Greedy Algorithms

- General principle of greedy algorithm
- Activity-selection problem
 - Optimal substructure
 - Recursive solution
 - Greedy-choice property
 - Recursive algorithm
- Minimum spanning trees
 - Generic algorithm
 - Definition: cuts, light edges, safe edges
 - Prim's algorithm

Overview

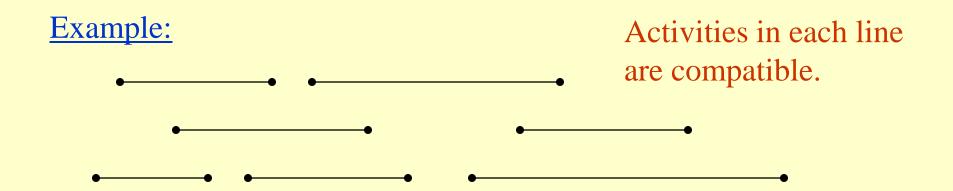
- Like dynamic programming (DP), used to solve optimization problems.
- Problems exhibit optimal substructure (like DP).
- Problems also exhibit the greedy-choice property.
 - » When we have a choice to make, make the one that looks best *right now*.
 - » Make a locally optimal choice in hope of getting a globally optimal solution.

Greedy Strategy

- The choice that seems best at the moment is the one we go with.
 - » Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore, it's always safe to make the greedy choice.
 - » Show that all but one of the subproblems resulting from the greedy choice are empty.

Activity-selection Problem

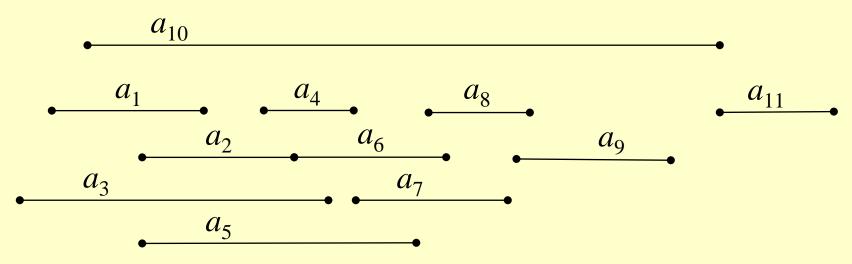
- Input: Set S of n activities, $a_1, a_2, ..., a_n$.
 - » s_i = start time of activity i.
 - » f_i = finish time of activity i.
- Output: Subset A of maximum number of compatible activities.
 - » Two activities are compatible, if their intervals don't overlap.



Example:

<u>i</u>	1	2	3	4	5	6	7	8	9	10	11
S_{i}	1	3	0	5	3	5	7	8	10	2 13	13
f_{i}	4	5	6	7	8	9	10	11	12	13	14

- $\{a_3, a_9, a_{11}\}$ consists of mutually compatible activities. But it is not a maximal set.
- $\{a_1, a_4, a_8, a_{11}\}$ is a largest subset of mutually compatible activities. Another largest subset is $\{a_2, a_6, a_9, a_{11}\}$.



Optimal Substructure

Assume activities are sorted by finishing times.

$$f_1 \le f_2 \le \dots \le f_n$$
.

- Suppose an optimal solution includes activity a_k .
 - » This generates two subproblems.
 - » Selecting from $a_1, ..., a_{k-1}$, activities compatible with one another, and that finish before a_k starts (compatible with a_k).
 - » Selecting from a_{k+1} , ..., a_n , activities compatible with one another, and that start after a_k finishes.
 - » The solutions to the two subproblems must be optimal.

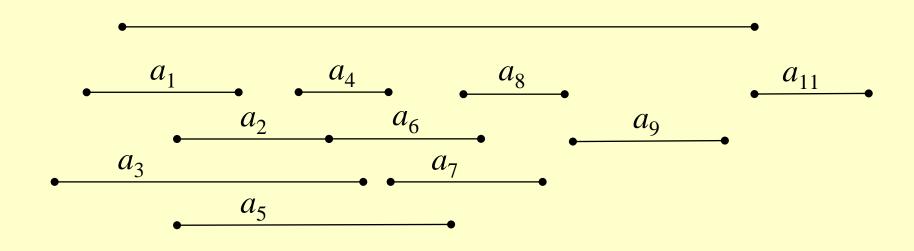
Recursive Solution

- Let S_{ij} = subset of activities in S that start after a_i finishes and finish before a_i starts.
- Subproblems: Selecting maximum number of mutually compatible activities from S_{ij} .
- Let c[i, j] = size of maximum-size subset of mutually compatible activities in S_{ii} .

Recursive Solution:
$$c[i, j] = \begin{cases} 0 & \text{if } S_{ij} = \phi \\ \max\{c[i, k-1] + c[k+1, j] + 1\} & \text{if } S_{ij} \neq \phi \end{cases}$$

The answer: c[1, n]

Running time: $O(n^3)$



$$S_{19}$$
:
$$\begin{array}{c} a_4 \\ a_6 \\ \hline \end{array}$$

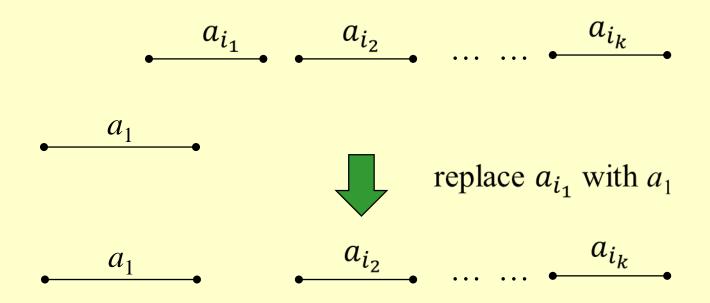
$$S_{3,11}$$
:

Greedy-choice Property

- The problem also exhibits the greedy-choice property.
 - » There is an optimal solution to the subproblem S_{ij} , that includes the activity with the smallest finish time in set S_{ij} .
 - » Can be proved easily.
- Hence, there is an optimal solution to S that includes a_1 .
- ◆ Therefore, make this greedy choice without solving subproblems first and evaluating them.
- Solve the subproblem that ensues as a result of making this greedy choice.
- Combine the greedy choice and the solution to the subproblem.

Greedy choice property:

Assume that $\{a_{i_1}, ..., a_{i_k}\}$ be a maximal set of compatible activities. Then, $\{a_1, ..., a_{i_k}\}$ must be a maximum set of compatible activities.



Recursive Algorithm

Recursive-Activity-Selector (s, f, i, j)

- 1. $m \leftarrow i + 1$
- **2.** while m < j and $s_m < f_i$
- 3. do $m \leftarrow m+1$
- **4.** if m < j
- 5. then return $\{a_m\} \cup$

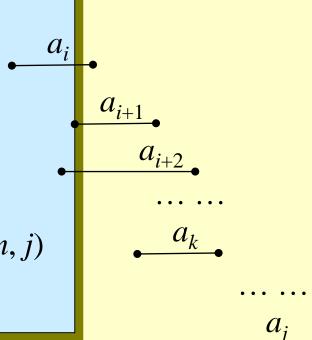
Recursive-Activity-Selector(s, f, m, j)

6. else return ϕ

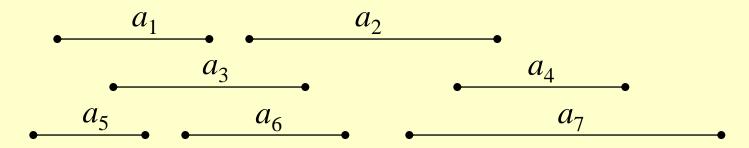
<u>Initial Call:</u> Recursive-Activity-Selector (s, f, 0, n + 1)

Complexity: $\Theta(n)$

Straightforward to convert the algorithm to an iterative one. See the text.



Example:



sorted sequence according to f values:

$$a_5 \longrightarrow a_1 \longrightarrow a_3 \longrightarrow a_6 \longrightarrow a_2 \longrightarrow a_4 \longrightarrow a_7$$

$$a_5 \longrightarrow a_1 \longrightarrow a_3 \longrightarrow a_6 \longrightarrow a_2 \longrightarrow a_4 \longrightarrow a_7$$

step 1:

result = $\{a_5\}$. Removed all those activities not compatible with a_5 .

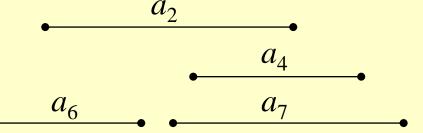
$$a_6 \longrightarrow a_2 \longrightarrow a_4 \longrightarrow a_7$$

step 2:

result = $\{a_5, a_6\}$. Removed all those activities not compatible

with a_6 .

$$a_4 \longrightarrow a_7$$



step 3:

result = $\{a_5, a_6, a_4\}$.

Typical Steps

- Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- Prove that there's always an optimal solution that makes the greedy choice, so that the greedy choice is always safe.
- ◆ Show that greedy choice and optimal solution to subproblem ⇒ optimal solution to the problem.
- Make the greedy choice and solve top-down.
- May have to preprocess input to put it into greedy order.
 - » Example: Sorting activities by finish time.

Elements of Greedy Algorithms

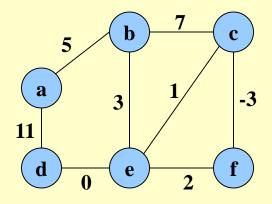
- Greedy-choice Property.
 - » A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- Optimal Substructure.

Minimum Spanning Trees

• Given: Connected, undirected, weighted graph, G

• Find: Minimum - weight spanning tree, T

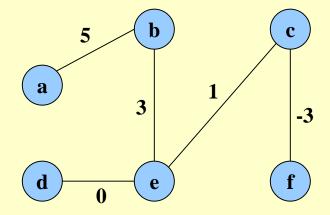
• Example:



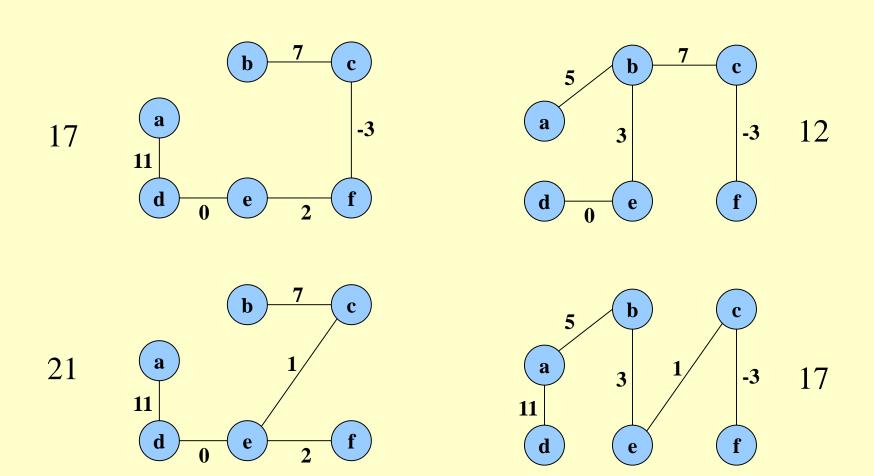
Acyclic subset of edges(E) that connects all vertices of G.

weight of *T*:

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

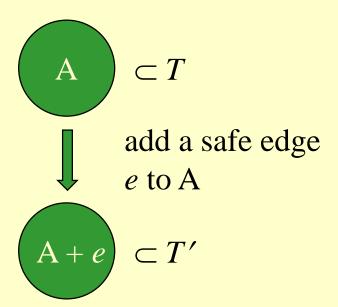


Minimum Spanning Trees



Generic Algorithm

- A subset of some Minimum Spanning tree (MST).
- "Grow" A by adding "safe" edges one by one.
- Edge is "safe" if it can be added to A without destroying this invariant.



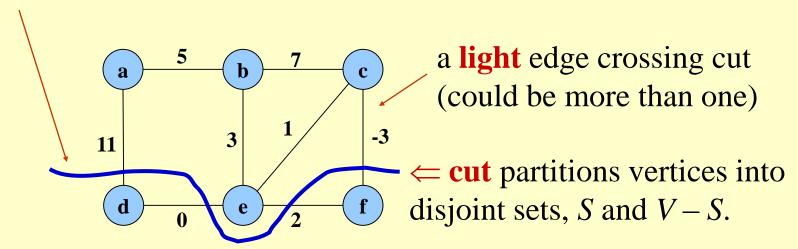
$$A := \emptyset$$
;
while A not complete tree **do**
find a safe edge (u, v) ;
 $A := A \cup \{(u, v)\}$
od

T'may be different from T.

Definitions

- Cut A cut (S, V S) of an undirected graph G = (V, E) is a partition of V.
- A cut respects a set A of edges if no edge in A crosses the cut.
- An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.

cut that **respects** an edge set $A = \{(a, b), (b, c)\}$



Theorem 23.1

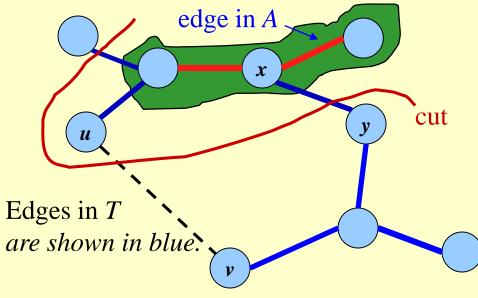
Theorem 23.1: Let (S, V - S) be any cut that respects A, and let (u, v) be a light edge crossing (S, V - S). Then, (u, v) is safe for A.

Proof:

Let T be an MST that includes A.

Case 1: (u, v) in T. We're done.

Case 2: (u, v) not in T. We have the following:



(x, y) (in T) crosses cut. Let $T' = \{T - \{(x, y)\}\} \cup \{(u, v)\}$.

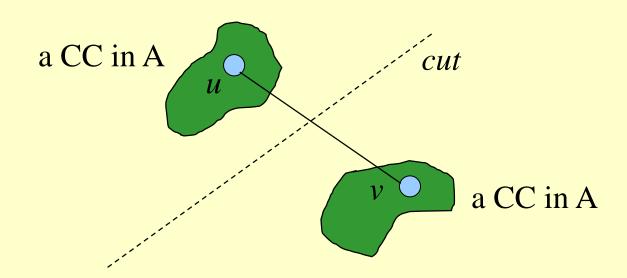
Because (u, v) is light for cut, $w(u, v) \le w(x, y)$. Thus, $w(T') = w(T) - w(x, y) + w(u, v) \le w(T)$.

Hence, T' is also an MST. So, (u, v) is safe for A.

Corollary

In general, A will consist of several connected components (CC).

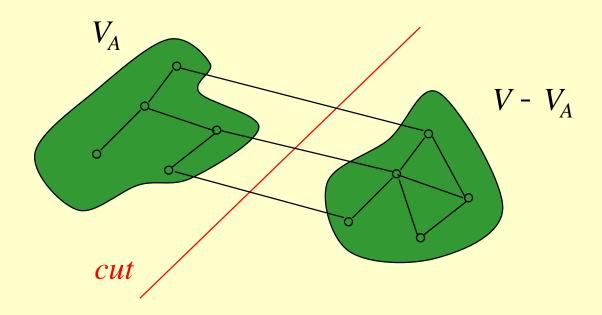
Corollary: If (u, v) is a light edge connecting one CC in $G_A = (V, A)$ to another CC in G_A , then (u, v) is safe for A.



Kruskal's Algorithm

- Starts with each vertex in its own component.
- Repeatedly merges two components into one by choosing a light edge that connects them (i.e., a light edge crossing the cut between them).
- Scans the set of edges in monotonically increasing order by weight.
- Uses a disjoint-set data structure to determine whether an edge connects vertices in different components.

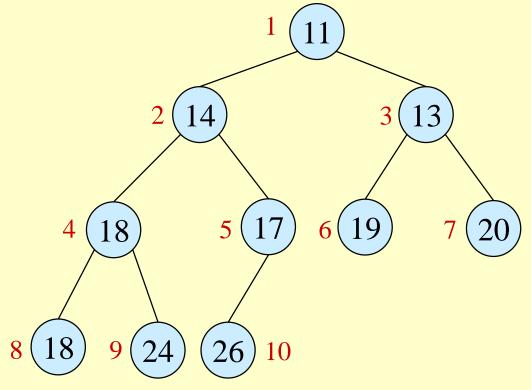
- Builds **one tree**. So *A* is always a tree.
- Starts from an arbitrary "root" r.
- At each step, adds a light edge crossing cut $(V_A, V V_A)$ to A.
 - » V_A = vertices that A is incident on.



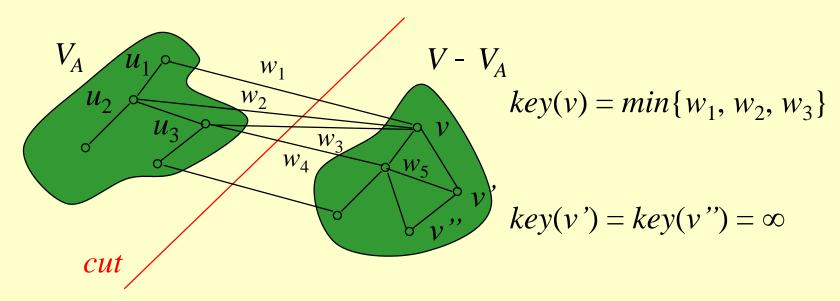
• Uses a **priority queue** *Q* to find a light edge quickly.

implemented as a min-heap Each object in Q is a vertex in $V - V_A$.

Min-heap as a binary



- key(v) (key of $v \in V V_A$) is minimum weight of any edge (u, v), where $u \in V_A$.
- ◆ Then the vertex returned by Extract-Min operation is v such that there exists $u \in V_A$ and (u, v) is light edge crossing $(V_A, V V_A)$.
- key(v) is ∞ if v is not adjacent to any vertex in V_A .



```
Q := V[G];
for each u \in Q do
     key[u] := \infty
od;
key[r] := 0;
\pi[r] := NIL;
while Q \neq \emptyset do
     u := \text{Extract-Min}(Q);
     for each v \in Adi[u] do
          if v \in Q \land w(u, v) < key[v] then
                \pi[v] := u;
                key[v] := w(u, v)
          fi
     od
od
```

Complexity:

Using binary heaps: $O(E \lg V)$.

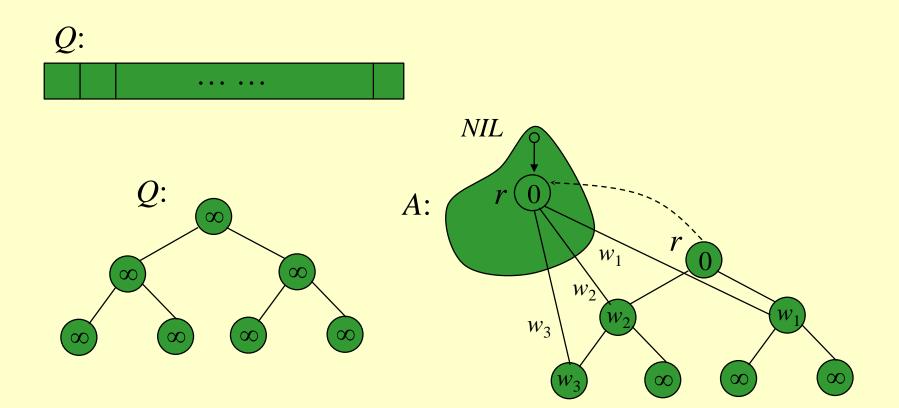
Initialization -O(V).

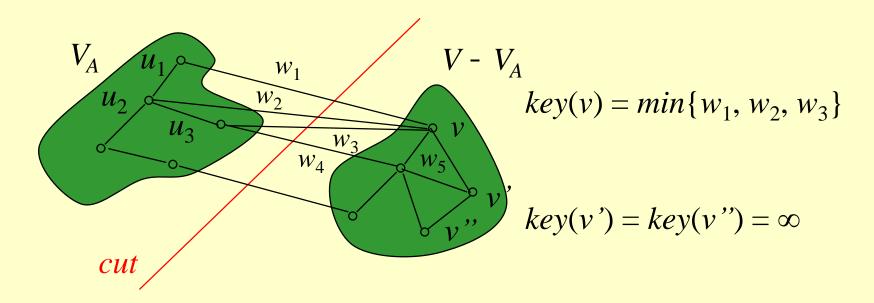
Building initial queue -O(V). V Extract-Min's $-O(V \lg V)$. E Decrease-Key's $-O(E \lg V)$.

Using min-heaps: $O(E + V \lg V)$. (see book)

decrease-key operation

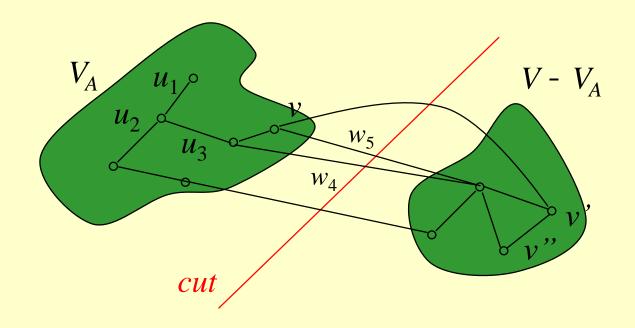
Note: $A = \{(\pi[v], v) : v \in V - \{r\} - Q\}.$

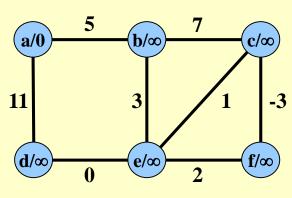




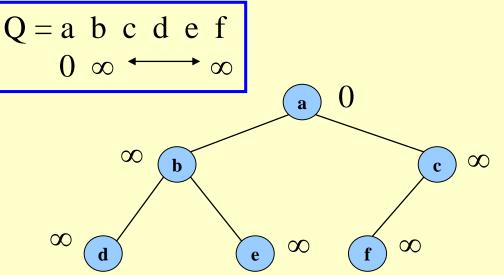
Assume that u_3 is u, chosen by the *extract-min* operation. key(v) should be changed:

$$key(v) \leftarrow \min\{key(v), w_3\}.$$

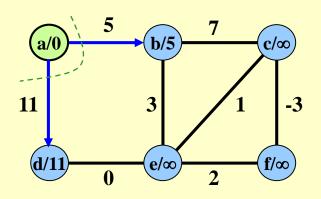




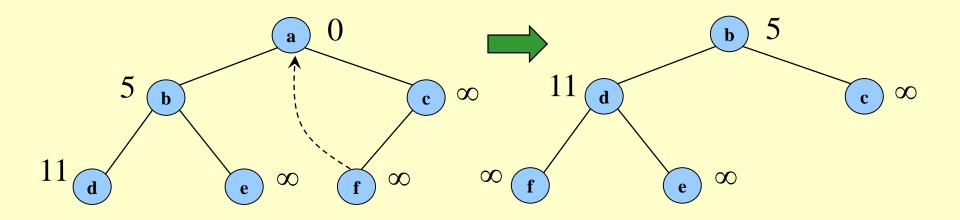
Not in tree

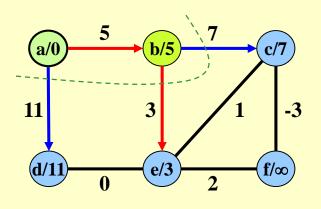


```
Q := V[G];
for each u \in Q do
     key[u] := \infty
od;
key[r] := 0;
\pi[r] := NIL;
while Q \neq \emptyset do
     u := \text{Extract-Min}(Q);
     for each v \in Adj[u] do
          if v \in Q \land w(u, v) < key[v]
     then
                \pi[v] := u;
                key[v] := w(u, v)
          fi
     od
od
```



$$Q = b d c e f$$
$$5 11 \infty \leftrightarrow \infty$$





$$Q = e \quad c \quad d \quad f$$
$$3 \quad 7 \quad 11 \quad \infty$$

