
Yangjun Chen 1

String Matching

• String matching problem

- automata

- String-matching automata

- suffix, suffix function

- prefix, prefix function

- Knuth-Morris-Pratt algorithm

Yangjun Chen 2

Chapter 32: String Matching

String-matching problem

1. Text: an array T[1 .. n] containing n

characters drawn from a finite alphabet

(for instance, = {0, 1} or = {a, b, …, z}.)

Pattern: an array P[1 .. m] (m n)

2. Finding all occurrences of a pattern in a

text is a problem that arises frequently in

text-editing programs.

Yangjun Chen 3

◼Definition

We say that pattern P occurs with shift s in text T (or, equivalently,

that pattern P occurs beginning at position s + 1 in text T)

if 0 s n – m and

T[s + 1 .. s + m] = P[1 .. m]

(i.e., if T[s + j] = P[j] for 1 j m).

Valid shift s – if P occurs with shift s in T. Otherwise, s is an

invalid shift.

text T:

pattern P:

We will find all the valid shifts.

a b c a b a a b c a b a c

a b a a
s = 3

Yangjun Chen 4

◼Naïve algorithm

Naïve-String-Matcher(T, P)

1. n length[T]

2. m length[P]

3. for s 0 to n - m

4. do if T[s + 1 .. s + m] = P[1 .. m]

5. then print “Pattern occurs with shift” s

Obviously, the time complexity of this algorithm is bounded by

O(nm).

In the following, we will discuss Knuth-Morris-Pratt algorithm,

which needs only O(n + m) time.

Yangjun Chen

5

◼Finite automata

A finite automaton M is a 5-tuple (Q, q0, A, ,), where

Q - a finite set of states

q0 - the start state

A Q – a distinguished set of accepting states

 - a finite input alphabet

 - a function from Q into Q, called the

transition function of M.

Example: Q = {0, 1}, q0 = 0, A = {1}, = {a, b}

(0, a) = 1, (0, b) = 0, (1, a) = 0, (1, b) = 0.

1 0

0 0

input
a bstate

0

1

a

a

b

b
0 1

Yangjun Chen 6

◼String-matching automata for patterns

* - the set of all finite-length strings formed using

characters from the alphabet

 - zero-length empty string

|x| - the length of string x

xy - the concatenation of two strings x and y, which has

length |x| + |y| and consists of the characters from x

followed by the characters from y

prefix – a string w is a prefix of a string x, denoted w ◉ x, if x

= wy for some y *.

suffix – a string w is a suffix of a string x, denoted w ■ x, if x

= yw for some y *.

Example: ab ◉ abcca. cca ■ abcca.

Yangjun Chen 7

◼String-matching automata for patterns

- Pk - P[1 .. k] (k m), a prefix of P[1 .. m]

suffix function - a mapping from * to {0, 1, …, m} such

that (x) is the length of the longest prefix of P that is a suffix

of x:

(x) = max{k: Pk ■ x}.

Note that P0 = is a suffix of every string.

- Example

P = ab

We have () = 0

(ccaca) = 1 P = ab

(ccab) = 2 P = ab

P

x

Pk

Yangjun Chen 8

◼String-matching automata for a pattern

For a pattern P[1 .. m], its string-matching automaton

can be constructed as follows.

1. The state set Q is {0, 1, …, m}. The start state q0 is

state 0, and state m is the only accepting state.

contains all the characters in P.

2. The transition function is defined by the following

equation, for any state k and character z:
(k, z) = (Pkz)

z

Pk

=

P = abcad … …

(4, d) = (P4d) = (abcad) = 5

(4, b) = (P4b) = (abcab) = 2

Yangjun Chen 9

◼String-matching automata for patterns

- Example

P = ababaca

1 1 3 1 5 1 7 1

0 2 0 4 0 4 0 2

0 0 0 0 0 6 0 0

a

b

c

input

P a b a b a c a

State 0 1 2 3 4 5 6 7
transition

function

0 1 2 3 4 5 6
a b a b a c a

a

a a a

b
b

7

(k, z) = (Pkz)

Assume that

P0 = .

Intro 10

◼String-matching automata for patterns

- Example

P = ababaca

1 1 3 1 5 1 7 1

0 2 0 4 0 4 0 2

0 0 0 0 0 6 0 0

a

b

c

input

P a b a b a c a

State 0 1 2 3 4 5 6 7
transition

function

(k, z) = (Pkz)

Assume that

P0 = .

(0, a) = (P0a) = (a) = 1

(0, b) = (P0b) = (b) = 0

(0, c) = (P0c) = (c) = 0

(1, a) = (P1a) = (aa) = 1

(1, b) = (P1b) = (ab) = 2

(1, c) = (P1c) = (ac) = 0

… …

Yangjun Chen 11

◼Finite-Automaton-Matcher

- String matching by using the finite automaton

Finite-Automaton-Matcher(T, , m) P = ababaca

1. n length[T]

2. q 0

3. for i 1 to n

4. do q (q, T[i])

5. if q = m

6. then print “pattern occurs with shift” i – m

If the finite automaton is available, the algorithm needs only

O(n + m) time.

0 1 2 3 4 5 6
a b a b a c a

a

a a a

bb

7

a b a b a b a c a b aT: … …

Yangjun Chen

P

T

P

T

Why should the string matching automaton be

precomputed?

Yangjun Chen 13

◼Finite-Automaton-Matcher

- Example

P = ababaca, T = abababacaba

0 1 2 3 4 5 6
a b a b a c a

a

a a a

b
b

step 1: q = 0, T[1] = a. Go into the state q = 1.

step 2: q = 1, T[2] = b. Go into the state q = 2.

step 3: q = 2, T[3] = a. Go into the state q = 3.

step 4: q = 3, T[4] = b. Go into the state q = 4.

step 5: q = 4, T[5] = a. Go into the state q = 5.

step 6: q = 5, T[6] = b. Go into the state q = 4.

step 7: q = 4, T[7] = a. Go into the state q = 5.

step 8: q = 5, T[8] = c. Go into the state q = 6.

step 9: q = 6, T[9] = a. Go into the state q = 7.

7

(k, z) = (Pkz)

1 1 3 1 5 1 7 1

0 2 0 4 0 4 0 2

0 0 0 0 0 6 0 0

P a b a b a c a

State 0 1 2 3 4 5 6 7

a

b

c

Yangjun Chen 14

◼Knuth-Morris-Pratt algorithm

- Dynamic computation of the transition function

We needn’t compute altogether, but using an auxiliary

function , called a prefix function, to calculate –values “on

the fly”.

prefix function - a mapping from {1, …, m} to {0, 1, …, m}

such that

(f) = max{k: k < f, Pk ■ Pf}.

(x) = max{k: Pk ■ x}

comparison with

suffix function:

(Pkz) = (k, z)

z

P

P

Pk

Pf

Yangjun Chen 15

◼Knuth-Morris-Pratt algorithm

- Example

P = ababababca

1 2 3 4 5 6 7 8 9 10

a b a b a b a b c a

0 0 1 2 3 4 5 6 0 1

i

P[i]

[i]

a b a b a b a b c a

a b c a

a b a b c a

a b a b a b c a

a b a b a b a b c a

P8

P6

P4

P2

P0

[8] = 6

[6] = 4

[4] = 2

[2] = 0

1 1 3 1 5 1 7 1

0 2 0 4 0 4 0 2

0 0 0 0 0 6 0 0
P = ababaca

O(||(m+1))

O(m)

(q) = max{k: k < q, Pk ■ Pq}

a ba b a b

a ba b

a b

Yangjun Chen 16

By using the values of prefix function values,

we will dynamically compute suffix function values.

In this way, a suffix function value is computed only

when it is needed. Thus, a lot of time can be saved.

How?

Yangjun Chen 17

◼Knuth-Morris-Pratt algorithm

- function (u)(j)

i) (1)(j) = (j), and

ii) (u)(j) = ((u-1)(j)), for u > 1.

That is, (u)(j) is just applied u times to j.

Example: (2)(6) = ((6)) = (4) = 2 for P = ababababca.

- How to use (u)(j)?

Suppose that the automaton is in state j, having read T[1 .. k],

and that T[k+1] P[j+1]. Then, apply repeatedly until it

find the smallest value of u for which either

1. (u)(j) = l and T[k + 1] = P[l + 1], or

2. (u)(j) = 0 and T[k + 1] P[1].

j

k

(j)(2)(j)

P:

T:

Yangjun Chen 18

◼Knuth-Morris-Pratt algorithm

- How to use (u)(j)?

1. (u)(j) = l and T[k+1] = P[l+1], or

2. (u)(j) = 0 and T[k+1] P[1].

That is, the automaton backs up through (1)(j), (2)(j), … until

either Case 1 or 2 holds for (u)(j) but not for (u-1)(j).

• If Case 1 holds, the automaton enters state l.

• If Case 2 holds, it enters state 0.

In either case, input pointer is advanced to position T[k + 2].

In Case 1, P[1 .. l] is the longest prefix of P that is a suffix of

T[1 .. k], then P[1 .. (u)(j) + 1] = P[1 .. l + 1] is the longest

prefix of P that is a suffix of T[1 .. k + 1]. In Case 2, no prefix of

P is a suffix of T[1 .. k + 1] and we will search P from scratch.

Yangjun Chen 19

◼Knuth-Morris-Pratt algorithm

- Algorithm

KMP-Matcher(T, P)

1. n length[T]

2. m length[P]

3. Compute-Prefix-Function(P)

4. q 0

5. for i 1 to n

6. do while q > 0 and P[q + 1] T[i]

7. do q [q]

8. if P[q + 1] = T[i]

9. then q q + 1

10. if q = m

11. then print “pattern occurs with shift” i – m

12. q [q]

q+1

i

(q+1)

(2)(q+1)

P:

T:

P:

T:

(m)

Compute (u)(q+1)

Yangjun Chen 20

◼Knuth-Morris-Pratt algorithm

- Algorithm

Compute-Prefix-Function(P)

1. m length[T]

2. [1] 0

3. q 0

4. for i 2 to m

5. do while q > 0 and P[q + 1] P[i]

6. do q [q] /*if q = 0 or P[q + 1] = P[i],

7. if P[q + 1] = P[i] going out of the while-loop.*/

8. then q q + 1

9. [i] q

10. return

4. q 0

5. for i 1 to n

6. do while q > 0 and P[q + 1] T[i]

7. do q [q]

8. if P[q + 1] = T[i]

9. then q q + 1

10. if q = m

11. then print …

Compute (u)(q+1)

iq

Yangjun Chen

1 2 3 4 5 6 7 8 9 10

a b a b a b a b c a

0 0 1 2 3 4 5 6 0 1

i

P[i]

[i]

P = ababababca

Yangjun Chen 22

◼Knuth-Morris-Pratt algorithm – sample trace

- Example

P = ababababca,

T = ababaababababca

Compute prefix function:

[1] = 0

q = 0

i = 2, P[q + 1] = P[1] = a, P[i] = P[2] = b, P[q + 1] P[i]

[i] q ([2] 0)

i = 3, P[q + 1] = P[1] = a, P[i] = P[3] = a, P[q + 1] = P[i]

q q + 1, [i] q ([3] 1)

q = 1

i = 4, P[q + 1] = P[2] = b, P[i] = P[4] = b, P[q + 1] = P[i]

q q + 1, [i] q ([4] 2)

q i

2. [1] = 0

3. q 0

4. for i 2 to n

5. do while q > 0 and P[q + 1] P[i]

6. do q [q]

7. if P[q + 1] = P[i]

8. then q q + 1

9. [i] q

Yangjun Chen 23

1 2 3 4 5 6 7 8 9 10

a b a b a b a b c a

0 0 1 2 3 4 5 6 0 1

i

P[i]

[i]

P = ababababca

Yangjun Chen 24

◼Knuth-Morris-Pratt algorithm – sample trace

- Example

q = 2

i = 5, P[q + 1] = P[3] = a, P[i] = P[5] = a, P[q + 1] = P[i]

q q + 1, [i] q ([5] 3)

q = 3

i = 6, P[q + 1] = P[4] = b, P[i] = P[6] = b, P[q + 1] = P[i]

q q + 1, [i] q ([6] 4)

3. q 0

4. for i 2 to n

5. do while q > 0 and P[q + 1] P[i]

6. do q [q]

7. if P[q + 1] = P[i]

8. then q q + 1

9. [i] q

P = ababababca

q i

Intro 25

◼Knuth-Morris-Pratt algorithm – sample trace

- Example

q = 4

i = 7, P[q + 1] = P[5] = a, P[i] = P[7] = a, P[q + 1] = P[i]

q q + 1, [i] q ([7] 5)

q = 5

i = 8, P[q + 1] = P[6] = b, P[i] = P[8] = b, P[q + 1] = P[i]

q q + 1, [i] q ([8] 6)

3. q 0

4. for i 2 to n

5. do while q > 0 and P[q + 1] P[i]

6. do q [q]

7. if P[q + 1] = P[i]

8. then q q + 1

9. [i] q
P = ababababca

q i

Yangjun Chen 26

◼Knuth-Morris-Pratt algorithm – sample trace

- Example

q = 6

i = 9, P[q + 1] = P[7] = a, P[i] = P[9] = c, P[q + 1] P[i]

q [q] (q [6] = 4)

P[q + 1] = P[5] = a, P[i] = P[9] = c, P[q + 1] P[i]

q [q] (q [4] = 2)

P[q + 1] = P[3] = a, P[i] = P[9] = c, P[q + 1] P[i]

q [q] (q [2] = 0), [i] q ([9] 0)

q i

3. q 0

4. for i 2 to n

5. do while q > 0 and P[q + 1] P[i]

6. do q [q]

7. if P[q + 1] = P[i]

8. then q q + 1

9. [i] q

P = ababababca

Intro 27

◼Knuth-Morris-Pratt algorithm – sample trace

- Example

q = 0

i = 10, P[q + 1] = P[1] = a, P[i] = P[10] = a, P[q + 1] = P[i]

q q + 1, [i] q ([10] 1)

q i

3. q 0

4. for i 2 to n

5. do while q > 0 and P[q + 1] P[i]

6. do q [q]

7. if P[q + 1] = P[i]

8. then q q + 1

9. [i] q
P = ababababca

Yangjun Chen 28

◼Knuth-Morris-Pratt algorithm

Theorem Algorithm Compute-Prefix-Function(P) computes

in O(|P|) steps.

Proof. The cost of the while statement is proportional to the

number of times q is decremented by the statement q [q]

following do in line 6. The only way k is increased is by

assigning q q + 1 in line 8. Since q = 0 initially, and line 8 is

executed at most (|P| – 1) times, we conclude that the while

statement on lines 5 and 6 cannot be executed more than |P|

times. Thus, the total cost of executing lines 5 and 6 is O(|P|).

The remainder of the algorithm is clearly O(|P|), and thus the

whole algorithm takes O(|P|) time.

