
9/16/2024

Recursive Equation

• Recurrence relations

• How to solve a recursive equation
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Analysis of Merge Sort

 Running time T(n) of Merge Sort:

 Divide: computing the middle takes (1)

 Conquer: solving 2 subproblems takes 2T(n/2)

 Combine: merging n elements takes (n)

 Total:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 T(n) = (n lg n) (CLRS, Chapter 4)
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Recurrence Relations

 Equation or an inequality that characterizes a 
function by its values on smaller inputs.

 Solution Methods (Chapter 4)

⬧ Substitution Method.

⬧ Recursion-tree Method.

⬧ Master Theorem Method.

 Recurrence relations arise when we analyze the 
running time of iterative or recursive algorithms.

⬧ Ex: Divide and Conquer.

T(n) = (1) if n  c

T(n) = a T(n/b) + D(n) otherwise
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Substitution Method

 Guess the form of the solution, then 

use mathematical induction to show it correct.

⬧ Substitute guessed answer for the function when the 

inductive hypothesis is applied to smaller values.

 Works well when the solution is easy to guess.

 No general way to guess the correct solution.
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Example – Exact Function

Recurrence:  T(n) = 1                         if   n = 1

T(n) = 2T(n/2) + n   if   n > 1

⬧Guess: T(n) = n lg n + n.

⬧Induction:

•Basis: n = 1  n lg n + n = 1 = T(n).

•Hypothesis: T(k) = k lg k + k for all k < n.

•Inductive Step:

T(n) = 2 T(n/2) + n

= 2 ((n/2)lg(n/2) + (n/2)) + n

= n (lg(n/2)) + 2n

= n lg n – n + 2n

= n lg n + n
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Recursion-tree Method

 Making a good guess is sometimes difficult with 

the substitution method.

 Use recursion trees to devise good guesses.

 Recursion Trees

⬧ Show successive expansions of recurrences using 

trees.

⬧ Keep track of the time spent on the subproblems of a 

divide and conquer algorithm.

⬧ Help organize the algebraic bookkeeping necessary 

to solve a recurrence.
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Recursion Tree – Example 

 Running time of Merge Sort:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 Rewrite the recurrence as

T(n) = c if n = 1

T(n) = 2T(n/2) + cn if n > 1

c > 0: Running time for the base case and

time per array element for the divide and

combine steps.
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Recursion Tree for Merge Sort

For the original problem, 

we have a cost of cn, 

plus two subproblems 

each of size (n/2) and 

running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems 

has a cost of cn/2 plus two 

subproblems, each costing 

T(n/4).

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide 

and merge. 

Cost of sorting 

subproblems.

T(n)
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Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n + 1

cn

cn

cn

cn

Total: cnlg n+cn
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Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

•Each level has total cost cn.

•Each time we go down one level, 

the number of subproblems doubles, 

but the cost per subproblem halves  

 cost per level remains the same.

•There are lg n + 1 levels, height is 

lg n. (Assuming n is a power of 2.)

•Can be proved by induction.

•Total cost = sum of costs at each 

level = (lg n + 1)cn = cnlgn + cn = 

(n lgn).
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Other Examples

 Use the recursion-tree method to determine a 

guess for the recurrences

⬧ T(n) = 3T(n/4) + (n2).

⬧ T(n) = T(n/3) + T(2n/3) + O(n).
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Other Examples

⬧ T(n) = 3T(n/4) + (n2).

n2

T(n/4) T(n/4)

T(n)

T(n/4)

n2

(n/4)2 (n/4)2(n/4)2

T(n/42) T(n/42)T(n/42)

… …
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Other Examples

⬧ T(n) = 3T(n/4) + (n2).
n2

(n/4)2 (n/4)2(n/4)2

(n/42)2 (n/42)2(n/42)2

… …

T(n/43) T(n/43)T(n/43)

… …

… …

log4 n
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Other Examples
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Other Examples

⬧ T(n) = T(n/3) + T(2n/3) + O(n).

n

T(n/3) T(2n/3)

T(n)

n

n/3 2n/3

T(n/32)T(2n/32) T(2n/32) T(22n/32)
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Other Examples

⬧ T(n) = T(n/3) + T(2n/3) + O(n).

n

n/3 2n/3

n/32 2n/32 2n/32 22n/32

n/33 2n/33 2n/33 22n/33

… …

2n/33 22n/33 22n/33 23n/33

n

n

n

n

log3 n

n log3 n



dc - 17

Other Examples

⬧ T(n) = T(n/3) + T(2n/3) + O(n)

T(n) = T(n/3) + T(2n/3) + n

T(n) = (T(n/32)+ T(2n/32) + n/3) + (T(2n/32) +T(22n/32)  + 2n/3) + n

= T(n/9) + 2T(2n/9) + T(4n/9) + 2

= (T(n/27) + T(2n/27)  + n/9) +2(T(2n/27) + T(4n/27)+ 2n/9) + 

(T(4n/27) +T(8n/27) + 4n/9) + 2n

= T(n/27) + 3T(2n/27) + 3T(4n/27) + T(8n/27) + 3n

= … … + n/27 + 3(2n/27) + 3(4n/27) + 8n/27 + 3n

= n log3 n 
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Recursion Trees – Caution Note

 Recursion trees only generate guesses.

⬧ Verify guesses using substitution method.

 A small amount of “sloppiness” can be 

tolerated. Why?

 If careful when drawing out a recursion tree and 

summing the costs, it can be used as direct 

proof.



dc - 19

The Master Method

 Based on the Master theorem.

 “Cookbook” approach for solving recurrences 

of the form

T(n) = aT(n/b) + f(n)

• a  1, b > 1 are constants.

• f(n) is asymptotically positive.

• n/b may not be an integer, but we ignore floors and 

ceilings. Why?

 Requires memorization of three cases.
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The Master Theorem

Theorem 4.1

Let a  1 and b > 1 be constants, let f(n) be a function, and 

let T(n) be defined on nonnegative integers by the recurrence 

T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or n/b. 

T(n) can be bounded asymptotically in three cases:

1. If  f(n) = O(nlogb a–) for some constant  > 0, then T(n) = (nlogb a).

2. If  f(n) = (nlogb a), then T(n) = (nlogb alg n).

3. If  f(n) = (nlogb a+) for some constant  > 0, 

and if, for some constant c < 1 and all sufficiently large n, 

we have a·f(n/b)  c f(n), then T(n) = (f(n)).

We’ll return to recurrences as we need them…
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The Master Method

T(n) = aT(n/b) + f(n)

= a(T(n/b2) + f(n/b)) + f(n)

= a(a(T(n/b3) + f(n/b2)) + f(n/b)) + f(n)

… …

 clogbaf(n) + clogba-1f(n) + …+ c2f(n) + cf(n) + f(n)

= f(n) (clogba + clogba-1… + c)

= (f(n)) 

a·f(n/b)  c f(n)   (c < 1),

amf(n/bm+1)  cam-1f(n/bm)  …  cm+1f(n).


