
Sept. 2023 Dr. Yangjun Chen ACS-4902 1

Query Processing and Optimization

(Ch. 18, 3rd – Ch. 15, 4th ed. 5th ed., Ch. 19, 6th

ed., Ch. 18, 19, 7th ed.)

• Processing a high-level query

• Translating SQL queries into relational algebra

• Basic algorithms

- Sorting: internal sorting and external sorting
- Implementing the SELECT operation
- Implementing the JOIN operation
- Implementing the Project operation
- Other operations

• Heuristics for query optimization

Sept. 2023 Dr. Yangjun Chen ACS-4902 2

• Steps of processing a high-level query

Scanning, Parsing, Validating

Query in a high-level language

Intermediate form of query

Query optimization

Execution plan

Query code generation

Code to execute the query

Runtime database processor

Result of query

Sept. 2023 Dr. Yangjun Chen ACS-4902 3

• Translating SQL queries into relational algebra

- decompose an SQL query into query blocks

query block - SELECT-FROM-WHERE clause

Example: SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > (SELECT MAX(SALARY)

FROM EMPLOEE

WHERE DNO = 5);

SELECT MAX(SALARY)

FROM EMPLOYEE

WHERE DNO = 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > c

Sept. 2023 Dr. Yangjun Chen ACS-4902 4

SELECT MAX(SALARY)

FROM EMPLOYEE

WHERE DNO = 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > c

F MAX SALARY(DNO=5(EMPLOYEE))

LNAME FNAME(SALARY>C(EMPLOYEE))

• Translating SQL queries into relational algebra

- translate query blocks into relational algebra expressions

Sept. 2023 Dr. Yangjun Chen ACS-4902 5

• Basic algorithms

- sorting: internal sorting and external sorting

- algorithm for SELECT operation

- algorithm for JOIN operation

- algorithm for PROJECT operation

- algorithm for SET operations

- implementing AGGREGATE operation

- implementing OUTER JOIN

Sept. 2023 Dr. Yangjun Chen ACS-4902 6

• Basic algorithms

- internal sorting - sorting in main memory:

sort a series of integers,

sort a series of keys

sort a series of records

- different sorting methods:

simple sorting

bubble sorting

merge sorting

quick sorting

heap sorting

Sept. 2023 Dr. Yangjun Chen ACS-4902 7

• Basic algorithms

- different internal sorting methods:

sorting numbers

Input n numbers. Sort them such that the numbers are

ordered increasingly.

3 9 1 6 5 4 8 2 10 7

1 2 3 4 5 9 7 8 9 10

Sept. 2023 Dr. Yangjun Chen ACS-4902 8

main idea:

1st step: 3 9 1 6 5 4 8 2 10 7

2nd step: 1 9 3 6 5 4 8 2 10 7

1 2 3 6 5 4 8 9 10 7

… ...

swap

swap

• Basic algorithms

- A simple sorting algorithm

Sept. 2023 Dr. Yangjun Chen ACS-4902 9

• Basic algorithms

- A simple sorting algorithm

Algorithm

Input: an array A containing n integers.

Output: sorted array.

1. i := 2;

2. Find the least element c from A(i) to A(n);

3. If c is less than A(i - 1), exchange A(i - 1) and c;

4. i := i + 1; goto step (2).

Time complexity: O(n2)

(n – 1) + (n - 2) + … + 2 + 1 = n(n - 1)/2

Sept. 2023 Dr. Yangjun Chen ACS-4902 10

Heapsort

• What is a heap?

• MaxHeap and Maintenance of MaxHeaps

- MaxHeapify

- BuildMaxHeap

• Heapsort

- Algorithm

- Heapsort analysis

Sept. 2023 Dr. Yangjun Chen ACS-4902 11

Heapsort

• Combines the better attributes of merge sort and

insertion sort.

– Like merge sort, but unlike insertion sort, running time

is O(n lg n).

– Like insertion sort, but unlike merge sort, sorts in

place.

• Introduces an algorithm design technique

– Create data structure (heap) to manage information

during the execution of an algorithm.

• The heap has other applications beside sorting.

– Priority Queues

Sept. 2023 Dr. Yangjun Chen ACS-4902 12

Data Structure Binary Heap

• Array viewed as a nearly complete binary tree.
– Physically – linear array.

– Logically – binary tree, filled on all levels (except
lowest.)

• Map from array elements to tree nodes and vice
versa
– Root – A[1], Left[Root] – A[2], Right[Root] – A[3]

– Left[i] – A[2i]

– Right[i] – A[2i+1]

– Parent[i] – A[i/2]
A[i]

A[2i] A[2i + 1]

A[2] A[3]

Sept. 2023 Dr. Yangjun Chen ACS-4902 13

Data Structure Binary Heap
• length[A] – number of elements in array A.

• heap-size[A] – number of elements in heap stored in A.

– heap-size[A]  length[A]

24 21 23 22 36 29 30 34 28 27 24

21 23

22 36 29 30

34 28 27

1

2 3

4 5 6 7

8 9 10

1 2 3 4 5 6 7 8 9 10

Searching the tree in breadth-first

fashion, we will get the array.

Last row filled from left to right.

Sept. 2023 Dr. Yangjun Chen ACS-4902 14

Heap Property (Max and Min)

• Max-Heap

– For every node excluding the root, the value stored in

that node is at most that of its parent: A[parent[i]]  A[i]

• Largest element is stored at the root.

• In any subtree, no values are larger than the value

stored at the subtree’s root.

• Min-Heap

– For every node excluding the root, the value stored in

that node is at least that of its parent: A[parent[i]]  A[i]

• Smallest element is stored at the root.

• In any subtree, no values are smaller than the value

stored at the subtree’s root

Sept. 2023 Dr. Yangjun Chen ACS-4902 15

Heaps – Example

26 24 20 18 17 19 13 12 14 11

1 2 3 4 5 6 7 8 9 10

26

24 20

18 17 19 13

12 14 11

Max-heap as an

array.

Max-heap as a binary

tree. 1

2 3

4 5 6 7

8 9 10

Sept. 2023 Dr. Yangjun Chen ACS-4902 16

11 24 20 18 17 19 13 12 14 26

1 2 3 4 5 6 7 8 9 10

11

24 20

18 17 19 13

12 14 26

1

2 3

4 5 6 7

8 9 10

exchange

Sept. 2023 Dr. Yangjun Chen ACS-4902 17

Heaps in Sorting
• Use max-heaps for sorting.

• The array representation of a max-heap is not sorted.

• Steps in sorting

(i) Convert the given array of size n to a max-heap (BuildMaxHeap)

(ii) Swap the first and last elements of the array.

• Now, the largest element is in the last position – where it

belongs.

• That leaves n – 1 elements to be placed in their appropriate

locations in the sequence.

• However, the array of first n – 1 elements is no longer a max-

heap.

• Float the element at the root down one of its subtrees so that

the array remains a max-heap (MaxHeapify)

• Repeat step (ii) until the array is sorted.

Sept. 2023 Dr. Yangjun Chen ACS-4902 18

Heap Characteristics

• Height = lg n

• No. of leaves = n/2

• No. of nodes of height h  n/2h+1

...

 n/20+1

 n/21+1

 n/22+1
height(a leaf) = 0

Sept. 2023 Dr. Yangjun Chen ACS-4902 19

MaxHeapify

• Suppose two subtrees are max-heaps,

but the root violates the max-heap

property.

• Fix the offending node by exchanging the value at the node

with the larger of the values at its children.

– May lead to the subtree at the child not being a max

heap.

• Recursively fix the children until all of them satisfy the max-

heap property.

Sept. 2023 Dr. Yangjun Chen ACS-4902 20

MaxHeapify – Example

26

14 20

24 17 19 13

12 18 11

14

14

2424

141818

14

MaxHeapify(A, 2)

26

14 20

24 17 19 13

12 18 11

14

14

2418

14

14

1824

1

2 3

4 5 6 7

8
9 10

Sept. 2023 21Dr. Yangjun Chen ACS-4902

26

14

24 16

12 18 11

14

14

2424

141817

18

26

14

24 16

12 18 11

14

14

2417

14

18

1824

1

2

4 5

8
9 10

26

14

24 16

12 18 11

14

14

2424

141818

17

… … … … … …

Sept. 2023 Dr. Yangjun Chen ACS-4902 22

Procedure MaxHeapify

MaxHeapify(A, i)

1. l  left(i) (* A[l] is the left child of A[i] .*)

2. r  right(i)

3. if l  heap-size[A] and A[l] > A[i]

4. then largest  l

5. else largest  i

6. if r  heap-size[A] and A[r] > A[largest]

7. then largest  r

8. if largest  i

9. then exchange A[i]  A[largest]

10. MaxHeapify(A, largest)

Assumption:

Left(i) and Right(i)

are max-heaps.

A[largest] must be

the largest among

A[i], A[l] and A[r].

i

Sept. 2023 Dr. Yangjun Chen ACS-4902 23

Running Time for MaxHeapify

• MaxHeapify(A, i)

• 1. l  left(i)

• 2. r  right(i)

• 3. if l  heap-size[A] and A[l] > A[i]

• 4. then largest  l

• 5. else largest  i

• 6. if r  heap-size[A] and A[r] > A[largest]

• 7. then largest  r

• 8. if largest i

• 9. then exchange A[i]  A[largest]

• 10. MaxHeapify(A, largest)

Time to fix node i and

its children = (1)

Time to fix the

subtree rooted at one

of i’s children =

T(size of subree at

largest)

PLUS

Sept. 2023 Dr. Yangjun Chen ACS-4902 24

Running Time for MaxHeapify(A, n)

• T(n) = T(size of subree at largest) + (1)

• size of subree at largest  2n/3 (worst case

occurs when the last row of tree is exactly

half full)

• T(n)  T(2n/3) + (1)  T(n) = O(lg n)

• Alternately, MaxHeapify takes O(h) where

h is the height of the node where

MaxHeapify is applied

Sept. 2023 Dr. Yangjun Chen ACS-4902 25

Building a Max-heap

• Use MaxHeapify to convert an array A into

a max-heap.

• How?

• Call MaxHeapify on each element in a

bottom-up manner.

BuildMaxHeap(A)

1. heap-size[A]  length[A]

2. for i  length[A]/2 downto 1 (*A[length[A]/2 + 1],

3. do MaxHeapify(A, i) A[length[A]/2 + 2],

… are leaf nodes.*)

Sept. 2023 Dr. Yangjun Chen ACS-4902 26

BuildMaxHeap – Example

24 21 23 22 36 29 30 34 28 27

Input Array:

Initial Heap:

(not max-heap)
24

21 23

22 36 29 30

34 28 27

1

2 3

4 5 6 7

8 9 10 MaxHeapify(10/2 = 5):

Sept. 2023 Dr. Yangjun Chen ACS-4902 27

BuildMaxHeap – Example

MaxHeapify(10/2 = 5), MaxHeapify(4)

24

21

22 36 29 30

34 28 27

36362234

22

23

302134

28

36

27

1

2 3

4 5 6 7

8 9 10

24

21 23

22 36 29 30

34 28 27

1

2 3

4 5 6 7

8 9 10

buildaxHeap

Sept. 2023 28Dr. Yangjun Chen ACS-4902

BuildMaxHeap – Example

MaxHeapify(10/2 = 5), MaxHeapify(4),

MaxHeapify(3)

buildaxHeap
24

21 23

22 36 29 30

34 28 27

36362234

22

2323

30

2136

21

2424

2421

2434

28

36

27

1

2 3

4 5 6 7

8 9 10

24

21 23

22 36 29 30

34 28 27

36362234

22

2330

23

2136

21

2424

2421

2434

28

36

27

1

2 3

4 5 6 7

8 9 10

Sept. 2023 29Dr. Yangjun Chen ACS-4902

BuildMaxHeap – Example

MaxHeapify(10/2 = 5), MaxHeapify(4),

MaxHeapify(3), MaxHeapify(2)

buildaxHeap
24

21 23

22 36 29 30

34 28 27

36362234

22

2330

23

2136

21

2424

2436

2434

28

27

21

1

2 3

4 5 6 7

8 9 10

24

21 23

22 36 29 30

34 28 27

36362234

22

2330

23

2136

21

2424

2421

2434

28

36

27

1

2 3

4 5 6 7

8 9 10

Sept. 2023 30Dr. Yangjun Chen ACS-4902

BuildMaxHeap – Example

MaxHeapify(10/2 = 5), MaxHeapify(4),

MaxHeapify(3), MaxHeapify(2),

MaxHeapify(1)

buildaxHeap
24

21 23

22 36 29 30

34 28 27

36362234

22

2330

23

2136

21

2436

2434

2428

24

27

21

1

2 3

4 5 6 7

8 9 10

24

21 23

22 36 29 30

34 28 27

36362234

22

2330

23

2136

21

2424

2436

2434

28

27

21

1

2 3

4 5 6 7

8 9 10

Sept. 2023 Dr. Yangjun Chen ACS-4902 31

Heapsort
• Sort by maintaining the as yet unsorted elements as a

max-heap.

• Start by building a max-heap on all elements in A.

– Call BuildMaxHeap(A)

– Maximum element is in the root, A[1].

• Move the maximum element to its correct final position.

– Exchange A[1] with A[n].

• Discard A[n] – it is now sorted.

– Decrement heap-size[A].

• Restore the max-heap property on A[1..n–1].

– Call MaxHeapify(A, 1).

• Repeat until heap-size[A] is reduced to 2.

Heapsort(A)

• HeapSort(A)

• 1. BuildMaxHeap(A)

• 2. for i  length[A] downto 2

• 3. do exchange A[1]  A[i]

• 4. heap-size[A]  heap-size[A] - 1

• 5 MaxHeapify(A, 1)

Sept. 2023 Dr. Yangjun Chen ACS-4902 32

Time complexity: O(n·log2 n)
height

= log2 n

Sept. 2023 Dr. Yangjun Chen ACS-4902 33

Heapsort – Example

26 17 20 18 24 19 13 12 14 11

1 2 3 4 5 6 7 8 9 10

26

17 20

18 24 19 13

12 14 11

26

24 20

18 17 19 13

12 14 11

Build-Max-heap

Sept. 2023 Dr. Yangjun Chen ACS-4902 34

24

18 20

14 17 19 13

12 11

11

18 20

14 17 19 13

12 24

24, 26

26

24 20

18 17 19 13

12 14 11

11

24 20

18 17 19 13

12 14 26

Maxheapify

Maxheapify

26

Sept. 2023 Dr. Yangjun Chen ACS-4902 35

19

18 13

14 17 11 12

12

18 13

14 17 11 19

19, 20, 24, 26

20

18 19

14 17 11 13

12

12

18 19

14 17 11 13

20

20, 24, 26

Maxheapify

Maxheapify

Sept. 2023 Dr. Yangjun Chen ACS-4902 36

17

14 13

11 12

12

14 13

11 17

17, 18, 19, 20, 24, 26

18

17 13

14 12 11

11

17 13

14 12 18

18, 19, 20, 24, 26

Maxheapify

Maxheapify

Sept. 2023 Dr. Yangjun Chen ACS-4902 37

13

12 11

11

12 13

13, 14, 17, 18,19, 20, 24, 26

14

12 13

11

11

12 13

14

14, 17, 18, 19, 20, 24, 26

Maxheapify

Maxheapify

Sept. 2023 Dr. Yangjun Chen ACS-4902 38

11 11

11, 12, 13, 14, 17, 18,19, 20, 24, 26

12

11

11

12

12, 13, 14, 17, 18, 19, 20, 24, 26

Maxheapify

Sept. 2023 Dr. Yangjun Chen ACS-4902 39

Algorithm Analysis

• In-place

• BuildMaxHeap takes O(n) calls and each of the n-1 calls

to MaxHeapify takes time O(lg n).

• Therefore, T(n) = O(n lg n)

HeapSort(A)

1. Build-Max-Heap(A)

2. for i  length[A] downto 2

3. do exchange A[1]  A[i]

4. heap-size[A]  heap-size[A] – 1

5. MaxHeapify(A, 1)

Sept. 2023 Dr. Yangjun Chen ACS-4902 40

• Basic algorithms

- Sorting by merging

Merging means the combination of two or more ordered sequence into

a single sequence. For example, can merge two sequences: 503, 703, 765

and 087, 512, 677 to obtain a sequence: 087, 503, 512, 677, 703, 765.

A simple way to accomplish this is to compare the two smallest items,

output the smallest, and then repeat the same process.

503 703 765

087 512 677 087
503 703 765

512 677

087 503
703 765

512 677

Sept. 2023 Dr. Yangjun Chen ACS-4902 41

• Basic algorithms

- Merging algorithm

Algorithm Merge(s1, s2)

Input: two sequences: s1 - x1  x2 ...  xm and s2 - y1  y2 ...  yn

Output: a sorted sequence: z1  z2 ...  zm+n.

1.[initialize] i := 1, j := 1, k := 1;

2.[find smaller] if xi  yj goto step 3, otherwise goto step 5;

3.[output xi] zk.:= xi, k := k+1, i := i+1. If i  m, goto step 2;

4.[transmit yj  ...  yn] zk, ..., zm+n := yj, ..., yn. Terminate the algorithm;

5.[output yj] zk.:= yj, k := k+1, j := j+1. If j  n, goto step 2;

6.[transmit xi  ...  xm] zk, ..., zm+n := xi, ..., xm. Terminate the algorithm;

Sept. 2023 Dr. Yangjun Chen ACS-4902 42

• Basic algorithms

- Merge-sorting

Algorithm Merge-sorting(s)

Input: a sequences s = < x1, ..., xm>

Output: a sorted sequence.

1. If |s| = 1, then return s;

2. k := m/2;

3. s1 := Merge-sorting(x1, ..., xk);

4. s2 := Merge-sorting(xk+1, ..., xm);

5. return(Merge(s1, s2));

Sept. 2023 Dr. Yangjun Chen ACS-4902 43

• Basic algorithms

- quick sorting

main idea:

1st step: 3 1 6 5 4 8 10 7

2nd step: 3 2 1 5 8 9 10 7

3rd step: 3 2 1 4 5 6 8 9 10 7

centerfrom to

29

6 4

Smaller than 5 greater than 5

i j

Pivot is 5. It will be stored in

a temporary variable.

i = j = 5

Sept. 2023 Dr. Yangjun Chen ACS-4902 44

• Basic algorithms

- quick sorting

4th step: 4 5 6 10

5th step: 1 2 3 4

centerfrom to

3 7

tofrom center

i = 2

j = 2

8 92 1

Sept. 2023 Dr. Yangjun Chen ACS-4902 45

6th step: 1

The sequence contains only one element, no sorting.

7th step: 3 4

i = j = 1

8th step: 4

from tocenter

The center element is 3.

The sequence contains only one element, no sorting.

1 2 3 4 5

Sept. 2023 Dr. Yangjun Chen ACS-4902 46

6 8 9 10 7

6 7 8 9 10

Sept. 2023 Dr. Yangjun Chen ACS-4902 47

• Basic algorithms

- quick sorting

main idea:

Algorithm quick_sort(from, center, to)

Input: from - pointer to the starting position of array A

center - pointer to the middle position of array A

to - pointer to the end position of array A

Output: sorted array: A’

0. i := from; j := to; if i = j, return;

1. Find the first element a = A(i) larger than or equal to A(center) from

A(from) to A(to); (i is used to scan from left to right.)

2. Find the first element b = A(j) smaller than or equal to A(center) from

A(to) to A(from); (j is used to scan from right to left.)

3. If i < j then exchange a and b;

4. Repeat step from 1 to 3 until j  i;

5. If from < j then recursive call quick_sort(from,(from + j)/2, j);

6. If i < to then recursive call quick_sort(i, (i+ to)/2, to);

Sept. 2023 Dr. Yangjun Chen ACS-4902 48

18,

19,

18,

• Basic algorithms

- quick sorting

3, 4, 6, 1, 10, 9, 5, 20, 19, 18, 17, 2, 1, 14, 13, 12, 11, 8, 16, 15

3, 4, 6, 1, 10, 9, 5, 15, 19, 17, 2, 1, 14, 13, 12, 11, 8, 16, 20

18,16,3, 4, 6, 1, 10, 9, 5, 15, 17, 2, 1, 14, 13, 12, 11, 8, 20

3, 4, 6, 1, 10, 9, 5, 15, 16, 8, 17, 2, 1, 14, 13, 12, 11, 19, 20

i = 17

j = 16

3, 4, 6, 1, 10, 9, 5, 15, 16, 8, 17, 2, 1, 14, 13, 12, 11

i j
Pivot is 18.

j < i

Sept. 2023 Dr. Yangjun Chen ACS-4902 49

• Basic algorithms

- External sorting method:

Sort records in a large file stored on disk that does not fit

entirely in main memory.

sort-merge sorting:

1. Divide the file into small files - called runs;

2. Sort phase:

Sort runs in the buffer space in main memory;

3. Merge phase:

Merge the sorted runs in turn.

Sept. 2023 Dr. Yangjun Chen ACS-4902 50

• Basic algorithms

- External sorting method:

Several parameters:

b - number of file blocks

nR - number of initial runs

nB - available buffer space

nR = b/nB

Example: b = 80 blocks, nB = 5 blocks

nR = 16 initial runs

dM - number of runs that can be merged together in each pass
…

 …

…

a run

file:

…

a block
… …

Sept. 2023 Dr. Yangjun Chen ACS-4902 51

• Basic algorithms

- External sorting method:

set i  1;

j  b; /*size of the file in blocks*/

k  nB; /*size of buffer in blocks*/

m  j/k; /*number of runs*/

/*sort phase*/

while (i  m)

do {read next k blocks of the file into the buffer or if there are less than k

blocks remaining then read in the remaining blocks;

sort the records in the buffer and write as a temporary subfile;

i  i +1;

}

Sept. 2023 Dr. Yangjun Chen ACS-4902 52

• Basic algorithms

- External sorting method:

/*merge phase: merge subfiles until only 1 remains*/

set i  1;

p  logk-1 m; /*p is the number of passes for the merging phase*/

j  m; /*m is number of runs*/

while (i  p) do

{ n  1;

q  j /(k-1); /*q is the number of subfiles to write in this pass*/

while (n  q) do

{ read next k-1 subfiles or remaining subfiles (from previous

pass) one block at a time;

merge these subfiles and write the result as a new subfile;

n  n + 1;

}

j  q; i  i + 1; }

}

Sept. 2023 Dr. Yangjun Chen ACS-4902 53

• Example

5 7

4 20

18 21

10 19

30 40

51 8

6 9

17 13

12 15

11 16

4 5

7 18

20 21

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

File contains 4 runs.

sorting phase

Sept. 2023 Dr. Yangjun Chen ACS-4902 54

• Merging phase: first pass

4 5

7 18

20 21

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

4 5

8 10 8 10

4 5

4 5

…

temporary-file1:

If the size of Buffer is k blocks, then we can merge k – 1

runs each time. The kth block will be used for data transfer.

Sept. 2023 55Dr. Yangjun Chen ACS-4902

• Example

4 5

7 18

20 21

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

7 18

8 10

18

10

7 8

4 5

7 8

…

temporary-file1:

merging phase

Sept. 2023 56Dr. Yangjun Chen ACS-4902

• Example

4 5

7 18

20 21

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

7 18

8 10

18

10

4 5

7 8

…

temporary-file1:

merging phase

Sept. 2023 Dr. Yangjun Chen ACS-4902 57

• Example

4 5

7 18

20 21

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

6 9

11 16 11 16

106 9

6 9

…

temporary-file2:

merging phase

4 5

7 8

…

Sept. 2023 Dr. Yangjun Chen ACS-4902 58

• Merging phase: second pass

Buffer:

4 5

6 9 6 9

4 5

4 5

…

final file:

6 9

11 12

13 15

16 17

4 5

7 8

10 18

19 20

21 30

40 51

merging phase

4 5

6 7

8 9

10 11

12 13

15 16

17 18

19 20

21 30

40 51

Sept. 2023 59Dr. Yangjun Chen ACS-4902

log2 nR

nR number of initial runs

In general, logk-1 nR passes should be conducted if the buffer size is k.

Sept. 2023 60Dr. Yangjun Chen ACS-4902

Comments on merging process:

4 5

7 18

20 21

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

4 5

8 10

6 9

11 16

4 5

4 5

…

temporary-file1:

If the size of Buffer is k blocks, then we can

merge k – 1 runs each time.

8 10

6 9

11 16

Sept. 2023 Dr. Yangjun Chen ACS-4902 61

Comments on merging process:

4 5

7 18

20 21

8 10

19 30

40 51

6 9

12 13

15 17

11 16

Buffer:

7 18

8 10

6 9

11 16

4 5

…

temporary-file1:

When the i-th block in the buffer becomes empty,

the next block in the i-th run will be taken

to fill the empty block.

Sept. 2023 Dr. Yangjun Chen ACS-4902 62

• Basic algorithms

- SELECT operation

 <search condition> (R)

Example:

(op1): ssn=‘123456789’(EMPLOYEE)

(op2): DNUMBER>5(DEPARTMENT)

(op3): DNO=3(EMPLOYEE)

(op4): DNO=1  SALARY>70000  SEX=‘F’(EMPLOYEE)

(op5): ESSN=‘123456789’  PNO=10(WORKS_ON)

(op6): superSSN=‘123456789’  DNO=5(EMPLOYEE)

Sept. 2023 Dr. Yangjun Chen ACS-4902 63

• Basic algorithms

- Search method for simple selection

- file scan

linear search (brute force)

binary search

- index scan

using a primary index (or hash key)

using a primary index to retrieve multiple records

using a clustering index to retrieve multiple records

using a multiple level index to retrieve multiple records

Sept. 2023 Dr. Yangjun Chen ACS-4902 64

• Basic algorithms

- Binary search

Search a sorted sequence of integers to see whether a

specific integer in it or not.

integer = 7

sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

first step: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 7 > 5

second step: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 7 < 8

third step: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 7 > 6

fourth step: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

log2 n checkings

Sept. 2023 Dr. Yangjun Chen ACS-4902 65

• Basic algorithms

- Using a primary index to retrieve multiple records

If the selection condition is >, >=, <, <= on a key field with a

primary index, use the index to find the record satisfying the

corresponding equality condition (DNUMBER = 5, in

DNUMBER>5(DEPARTMENT)), then retrieve all subsequent

records in the ordered file.

Sept. 2023 Dr. Yangjun Chen ACS-4902 66

• Basic algorithms

- using a primary index

Index file: I1

(<k(i), p(i)> entries)

Data file: DEPARTMENT

1

2

3

4

DNUMBER Dname ...

5

6

7

8

Primary index:

...

1

5

...

DNUMBER=5(DEPARTMENT)

DNUMBER>5(DEPARTMENT)

Sept. 2023 Dr. Yangjun Chen ACS-4902 67

Basic algorithms

- Using a clustering index to retrieve multiple records

If the selection condition involves an equality comparison on

a non-key attribute with a clustering index (for example,

DNO = 2 in DNO=2 (EMPLOYEE)), use the index to retrieve

all the records satisfying the condition.

Sept. 2023 68Dr. Yangjun Chen ACS-4902

Index file: I1

(<k(i), p(i)> entries)

Data file: Employee

123456789 1

123455555 1

223456789 1

234447891 1

SSN Dno … …

234567891 1

345678912 2

345897642 2

456789123 3

... ...

Clustering index:

...

1

2

… …

DNO=2 (EMPLOYEE)

Sept. 2023 Dr. Yangjun Chen ACS-4902 69

• Basic algorithms

- Searching methods for complex selection

Conjunctive selection using an individual index

If an attribute involved in any single simple condition in the

conjunctive has an access path that permits one of the

methods discussed above, use that condition to retrieve the

records and then check whether each retrieved record

satisfies the remaining simple conditions in the conjunctive

condition.

DNO=1  salary > 50000(EMPLOYEE)

Sept. 2023 Dr. Yangjun Chen ACS-4902 70

• Basic algorithms

- Searching methods for complex selection

Conjunctive selection using a composite index

If two or more attributes are involved in equality conditions

in the conjunctive condition and a composite index (or hash

structure) exists on the combined fields - for example, if an

index has been created on the composite key (SSN value

and PNO value) of the WORKS_ON file - we can use the

index directly.

SSN=123456789  PNO = 3(WORKS_ON)

Sept. 2023 Dr. Yangjun Chen ACS-4902 71

Index file: I1

(<k(i), p(i)> entries)

Data file: Works_on

123456789 1

123456789 2

123456789 3

234567891 1

SSN Pno hours

234567891 2

345678912 2

345678912 3

456789123 1

... ...

Primary index:

...

123456789, 1

234567891, 2

… …

SSN=123456789  PNO = 3(WORKS_ON)

Sept. 2023 Dr. Yangjun Chen ACS-4902 72

• Basic algorithms

- Searching methods for complex selection

Conjunctive selection by intersection of record pointers

- Secondary indexes (indexes on any nonordering field of a

file, which is not a key) are available on more than one of

the fields

- The indexes include record pointers (rather than block

pointers)

- Each index can be used to retrieve the set of record pointers

that satisfy the individual condition.

- The intersection of these sets of records pointers gives the

record pointers that satisfy the conjunctive condition.

Sept. 2023 73Dr. Yangjun Chen ACS-4902

ssn Dno

1

1

… …

2

…

…

…

…

Employee

… …

1

2

3

4

…

Multi-level index

on Dno:

1234…

Index with record

pointer on

superssnssn:

1234…

superssn=’123456789’ and Dno = 1 (Employee)

Result = {s1, s2, …, si}  {t1, t2, …, tj}

superssn

All employees in Dno =1. All employees supervised by 1234….

Sept. 2023 Dr. Yangjun Chen ACS-4902 74

• Basic algorithms

- JOIN operation (two-way join)

R
A=B

S

Example:

(OP6): EMPLOYEE
DNO=DNUMBER

DEPARTMENT

(OP7): DEPARTMENT
MGRSSN=SSN

EMPLOYEE

Sept. 2023 Dr. Yangjun Chen ACS-4902 75

• Basic algorithms

- Methods for implementing JOINs

Nested-loop join:

R

... ...

S

... ...

Running time: O(nm)

Sept. 2023 Dr. Yangjun Chen ACS-4902 76

•Basic algorithms

- Methods for implementing JOINs

Single-loop join:

R

... ...

S
... ...

... ...

B+-tree

Sept. 2023 77Dr. Yangjun Chen ACS-4902

R

...

1

1

2

2

2

2

2

3

3

S

... ...

a B+-tree:

5

4

7

1

9

3

3 5

4 5 1 3 7 9
...

A B

…

Sept. 2023 Dr. Yangjun Chen ACS-4902 78

• Basic algorithms

- Methods for implementing JOINs

Sort-merge join:

... ...

... ...

sorted sorted
1

1

2

2

2

2

2

1

1

1

1

2

2

2

3

3

4

4

4

R SA B

Sept. 2023 Dr. Yangjun Chen ACS-4902 79

Sort-merge join:

sort the tuples in R on attribute A /*assume R has n tuples*/

sort the tuples in S on attribute B /*assume S has m tuples*/

set i  1; j  1;

while (i  n) and (j  m)

do {if R(i)[A] > S(j)[B] then set j  j +1

else R(i)[A] < S(j)[B] then set i  i +1

else {/* R(i)[A] = S(j)[B], so we output a matched tuple*/

output the combination tuple < R(i), S(j)> to T;

/*output other tuples that matches R(i), if any*/

Sept. 2023 Dr. Yangjun Chen ACS-4902 80

Sort-merge join:

set l  j +1;

while (l  m) and (R(i)[A] = S(l)[B])

do {output the combined tuple < R(i), S(j)> to T;

set l  l +1;}

/*output other tuples that matches S(j), if any*/

set k  i +1;

while (k  n) and (R(k)[A] = S(j)[B])

do {output the combined tuple < R(k), S(j)> to T;

set k  k +1;

}

set i  k, j  l;}

}

Sept. 2023 Dr. Yangjun Chen ACS-4902 81

Sort-merge join:

set l  j +1;

while (l  m) and (R(i)[A] = S(l)[B])

do {output the combined tuple < R(i), S(l)> to T;

set l  l +1;}

/*output other tuples that matches S(j), if any*/

set k  i +1;

while (k  n) and (R(k)[A] = S(j)[B])

do {output the combined tuple <R(k), S(j)> to T;

set k  k +1;

}

set i  i + 1, j  j + 1;}

}

Sept. 2023 Dr. Yangjun Chen ACS-4902 82

set i  1; j  1;

while (i  n) and (j  m)

do {if R(i)[A] > S(j)[B] then set j  j +1

else R(i)[A] < S(j)[B] then set i  i +1

else {/* R(i)[A] = S(j)[B], so we output a matched tuple*/

set k  i;

while (k  n) and (R(k)[A] = S(j)[B])

do {set l  j;

while (l  m) and (R(k)[A] = S(l)[B])

do {output < R(k), S(l)> to T; l  l + 1; }

set k  k +1;}

set i  k, j  l;
}

}

R(i)[A] S(j)[B]

k l

Sept. 2023 Dr. Yangjun Chen ACS-4902 83

• Basic algorithms

- PROJECT operation

<Attribute list>(R)

Example:

FNAME, LNAME, SEX(EMPLOYEE)

Algorithm:

1. Construct a table according to <Attribute list> of R.

2. Do the duplication elimination.

Sept. 2023 Dr. Yangjun Chen ACS-4902 84

• Basic algorithms

- PROJECT operation

For each tuple t in R, create a tuple t[<Attribute list>] in T′

/*T′ contains the projection result before duplication

elimination*/

if <Attribute list> includes a key of R then T  T′

else { sort the tuples in T′;

set i  1, j 2;

while i  n

do { output the tuple T′[i] to T;

while T′[i] = T′[j] and j  n do j j + 1;

i  j; j  j +1;

}

}

duplication

elimination

table

construction

Sept. 2023 Dr. Yangjun Chen ACS-4902 85

A … …

1

2

1

2

1

… …

R

sort

A … …

1

1

1

2

2

… …

T

i →

j →

A … …

… …1

2

i →

j →

T

A(R):

Sept. 2023 Dr. Yangjun Chen ACS-4902 86

• Heuristics for query optimization

- Query trees and query graphs

- Heuristic optimization of query trees

- General transformation rules for relational algebra

operations

- Outline of a heuristic algebraic optimization algorithm

Sept. 2023 Dr. Yangjun Chen ACS-4902 87

- Query trees

PNUMBER, DNUM, LNAME, ADDRESS, BDATE((PLOCATION=‘Stafford(PROJECT))

MGRSSN=SSN
(EMPLOYEE))

DNUM=DNUMBER
(DEPARTMENT))

P

D

E

P.PLOCATION=‘Stafford

P.DNUM=D.DNUMBER

D.MGRSSN=E.SSN

PP.PNUMBER, P.DNUM, E.LNAME, E.ADDRESS, E.BDATE

Sept. 2023 Dr. Yangjun Chen ACS-4902 88

- Query graph

PNUMBER, DNUM, LNAME, ADDRESS, BDATE((PLOCATION=‘Stafford(PROJECT))

MGRSSN=SSN
(EMPLOYEE))

DNUM=DNUMBER
(DEPARTMENT))

P D E

P.PLOCATION=‘Stafford

P.DNUM=D.DNUMBER D.MGRSSN=E.SSN

Stafford

[P.PNUMBER, P.DNUM]

[E.LNAME, E.ADDRESS, E.BDATE]

Sept. 2023 Dr. Yangjun Chen ACS-4902 89

- Heuristic optimization of query trees

- Generate an initial query tree for a query

- Using the rules for equivalence to transform the query tree

in such a way that a transformed tree is more efficient than

the previous one.

Example:

Q: SELECT LNAME

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE PNAME=‘Aquarius’ and PNUMBER=PNO

and ESSN =SSN

and BDATE>‘1970-12-31’

Sept. 2023 Dr. Yangjun Chen ACS-4902 90

Initial query tree:

EMPLOYEE WORKS_ON

PROJECT



LNAME

PNAME=‘Aquarius’ and PNUMBER=PNO and ESSN=SSN and BDATE>’1970-12-31’

Sept. 2023 Dr. Yangjun Chen ACS-4902 91

First transformation:

EMPLOYEE WORKS_ON

PROJECT



LNAME

PNAME=‘Aquarius’ (PNUMBER=PNO (PNUMBER=PNO ESSN=SSN

(PNUMBER=PNO (PNUMBER=PNO BDATE>’1970-12-31’

Sept. 2023 Dr. Yangjun Chen ACS-4902 92

Second transformation:

EMPLOYEE

WORKS_ON

PROJECT




LNAME

PNUMBER=PNO

BDATE>’1970-12-31’

ESSN=SSN PNAME=‘Aquarius’

Sept. 2023 Dr. Yangjun Chen ACS-4902 93

Third transformation:

PROJECT

WORKS_ON

EMPLOYEE



LNAME

ESSN=SSN

PNAME=‘Aquarius’

PNUMBER=PNO BDATE>’1970-12-31’

Sept. 2023 Dr. Yangjun Chen ACS-4902 94

Fourth transformation:

PROJECT

WORKS_ON

EMPLOYEE

LNAME

PNAME=‘Aquarius’

BDATE>’1970-12-31’

PNUMBER=PNO

ESSN=SSN

Sept. 2023 Dr. Yangjun Chen ACS-4902 95

Fifth transformation:

PROJECT

WORKS_ON

EMPLOYEE

LNAME

PNAME=‘Aquarius’

BDATE>’1970-12-31’PNUMBER=PNO

ESSN=SSN

PNUMBER ESSN, PNO

ESSN SSN, LNAME

Sept. 2023 Dr. Yangjun Chen ACS-4902 96

PROJECT

WORKS_ON

EMPLOYEE

PNAME=‘Aquarius’

BDATE>’1970-12-31’

PNUMBER=PNO

ESSN=SSN

⨝

⨝

PROJECT

WORKS_ON

EMPLOYEE

PNAME=‘Aquarius’

BDATE>’1970-12-31’

PNUMBER=PNO

ESSN=SSN

⨝

⨝

LNAME(ESSN, SSN, LNAME
LNAME

More on the fifth transformation:

Sept. 2023 Dr. Yangjun Chen ACS-4902 97

More on the fifth transformation:

PROJECT

WORKS_ON
EMPLOYEE

LNAME

PNAME=‘Aquarius’

BDATE>’1970-12-31’PNUMBER=PNO

ESSN=SSN

ESSN SSN, LNAME

Sept. 2023 Dr. Yangjun Chen ACS-4902 98

More on the fifth transformation:

PROJECT

WORKS_ON
EMPLOYEE

LNAME

PNAME=‘Aquarius’

BDATE>’1970-12-31’PNUMBER=PNO

ESSN=SSN

ESSN (PNUMBER, ESSN, PNO SSN, LNAME

Sept. 2023 99Dr. Yangjun Chen ACS-4902

PROJECT

WORKS_ON

EMPLOYEE

LNAME

PNAME=‘Aquarius’

BDATE>’1970-12-31’PNUMBER=PNO

ESSN=SSN

PNUMBER ESSN, PNO

ESSN SSN, LNAME

More on the fifth transformation:

Sept. 2023 Dr. Yangjun Chen ACS-4902 100

- General transformation rules for relational algebra operations

(altogether 12 rules)

1. Cascade of : A conjunctive selection condition can be

broken into a cascade (i.e., a sequence) of individual 

operations:

c1 and c2 and …. and cn(R)  c1(c2 (... (cn(R))…))

ssn = ‘123456789’and salary > 30,000(Employee)

 ssn = ‘123456789’ (salary > 30,000 (Employee))

Sept. 2023 101Dr. Yangjun Chen ACS-4902

2. Commutativity of : The  operation is commutative:

c1(c2 (R))  c2(c1 (R))

3. Cascade of : In a cascade (sequence) of  operations, all but

the last one can be ignored:

 list1( list2 (... ( listn(R))…))   list1(R),

where list1  list2  …  listn.

 ssn = ‘123456789’ (salary > 30,000 (Employee))

 salary >30,000 (ssn = ‘123456789’ (Employee))

 LNAME ( LNAME, FNAME (Employee))

 LNAME (Employee)

Sept. 2023 Dr. Yangjun Chen ACS-4902 102

- General transformation rules for relational algebra operations

(altogether 12 rules)

4. Commuting  with : If the selection condition c involves

only those attributes A1, …, An in the projection list, the two

operations can be commuted:

A1, …, An(c(R))  c(A1, …, An(R))

 FNAME, LNAME, salary (salary > 30,000(Employee))

salary > 30,000 ( FNAME, LNAME, salary (Employee))

Sept. 2023 103Dr. Yangjun Chen ACS-4902

 FNAME, LNAME (LNAME = ‘Green’ and salary > 30,000(Employee))

LNAME = ‘Green’ and salary > 30,000 ( FNAME, LNAME (Employee))

?

Sept. 2023 Dr. Yangjun Chen ACS-4902 104

5. Commutativity of ⨝ (and ): The ⨝ operation is

commutative, as is the  operation:

R ⨝c S  S ⨝c R

R  S  S  R

Sept. 2023 Dr. Yangjun Chen ACS-4902 105

- General transformation rules for relational algebra operations

(altogether 12 rules)

6. Commuting  with ⨝ (or ): If all the attributes in the

selection condition c involves only the attributes of one of the

relations being joined - say, R - the two operations can be

commuted as follows:

c(R⨝ S)  c(R) ⨝ S

If c is of the form: c1 and c2, and c1 involves only the

attributes of R and c2 involves only the attributes of S,

then:

c(R⨝ S)  (c1(R)) ⨝ (c2(S))

Sept. 2023 106Dr. Yangjun Chen ACS-4902

LNAME = ‘Greenwich’(Employee ⨝ Works_on)
ssn = essn

LNAME = ‘Greenwich’(Employee) ⨝ Works_on
ssn = essn

LNAME = ‘Greenwich’ and Pno = 1(Employee ⨝ Works_on)
ssn = essn

LNAME = ‘Greenwich’ (Employee) ⨝ Pno =1(Works_on)
ssn = essn

Sept. 2023 Dr. Yangjun Chen ACS-4902 107

- General transformation rules for relational algebra operations

(altogether 12 rules)

7. Commuting  with ⨝ (or ): Suppose that the projection list

is L = {A1, …, An, B1, …, Bm}, where A1, …, An in R and

B1, …, Bm in S. If the attributes in the join condition c are

involved in L, we have

 L(R ⨝ C S)  ( A1, …, An (R)) ⨝ C
( B1, …, Bm (S))

ssn, essn, hours(Employee ⨝ Works_on)
ssn = essn

ssn (Employee) ⨝ essn, hours (Works_on)
ssn = essn

Sept. 2023 108Dr. Yangjun Chen ACS-4902

8. Commutativity of set operations: The set operation “” and

“” are commutative, but “-” is not.

9. Associativity of ⨝, ,  and : These four operations are

individually associative; i.e., if  stands for any one of these

four operations, we have:

(R  S)  T  R  (S  T)

R  S  S  R

R  S  S  R

But R - S  S - R

R and S have the same

structure.

(R ⨝ S) ⨝ T  R ⨝ (S ⨝ T)

(R  S)  T  R  (S  T)

(R  S)  T  R  (S  T)

(R  S)  T  R  (S  T)

R ⨝ S ⨝ T  R ⨝ S ⨝ T

Sept. 2023 Dr. Yangjun Chen ACS-4902 109

- General transformation rules for relational algebra operations

(altogether 12 rules)

10. Commuting  with set operations: The  operation commutes

with “”, “” and “-”. If  stands for any one of these

three operations, we have:

c(R  S)  c(R)  c(S)

c(R  S)  c(R)  c(S)

c(R  S)  c(R)  c(S)

c(R - S)  c(R) - c(S)

Sept. 2023 Dr. Yangjun Chen ACS-4902 110

11. The  operation commutes with :

 L(R  S)  ( L(R))  ( L(S))

 L(R  S)  ( L(R))  ( L(S))?

A B

2 3

1 3

R A B

1 3

2 1

S

 A(R  S) = A

1
 A(R)   A(S) =

A

1

2

 L(R - S)   L(R) -  L(S)?

Sept. 2023 111Dr. Yangjun Chen ACS-4902

12. Converting a (, ) sequence into ⨝: If the condition c of a

 that follows a  corresponds to a join condition, convert

then (, ) sequence into ⨝ as follows:

c(R  S)  R ⨝c S

Sept. 2023 Dr. Yangjun Chen ACS-4902 112

- General transformation rules for relational algebra operations

(other rules for transformation)

DeMorgan’s rule:

NOT (c1 AND c2)  (NOT c1) OR (NOT c2)

NOT (c1 OR c2)  (NOT c1) AND (NOT c2)

C1

0

0

1

1

C2

0

1

0

1

Not (C1 and C2)

1

1

1

0

C1

0

0

1

1

C2

0

1

0

1

(Not C1) or (notC2)

1

1

1

0



Sept. 2023 Dr. Yangjun Chen ACS-4902 113

- Outline of a heuristic algebraic optimization algorithm

1. Using Rule 1, break up any SELECT operations with

conjunctive conditions into a cascade of SELECT operations.

This permits a greatest degree of freedom in moving

SELECT operations down different branches of the tree.

c1 and c2 and …. And cn(R)  c1(c2 (... (cn(R))…))

Rule 1:

Sept. 2023 114Dr. Yangjun Chen ACS-4902

EMPLOYEE WORKS_ON

PROJECT



LNAME

PNAME=‘Aquarius’ and PNUMBER=PNO

and ESSN=SSN and BDATE>’1970-12-31’

EMPLOYEE WORKS_ON(

PROJECT




LNAME

PNAME=‘Aquarius’ (PNUMBER=PNOESSN=SSN

( ESSN=SSN ( DATE>’1970-12-31’

Sept. 2023 Dr. Yangjun Chen ACS-4902 115

- Outline of a heuristic algebraic optimization algorithm

2. Using Rules 2, 4, 6 and 10 concerning the commutativity

of SELECT with other operations, move each SELECT

operation as far down the query tree as is permitted by the

attributes involved in the SELECT condition.

c1(c2 (R))  c2(c1 (R))

c(A1, …, An(R))  A1, …, An(c(R))

c(R⨝ S)  (c(R)) ⨝ S

c(R⨝ S)  (c1(R)) ⨝ (c2(S))

c(R  S)  c(R)  c(S)

Rule 2:

Rule 4:

Rule 6:

Rule 10: : ,  or -.

Sept. 2023 Dr. Yangjun Chen ACS-4902 116

EMPLOYEE

WORKS_ON

PROJECT




LNAME

PNUMBER=PNO

BDATE>’1970-12-31’

ESSN=SSN PNAME=‘Aquarius’

EMPLOYEE WORKS_ON(

PROJECT




LNAME

PNAME=‘Aquarius’ (PNUMBER=PNOESSN=SSN

( ESSN=SSN ( DATE>’1970-12-31’

Sept. 2023 Dr. Yangjun Chen ACS-4902 117

- Outline of a heuristic algebraic optimization algorithm

3. Using Rules 5 and 9 concerning commutativity and

associativity of binary operations, rearrange the leaf nodes

of the tree such that the most restrictive SELECT operations

are executed first.

R ⨝ c S  S ⨝ c R

R  S  S  R

(R  S)  T  R  (S  T)

Rule 5:

Rule 9:

: , , ⨝, 

Sept. 2023 Dr. Yangjun Chen ACS-4902 118

PROJECT

WORKS_ON

EMPLOYEE




LNAME

ESSN=SSN

PNAME=‘Aquarius’

PNUMBER=PNO BDATE>’1970-12-31’

EMPLOYEE

WORKS_ON

PROJECT




LNAME

PNUMBER=PNO

BDATE>’1970-12-31’

ESSN=SSN PNAME=‘Aquarius’

Sept. 2023 Dr. Yangjun Chen ACS-4902 119

- Outline of a heuristic algebraic optimization algorithm

4. Using Rule 12, combine a CARTESIAN PRODUCT

operation with the subsequent SELECT operation in the

tree into a JOIN operation, if the condition represents

a join condition.

c(R  S)  R ⨝ c S

Rule 12:

Sept. 2023 Dr. Yangjun Chen ACS-4902 120

PROJECT

WORKS_ON

EMPLOYEE

LNAME

PNAME=‘Aquarius’

BDATE>’1970-12-31’

PNUMBER=PNO

ESSN=SSN

PROJECT

WORKS_ON

EMPLOYEE




LNAME

ESSN=SSN

PNAME=‘Aquarius’

PNUMBER=PNO BDATE>’1970-12-31’

⨝

⨝

Sept. 2023 Dr. Yangjun Chen ACS-4902 121

- Outline of a heuristic algebraic optimization algorithm

5. Using Rules 3, 4, 7 and 11 concerning the cascading of

PROJECT and the commuting of PROJECT with other

operations, break down and move lists of projection attributes

down the tree as far as possible by creating new PROJECT

operations as needed.

 list1( list2 (... ( listn(R))…))   list1(R)

where list1  list2  …  listn.

A1, …, An(c(R)  c(A1, …, An(R))Rule 4:

 L(R ⨝ C S) ( A1, …, An (R)) ⨝C ( B1, …, Bm (S))

 L(R  S)  ( L(R))  ( L(S))

Rule 3:

Rule 7:

Rule 11:

Sept. 2023 Dr. Yangjun Chen ACS-4902 122

PROJECT

WORKS_ON

EMPLOYEE

LNAME

PNAME=‘Aquarius’

BDATE>’1970-12-31’

PNUMBER=PNO

ESSN=SSN

PNUMBER ESSN, PNO

ESSN SSN, LNAME

PROJECT

WORKS_ON

EMPLOYEE

LNAME

PNAME=‘Aquarius’

BDATE>’1970-12-31’

PNUMBER=PNO

ESSN=SSN

⨝

⨝⨝

⨝

Sept. 2023 Dr. Yangjun Chen ACS-4902 123

- Outline of a heuristic algebraic optimization algorithm

6. Identify subtrees that represent groups of operations that

can be executed by a single algorithm.

