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Quicksort

• Quick sort

• Correctness of partition

- loop invariant

• Performance analysis

- Recurrence relations
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Performance

 A triumph of analysis by C.A.R. Hoare

 Worst-case execution time – (n2).

 Average-case execution time – (nlg n).

» How do the above compare with the complexities of  
other sorting algorithms?

 Empirical and analytical studies show that 
quicksort can be expected to be twice as fast as 
its competitors. 
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Design

 Follows the divide-and-conquer paradigm.

 Divide: Partition (separate) the array A[p .. r] into two 
(possibly empty) subarrays A[p .. q–1] and A[q+1 .. r].

» Each element in A[p .. q–1]  A[q].

» A[q] < each element in A[q+1 .. r].

» Index q is often referred to as a pivot.

 Conquer: Sort the two subarrays by recursive calls to 
quicksort. 

 Combine: The subarrays are sorted in place – no work 
is needed to combine them.

 How do the divide and combine steps of quicksort 
compare with those of merge sort?
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Pseudocode

Quicksort(A, p, r)

if p < r then

q := Partition(A, p, r);

Quicksort(A, p, q – 1);

Quicksort(A, q + 1, r)

fi

Partition(A, p, r)

x, i  := A[r], p – 1;

for j := p to r – 1 do

if A[j]   x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 15

A[p .. r]

A[p .. q – 1] A[q + 1 .. r]

 5  5

Partition 5

i   j
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Example

p                                    r

initially: 2  5  8  3  9  4  1  7  10  6 note: pivot (x) = 6

i  j

next iteration: 2 5  8  3  9  4  1  7  10  6

i   j

next iteration: 2 5 8  3  9  4  1  7  10  6

i   j

next iteration: 2  5 8 3  9  4  1  7  10  6

i       j

next iteration: 2  5 3 8 9  4  1  7  10  6

i       j

Partition(A, p, r)

x, i  := A[r], p – 1;

for j := p to r – 1 do

if A[j]   x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1
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Example (Continued)
next iteration: 2  5 3 8 9  4  1  7  10  6

i       j

next iteration: 2  5 3 8 9 4  1  7  10  6

i           j

next iteration: 2  5 3 4 9 8 1  7  10  6

i           j

next iteration: 2  5 3 4 1 8 9 7  10  6

i           j

next iteration: 2  5 3 4 1 8 9 7 10  6

i                j

next iteration: 2  5 3 4 1 8 9 7 10 6

i                     j

after final swap: 2  5 3 4 1 6 9 7 10 8

i                     j

Partition(A, p, r)

x, i  := A[r], p – 1;

for j := p to r – 1 do

if A[j]   x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1
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Partitioning
 Select the last element A[r] in the subarray A[p .. r] as 

the pivot – the element around which to partition.

 As the procedure executes, the array is partitioned 

into four (possibly empty) regions.

1. A[p .. i] — All entries in this region are  pivot.

2. A[i+1 .. j – 1] — All entries in this region are >  pivot.

3. A[j .. r – 1] — Not known how they compare to pivot.

4. A[r] = pivot.

 The above hold before each iteration of the for loop, 

and constitute a loop invariant. (4 is not part of the LI -

loop invariant.)



qsort - 8

Correctness of Partition

 Use loop invariant.

 Initialization:

» Before first iteration

• A[p.. i] and A[i + 1 ..  j – 1] are empty – Conds. 1 and 2 are satisfied 

(trivially).

• r is the index of the pivot – Cond. 4 is

satisfied.

• Cond. 3 trivially holds.

 Maintenance:

» Case 1: A[j] > x

• Increment j only.

• LI is maintained.

Partition(A, p, r)

x, i  := A[r], p – 1;

for j := p to r – 1 do

if A[j]   x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1
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Correctness of Partition

>x x

p i j r

 x > x

x

p i j r

 x > x

Case 1: A[j] > x
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Correctness of Partition

 x x

p i j r

 x > x

 Case 2: A[j]  x

» Increment i

» Swap A[i] and A[j]

• Condition 1 is maintained.

» Increment j

• Condition 2 is maintained.

» A[r] is unaltered.

• Condition 3 is maintained.

 x > x

x

p i j r
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Correctness of Partition

 Termination:

» When the loop terminates, j = r, so all elements in A

are partitioned into one of the three cases: 

• A[p .. i]  pivot

• A[i + 1 .. r – 1] > pivot

• A[r] = pivot

 The last two lines swap A[i + 1] and A[r].

» Pivot moves from the end of the array to between 

the two subarrays.

» Thus, procedure partition correctly performs the 

divide step.
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Complexity of Partition

 PartitionTime(n) is given by the number of 

iterations in the for loop.

 (n) :  n = r – p + 1.
Partition(A, p, r)

x, i  := A[r], p – 1;

for j := p to r – 1 do

if A[j]   x then

i := i + 1;

A[i] A[j]

fi

od;

A[i + 1] A[r];

return i + 1



qsort - 13

Algorithm Performance

Running time of quicksort depends on whether the 
partitioning is balanced or not.

 Worst-Case Partitioning (Unbalanced Partitions):

» Occurs when every call to partition results in the most unbalanced 
partition.

» Partition is most unbalanced when

• Subproblem 1 is of size n – 1, and subproblem 2 is of size 0 or vice versa.

• pivot  every element in A[p .. r – 1] or pivot < every element in A[p .. r – 1].

» Every call to partition is most unbalanced when

• Array A[1 .. n] is sorted or reverse sorted!

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

i j
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Worst-case Partition Analysis

Running time for worst-case

partition at each recursive level:

T(n) = T(n – 1) + T(0)

+ PartitionTime(n)

= T(n – 1) + (n)

= k=1 to n(k)

= (k=1 to n k )

= (n2)

n

Recursion tree for

worst-case partition
n

n – 1 0 pivot 

0 n -2 pivot 

0 n - 3 pivot 

0 1 pivot 

… … 

(n - 1)  + … + 1 = n(n -1)/2 = O(n2)
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Best-case Partitioning

 Size of each subproblem  n/2.

» One of the subproblems is of size n/2

» The other is of size n/2 −1. 

 Recurrence for running time

» T(n)  2T(n/2) + PartitionTime(n)

= 2T(n/2) + (n)

 T(n) = (n lg n)
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Recursion Tree for Best-case Partition

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

cn

cn

cn

Total           : O(n lg n)

cn
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Average-case Partitioning

2log n

n

n – 1 0 pivot 

(n – 2)/2 (n – 2)/2 pivot 

(n – 2)/2 - 1 0 pivot 

… … 

(n – 2)/2 - 1 0 pivot 

worst case

best case

worst case

best case

… … 

Average case: Worst cases and best cases interleavingly appear.

Average case time complexity:  2n log n
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Recurrences – II
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Recurrence Relations

 Equation or an inequality that characterizes a 
function by its values on smaller inputs.

 Solution Methods (Chapter 4)

» Substitution Method.

» Recursion-tree Method.

» Master Method.

 Recurrence relations arise when we analyze the 
running time of iterative or recursive algorithms.

» Ex: Divide and Conquer.

T(n) = (1) if n  c

T(n) = a T(n/b) + D(n) + C(n) otherwise
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Technicalities
 We can (almost always) ignore floors and ceilings.

 Exact vs. Asymptotic functions.

» In algorithm analysis, both the recurrence and its solution are 
expressed using asymptotic notation.

» Ex: Recurrence with exact function

T(n) = 1                         if   n = 1

T(n) = 2T(n/2) + n   if   n > 1

Solution: T(n) = n lgn + n

• Recurrence with asymptotics (BEWARE!)

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n)  if n > 1

Solution: T(n) = (n lgn)

 “With asymptotics” means we are being sloppy about the exact 
base case and non-recursive time – still convert to exact, though!



qsort - 21

Substitution Method

 Guess the form of the solution, then 

use mathematical induction to show it correct.

» Substitute guessed answer for the function when the 

inductive hypothesis is applied to smaller values –

hence, the name.

 Works well when the solution is easy to guess.

 No general way to guess the correct solution.
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Example – Exact Function

Recurrence:  T(n) = 1                         if   n = 1

T(n) = 2T(n/2) + n   if   n > 1

⬧Guess: T(n) = n lgn + n.

⬧Induction:

•Basis: n = 1  n lgn + n = 1 = T(n).

•Hypothesis: T(k) = k lgk + k for all k < n.

•Inductive Step: T(n)  = 2 T(n/2) + n

= 2 ((n/2)lg(n/2) + (n/2)) + n

= n (lg(n/2)) + 2n

= n lgn – n + 2n

= n lgn + n
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Example – With Asymptotics

To Solve: T(n) = 3T(n/3) + n 

 Guess: T(n) = O(n lg n)

 Need to prove: T(n)  cn lg n, for some c > 0.

 Hypothesis: T(k)  ck lg k, for all k < n.

 Calculate:
T(n)  3c n/3 lg n/3 + n

 c n lg (n/3) + n 

= c n lg n – c n lg3 + n

= c n lg n – n (c lg 3 – 1)

 c n lg n 

(The last step is true for  c   1 / lg3.)   
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Example – With Asymptotics

To Solve: T(n) = 3T(n/3) + n 

 To show T(n) = (n lg n), must show both upper and lower 
bounds, i.e., T(n) = O(n lg n) AND T(n) = (n lg n)

 (Can you find the mistake in this derivation?)

 Show: T(n) = (n lg n)

 Calculate:
T(n)  3c n/3 lg n/3 + n

 c n lg (n/3) + n 

= c n lg n – c n lg3 + n

= c n lg n – n (c lg 3 – 1)

 c n lg n 

(The last step is true for  c  1 / lg3.)   
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Example – With Asymptotics

If T(n) = 3T(n/3) + O (n), as opposed to T(n) = 3T(n/3) + n,

then rewrite T(n)  3T(n/3) + cn, c > 0.

 To show T(n) = O(n lg n), use second constant d, different from c.

 Calculate:
T(n)  3d n/3 lg n/3 +c n

 d n lg (n/3) + cn 

= d n lg n – d n lg3 + cn

= d n lg n – n (d lg 3 – c)

 d n lg n 

(The last step is true for  d  c / lg3.)   

It is OK for d to depend on  c.
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Making a Good Guess

 If a recurrence is similar to one seen before, then guess a 

similar solution.

» T(n) = 3T(n/3 + 5) + n  (Similar to T(n) = 3T(n/3) + n)

• When n is large, the difference between n/3 and (n/3 + 5) is 

insignificant.

• Hence, can guess O(n lg n).

 Method 2: Prove loose upper and lower bounds on the 

recurrence and then reduce the range of uncertainty.

» E.g., start with T(n) = (n) & T(n) = O(n2).

» Then lower the upper bound and raise the lower bound.
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Subtleties
 When the math doesn’t quite work out in the induction, 

strengthen the guess by subtracting a lower-order term.  

Example:

» Initial guess: T(n) = O(n) for T(n) = 3T(n/3)+ 4 

» Results in: T(n)  3c n/3 + 4 = c n + 4

» Strengthen the guess to: T(n)  c n – b, where b  0.

• What does it mean to strengthen?

• Though counterintuitive, it works. Why?

T(n)  3(c n/3 – b)+4  c n – 3b + 4 = c n – b – (2b – 4)

Therefore, T(n)  c n – b,  if 2b – 4  0 or if b  2.

(Don’t forget to check the base case: here c>b+1.)



qsort - 28

Changing Variables
 Use algebraic manipulation to turn an unknown 

recurrence into one similar to what you have seen 

before.  

» Example: T(n) = 2T(n1/2) + lg n 

» Rename m = lg n and  we have

T(2m) = 2T(2m/2) + m 

» Set S(m) = T(2m) and  we have

S(m) = 2S(m/2) + m  S(m) = O(m lg m)

» Changing back from S(m) to T(n), we have

T(n) = T(2m) = S(m) = O(m lg m) = O(lg n lg lg n)
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Avoiding Pitfalls

 Be careful not to misuse asymptotic notation.  

For example:

» We can falsely prove T(n) = O(n) by guessing

T(n)  cn for T(n) = 2T(n/2) + n 

T(n)  2c n/2 + n

 c n + n 

= O(n)  Wrong!

» We are supposed to prove that T(n)  c n for all n>N, 

according to the definition of O(n).

 Remember: prove the exact form of inductive hypothesis.
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Exercises

 Solution of T(n) = T(n/2) + n is O(n)

 Solution of T(n) = 2T(n/2 + 17) + n is O(n lg n)

 Solve T(n) = 2T(n/2) + 1

 Solve T(n) = 2T(n1/2) + 1 by making a change of 

variables.  Don’t worry about whether values are 

integral.


