
9/16/2024

Recursive Equation

• Recurrence relations

• How to solve a recursive equation

dc - 2

Analysis of Merge Sort

 Running time T(n) of Merge Sort:

 Divide: computing the middle takes (1)

 Conquer: solving 2 subproblems takes 2T(n/2)

 Combine: merging n elements takes (n)

 Total:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 T(n) = (n lg n) (CLRS, Chapter 4)

dc - 3

Recurrence Relations

 Equation or an inequality that characterizes a
function by its values on smaller inputs.

 Solution Methods (Chapter 4)

⬧ Substitution Method.

⬧ Recursion-tree Method.

⬧ Master Theorem Method.

 Recurrence relations arise when we analyze the
running time of iterative or recursive algorithms.

⬧ Ex: Divide and Conquer.

T(n) = (1) if n c

T(n) = a T(n/b) + D(n) otherwise

dc - 4

Substitution Method

 Guess the form of the solution, then

use mathematical induction to show it correct.

⬧ Substitute guessed answer for the function when the

inductive hypothesis is applied to smaller values.

 Works well when the solution is easy to guess.

 No general way to guess the correct solution.

dc - 5

Example – Exact Function

Recurrence: T(n) = 1 if n = 1

T(n) = 2T(n/2) + n if n > 1

⬧Guess: T(n) = n lg n + n.

⬧Induction:

•Basis: n = 1 n lg n + n = 1 = T(n).

•Hypothesis: T(k) = k lg k + k for all k < n.

•Inductive Step:

T(n) = 2 T(n/2) + n

= 2 ((n/2)lg(n/2) + (n/2)) + n

= n (lg(n/2)) + 2n

= n lg n – n + 2n

= n lg n + n

dc - 6

Recursion-tree Method

 Making a good guess is sometimes difficult with

the substitution method.

 Use recursion trees to devise good guesses.

 Recursion Trees

⬧ Show successive expansions of recurrences using

trees.

⬧ Keep track of the time spent on the subproblems of a

divide and conquer algorithm.

⬧ Help organize the algebraic bookkeeping necessary

to solve a recurrence.

dc - 7

Recursion Tree – Example

 Running time of Merge Sort:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 Rewrite the recurrence as

T(n) = c if n = 1

T(n) = 2T(n/2) + cn if n > 1

c > 0: Running time for the base case and

time per array element for the divide and

combine steps.

dc - 8

Recursion Tree for Merge Sort

For the original problem,

we have a cost of cn,

plus two subproblems

each of size (n/2) and

running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems

has a cost of cn/2 plus two

subproblems, each costing

T(n/4).

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide

and merge.

Cost of sorting

subproblems.

T(n)

dc - 9

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n + 1

cn

cn

cn

cn

Total: cnlg n+cn

dc - 10

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

•Each level has total cost cn.

•Each time we go down one level,

the number of subproblems doubles,

but the cost per subproblem halves

 cost per level remains the same.

•There are lg n + 1 levels, height is

lg n. (Assuming n is a power of 2.)

•Can be proved by induction.

•Total cost = sum of costs at each

level = (lg n + 1)cn = cnlgn + cn =

(n lgn).

dc - 11

Other Examples

 Use the recursion-tree method to determine a

guess for the recurrences

⬧ T(n) = 3T(n/4) + (n2).

⬧ T(n) = T(n/3) + T(2n/3) + O(n).

dc - 12

Other Examples

⬧ T(n) = 3T(n/4) + (n2).

n2

T(n/4) T(n/4)

T(n)

T(n/4)

n2

(n/4)2 (n/4)2(n/4)2

T(n/42) T(n/42)T(n/42)

… …

dc - 13

Other Examples

⬧ T(n) = 3T(n/4) + (n2).
n2

(n/4)2 (n/4)2(n/4)2

(n/42)2 (n/42)2(n/42)2

… …

T(n/43) T(n/43)T(n/43)

… …

… …

log4 n

dc - 14

Other Examples

dc - 15

Other Examples

⬧ T(n) = T(n/3) + T(2n/3) + O(n).

n

T(n/3) T(2n/3)

T(n)

n

n/3 2n/3

T(n/32)T(2n/32) T(2n/32) T(22n/32)

dc - 16

Other Examples

⬧ T(n) = T(n/3) + T(2n/3) + O(n).

n

n/3 2n/3

n/32 2n/32 2n/32 22n/32

n/33 2n/33 2n/33 22n/33

… …

2n/33 22n/33 22n/33 23n/33

n

n

n

n

log3 n

n log3 n

dc - 17

Other Examples

⬧ T(n) = T(n/3) + T(2n/3) + O(n)

T(n) = T(n/3) + T(2n/3) + n

T(n) = (T(n/32)+ T(2n/32) + n/3) + (T(2n/32) +T(22n/32) + 2n/3) + n

= T(n/9) + 2T(2n/9) + T(4n/9) + 2

= (T(n/27) + T(2n/27) + n/9) +2(T(2n/27) + T(4n/27)+ 2n/9) +

(T(4n/27) +T(8n/27) + 4n/9) + 2n

= T(n/27) + 3T(2n/27) + 3T(4n/27) + T(8n/27) + 3n

= … … + n/27 + 3(2n/27) + 3(4n/27) + 8n/27 + 3n

= n log3 n

dc - 18

Recursion Trees – Caution Note

 Recursion trees only generate guesses.

⬧ Verify guesses using substitution method.

 A small amount of “sloppiness” can be

tolerated. Why?

 If careful when drawing out a recursion tree and

summing the costs, it can be used as direct

proof.

dc - 19

The Master Method

 Based on the Master theorem.

 “Cookbook” approach for solving recurrences

of the form

T(n) = aT(n/b) + f(n)

• a 1, b > 1 are constants.

• f(n) is asymptotically positive.

• n/b may not be an integer, but we ignore floors and

ceilings. Why?

 Requires memorization of three cases.

dc - 20

The Master Theorem

Theorem 4.1

Let a 1 and b > 1 be constants, let f(n) be a function, and

let T(n) be defined on nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b.

T(n) can be bounded asymptotically in three cases:

1. If f(n) = O(nlogb a–) for some constant > 0, then T(n) = (nlogb a).

2. If f(n) = (nlogb a), then T(n) = (nlogb alg n).

3. If f(n) = (nlogb a+) for some constant > 0,

and if, for some constant c < 1 and all sufficiently large n,

we have a·f(n/b) c f(n), then T(n) = (f(n)).

We’ll return to recurrences as we need them…

dc - 21

The Master Method

T(n) = aT(n/b) + f(n)

= a(T(n/b2) + f(n/b)) + f(n)

= a(a(T(n/b3) + f(n/b2)) + f(n/b)) + f(n)

… …

 clogbaf(n) + clogba-1f(n) + …+ c2f(n) + cf(n) + f(n)

= f(n) (clogba + clogba-1… + c)

= (f(n))

a·f(n/b) c f(n) (c < 1),

amf(n/bm+1) cam-1f(n/bm) … cm+1f(n).

