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Chapter 32: String Matching

String-matching problem

1. Text: an array T[1 .. n] containing n 

characters drawn from a finite alphabet 

(for instance,  = {0, 1} or  = {a, b, …, z}.)

Pattern: an array P[1 .. m] (m  n)

2. Finding all occurrences of a pattern in a 

text is a problem that arises frequently in 

text-editing programs.
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◼Definition

We say that pattern P occurs with shift s in text T (or, equivalently, 

that pattern P occurs beginning at position s + 1 in text T)

if 0  s  n – m and

T[s + 1 .. s + m] = P[1 .. m]

(i.e., if T[s + j] = P[j] for 1  j  m).

Valid shift s – if P occurs with shift s in T. Otherwise, s is an 

invalid shift.

text T:

pattern P:

We will find all the valid shifts.

a b c a b a a b c a b a c

a b a a
s = 3
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◼Naïve algorithm

Naïve-String-Matcher(T, P)

1. n  length[T]

2. m  length[P]

3. for s  0 to n - m

4. do if T[s + 1 .. s + m] = P[1 .. m] 

5. then print “Pattern occurs with shift” s

Obviously, the time complexity of this algorithm is bounded by 

O(nm).

In the following, we will discuss Knuth-Morris-Pratt algorithm, 

which needs only O(n + m) time.
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◼Finite automata

A finite automaton M is a 5-tuple (Q, q0, A, , ), where

Q - a finite set of states

q0 - the start state

A  Q – a distinguished set of accepting states

 - a finite input alphabet

 - a function from Q   into Q, called the 

transition function of M.

Example: Q = {0, 1}, q0 = 0, A = {1},  = {a, b}

(0, a) = 1, (0, b) = 0, (1, a) = 0, (1, b) = 0. 

1 0

0 0

input
a      bstate

0

1

a

a

b

b
0 1
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◼String-matching automata for patterns 

* - the set of all finite-length strings formed using 

characters from the alphabet 

 - zero-length empty string

|x| - the length of string x

xy - the concatenation of two strings x and y, which has 

length |x| + |y| and consists of the characters from x 

followed by the characters from y

prefix – a string w is a prefix of a string x, denoted w ◉ x, if x 

= wy for some y  *.

suffix – a string w is a suffix of a string x, denoted w ■ x, if x 

= yw for some y  *.

Example: ab ◉ abcca. cca ■ abcca.
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◼String-matching automata for patterns

- Pk - P[1 .. k] (k  m), a prefix of P[1 .. m]

suffix function  - a mapping from * to {0, 1, …, m} such 

that (x) is the length of the longest prefix of P that is a suffix 

of x:

(x)  = max{k: Pk ■ x}.

Note that P0 =  is a suffix of every string.

- Example

P = ab

We have () = 0 

(ccaca) = 1 P = ab

(ccab) = 2 P = ab

P

x

Pk
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◼String-matching automata for a pattern

For a pattern P[1 .. m], its string-matching automaton 

can be constructed as follows.

1. The state set Q is {0, 1, …, m}. The start state q0 is 

state 0, and state m is the only accepting state. 

contains all the characters in P.

2. The transition function  is defined by the following 

equation, for any state k and character z:
(k, z) = (Pkz)

z

Pk

=

P = abcad … …

(4, d) = (P4d) = (abcad) = 5

(4, b) = (P4b) = (abcab) = 2
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◼String-matching automata for patterns 

- Example

P = ababaca

1 1 3 1 5 1 7 1

0 2 0 4 0 4 0 2

0 0 0 0 0 6 0 0

a

b

c

input

P a b a b a c a

State 0 1 2 3 4 5 6 7
transition

function

0 1 2 3 4 5 6
a b a b a c a

a

a a a

b
b

7

(k, z) = (Pkz)

Assume that

P0 = .
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◼String-matching automata for patterns 

- Example

P = ababaca

1 1 3 1 5 1 7 1

0 2 0 4 0 4 0 2

0 0 0 0 0 6 0 0

a

b

c

input

P a b a b a c a

State 0 1 2 3 4 5 6 7
transition

function

(k, z) = (Pkz)

Assume that

P0 = .

(0, a) = (P0a) = (a) = 1

(0, b) = (P0b) = (b) = 0 

(0, c) = (P0c) = (c) = 0 

(1, a) = (P1a) = (aa) = 1

(1, b) = (P1b) = (ab) = 2 

(1, c) = (P1c) = (ac) = 0 

… …
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◼Finite-Automaton-Matcher 

- String matching by using the finite automaton

Finite-Automaton-Matcher(T, , m) P = ababaca

1. n  length[T]

2. q  0

3. for i  1 to n

4. do q  (q, T[i])

5. if q = m

6. then print “pattern occurs with shift” i – m

If the finite automaton is available, the algorithm needs only 

O(n + m) time. 

0 1 2 3 4 5 6
a b a b a c a

a

a a a

bb

7

a b a b a b a c a b aT: … …
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P

T



P

T

Why should the string matching automaton be

precomputed? 
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◼Finite-Automaton-Matcher 

- Example

P = ababaca, T = abababacaba

0 1 2 3 4 5 6
a b a b a c a

a

a a a

b
b

step 1: q = 0, T[1] = a. Go into the state q = 1.

step 2: q = 1, T[2] = b. Go into the state q = 2.

step 3: q = 2, T[3] = a. Go into the state q = 3.

step 4: q = 3, T[4] = b. Go into the state q = 4.

step 5: q = 4, T[5] = a. Go into the state q = 5.

step 6: q = 5, T[6] = b. Go into the state q = 4.

step 7: q = 4, T[7] = a. Go into the state q = 5.

step 8: q = 5, T[8] = c. Go into the state q = 6.

step 9: q = 6, T[9] = a. Go into the state q = 7.

7

(k, z) = (Pkz)

1 1 3 1 5 1 7 1

0 2 0 4 0 4 0 2

0 0 0 0 0 6 0 0

P a b a b a c a

State 0 1 2 3 4 5 6 7

a

b

c
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◼Knuth-Morris-Pratt algorithm

- Dynamic computation of the transition function 

We needn’t compute  altogether, but using an auxiliary 

function , called a prefix function, to calculate –values “on 

the fly”.

prefix function  - a mapping from {1, …, m} to {0, 1, …, m} 

such that

(f)  = max{k: k < f, Pk ■ Pf}.

(x)  = max{k: Pk ■ x}

comparison with

suffix function:

(Pkz) = (k, z) 

z  

P

P

Pk

Pf
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◼Knuth-Morris-Pratt algorithm

- Example

P = ababababca

1 2 3 4 5 6 7 8 9 10

a b a b a b a b c a

0 0 1 2 3 4 5 6 0 1

i

P[i]

[i]

a b a b a b a b c a

a b c a

a b a b c a

a b a b a b c a

a b a b a b a b c a

P8

P6

P4

P2

P0


[8] = 6

[6] = 4

[4] = 2

[2] = 0

1 1 3 1 5 1 7 1

0 2 0 4 0 4 0 2

0 0 0 0 0 6 0 0
P = ababaca

O(||(m+1))

O(m)

(q)  = max{k: k < q, Pk ■ Pq}

a ba b a b

a ba b

a b
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By using the values of prefix function values,

we will dynamically compute suffix function values.

In this way, a suffix function value is computed only

when it is needed. Thus, a lot of time can be saved.

How?



Yangjun Chen 17

◼Knuth-Morris-Pratt algorithm

- function (u)(j)

i) (1)(j) = (j), and

ii) (u)(j) = ((u-1)(j)), for u > 1.

That is, (u)(j) is just  applied u times to j.

Example: (2)(6) = ((6)) = (4) = 2 for P = ababababca.

- How to use (u)(j)?

Suppose that the automaton is in state j, having read T[1 .. k], 

and that T[k+1]  P[j+1]. Then, apply  repeatedly until it 

find the smallest value of u for which either

1. (u)(j) = l and T[k + 1] = P[l + 1], or

2. (u)(j) = 0 and T[k + 1]  P[1].

j

k



(j)(2)(j)

P:

T:
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◼Knuth-Morris-Pratt algorithm

- How to use (u)(j)?

1. (u)(j) = l and T[k+1] = P[l+1], or

2. (u)(j) = 0 and T[k+1]  P[1].

That is, the automaton backs up through (1)(j), (2)(j), … until 

either Case 1 or 2 holds for (u)(j) but not for (u-1)(j).

• If Case 1 holds, the automaton enters state l.

• If Case 2 holds, it enters state 0.

In either case, input pointer is advanced to position T[k + 2].

In Case 1, P[1 .. l] is the longest prefix of P that is a suffix of 

T[1 .. k], then P[1 .. (u)(j) + 1] = P[1 .. l + 1] is the longest 

prefix of P that is a suffix of T[1 .. k + 1]. In Case 2, no prefix of 

P is a suffix of T[1 .. k + 1] and we will search P from scratch. 
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◼Knuth-Morris-Pratt algorithm

- Algorithm

KMP-Matcher(T, P)

1. n  length[T]

2. m  length[P]

3.   Compute-Prefix-Function(P)

4. q  0

5. for i  1 to n

6. do while q > 0 and P[q + 1]  T[i]

7. do q  [q]

8. if P[q + 1] = T[i]

9. then q  q + 1

10. if q = m

11. then print “pattern occurs with shift” i – m

12. q  [q]

q+1

i



(q+1)

(2)(q+1)

P:

T:

P:

T:

(m)

Compute (u)(q+1)
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◼Knuth-Morris-Pratt algorithm

- Algorithm

Compute-Prefix-Function(P)

1. m  length[T]

2. [1]  0

3. q  0

4. for i  2 to m

5. do while q > 0 and P[q + 1]  P[i]

6. do q  [q] /*if q = 0 or P[q + 1] = P[i],

7. if P[q + 1] = P[i] going out of the while-loop.*/

8. then q  q + 1

9. [i]  q

10. return 

4. q  0

5. for i  1 to n

6. do while q > 0 and P[q + 1]  T[i]

7. do q  [q]

8. if P[q + 1] = T[i]

9. then q  q + 1

10. if q = m

11. then print …

Compute (u)(q+1)

iq
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1 2 3 4 5 6 7 8 9 10

a b a b a b a b c a

0 0 1 2 3 4 5 6 0 1

i

P[i]

[i]

P = ababababca
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◼Knuth-Morris-Pratt algorithm – sample trace

- Example

P = ababababca,

T = ababaababababca

Compute prefix function:

[1] = 0

q = 0

i = 2, P[q + 1] = P[1] = a, P[i] = P[2] = b, P[q + 1]  P[i]

[i]  q ([2]  0)

i = 3, P[q + 1] = P[1] = a, P[i] = P[3] = a, P[q + 1] = P[i]

q  q + 1, [i]  q ([3]  1)

q = 1

i = 4, P[q + 1] = P[2] = b, P[i] = P[4] = b, P[q + 1] = P[i]

q  q + 1, [i]  q ([4]  2)

q i

2. [1] = 0

3. q  0

4. for i  2 to n

5. do while q > 0 and P[q + 1]  P[i]

6. do q  [q]

7. if P[q + 1] = P[i]

8. then q  q + 1

9. [i]  q
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1 2 3 4 5 6 7 8 9 10

a b a b a b a b c a

0 0 1 2 3 4 5 6 0 1

i

P[i]

[i]

P = ababababca
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◼Knuth-Morris-Pratt algorithm – sample trace

- Example

q = 2

i = 5, P[q + 1] = P[3] = a, P[i] = P[5] = a, P[q + 1] = P[i]

q  q + 1, [i]  q ([5]  3)

q = 3

i = 6, P[q + 1] = P[4] = b, P[i] = P[6] = b, P[q + 1] = P[i]

q  q + 1, [i]  q ([6]  4)

3. q  0

4. for i  2 to n

5. do while q > 0 and P[q + 1]  P[i]

6. do q  [q]

7. if P[q + 1] = P[i]

8. then q  q + 1

9. [i]  q

P = ababababca

q i
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◼Knuth-Morris-Pratt algorithm – sample trace

- Example

q = 4

i = 7, P[q + 1] = P[5] = a, P[i] = P[7] = a, P[q + 1] = P[i]

q  q + 1, [i]  q ([7]  5)

q = 5

i = 8, P[q + 1] = P[6] = b, P[i] = P[8] = b, P[q + 1] = P[i]

q  q + 1, [i]  q ([8]  6)

3. q  0

4. for i  2 to n

5. do while q > 0 and P[q + 1]  P[i]

6. do q  [q]

7. if P[q + 1] = P[i]

8. then q  q + 1

9. [i]  q
P = ababababca

q i
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◼Knuth-Morris-Pratt algorithm – sample trace

- Example

q = 6

i = 9, P[q + 1] = P[7] = a, P[i] = P[9] = c, P[q + 1]  P[i]

q  [q] (q  [6] = 4)

P[q + 1] = P[5] = a, P[i] = P[9] = c, P[q + 1]  P[i]

q  [q] (q  [4] = 2)

P[q + 1] = P[3] = a, P[i] = P[9] = c, P[q + 1]  P[i]

q  [q] (q  [2] = 0), [i]  q ([9]  0)

q i

3. q  0

4. for i  2 to n

5. do while q > 0 and P[q + 1]  P[i]

6. do q  [q]

7. if P[q + 1] = P[i]

8. then q  q + 1

9. [i]  q

P = ababababca
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◼Knuth-Morris-Pratt algorithm – sample trace

- Example

q = 0

i = 10, P[q + 1] = P[1] = a, P[i] = P[10] = a, P[q + 1] = P[i]

q  q + 1, [i]  q ([10]  1)

q i

3. q  0

4. for i  2 to n

5. do while q > 0 and P[q + 1]  P[i]

6. do q  [q]

7. if P[q + 1] = P[i]

8. then q  q + 1

9. [i]  q
P = ababababca
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◼Knuth-Morris-Pratt algorithm

Theorem Algorithm Compute-Prefix-Function(P) computes 

in O(|P|) steps.

Proof. The cost of the while statement is proportional to the 

number of times q is decremented by the statement q  [q] 

following do in line 6. The only way k is increased is by 

assigning q  q + 1 in line 8. Since q = 0 initially, and line 8 is 

executed at most (|P| – 1) times, we conclude that the while

statement on lines 5 and 6 cannot be executed more than |P| 

times. Thus, the total cost of executing lines 5 and 6 is O(|P|). 

The remainder of the algorithm is clearly O(|P|), and thus the 

whole algorithm takes O(|P|) time. 


