Binary Search Trees

- What is a binary search tree?
- Tree searching
- Inorder traversal of a binary search tree
- Find Min & Max
- Predecessor and successor
- BST insertion and deletion

Binary Trees

- Recursive definition
 - 1. An empty tree is a binary tree
 - 2. A node with two child subtrees is a binary tree
 - 3. Let *A* and *B* be two binary trees. A tree with root *r*, and *A* and *B* as its left and right subtrees, respectively, is a binary tree.

Is this a binary tree?

Binary Search Tree

 Stored keys must satisfy the *binary* 56 search tree property. » \forall *y* in left subtree of 20026 x, then key[y] <key[x].28 18 190213» \forall *y* in right subtree of x, then $key[y] \ge$ key[x].12 27 24

Binary Search Trees

- A BST is a data structures that can support dynamic set operations.
 - » Search, Inorder traversal, Minimum, Maximum, Predecessor, Successor, Insert, and Delete.
- Can be used to build
 - » Dictionaries.
 - » Priority Queues.
- Basic operations take time proportional to the height of the tree O(h).

BST – Representation

- Represented by a linked data structure of nodes.
- root(T) points to the root of tree T.
- Each node contains fields:

» key

- » *left* pointer to left child: root of left subtree.
- » *right* pointer to right child : root of right subtree.
- » p pointer to parent. p[root[T]] = NIL (optional).

Class Node {	
key	string;
left	Node;
right	Node;
р	Node;

Binary Search Tree Construction

56, 200, 26, 213, 190, 28, 27, 18, 12, 24

$\underline{\text{Tree-Search}(x, k)}$

- 1. **if** x = NIL or k = key[x]
- 2. **then** return *x*
- 3. **if** *k* < *key*[*x*]
- 4. **then** return Tree-Search(left[x], k)
- 5. **else** return Tree-Search(*right*[*x*], *k*)

Running time: *O*(*h*)

Aside: tail-recursion

Iterative Tree Search

The iterative tree search is more efficient on most computers. The recursive tree search is more straightforward.

Inorder Traversal

The binary-search-tree property allows the keys of a binary search tree to be printed, in (monotonically increasing) order, recursively.

- 1. if $x \neq \text{NIL}$
- **2.** then Inorder-Tree-Walk(*left*[*x*])
- 3. print key[x]
 - Inorder-Tree-Walk(*right*[x])

- How long does the walk take?
- Can you prove its correctness?

9/25/2024

4.

Correctness of Inorder-Walk

- Must prove that it prints all elements, in order, and that it terminates.
- By induction on size of tree. Size=0: Easy.
- Size >1:
 - » Prints left subtree in order by induction.
 - » Prints root, which comes after all elements in left subtree (still in order).
 - » Prints right subtree in order (all elements come after root, so still in order).

Querying a Binary Search Tree

- All dynamic-set search operations can be supported in O(h) time.
- *h* = Θ(*lg n*) for a balanced binary tree (and for an average tree built by adding nodes in random order.)
- *h* = ⊖(*n*) for an unbalanced tree that resembles a linear chain of *n* nodes in the worst case.

Exercise: Sorting Using BSTs

Sort (A) for $i \leftarrow 1$ to ndo tree-insert(A[i]) inorder-tree-walk(root)

- » What are the worst case and best case running times?
- » In practice, how would this compare to other sorting algorithms?

Finding Min & Max

The binary-search-tree property guarantees that:

- » The minimum is located at the left-most node.
- » The maximum is located at the right-most node.

Tree-Minimum(<i>x</i>)	Tree-Maximum(x)
1. while $left[x] \neq NIL$	1. while $right[x] \neq NIL$
2. do $x \leftarrow left[x]$	2. do $x \leftarrow right[x]$
3. return <i>x</i>	3. return <i>x</i>

Q: How long do they take?

Predecessor and Successor

- Predecessor of node x is the node y such that key[y] is the greatest key smaller than key[x].
- Successor of node x is the node y such that key[y] is the smallest key greater than key[x].
- The successor of the largest key is NIL.
- Search consists of two cases.
 - » If node x has a non-empty right subtree, then x's successor is the minimum in the right subtree of x.
 - » If node *x* has an empty right subtree, then:
 - As long as we move to the left up the tree (move up through right children), we are visiting smaller keys.
 - *x*'s successor *y* is the node that is the predecessor of *x* (*x* is the maximum in *y*'s left subtree).
 - In other words, *x*'s successor *y*, is the lowest ancestor of *x* whose left child is also an ancestor of *x* or is *x* itself.

btrees - 15

Pseudo-code for Successor

$\underline{\text{Tree-Successor}(x)}$

- 1. **if** $right[x] \neq NIL$
- 2. **then** return Tree-Minimum(*right*[*x*])
- 3. $y \leftarrow p[x]$
- 4. while $y \neq NIL$ and x = right[y]
- 5. **do** $x \leftarrow y$
- $6. \qquad y \leftarrow p[y]$

7. **return** *y*

Code for *predecessor* is symmetric.

Running time: *O*(*h*)

BST Insertion – Pseudocode

- Change the dynamic set represented by a BST.
- Ensure the binarysearch-tree property holds after change.
- Insertion is easier than deletion.

Tree	e-Insert(T, z)
1.	$y \leftarrow \text{NIL}$
2.	$x \leftarrow root[T]$
3.	while $x \neq \text{NIL}$
4.	do $y \leftarrow x$
5.	if $key[z] < key[x]$
6.	then $x \leftarrow left[x]$
7.	else $x \leftarrow right[x]$
8.	$p[z] \leftarrow y$
9.	if $y = NIL$
10.	then $root[T] \leftarrow z$
11.	else if $key[z] < key[y]$
12.	then $left[y] \leftarrow z$
13.	else $right[y] \leftarrow z$

Analysis of Insertion

- Initialization: O(1)
- While loop in lines 3-7 searches for place to insert z, maintaining parent y. This takes O(h) time.
- Lines 8-13 insert the value: O(1)
- \Rightarrow TOTAL: O(h) time to insert a node.

Tree-Insert(T, z) 1. $y \leftarrow \text{NIL}$ 2. $x \leftarrow root[T]$ **3.** while $x \neq \text{NIL}$ 4. **do** $y \leftarrow x$ 5. if key[z] < key[x]then $x \leftarrow left[x]$ 6. 7. else $x \leftarrow right[x]$ 8. $p[z] \leftarrow y$ 9. if y = NIL10. then $root[t] \leftarrow z$ 11. else if key[z] < key[y]then $left[y] \leftarrow z$ 12. 13. else right[y] $\leftarrow z$

Tree-Delete (T, z)

 \Rightarrow TOTAL: O(h) time to delete a node

Illustration for case 3:

Deletion – Pseudocode

 $\underline{\text{Tree-Delete}(T, z)}$

/* Determine which node to splice out: either z or z's successor. */

- **1.** if left[z] = NIL or right[z] = NIL
- **2.** then $y \leftarrow z$ /*Case 1 or Case 2*/
- **3.** else $y \leftarrow \text{Tree-Successor}[z] /*Case 3*/$

/* Set x to a non-NIL child of y, or to NIL if y has no children. */

- 4. if $left[y] \neq NIL^{*}$ /*y has one child or no child.*/
- 5. then $x \leftarrow left[y]$ /*x can be a child of y or NIL. */
- 6. **else** $x \leftarrow right[y]$
- /* y is removed from the tree by manipulating pointers of p[y]and x */

7. if $x \neq \text{NIL}$

8. **then** $p[x] \leftarrow p[y]$

/* Continued on next slide */

y is the node be deleted, which has at most one child.

x is the unique child of *y*.

Deletion – Pseudocode

<u>Tree-Delete(*T*, *z*) (Contd. from previous slide)</u> if p[y] = NIL/*if y is the root*/ 9. 10. then $root[T] \leftarrow x$ 11. **else if** y = left[p[y]]/*y is a left child.*/ 12. then $left[p[y]] \leftarrow x$ 13. else right[p[y]] $\leftarrow x$ /* If z's successor was spliced out, copy its data into z *//*y is z's successor.*/ **14.** if $y \neq z$ 15. then $key[z] \leftarrow key[y]$ copy y's satellite data into z. 16. **17.** return y

Correctness of Tree-Delete

- How do we know case 2 should go to case 1 or case
 2 instead of back to case 3?
 - » Because when *x* has 2 children, its successor is the minimum in its right subtree, and that successor has no left child (hence 1 or 2 child).
- Equivalently, we could swap with predecessor instead of successor. It might be good to alternate to avoid creating lopsided tree.

Also called top-down searching, depth-first searching

27

24

12

Also called bottom-up searching

btrees - 25

Q is a queue.

Depth-first(x)(recursive)Algorithm DFS(x)1. if $x \neq NIL$ 2. then print key[x]3. Let v_1, \dots, v_k be the children of x4. for (i = k to 1) DFS (v_i)

<u>Depth-first(x)</u> (non-recursive)

- 1. push(S, x)
- **2.** while $S \neq$ empty **do**
 - $v := \mathbf{pop}(S)$
- 4. print key[x]
 - Let v_1, \ldots, v_k be the children of x
- 6. **for** (i = k to 1) **push** (S, v_i)

S is a stack.

It is also called the preoreder search and top-down search.

3.

5.

PostOrder(x) (recursive) Algorithm PostOrder(x) 1. if $x \neq NIL$

 $1 \bullet II \land \neq I \lor IL \land$

2. then Let v_1, \ldots, v_k be the children of x

3. for
$$(i = k \text{ to } 1)$$
 PostOrder (v_i)

```
Print key[x]
```


It is also called the bottom-up search.

9/25/2024

4.

<u>PostOrder(x)</u> (non-recursive)

- **1. push**(*S*, *x*)
- **2.** while $S \neq$ empty **do**
- 3. $v := \mathbf{top}(S)$
- 4. if v is leaf or marked
- 5. then print key[v], **pop**(*S*)
- 6. else *mark v*
- 7. Let v_1, \ldots, v_k be the children of v
- 8. **for** (i = k to 1) **push** (S, v_i)

S is a stack.

Binary Search Trees

- View today as data structures that can support dynamic set operations.
 - » Search, Minimum, Maximum, Predecessor, Successor, Insert, and Delete.
- Can be used to build
 - » Dictionaries.
 - » Priority Queues.
- Basic operations take time proportional to the height of the tree -O(h).

Red-black trees: Overview

- Red-black trees are a variation of binary search trees to ensure that the tree is *balanced*.
 - » Height is $O(\lg n)$, where *n* is the number of nodes.
- Operations take $O(\lg n)$ time in the worst case.

Red-black Tree

- Binary search tree + 1 bit per node: the attribute *color*, which is either **red** or **black**.
- All other attributes of BSTs are inherited:
 » key, *left*, *right*, and *p*.
- If a child or the parent of a node does not exist, the corresponding pointer field of the node contains the value *nil*.
- Sentinel nil[T], representing all the *nil* nodes.

Red-black Tree – Example

<u>Red-black Tree – Example</u>

<u>Red-black Tree – Example</u>

Red-black Properties

- 1. Every node is either red or black.
- 2. The root is black.
- 3. Every leaf (*nil*) is black.
- 4. If a node is red, then both its children are black.
- 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Height of a Red-black Tree

- Height of a node:
 - » Number of edges in a longest path to a leaf.
- Black-height of a node *x*, *bh*(*x*):
 - » bh(x) is the number of black nodes (including nil[T]) on the path from x to leaf, not counting x.
- Black-height of a red-black tree is the black-height of its root.
 - » By Property 5, black height is well defined.

Height of a Red-black Tree

- Example:
- Height of a node:
 - » Number of edges in a longest path to a leaf.
- Black-height of a node
 bh(x) is the number of
 black nodes on path from
 x to leaf, not counting x.

