
9/11/2024

Quicksort

• Quick sort

• Correctness of partition

- loop invariant

• Performance analysis

- Recurrence relations

qsort - 2

Performance

 A triumph of analysis by C.A.R. Hoare

 Worst-case execution time – (n2).

 Average-case execution time – (nlg n).

» How do the above compare with the complexities of
other sorting algorithms?

 Empirical and analytical studies show that
quicksort can be expected to be twice as fast as
its competitors.

qsort - 3

Design

 Follows the divide-and-conquer paradigm.

 Divide: Partition (separate) the array A[p .. r] into two
(possibly empty) subarrays A[p .. q–1] and A[q+1 .. r].

» Each element in A[p .. q–1]  A[q].

» A[q] < each element in A[q+1 .. r].

» Index q is often referred to as a pivot.

 Conquer: Sort the two subarrays by recursive calls to
quicksort.

 Combine: The subarrays are sorted in place – no work
is needed to combine them.

 How do the divide and combine steps of quicksort
compare with those of merge sort?

qsort - 4

Pseudocode

Quicksort(A, p, r)

if p < r then

q := Partition(A, p, r);

Quicksort(A, p, q – 1);

Quicksort(A, q + 1, r)

fi

Partition(A, p, r)

x, i := A[r], p – 1;

for j := p to r – 1 do

if A[j]  x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 15

A[p .. r]

A[p .. q – 1] A[q + 1 .. r]

 5  5

Partition 5

i j

qsort - 5

Example

p r

initially: 2 5 8 3 9 4 1 7 10 6 note: pivot (x) = 6

i j

next iteration: 2 5 8 3 9 4 1 7 10 6

i j

next iteration: 2 5 8 3 9 4 1 7 10 6

i j

next iteration: 2 5 8 3 9 4 1 7 10 6

i j

next iteration: 2 5 3 8 9 4 1 7 10 6

i j

Partition(A, p, r)

x, i := A[r], p – 1;

for j := p to r – 1 do

if A[j]  x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1

qsort - 6

Example (Continued)
next iteration: 2 5 3 8 9 4 1 7 10 6

i j

next iteration: 2 5 3 8 9 4 1 7 10 6

i j

next iteration: 2 5 3 4 9 8 1 7 10 6

i j

next iteration: 2 5 3 4 1 8 9 7 10 6

i j

next iteration: 2 5 3 4 1 8 9 7 10 6

i j

next iteration: 2 5 3 4 1 8 9 7 10 6

i j

after final swap: 2 5 3 4 1 6 9 7 10 8

i j

Partition(A, p, r)

x, i := A[r], p – 1;

for j := p to r – 1 do

if A[j]  x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1

qsort - 7

Partitioning
 Select the last element A[r] in the subarray A[p .. r] as

the pivot – the element around which to partition.

 As the procedure executes, the array is partitioned

into four (possibly empty) regions.

1. A[p .. i] — All entries in this region are  pivot.

2. A[i+1 .. j – 1] — All entries in this region are > pivot.

3. A[j .. r – 1] — Not known how they compare to pivot.

4. A[r] = pivot.

 The above hold before each iteration of the for loop,

and constitute a loop invariant. (4 is not part of the LI -

loop invariant.)

qsort - 8

Correctness of Partition

 Use loop invariant.

 Initialization:

» Before first iteration

• A[p.. i] and A[i + 1 .. j – 1] are empty – Conds. 1 and 2 are satisfied

(trivially).

• r is the index of the pivot – Cond. 4 is

satisfied.

• Cond. 3 trivially holds.

 Maintenance:

» Case 1: A[j] > x

• Increment j only.

• LI is maintained.

Partition(A, p, r)

x, i := A[r], p – 1;

for j := p to r – 1 do

if A[j]  x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1

qsort - 9

Correctness of Partition

>x x

p i j r

 x > x

x

p i j r

 x > x

Case 1: A[j] > x

qsort - 10

Correctness of Partition

 x x

p i j r

 x > x

 Case 2: A[j]  x

» Increment i

» Swap A[i] and A[j]

• Condition 1 is maintained.

» Increment j

• Condition 2 is maintained.

» A[r] is unaltered.

• Condition 3 is maintained.

 x > x

x

p i j r

qsort - 11

Correctness of Partition

 Termination:

» When the loop terminates, j = r, so all elements in A

are partitioned into one of the three cases:

• A[p .. i]  pivot

• A[i + 1 .. r – 1] > pivot

• A[r] = pivot

 The last two lines swap A[i + 1] and A[r].

» Pivot moves from the end of the array to between

the two subarrays.

» Thus, procedure partition correctly performs the

divide step.

qsort - 12

Complexity of Partition

 PartitionTime(n) is given by the number of

iterations in the for loop.

 (n) : n = r – p + 1.
Partition(A, p, r)

x, i := A[r], p – 1;

for j := p to r – 1 do

if A[j]  x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1

qsort - 13

Algorithm Performance

Running time of quicksort depends on whether the
partitioning is balanced or not.

 Worst-Case Partitioning (Unbalanced Partitions):

» Occurs when every call to partition results in the most unbalanced
partition.

» Partition is most unbalanced when

• Subproblem 1 is of size n – 1, and subproblem 2 is of size 0 or vice versa.

• pivot  every element in A[p .. r – 1] or pivot < every element in A[p .. r – 1].

» Every call to partition is most unbalanced when

• Array A[1 .. n] is sorted or reverse sorted!

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

i j

qsort - 14

Worst-case Partition Analysis

Running time for worst-case

partition at each recursive level:

T(n) = T(n – 1) + T(0)

+ PartitionTime(n)

= T(n – 1) + (n)

= k=1 to n(k)

= (k=1 to n k)

= (n2)

n

Recursion tree for

worst-case partition
n

n – 1 0 pivot

0 n -2 pivot

0 n - 3 pivot

0 1 pivot

… …

(n - 1) + … + 1 = n(n -1)/2 = O(n2)

qsort - 15

Best-case Partitioning

 Size of each subproblem  n/2.

» One of the subproblems is of size n/2

» The other is of size n/2 −1.

 Recurrence for running time

» T(n)  2T(n/2) + PartitionTime(n)

= 2T(n/2) + (n)

 T(n) = (n lg n)

qsort - 16

Recursion Tree for Best-case Partition

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

cn

cn

cn

Total : O(n lg n)

cn

qsort - 17

Average-case Partitioning

2log n

n

n – 1 0 pivot

(n – 2)/2 (n – 2)/2 pivot

(n – 2)/2 - 1 0 pivot

… …

(n – 2)/2 - 1 0 pivot

worst case

best case

worst case

best case

… …

Average case: Worst cases and best cases interleavingly appear.

Average case time complexity:  2n log n

9/11/2024

Recurrences – II

qsort - 19

Recurrence Relations

 Equation or an inequality that characterizes a
function by its values on smaller inputs.

 Solution Methods (Chapter 4)

» Substitution Method.

» Recursion-tree Method.

» Master Method.

 Recurrence relations arise when we analyze the
running time of iterative or recursive algorithms.

» Ex: Divide and Conquer.

T(n) = (1) if n  c

T(n) = a T(n/b) + D(n) + C(n) otherwise

qsort - 20

Technicalities
 We can (almost always) ignore floors and ceilings.

 Exact vs. Asymptotic functions.

» In algorithm analysis, both the recurrence and its solution are
expressed using asymptotic notation.

» Ex: Recurrence with exact function

T(n) = 1 if n = 1

T(n) = 2T(n/2) + n if n > 1

Solution: T(n) = n lgn + n

• Recurrence with asymptotics (BEWARE!)

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

Solution: T(n) = (n lgn)

 “With asymptotics” means we are being sloppy about the exact
base case and non-recursive time – still convert to exact, though!

qsort - 21

Substitution Method

 Guess the form of the solution, then

use mathematical induction to show it correct.

» Substitute guessed answer for the function when the

inductive hypothesis is applied to smaller values –

hence, the name.

 Works well when the solution is easy to guess.

 No general way to guess the correct solution.

qsort - 22

Example – Exact Function

Recurrence: T(n) = 1 if n = 1

T(n) = 2T(n/2) + n if n > 1

⬧Guess: T(n) = n lgn + n.

⬧Induction:

•Basis: n = 1  n lgn + n = 1 = T(n).

•Hypothesis: T(k) = k lgk + k for all k < n.

•Inductive Step: T(n) = 2 T(n/2) + n

= 2 ((n/2)lg(n/2) + (n/2)) + n

= n (lg(n/2)) + 2n

= n lgn – n + 2n

= n lgn + n

qsort - 23

Example – With Asymptotics

To Solve: T(n) = 3T(n/3) + n

 Guess: T(n) = O(n lg n)

 Need to prove: T(n)  cn lg n, for some c > 0.

 Hypothesis: T(k)  ck lg k, for all k < n.

 Calculate:
T(n)  3c n/3 lg n/3 + n

 c n lg (n/3) + n

= c n lg n – c n lg3 + n

= c n lg n – n (c lg 3 – 1)

 c n lg n

(The last step is true for c  1 / lg3.)

qsort - 24

Example – With Asymptotics

To Solve: T(n) = 3T(n/3) + n

 To show T(n) = (n lg n), must show both upper and lower
bounds, i.e., T(n) = O(n lg n) AND T(n) = (n lg n)

 (Can you find the mistake in this derivation?)

 Show: T(n) = (n lg n)

 Calculate:
T(n)  3c n/3 lg n/3 + n

 c n lg (n/3) + n

= c n lg n – c n lg3 + n

= c n lg n – n (c lg 3 – 1)

 c n lg n

(The last step is true for c  1 / lg3.)

qsort - 25

Example – With Asymptotics

If T(n) = 3T(n/3) + O (n), as opposed to T(n) = 3T(n/3) + n,

then rewrite T(n)  3T(n/3) + cn, c > 0.

 To show T(n) = O(n lg n), use second constant d, different from c.

 Calculate:
T(n)  3d n/3 lg n/3 +c n

 d n lg (n/3) + cn

= d n lg n – d n lg3 + cn

= d n lg n – n (d lg 3 – c)

 d n lg n

(The last step is true for d  c / lg3.)

It is OK for d to depend on c.

qsort - 26

Making a Good Guess

 If a recurrence is similar to one seen before, then guess a

similar solution.

» T(n) = 3T(n/3 + 5) + n (Similar to T(n) = 3T(n/3) + n)

• When n is large, the difference between n/3 and (n/3 + 5) is

insignificant.

• Hence, can guess O(n lg n).

 Method 2: Prove loose upper and lower bounds on the

recurrence and then reduce the range of uncertainty.

» E.g., start with T(n) = (n) & T(n) = O(n2).

» Then lower the upper bound and raise the lower bound.

qsort - 27

Subtleties
 When the math doesn’t quite work out in the induction,

strengthen the guess by subtracting a lower-order term.

Example:

» Initial guess: T(n) = O(n) for T(n) = 3T(n/3)+ 4

» Results in: T(n)  3c n/3 + 4 = c n + 4

» Strengthen the guess to: T(n)  c n – b, where b  0.

• What does it mean to strengthen?

• Though counterintuitive, it works. Why?

T(n)  3(c n/3 – b)+4  c n – 3b + 4 = c n – b – (2b – 4)

Therefore, T(n)  c n – b, if 2b – 4  0 or if b  2.

(Don’t forget to check the base case: here c>b+1.)

qsort - 28

Changing Variables
 Use algebraic manipulation to turn an unknown

recurrence into one similar to what you have seen

before.

» Example: T(n) = 2T(n1/2) + lg n

» Rename m = lg n and we have

T(2m) = 2T(2m/2) + m

» Set S(m) = T(2m) and we have

S(m) = 2S(m/2) + m  S(m) = O(m lg m)

» Changing back from S(m) to T(n), we have

T(n) = T(2m) = S(m) = O(m lg m) = O(lg n lg lg n)

qsort - 29

Avoiding Pitfalls

 Be careful not to misuse asymptotic notation.

For example:

» We can falsely prove T(n) = O(n) by guessing

T(n)  cn for T(n) = 2T(n/2) + n

T(n)  2c n/2 + n

 c n + n

= O(n)  Wrong!

» We are supposed to prove that T(n)  c n for all n>N,

according to the definition of O(n).

 Remember: prove the exact form of inductive hypothesis.

qsort - 30

Exercises

 Solution of T(n) = T(n/2) + n is O(n)

 Solution of T(n) = 2T(n/2 + 17) + n is O(n lg n)

 Solve T(n) = 2T(n/2) + 1

 Solve T(n) = 2T(n1/2) + 1 by making a change of

variables. Don’t worry about whether values are

integral.

