Quicksort

 Quick sort
» Correctness of partition
- loop Invariant
 Performance analysis
- Recurrence relations

9/11/2024

Performance

+ A triumph of analysis by C.A.R. Hoare

* \Worst-case execution time — ®(n?).

+ Average-case execution time — ®(nlg n).

» How do the above compare with the complexities of
other sorting algorithms?

+ Empirical and analytical studies show that
quicksort can be expected to be twice as fast as
ItS competitors.

gsort - 2

Design

+ Follows the divide-and-conquer paradigm.

+ Divide: Partition (separate) the array A[p .. r] into two
(possibly empty) subarrays A[p .. g—1] and A[g+1 .. r].
» Each element in Afp .. g-1] < A[q].
» A[q] < each element in A[g+1 .. r].
» Index q Is often referred to as a pivot.

¢ Conguer: Sort the two subarrays by recursive calls to
quicksort.

¢ Combine: The subarrays are sorted in place — no work
IS needed to combine them.

+ How do the divide and combine steps of quicksort
compare with those of merge sort?

gsort - 3

Pseudocode

Quicksort(A, p, 1) Partition(A, p, 1)
If p <rthen X, 1 :=A[r],p-1,;
q := Partition(A, p, 1); forj:=ptor-1do
Quicksort(A, p, q—1); IfA[j] < xthen
Quicksort(A, g+ 1,r1) I:=1+1
Alil] < A[j]
fi
Alp .. 1] od;
- = Ali + 1] < A[r];
|| 5 | returni + 1

t ot
I 1 Alp..q—1] A[g+1..1]
Partition ‘ | 5

H_J H_/
<5 > 5

qsort - 4

initially:

next iteration:

next iteration:

next iteration:

next iteration:

gsort-5

Example

P I
25839417106

]
25839417106
I
25839417106

I
25839417106
L]

25389417106
L]

note: pivot (x) =6

Partition(A, p,)
X, 1 :=A[r],p-1,;
forj.=ptor—1do
If A[j] < xthen
=1+ 1;
Ali]l & AJj]

fi
od;
Ali + 1] & Alr];
returni+1

Example (Continued)

next iteration:

next iteration: 2 5
next iteration: 2 5
next iteration: 2 5
next iteration: 2 5
next iteration: 2 5
after final swap: 2 5

gsort- 6

3
i

3

25389417106

J

9417106
J

9817106
J
1897106
| J
1897106
| J
1897106
| J

1697108
| J

Partition(A, p,)
X, 1 :=A[r],p-1,;
forj:=ptor-1do
If A[j] £ xthen
=1+ 1;
All] < Alj]

fi
od;
All + 1] & A[r];
returni +1

Partitioning

¢ Select the last element A[r] in the subarray A[p .. r] as
the pivot — the element around which to partition.

+ As the procedure executes, the array Is partitioned
Into four (possibly empty) regions.

Alp .. 1] — All entries in this region are < pivot.

Ali+1 .. j — 1] — All entries in this region are > pivot.

A[j .. r — 1] — Not known how they compare to pivot.

A[r] = pivot.

=~ L=

¢+ The above hold before each iteration of the for loop,

and constitute a loop Invariant. (4 is not part of the LI -
loop invariant.)

gsort - 7

Correctness of Partition

+ Use loop Invariant.

¢ Initialization:
» Before first iteration

o A[p..1]Jand A[i +1.. j—1] are empty — Conds. 1 and 2 are satisfied

(trivially).

* ris the index of the pivot — Cond. 4 is
satisfied.

« Cond. 3 trivially holds.

¢ Maintenance:

» Case 1: Afj] > x
 Increment j only.
LI is maintained.

gsort - 8

Partition(A, p,)
X, 1 :=A[r],p-1,;
forj:=ptor—1do
IfA[j] £ xthen
| :=1+1;
Ali]l © AJj]

fi
od;
Al + 1] & Alr];
returni +1

Correctness of Partition

Case 1: A[j] > x

J

HEEN |
/)

A

~
> X

J

_/

A

~
> X

Correctness of Partition

¢ Case 2: A[j] £x
» Increment i » A[r] Is unaltered.

» Swap A[i] and A[j] « Condition 3 is maintained.
e Condition 1 is maintained.

» Increment |

e Condition 2 is maintained.
P | r

|| l---<x HE

— U
Iz
<X
p | J r

|| | . HE
A YT ~

<X > X

gsort - 10

Correctness of Partition

¢ Termination:

» When the loop terminates, | = r, so all elements in A

are

nartitioned into one of the three cases:
p .. 1] < pivot
1+ 1. .r—1]> pivot

r] = pivot

¢ The last two lines swap A[i + 1] and AJr].
» Pivot moves from the end of the array to between

the two subarrays.

» Thus, procedure partition correctly performs the

gsort - 11

divide step.

Complexity of Partition

* PartitionTime(n) Is given by the number of

Iterations In the for loop.

*OM): n=r—p+1.

gsort - 12

Partition(A, p,)
X, 1 :=A[r],p-1;
forj:=ptor-1do
If A[j] < xthen
=1+ 1;
All] & AJj]
fi

od:
All + 1] < A[r];
returni + 1

Algorithm Performance

Running time of quicksort depends on whether the
partitioning Is balanced or not.

+ Worst-Case Partitioning (Unbalanced Partitions):

» Occurs when every call to partition results in the most unbalanced
partition.

» Partition 1s most unbalanced when

« Subproblem 1 is of size n — 1, and subproblem 2 is of size 0 or vice versa.
* pivot > every element in A[p .. r — 1] or pivot < every element in A[p .. r —1].

» Every call to partition is most unbalanced when
« Array A[1 .. n] is sorted or reverse sorted!

t 1
)

gsort - 13

Worst-case Partition Analysis

Recursion tree for
worst-case partition

/

n Running time for worst-case
/ \ \ partition at each recursive level:

n-1 pivot 0o T(N)=T(n-1)+T(0)

/ \ \ + PartitionTime(n)
=T(n-1) + ©(n)

n-2 pivot 0

= 2ie10nO(K)
AR = O(Zc1 00 k)
n-3 pivot 0 = 0(n?)

/\\ (n-1) +...+1=n(n-1)/2 = 0(n?)

\1

gsort - 14

pivot 0

Best-case Partitioning

+ Size of each subproblem < n/2.

» One of the subproblems is of size [n/2]
» The other is of size[n/2]-1.
¢ Recurrence for running time
» T(n) < 2T(n/2) + PartitionTime(n)
= 2T(n/2) + ©(n)
¢ T(n)=0O(nlgn)

gsort - 15

Recursion Tree for Best-case Partition

(04 1 cn
Cn/2 Cn/2 .. ~ ch
o / \ / \
7< 7< cn/4 7/4\ ... ~ cn
Coo e . e
Total :O(nlg n)

gsort - 16

Average-case Partitioning

Average case: Worst cases and best cases interleavingly appear.

N

T

2log n <

0 pivot n-1 worst case
— | ™~
(n—2)/2 pivot (n—-2)/2 best case
RN RN

0 pivot (n-2)/2-1 0 pivot (n—2)/2-1 worstcase

------ best case

gsort - 17

Recurrences — |1 \

9/11/2024

Recurrence Relations

+ Equation or an Inequality that characterizes a
function by its values on smaller inputs.
¢ Solution Methods (Chapter 4)
» Substitution Method.
» Recursion-tree Method.
» Master Method.
+ Recurrence relations arise when we analyze the
running time of iterative or recursive algorithms.
» EX: Divide and Conquer.
T(n) =6(1) ifn<c
T(n) =a T(n/b) + D(n) + C(n) otherwise

gsort - 19

Technicalities

+ \We can (almost always) ignore floors and ceilings.

+ Exact vs. Asymptotic functions.

» In algorithm analysis, both the recurrence and its solution are
expressed using asymptotic notation.

» EX: Recurrence with exact function
T(n)=1 Iif n=1
T(n) =2T(n/2) + n if n>1
Solution: T(n)=nlgn+n
« Recurrence with asymptotics (BEWARE!)
T(n) =6(1) ifn=1
T(n) =2T(n/2) + ®(n) ifn>1
Solution: T(n) = ®(n Ign)
+ “With asymptotics” means we are being sloppy about the exact
base case and non-recursive time — still convert to exact, though!

gsort - 20

Substitution Method

¢ Guess the form of the solution, then
use mathematical induction to show It correct.

» Substitute guessed answer for the function when the
Inductive hypothesis is applied to smaller values —
hence, the name.

+ \Works well when the solution Is easy to guess.

+ No general way to guess the correct solution.

gsort - 21

Example — Exact Function

Recurrence: T(n) =1 If n=1
T(n) =2T(n/2) + n If n>1
*Guess: T(n) =nlgn +n.
+Induction:
‘Basis:n=1=nlgn+n=1=T(n).
*Hypothesis: T(k) = k Igk + k for all k < n.
*Inductive Step: T(n) =2 T(n/2) +n
=2 ((n/2)lg(n/2) + (n/2)) + n
=n (Ig(n/2)) + 2n
=nlgn—-n+2n
=nlgn+n

gsort - 22

Example — With Asymptotics

To Solve: T(n) = 3T(Ln/3J) +n

¢ Guess: T(n)=0(nlgn)

* Need to prove: T(n) <cn lg n, for some ¢ > 0.
* Hypothesis: T(k) < ck Ig k, for all k <n.

¢ Calculate:

T(n) < 3cln/3]1gln/3] +n
<cnlg(n/3) +n
=cnlgn—-cnlg3 +n
=cnlgn-n(clg3-1)
<cnlgn

(The last step Is true for ¢ > 1/1g3.)

gsort - 23

Example — With Asymptotics

ToSolve: T(n)=3T(n/3)) +n

¢ Toshow T(n) = ®(n Ig n), must show both upper and lower
bounds, i.e., T(n) = O(n Ig n) AND T(n) = Q(n Ig n)

¢ (Can you find the mistake in this derivation?)

+ Show: T(n) = Q(nlg n)

¢ Calculate:

T(n) > 3cLn/3]lgln/3] +n
>cnlg(n/3) +n
=cnlgn-cnlg3 +n
=cnlgn-n(clg3-1)
>cnlgn

(The last step is true for ¢ <1/1g3.)

gsort - 24

Example — With Asymptotics

If T(n) = 3T(Ln/3J) + O (n), as opposed to T(n) = 3T(Ln/3.) + n,
then rewrite T(n) < 3T(Ln/3]) + cn, ¢ > 0.
¢ To show T(n) = O(n lIg n), use second constant d, different from c.

¢ Calculate:
T(n) <3dLn/3]1gLn/3] +cn

<dnlg (n/3) + cn
=dnlgn-dnlg3 +c¢cn
=dnlgn-n(dlg3-c¢)
<dnlgn

(The last step Is true for d >c/1g3.)

It is OK for d to depend on c.

gsort - 25

Making a Good Guess

+ |f a recurrence is similar to one seen before, then guess a
similar solution.

» T(n) = 3T(Ln/3]+ 5) + n (Similarto T(n) = 3T(n/3) + n)

* When n is large, the difference between n/3 and (n/3 + 5) is
Insignificant.
« Hence, can guess O(n Ig n).
+ Method 2: Prove loose upper and lower bounds on the

recurrence and then reduce the range of uncertainty.

» E.g., start with T(n) = Q(n) & T(n) = O(n?).

» Then lower the upper bound and raise the lower bound.

gsort - 26

Subtleties

¢+ When the math doesn’t quite work out in the induction,
strengthen the guess by subtracting a lower-order term.
Example:
» Initial guess: T(n) = O(n) for T(n) = 3T(.n/3))+ 4
» Results in: T(n)< 3cln/3]+4=cn+4

» Strengthen the guess to: T(n) < ¢n—b, where b > 0.
« What does it mean to strengthen?
« Though counterintuitive, it works. Why?

T(n) < 3(cln/3]-b)+4<cn-3b+4=cn—-b—(2b—4)
Therefore, T(n) <cn—-Db, iIf 20-4>0 or If b>2.
(Don’t forget to check the base case: here c>b+1.)

gsort - 27

Changing Variables

+ Use algebraic manipulation to turn an unknown
recurrence into one similar to what you have seen
before.

» Example: T(n) = 2T(nY?) +Ig n
» Rename m =Ign and we have
T(2™) = 2T(2™2) + m
» Set S(m) =T(2M) and we have
S(m) =2S(m/2) + m = S(m) = O(m Ig m)
» Changing back from S(m) to T(n), we have
T(n) =T(2™) =S(m) =O(m Ig m) =O(lg n lg Ig n)

gsort - 28

Avoiding Pitfalls

+ Be careful not to misuse asymptotic notation.
For example:

» We can falsely prove T(n) = O(n) by guessing
T(n) < cn for T(n) = 2T(Ln/2)) + n

T(n) < 2cLn/2] +n
<cn+n
= 0O(n) <= Wrong!

» We are supposed to prove that T(n) <c n for all n>N,
according to the definition of O(n).

+ Remember: prove the exact form of inductive hypothesis.

gsort - 29

Exercises

+ Solution of T(n) = T((n/2) + nis O(n)
+ Solution of T(n) = 2T(Ln/2] + 17) + nis O(n Ig n)

¢ Solve T(n) =2T(n/2) + 1

* Solve T(n) = 2T(n"?) + 1 by making a change of
variables. Don’t worry about whether values are
Integral.

gsort - 30

