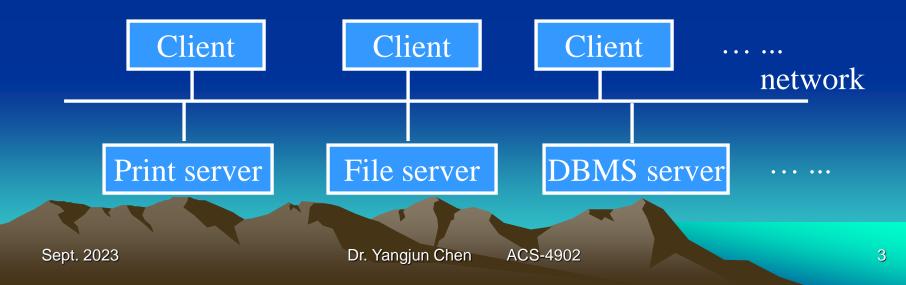
Database System Architecture and System Catalog

Outline (Ch. 17, 3rd ed. – Ch. 2, 4th ed., 5th ed., 6th ed., 7th ed.)


- Database System Architectures
- System Catalog
- System Catalog in Oracle


Sept. 2023

- Centralized DBMS
 - Mainframe computer
 - DBMS functionality
 - Application program
 - User interfaces
 - Computer terminals
 - Input
 - Output

- Client-Server Computer Architecture
 - Terminals are replaced with PCs and workstations
 - Mainframe computer is replaced with specialized servers (with specific functionalities).

File server, DBMS server, mail server, print server, ...

Sept. 2023

Dr. Yangjun Chen ACS-4902

- Client-Server Database Architecture
 - database client
 - user interface, application programs
 - database server
 - SQL language, transaction management
 - database connection

ODBC - open database connectivity

API - application programming interface

- Client-Server Architecture in DBMSs
 - database client

user interface, data dictionary functions, DBMS interaction with programming language compiler, global query optimization, structuring of complex objects from the data in the buffers, ...

- database server

data storage on disk, local concurrency control and recovery, buffering and caching of disk storage, ...

Illustration for DBMS interaction with programming language compiler:

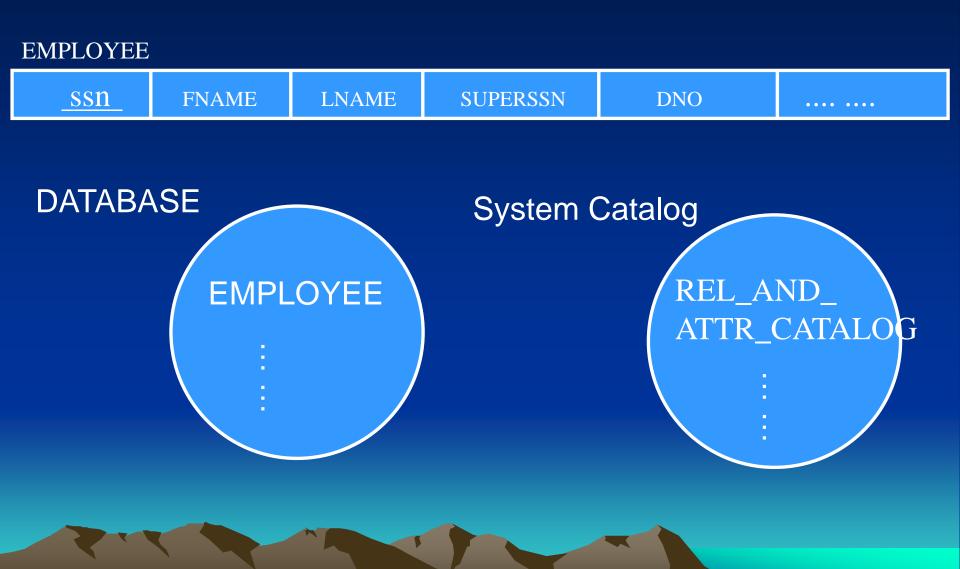
EXEC SQL DECLARE C1 CURSOR FOR SELECT au_fname, au_lname FROM authors FOR BROWSE; EXEC SQL OPEN C1; while (SQLCODE == 0)

EXEC SQL FETCH C1 INTO :fname, :lname;

ł

Catalog for Relational DBMSs

- Catalog meta data for a relational schema
 - relation names, attribute names, attribute domains (data types)
 - description of constraints
 - primary keys, secondary keys, foreign keys, NULL/NON-NULL, cardinality constraints, participation constraints, ...
 - views, storage structure, indexes
 - security, authorization, owner of each relation


Catalog for Relational DBMSs

• Catalog is stored as relations.

(It can then be queried, updated and managed using DBMS software - SQL.)

REL_AND_ATTR_CATALOG

REL_NAME	ATTR_NAME	ATTR_TYPE	MEMBER_OF_PK	MEMBER_OF_FK	FK_RELATION
EMPLOYEE	FNAME	VSTR15	no	no	
EMPLOYEE	SUPERSSN	STR9	no	yes	EMPLOYEE
EMPLOYEE	DNO	INTEGER	no	yes	DEPARTMENT
Sept. 2023		Dr. Yangj	un Chen ACS-4902		9

Sept. 2023

Dr. Yangjun Chen ACS-4902

10

Catalog for Relational DBMSs

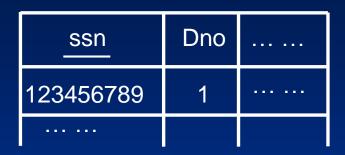
• Catalog is stored as relations.

(It can then be queried, updated and managed using DBMS software - SQL.)

RELATION_KEYS

REL_NAME KEY_NUM MEMBER_ATTR

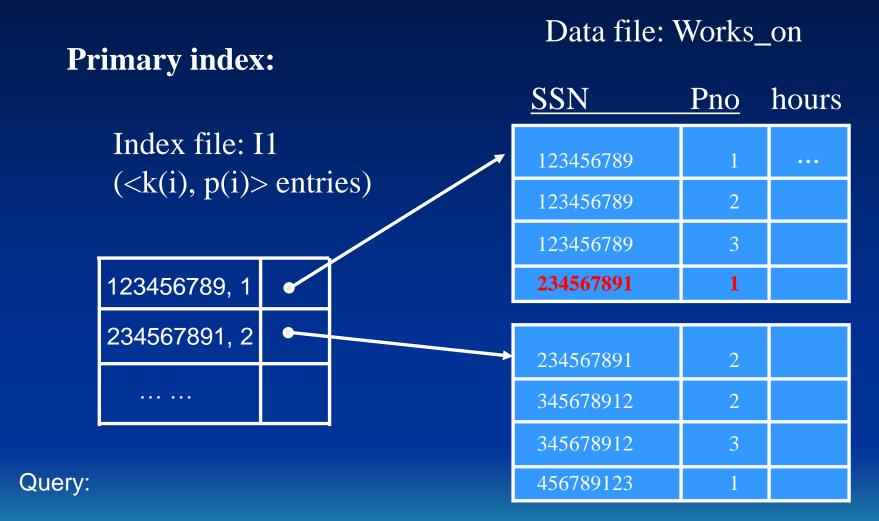
RELATION_INDEXES


REL_NAME INDEX_NAME MEMBER_ATTR INDEX_TYPE ATTR_NO ASC_DESC

Works_on

ssn	Pno	hours
123456789	1	30

Employee


RELATION_KEY

REL_NAME	KEY_NUM.	MEMBER_ATTR
Works_on	1	ssn
Works_on	2	Pno
Employee	1	ssn

RELATION_INDEXES

REL_NAME IN	NDEX_NAME	MEMBER_ATTR	INDEX_TYPE	ATTR_NO	ASC_DESC
Works_on Works_on Works_on	I1 I1 I2	SSN Pno SSN	Primary Primary Clustering	1 2	ASC ASC ASC

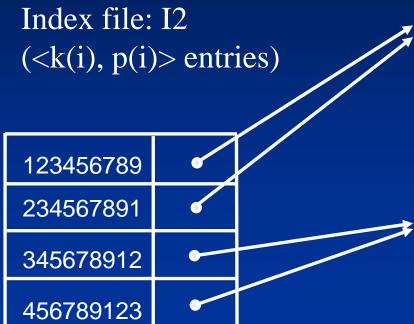
Is there a record with key = 234567891, 1?

Sept. 2023

.

14

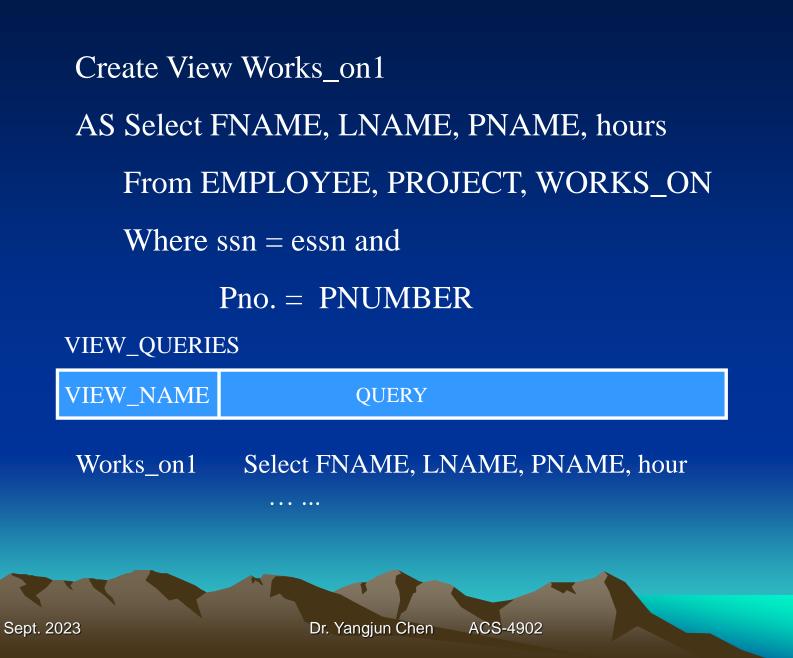
Clustering index:


Data file: Works_on

Pno

hours

<u>SSN</u>


. . .

123456789	1	
123456789	2	
123456789	3	
234567891	1	

234567891	2	
345678912	2	
345678912	3	
456789123	1	

Dr. Yangjun Chen ACS-4902

VIEW_ATTRIBUTES

VIEW_NAME ATTR_NAME ATTR_NUM

Works_on1	FNAME	1
Works_on1	LNAME	2
Works_on1	PNAME	3
Works_on1	hours	4

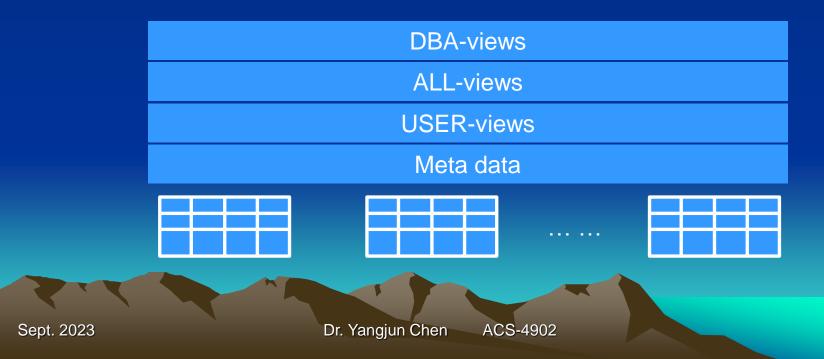
Select FNAME, LNAME, PNAME From Works_on1 Where FNAME = 'David' and LNAME = 'Shepperd'

Select FNAME, LNAME, PNAME From Works_on1 Where FNAME = 'David' and LNAME = 'Shepperd'

Select FNAME, LNAME, PNAME From EMPLOYEE, PROJECT, WORKS_ON

Where ssn = essn and

Pno. = PNUMBER and


FNAME = 'David' and LNAME = 'Shepperd'

• Meta data - data dictionary:

Information about schema objects: tables, indexes, views, triggers, ...

- Meta data are divided into three levels:
 - information for objects owned by a user
 - information for objects owned by a user as well as the objects that the user has been granted access to
 - information about all database objects

- Meta data are divided into three levels three kinds of views:
 - view name prefixed with USER
 - view name prefixed with ALL
 - view name prefixed with DBA

•Example	Owner	TABLE	TABLE_TYPE
SELECT *	SMITH	ACCOUNT	TABLE
FROM ALL_CATALOG	SMITH	CUSTOMERS	S TABLE
WHERE OWNER = 'SMITH'	SMITH	CUSTORDER	R VIEW
	SMITH	ORDERS	TABLE

• Example

SELECT COLUMN_NAME, DATA_TYPE, DATA_LENGTH, NUM_DISTINCT, LOW_VALUE, HIGH_VALUE FROM USER_TAB_COLUMNS WHERE TABLE_NAME = 'ORDERS'

COLUMN_NAME	DATA_TYPE	DATA_LENGTH	NUM_DISTINCT	LOW_VALUE	HIGH_VALUE
ORDERNO	NUMBER	22	4	C102	C105
CUSTNO	NUMBER	22	3	C102	C106
ORDERDATE	DATE	7	4		

Change 'database statistics': ANALYZE TABLE ORDERS COMPUTE STATISTICS

• Example

SELECT PCT_FREE, INITIAL_EXTENT, NUM_ROWS, BLOCK, EMPTY_BLOCKS, AVG_ROW_LENGTH FROM USER_TABLES WHERE TABLE NAME = 'ORDERS'

PCT_FREE	INITIAL_EXTENT	NUM_ROWS	BLOCK	EMPTY_BLOCK	AVG_ROW_LENGTH
10	10240	4	1	3	17

PCT_free: percentage of a block, which is left free Initial_extent: initial allocation of space for a new table A block: 2560 bytes

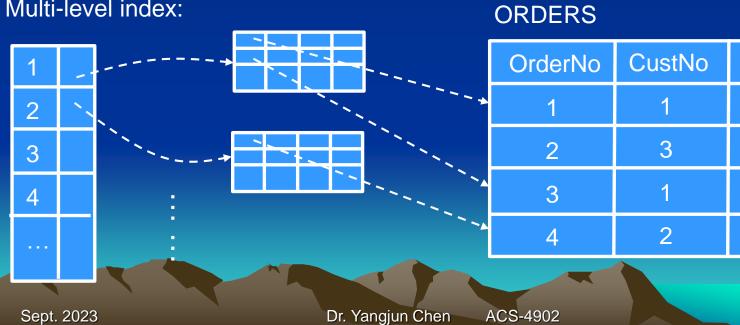
Sept. 2023

Dr. Yangjun Chen ACS-4902

• Example

SELECT INDEX_NAME, UNIQUENESS, BLEVEL, LEAF_BLOCKS, DISTINCT_KEYS, AVG_LEAF_BLOCKS_PER_KEY, AVG_DATA_BLOCKS_PER_KEY FROM USER_INDEXES WHERE TABLE_NAME = 'ORDERS'

INDEX_ NAME	UNIQUENESS	BLEVEL	LEAF_ BLOCK	DISTINCT_ KEYS	AVG_LEAF_ BLOCKS_ PER_KEY	AVG_DATA_ BLOCK_ PER_KEY
ORD_ CUSTNO	NONUNIQUE	0	1	3	1	1


Index: ORD-CUSTNO

CustNo	Record-pointer
1	1, 3
2	4
3	2

ORDERS

<u>OrderNo</u>	CustNo	OrderDate
1	1	
2	3	
3	1	
4	2	

Multi-level index:

OrderDate

 AVG_LEAF_BLOCKS_PER_KEY: Average number of leaf blocks in which each distinct value in the index appears, rounded up to the nearest integer.

- AVG_DATA_BLOCKS_PER_KEY: Average number of data blocks (in the data file), in which each distinct value (in the index) appears, rounded up to the nearest integer.
 - Let say that the value of AVG_DATA_BLOCKS_PER_KEY is 3. So we have to visit 3 different data blocks in order to get all data which belong to a desirable index value on average.

Sept. 2023

Dr. Yangjun Chen ACS-4902

• Example SELECT * FROM USER_VIEWS WHERE OWNER = 'SMITH

VIEW_NAME	TEXT_LENGTH	TEXT
CUSTORDER	101	select custname, city, orderno, orderdate from customers, orders where customers.custno = orders.custno

• Example

SELECT COLUMN_NAME, DATA_TYPE, DATA_LENGTH **FROM** USER_TAB_COLUMN WHERE TABLE_NAME = 'CUSTORDER'

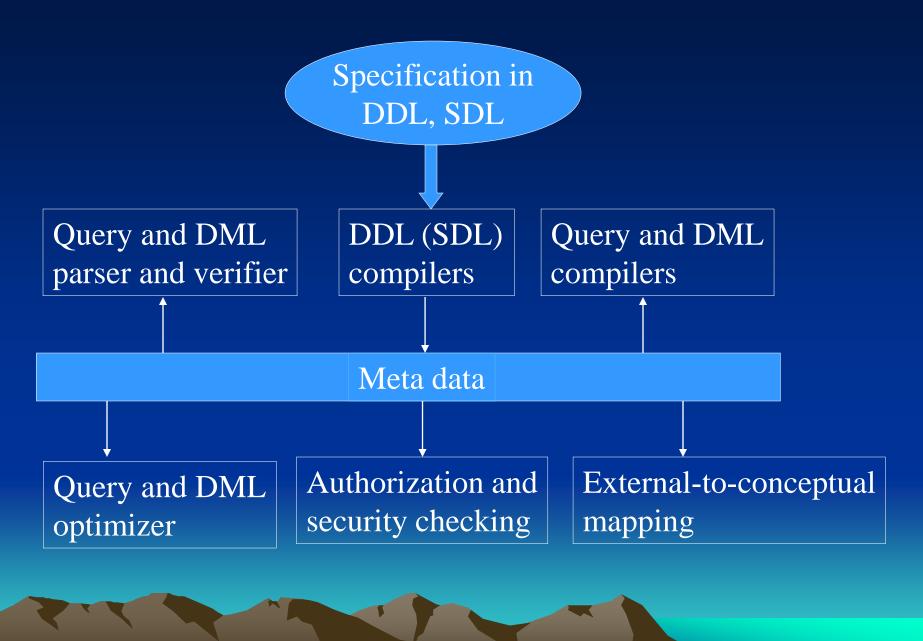
COLUMN_NAME	DATA_TYPE	DATA_LENGTH
CITY	CHAR	20
ORDERNO	NUMBER	22
ORDERDATE	DATE	7
CUSTNAME	CHAR	20

• DBMS software modules accessing the meta data 1.DDL (SDL) compilers

These DBMS modules process and check the specification of a database schema in the data definition language (DDL) and the specification in the storage definition language (SDL), and store these descriptions in the catalog.

2.Query and DML parser and verifier These modules parse queries, DML retrieval statements, and database update statements; they also check the catalog to verify whether all the schema names referenced in these statements are valid.

• DBMS software modules accessing the meta data 3.Query and DML compilers


These compilers convert high-level queries and DML commands into low-level file access commands. The mapping between the conceptual schema and the internal schema file structures is accessed from the catalog during this process.

4. Query and DML optimizer

The query optimizer accesses the catalog for access path, implementation information, and data statistics to determine the best way to execute a query or a DML command.

- DBMS software modules accessing the meta data
 - 5. Authorization and security checking The DBA has privileged commands to update the authorization and security portion of the catalog. All access by a user to a relation is checked by the DBMS for proper authorization by accessing the catalog.
 - 6.External-to-conceptual mapping of queries and DML commands

Queries and DML commands specified with reference to an external view or schema must be transformed to refer to the conceptual schema before they can be accessed by the DBMS. It needs to access the catalog description of the view.

Sept. 2023

Dr. Yangjun Chen ACS-4902

32

Create View Works_on1 AS Select FNAME, LNAME, PNAME, hours From EMPLOYEE, PROJECT, WORKS_ON Where ssn = essn and Pno. = PNUMBER

Select FNAME, LNAME, PNAME From Works_on1 Where FNAME = 'David' and LNAME = 'Shepperd'

Select FNAME, LNAME, PNAME From EMPLOYEE, PROJECT, WORKS_ON Where ssn = essn and Pno. = PNUMBER and FNAME = 'David' and LNAME = 'Shepperd'

