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Elementary Graph Algorithms

• Graph representation

• Graph traversal
- Breadth-first search

- Depth-first search

• Parenthesis theorem
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Graphs

V = {a, b, c, d}

E = {(a, b), (a, c), (b, d), (c, d)}

a

d

cb

 Graph G = (V, E)

» V = set of vertices

» E = set of edges  (VV)
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Graphs

 Types of graphs

» Undirected: edge (u, v) = (v, u); for all v, (v, v)  E (No self 
loops.)

» Directed: (u, v) is edge from u to v, denoted as u → v. Self loops 
are allowed.

» Weighted: each edge has an associated weight, given by a weight 
function w : E → R. (R – set of all possible real numbers)

» Dense: |E|  |V|2.

» Sparse: |E| << |V|2.

 |E| = O(|V|2)
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Graphs

 If (u, v)  E, then vertex v is adjacent to vertex u.

 Adjacency relationship is:

» Symmetric if G is undirected.

» Not necessarily so if G is directed.

 If an undirected graph G is connected:

» There is a path between every pair of vertices.

» |E|  |V| – 1.

» Furthermore, if |E| = |V| – 1, then G is a tree.

 If a directed graph G is connected:

» Its undirected version is connected.

 Other definitions in Appendix B (B.4 and B.5) as 

needed.
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Representation of Graphs

 Two standard ways.

» Adjacency Lists.

» Adjacency Matrix.

a

dc

b

a

dc

b
1 2

3 4

1   2   3   4

1  0   1   1   1

2  1   0   1   0

3  1   1   0   1

4  1   0   1   0

a

b

c

d

b         

a         

d         

d c         

c         

a b         

a         c
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Adjacency Lists

 Consists of an array Adj of |V| lists.

 One list per vertex.

 For u  V, Adj[u] consists of all vertices adjacent to u.

a

dc

b a

b

c

d

b         

c         

d         

d         c         

a

dc

b

If weighted, store weights also in 

adjacency lists.

a

b

c

d

b         

a         

d         

d c         

c         

a b         

a         c
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Storage Requirement

 For directed graphs:

» Sum of lengths of all adj. lists is

vV out-degree(v) = vV in-degree(v) = |E|

» Total storage:(|V| + |E|)

 For undirected graphs:

» Sum of lengths of all adj. lists is

degree(v) = 2|E|
vV

» Total storage:(|V| + |E|)

No. of edges leaving v

No. of edges incident on v. Edge (u,v) is incident 

on vertices u and v.
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Pros and Cons: adj list 

 Pros

» Space-efficient, when a graph is sparse.

» Can be modified to support many graph variants.

 Cons

» Determining if an edge (u, v)  G is not efficient.

• Have to search in u’s adjacency list. (degree(u)) time.

• (|V|) in the worst case.
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Adjacency Matrix

 |V|  |V| matrix A.

 Number vertices from 1 to |V| in some arbitrary manner.

 A is then given by:



 

==
otherwise0

),( if1
],[

Eji
ajiA ij

a

dc

b
1 2

3 4

1   2   3   4

1  0   1   1   1

2  0   0   1   0

3  0   0   0   1

4  0   0   0   0

a

dc

b
1 2

3 4

1   2   3   4

1  0   1   1   1

2  1   0   1   0

3  1   1   0   1

4  1   0   1   0

A = AT for undirected graphs.
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Space and Time

 Space: (|V|2).

» Not memory efficient for large graphs.

 Time: to list all vertices adjacent to u: (|V|).

 Time: to determine if (u, v)  E: (1).

 Can store weights instead of bits for weighted graph.
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Sparse Matrix

• Sparse matrices are typically stored in a format, or a representation,

which avoids storing zero elements.

• CSR (Compressed Sparse Row) - store only non-zero values in a

a one-dimentional data storage: data[ ].

• Two auxiliary data structures col_index[ ] and row_ptr[ ] to

preserve the stucture of the original sparse matrix in the compressed

representation.

• col_index[ ] gives the column index of every nonzero value in the

original sparse matrix.

• Row_ptr[ ] indicates the starting nonzero location of every row in

the compressed format. 
0   1   2   3

0  3   0   1   0

1  0   0   0   0

2  0   2   4   1

3  1   0   0   1
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Nonzero values data[ ]

0   1   2   3

0  3   0   1   0

1  0   0   0   0

2  0   2   4   1

3  1   0   0   1

Sparse Matrix

{3 1 2 4 1 1 1}

{0 2 1 2 3 0 3}

{0 2 2 5 7}

row0 row2   row3

Column indeces col_index[ ]

Row pointers row_ptr[ ]
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• In data[ ], value 3 and 1 came from column 0 and 2 in the original

sparse matrix. The col_index[0] and col_index[1] elements are

assigned to store the column indices for these two values. For another

example, values 2, 4, and 1 came from column 1, 2, and 3 of row 2

in the original sparse matrix. Therefore, col_index[2], col_index[3],

and col_index[4] store indices 1, 2, and 3.

• In row_ptr[ ], the values are the indices for the beginning locations

of each row. For example, row_ptr[0] = 0 indicates the row 0 starts

at location 0 of data[ ]. row_ptr[2] = 2 indicates the row 2 starts at

location 2 of data[ ]. But we notice that row_ptr{1] is set to be 2,

equal to row_ptr[2], showing all elements in row 1 in the original

matrx are 0. Finally, row_ptr[4] stores the starting location of a

non-existing ‘row 4’. (This choice is the convenience, as some

algorithms need to use the starting location of the next row to

delineate the end of the current row.)
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Nonzero values data[ ]

0   1   2   3  4  5  6  7  8

0  0   1   1   0  0  0  0  0  0

1  0   0   0   1  1  0  0  0  0

2  0   0   0   0  0  1  1  1  0

3 0   0   0   0  1  0  0  0  1

4 0   0   0   0  0  1  0  0  1

5 0   0   0   0  0  0  1  0  0

6 0   0   0   0  0  0  0  0  1

7 0   0   0   0  0  0  1  0  0

8 0   0   0   0  0  0  0  0  0

Sparse Graph

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 4 8 5 8 6 8 0 8

0 2 4 7 9 11 12 13 15 16

3

0

1 4 8

2 5

7 6

destination[ ]

edges[ ]
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Graph-searching Algorithms

 Searching a graph:

» Systematically follow the edges of a graph 

to visit the vertices of the graph.

 Used to discover the structure of a graph.

 Standard graph-searching algorithms.

» Breadth-first Search (BFS).

» Depth-first Search (DFS).
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Breadth-first Search

 Input: Graph G = (V, E), either directed or undirected, 
and source vertex s  V.

 Output:

» d[v] = distance (smallest # of edges, or shortest path) from s to v, 
for all v  V. d[v] =  if v is not reachable from s.

» [v] = u such that (u, v) is last edge on shortest path s      v.

• u is v’s predecessor.

» Builds breadth-first tree with root s that contains all reachable 
vertices.

Definitions:

Path between vertices u and v: Sequence of vertices (v1, v2, …, vk) such that u = 

v1 and v = vk, and (vi, vi+1)  E, for all 1 i  k-1.

Length of the path: Number of  edges in the path.

Path is simple if no vertex is repeated.
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Breadth-first Search

 Expands the frontier between discovered and 
undiscovered vertices uniformly across the breadth 
of the frontier.

» A vertex is “discovered” the first time it is encountered 
during the search.

» A vertex is “finished” if all vertices adjacent to it have 
been discovered.

 Colors the vertices to keep track of progress.

» White – Undiscovered.

» Gray – Discovered but not finished.

» Black – Finished.
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BFS for Shortest Paths

Finished

Discovered

Undiscovered
S

1
1

1

S

1
1

1
S2

2

2

2

2

2

S

3

3 3

3

3



graphs-1 - 19

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black

white: undiscovered

gray: discovered

black: finished

Q: a queue of discovered 

vertices

color[v]: color of v

d[v]: distance from s to v

[u]: predecessor of v

initialization

access source s
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Example (BFS)

 0

  

 



r s t u

v w x y

Q: s

0

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black
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Example (BFS)

1 0

1  

 



r s t u

v w x y

Q: w  r

1  1

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black
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Example (BFS)

1 0

1 2 

2 



r s t u

v w x y

Q: r   t  x

1  2  2

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black
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Example (BFS)

1 0

1 2 

2 

2

r s t u

v w x y

Q: t  x  v

2  2  2

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black
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Example (BFS)

1 0

1 2 

2 3

2

r s t u

v w x y

Q: x  v  u

2  2  3

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black
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1 0

1 2 3

2 3

2

r s t u

v w x y

Q: v  u  y

2  3  3

Example (BFS)
BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: u  y

3  3

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: y

3

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

Q: 

BFS(G,s)

1. for each vertex u in V[G] – {s}

2 do color[u]  white

3 d[u] 

4 [u]  nil

5 color[s]  gray

6 d[s]  0

7 [s]  nil

8 Q 

9 enqueue(Q, s)

10 while Q  

11 do u  dequeue(Q)

12 for each v in Adj[u] do

13 if color[v] = white

14 then color[v]  gray

15 d[v]  d[u] + 1

16 [v]  u

17 enqueue(Q, v)

18 color[u]  black
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Example (BFS)

1 0

1 2 3

2 3

2

r s t u

v w x y

BF Tree
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Analysis of BFS

 Initialization takes O(|V|).

 Traversal Loop
» After initialization, each vertex is enqueued and dequeued at most 

once, and each operation takes O(1). So, total time for queuing is 
O(|V|).

» The adjacency list of each vertex is scanned at most once.  The 
sum of lengths of all adjacency lists is (|E|).

 Summing up over all vertices => total running time of BFS 
is O(|V| + |E|), linear in the size of the adjacency list 
representation of graph. 

 Correctness Proof
» We omit for BFS and DFS.

» Will do for later algorithms.
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Breadth-first Tree

 For a graph G = (V, E) with source s, the predecessor 

subgraph of G is G = (V , E) where 

» V ={vV : [v]  nil}  {s}

» E ={([v], v)  E : v  V - {s}} 

 The predecessor subgraph G is a breadth-first tree

if:

» V consists of the vertices reachable from s and

» for all v  V , there is a unique simple path from s to v in G

that is also a shortest path from s to v in G.  

 The edges in E are called tree edges.  

|E| = |V| - 1.
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Depth-first Search (DFS)

 Explore edges out of the most recently

discovered vertex v.

 When all edges of v have been explored, backtrack to 

explore other edges leaving the vertex from

which v was discovered (its predecessor).

 “Search as deep as possible first.”

 Continue until all vertices reachable from the original 

source are discovered.

 If any undiscovered vertices remain, then one of them 

is chosen as a new source and search is repeated from 

that source.

v

v
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Depth-first Search

 Input: G = (V, E), directed or undirected. No source 

vertex given!

 Output:

» 2 timestamps on each vertex. Integers between 1 and 2|V|.

• d[v] = discovery time (v turns from white to gray)

• f [v] = finishing time (v turns from gray to black)

» [v] : predecessor of v = u, such that v was discovered during 

the scan of u’s adjacency list.

 Coloring scheme for vertices as BFS. A vertex is

» “undiscovered” (white) when it is not yet encountered.

» “discovered” (grey) the first time it is encountered during the search.

» “finished” (black) if it is a leaf node or all vertices adjacent to it have 

been finished.
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Pseudo-code

DFS(G)

1.  for each vertex u  V[G]

2.       do color[u]  white

3.            [u]  NIL

4.  time  0

5.  for each vertex u  V[G]

6.        do if color[u] = white

7.                 then DFS-Visit(u)

Uses a global timestamp time.

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1

s0

s1
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Example (DFS)

1/

u v w

x y z

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/ 2/

u v w

x y z

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/

3/

2/

u v w

x y z

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/

4/ 3/

2/

u v w

x y z

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/

4/ 3/

2/

u v w

x y z

B

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/

4/5 3/

2/

u v w

x y z

B

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/

4/5 3/6

2/

u v w

x y z

B

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

B

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/

4/5 3/6

2/7

u v w

x y z

BF

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/8

4/5 3/6

2/7

u v w

x y z

BF

DFS(G)

1.  for each vertex u  V[G]

2.       do color[u]  white

3.            [u]  NIL

4.  time  0

5.  for each vertex u  V[G]

6.        do if color[u] = white

7.                 then DFS-Visit(u)
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Example (DFS)

1/8

4/5 3/6

2/7 9/

u v w

x y z

BF C

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/8

4/5 3/6 10/

2/7 9/

u v w

x y z

BF C

B

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/

u v w

x y z

BF C

B

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Example (DFS)

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

DFS-Visit(u)

1. color[u]  GRAY  // White vertex u

has been discovered

2. time  time + 1

3. d[u]  time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v]  u

7. DFS-Visit(v)

8. color[u]  BLACK     // Blacken u;  

it is finished.

9. f[u]  time  time + 1
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Analysis of DFS

 Loops on lines 1-2 & 5-7 take (|V|) time, excluding 

time to execute DFS-Visit.

 DFS-Visit is called once for each white vertex vV

when it’s painted gray the first time.  Lines 3-6 of DFS-

Visit is executed |Adj[v]| times. The total cost of 

executing DFS-Visit is vV|Adj[v]| = (|E|)

 Total running time of DFS is (|V| + |E|).
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Depth-First Trees

 Predecessor subgraph defined slightly different from 

that of BFS.

 The predecessor subgraph of DFS is G = (V, E) where 

E ={([v], v) : v  V and [v]  nil}.

» How does it differ from that of BFS?

» The predecessor subgraph G forms a depth-first forest

composed of several depth-first trees.  The edges in E are 

called tree edges.

Definition:

Forest: An acyclic graph G that

may be disconnected.

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C
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Parenthesis Theorem

Theorem 22.7

For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither u 

nor v is a descendant of the other in the DF-tree.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u in DF-tree.

3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v in DF-tree.

 So d[u] < d[v] < f [u] < f [v] cannot happen.

 Like parentheses:

 OK: ( ) [ ] ( [ ] ) [ ( ) ]

 Not OK: ( [ ) ] [ ( ] )

Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].

(

d[u]

)

f[u](

d[v]

)

f[v]

d[v]

[

f[v]

]

( )[ ]
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Parenthesis Theorem

u v

(d[u], f[u]) (d[v], f[v])

Case 1:

u

v

(d[u], f[u])

(d[v], f[v])

Case 2:

v

u

(d[v], f[v])

(d[u], f[u])

Case 3:

v u

(d[v], f[v]) (d[u], f[u])

or
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Example (Parenthesis Theorem)

3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)

In general, if we use ‘(v’ to represent d[v], and ‘v)’ to represent f[v],

the inequalities in the Parenthesis Theorem are just like parentheses

in an arithmetical expression.

1<2<3<4<5<6<7<8<9<10  11<12<13<14<15<16
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White-path Theorem

Theorem 22.9

v is a descendant of u in DF-tree if and only if at time d[u], there  

is a path u  v consisting of only white vertices. (Except for u, 

which was just colored gray.)

u

v

(d[u], f[u])

(d[v], f[v])

u

v
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Classification of Edges

 Tree edge: in the depth-first forest. Found by exploring 
(u, v).

 Back edge: (u, v), where u is a descendant of v (in the 
depth-first tree).

 Forward edge: (u, v), where v is a descendant of u, but 
not a tree edge.

 Cross edge: any other edge (u, v) such that u is not a 
descendant of v (in the depth-first tree) and vice versa. 

Theorem:

In DFS of an undirected graph, we get only tree and back edges. 

No forward or cross edges.
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3/6

4/5 7/8 12/13

2/9 1/10

y z s

x w v

B F

14/15

11/16

u

t

C C C

C B

Classification of Edges

s

z

y w

x

t

v u

C

C

C

C

B

B

F
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s

z

y w

x

t

v u

C

C

C

C

B

B

F

[d(u), f(u)]

[d(v), f(v)]

[d(u), f(u)]

[d(v), f(v)]

[d(v), f(v)]

[d(u), f(u)]

[d(u), f(u)]
[d(v), f(v)]
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Depth-first(x)

1. push(S, x)

2. while S  empty do

3. v := pop(S)

4. print key[x]

5. let v1, …, vk be the children of x

6. for (i = k to 1) do

7. if vi has not yet been accessed then

8. push(S, vi)

DFS graph search using stack

S is a stack.

It is also called the preoreder search and top-down search.

56

26 200

18 28 213

12 24 27



graphs-1 - 61

Bottom-up(x)

Bottom-up(x)

1.let v1, …, vk be the children of x

2.for (i = k to 1) do

3. if vi has not yet accessed then

4. Bottom-up(vi)

5. Print(x)

Bottom-up search of a directed graph

56

26 200

18 28 213

12 24 27


