⬧ Prove using Stirling’s approximation (in the text) for lg(n!).
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Exercise

Express functions in A in asymptotic notation using functions in B.

A                                         B                                    

5n2 + 100n              3n2 + 2

A  Q(n2), n2  Q(B)  A  Q(B)

log3(n
2)          log2(n

3)

logba = logca / logcb; A = 2lgn / lg3, B  = 3lgn, A/B =2/(3lg3)

nlg4 3lg n

alog b = blog a; B =3lg n=nlg 3; A/B =nlg(4/3) →  as n→

lg2n n1/2

lim ( lga n / nb ) = 0 (here a = 2 and b = 1/2)  A  o (B)
n→

A  Q(B)

A  Q(B)

A  w(B)

A  o (B)
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Summations – Review 
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Review on Summations

 Why do we need summation formulas? 

For computing the running times of iterative 

constructs (loops). (CLRS – Appendix A)

Example: Maximum Subvector

Given an array A[1…n] of numeric values (can be 

positive, zero, and negative) determine the 

subvector A[i…j] (1 i  j  n) whose sum of 

elements is maximum over all subvectors.

1 -2 2 2
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Review on Summations

MaxSubvector(A, n) 
maxsum  0;
for i  1 to n 

do for j = i to n
sum  0
for k  i to j

do sum += A[k]
maxsum  max(sum, maxsum)

return maxsum

n     n      j

T(n) =    1
i=1   j=i  k=i

NOTE:  This is not a simplified solution.  What is the final answer?
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Review on Summations

 Constant Series: For integers a and b, a  b,

 Linear Series (Arithmetic Series): For n  0,

 Quadratic Series: For n  0,
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Review on Summations

 Cubic Series: For n  0,

 Geometric Series: For real x  1,

For |x| < 1,
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Review on Summations

 Linear-Geometric Series: For n  0, real c  1,

 Harmonic Series: nth harmonic number, nI+,
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Review on Summations

 Telescoping Series:

 Differentiating Series:  For |x| < 1,
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Review on Summations

 Approximation by integrals:

⬧ For monotonically increasing f(n)

⬧ For monotonically decreasing f(n)

 How?
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Review on Summations

 nth harmonic number
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Reading Assignment

 Chapter 4 of CLRS.


