
 Rule-based Query Tree Evaluation Over Fragmented XML Documents

Ron G. McFadyen+, Yangjun Chen*

Department of Applied Computer Science, University of Winnipeg

515 Portage Avenue, Winnipeg, Manitoba, Canada, R3B 2E9

{r.mcfadyen, ychen2}@uwinnipeg.ca
 +Supported by NSERC 105709-03 (139988) (Natural Sciences and Engineering Council of Canada)
*Supported by NSERC 239074-05 (242523) (Natural Sciences and Engineering Council of Canada)
Abstract

XML documents are used to hold information and to make
exchanges between systems. In this paper, we consider
documents that embed knowledge and rules, which may
contain considerable redundancy. To control redundancy,
documents are decomposed into fragments that are stored
separately. Then, to materialize documents for end-users,
they need to be dynamically constructed from their
sources (separately stored fragments) by evaluating rules,
which requires database queries to be executed according
to the document structure.

Keywords: XML, business rule, query tree, query evalua-
tion, document fragmentation and assembly.

1 Introduction

XML and related technologies are used extensively for
storing, managing, and exchanging information. Our work
is motivated by the consideration of documents describing
requirements or business rules to be met to achieve some
designation or status. According to [1, 2], a business rule
is a statement that defines or constrains some aspect of the
business and is used to control the behavior of the busi-
ness. For example, in a university calendar, we have rules
that specify the valid collection of courses for a student to
obtain a certain university degree.

As shown in [3], such rules can be organized into a special
structure, the so-called synthesized query tree (SQT), to
govern their execution. An observation shows that such
trees may heavily overlap. Then, the separate storage of
SQTs not only leads to redundant space, but also causes
repeated evaluation of rules. For this reason, we fragment
individual SQTs and organize the sub-SQTs into a hyper
tree structure, in which a leaf node can be a simple query
or a subtree itself. This kind of organization is similar to
document fragmentation [4, 5]. However, in our case, a
fragment is a subtree representing a set of rules, which
produces a piece of a document dynamically. Our method
also shares the flavour of active XML documents [6, 7, 8],
by which parts of the contents are generated by invoking a

program or a web service; but differs from these in that
we are concerning with the processing of business rules,
which are evaluated along a tree structure in a bottom-up
way.

The remainder of this paper is organized as follows. Next
in section 2, we present the background information on
requirement documents and synthesized query trees. In
section 3, we present the SQT fragmentation based on the
so-call virtual SQTs, which enable us to efficiently evalu-
ate queries. Section 4 presents a short conclusion and
directions for further work.

2 Requirements Document and SQT
Structure

In Figure 1, we show some typical majors found in a uni-
versity calendar. Their XML representation is illustrated in
Figure 2. In Figure 1, each document is a requirement for
graduation from a certain major.

For instance, in Figure 1(a), we specify that to graduate
with a 3-Year BSc in Geography a student must satisfy all
of: Graduation Requirement (completion of 90 credit
hours), Residence Requirement (completion of a minimum
of 30 credit hours at the university and a minimum of 18
credit hours in Geography at the university), a General
Requirement (12 credit hours in Humanities subjects and 6
credit hours in Science subjects), and a Major Require-
ment for certain courses in Geography. The fact that all
four of these requirements must be met simultaneously is
indicated by the attribute: combining=”AND”, associated
with the element GeographyRule in the document shown
in Figure 2.

As discussed in [3], we can construct a synthesized query
tree over such a document. [3] presents two such tree
structures: the boolean and the general SQT; for simplic-
ity, here we only discuss the boolean SQT.

Definition 1: a boolean synthesized query tree (BSQT) is a
tree where each leaf node v is associated with a boolean
query , and each internal node v is labelled with a tagQ v()
1

T(v), and an operator θ = ∨ or ∧ ; and each node v is
assigned a boolean value, V(v), determined as follows:

a) for a leaf node, V(v) is true if the return value of
 is not empty; otherwise, it is false, and

b) for an internal node, with children v1, ... vn,

.

For instance, for the graduation requirement of Geogra-
phy, we will construct a tree structure as shown in Figure
3, which represents the rules, queries and relationships
corresponding to the requirements shown in Figure 2. One
of the defining characteristics of a query tree is that data-
base queries are only present in leaf nodes.

To determine if a student can graduate, it is necessary to
evaluate the appropriate SQT and its queries in the context
of the student. Thus, to do this for a number of students,
we have to traverse the SQT trees repeatedly, each time for
a single student.
An observation of the queries present in the leaves shows
that a slight modification will facilitate set processing. To

see this, let’s have a look at the query Q1 shown in Figure
3. If we remove the condition studentNum = x from the
where-clause, the execution of the query will find all the
students with grade point ≥ 1 and more than 90 credit
hours.

Now, for a given set of students, to check whether they are
eligible to get a degree, we traverse the query tree bottom-
up. During this process, all the queries attached with the
leaf nodes are evaluated against the student records and
the results are transfered to the internal nodes for further
checking the specified logic conditions.

For students of a different major, a different SQT will be
instantiated and traversed. Obviously, if two SQTs share a
common subtree, this subtree will be traversed two times.
For example, the Residence requirement in the document
shown in Figure 1(a) is completely the same as the Resi-
dence requirement shown in Figure 1(b). So it is better for
us to remove the condition major = ‘Geography’ from the
where-clause in the query Q3 shown in Figure 3 so that the

Q v()

V v() V v1()= θV v2()θ…θV vn()

3-Year BSc (Geography)
 Graduation Requirement
 90 credit hours
 Residence Requirement
 Degree: minimum 30 credit hours
 Major: minimum 18 credit hours
 General Degree Requirement
 Humanities: 12 credit hours
 Science: 6 credit hours
 Major Requirement
 Minimum 30 credit hours
 Maximum 48 credit hours
 Required Courses
 23.202 Intro Geography I
 23.203 Intro Geography II
 23.331 Advanced Geography
 Choice
 23.205 Atmos Sci or 23.206 Earth Sci

a) Graduation Requirements - Geography

3-Year BSc (Physics)
 Graduation Requirement
 90 credit hours
 Residence Requirement
 Degree: minimum 30 credit hours
 Major: minimum 18 credit hours
 General Degree Requirement
 Humanities: 12 credit hours
 Science: 6 credit hours
 Major Requirement
 Minimum 36 credit hours
 Maximum 54 credit hours
 Required Courses
 44.101 Intro Physics
 44.203 Mechanics
 44.331 Relativity

 b) Graduation Requirements - Physics

Figure 1. Graduation Requirements

Figure 2. XML for 3-Year BSc (Geography)

<GeographyRule title= “Degree Requirement for 3-Year BSc (Geography)”,
 combining=”AND”>
<GraduationRule title=”Graduation Requirement”,
 display=”90 credit hours”, query= “... ”, ...>
</GraduationRule>
<ResidenceRule title = ”Residence Requirement”,
 combining = ”AND” >
 <DegreeRule title = ”Degree”,
 display = ”minimum 30 credit hours”,
 query = ”SELECT sum(creditHours)
 FROM studentHistory
 WHERE
 studentNumber=parameterValue”,
 expected=”30”,
 comparison= “>=” >
 </DegreeRule>
 <MajorRule title=”Major”, display=”minimum 18 credit hours”,
 query=”... ”, ...>
 </MajorRule>
</ResidenceRule>
<GeneralRule title=”General Degree Requirement,
 combining=”AND”>
 <HumanitiesRule title=”Humanities”,
 display=”12 credit hours”, query=”... ”, ...>
 </HumanitiesRule>
 <ScienceRule title=”Science”, display=”6 credit hours”, query=”... “, ...>
 </ScienceRule>
</GeneralRule>
<MajorRule> title=”Major Requirement”
 combining=”AND”>
 <MinMaxRule
 display=”Minimum 30 credit hours, Maximum 48 credit hours”,
 query=”... “, ...>
 </MinMaxRule>”
 <ReqCoursesRule title=”Required Courses” ,
 combining=”AND”>
 <Course
 display=”23.02 Intro Geography I”, query=”...”, ...> </Course>
 <Course
 display=”23.203 Intro Geography II”, query=”...”, ...> </Course>
 <Course
 display=”23.331 Advanced Geography”, query=”...”, ...> </Course>
 </ReqCoursesRule>
 <ChoiceRule title=”Choice”,
 display=”23.205 Atmos Sci or 23.206 Earth Sci”
 combining=”OR”>
 <Course query=”...” , ...></Course>
 <Course query=”...” , ...></Course>
 </ChoiceRule>
</MajorRule>
</GeographyRule>
2

execution of the corresponding subtree will find all the
students satisfying the subtree without considering their
majors. The returned result is then separated according to
their majors and transfered to the parent in the respective

SQTs. In this way, the common subtree is evaluated only
once. This observation leads to the SQT fragments dis-
cussed in the next section.

3 Documents: fragmentation and eval-
uation

In this section, we discuss SQT fragmentation. First, we
show how to fragment SQTs in 3.1. Then, we discuss how
to evaluate fragmented SQTs in 3.2.

3.1 SQT framentation

In [3], two kinds of SQTs: binary SQTs and general SQTs
are defined. Both can be fragmented to speed up query
evaluation. For simplicity, however, we show only how to
fragment the binary SQTs and the general SQTs can be
handled in a similar way.

First, we introduce the concept of virtual boolean synthe-
sized query trees, based on which the boolean SQT frag-
mentation is conducted.

Definition 2: a virtual boolean synthesized query tree
(VBSQT) is a tree where a leaf node v is either

a) associated with a boolean query , or
b) specifies a fragment that is another VBSQT (such a
leaf node is called a virtual leaf node),

and each internal node v is labelled with a tag T(v), and an
operator θ = ∨ or ∧ ; and each node v is assigned a boolean
value, V(v), determined as follows:

a) for a leaf node that is a query, V(v) is true if the
return value of is not empty; otherwise, it is
false, and

b) for a leaf node that specifies a fragment, V(v) is the
value of the fragment, and

c) for an internal node, with children v1, ... vn,

.

For instance, the tree shown in Figure 4(a) is a virtual ver-
sion of the tree shown in Figure 3, in which the leaf nodes
labeled with v1, v2, and v3 represent the three trees shown
in Figure 4(b), respectively. They are singled out since
they also belong to other SQTs. To see this, examine the
tree shown in Figure 4(c), which is a VBSQT for the 3-
Year BSc in Physics and where v1, v2, and v3 are three of
its leaf nodes, too.

Residence

Degree Major

General Major

Required
CoursesHuma-

Science

Graduation

or-node:

Choice

Complete 3-Year BSc (Geography)

and-node:

Figure 3: A Boolean SQT for graduation requirements

Q1:

Q1

Q2 Q3 Q4 Q5

Q6 Q7 Q8 Q9 Q10

Q11

select *

from StudentHistory
where studentNum = x and

gradePoint >= 1
group by studentNum

having sum(crHours >=90)

Q2: select *

from StudentHistory
where studentNum = x and

institution = ‘UW’
group by studentNum

having sum(crHours >=90)

Q3: select *

from StudentHistory
where studentNum = x and

major = ‘Geography’
group by studentNum

having sum(crHours >=18)

Q4: select *

from StudentHistory
where studentNum = x and

area = ‘humanities’
group by studentNum

having sum(crHours >=12)

Q5: select *

from StudentHistory
where studentNum = x and

area = ‘science’
group by studentNum

having sum(crHou rs >=6)

Q6: select *

from StudentHistory
where studentNum = x and

courseNum = 23.205

Q7: select *

from StudentHistory
where studentNum = x and

courseNum = 23.206

Q8: select *

from StudentHistory
where studentNum = x and

courseNum = 23.202

Q9: select *

from StudentHistory
where studentNum = x and

courseNum = 23.203

Q10: select *

from StudentHistory
where studentNum = x and

courseNum = 23.331

Q11: select *

from StudentHistory
where studentNum = x and

major = ‘Geography’
group by studentNum
having
sum(30 <= crHours <= 48)

nities

Q v()

Q v()

V v() V v1()= θV v2()θ…θV vn()
3

When more than two SQTs are involved, more compli-
cated SQT fragmentation has to be considered as illus-
trated in Figure 5.

In this figure, we show three SQTs: T1, T2, and T3. Among
them, T1 and T2 share a common subtree T’; and T2 and T3

share a different common subtree T’’. Furthermore, T’’
itself is a subtree of T’. In such a case, we will generate
five VBSQTs. They are T1/T’ (which represents the tree
obtained by replacing T’ with a virtual leaf node in T1), T2/

T’, T3/T’’, T’/T’’, and T’’.

As an example, consider a 3-Year BA (English) major
where the Humanities requirement is specified, but no
specification for the Science requirement. Thus, the sub-
tree representing the Humanities requirement in the SQT
for the English major is a proper subtree of the General
requirement in the Geography major as illustrated in Fig-

ure 6(a), in which v4 represents the subtree shown in Fig-

ure 6(b). Accordingly, the virtual SQT for the English
major will be of the form shown in Figure 7.

Note that the situation gets more complicated if we allow
for some other major that specifies the Science require-
ment but not the Humanities. In such a case, the General
requirement would then have two subtrees common to
some different SQTs.

In general, we have the following algorithm to fragment
any number of SQTs.

Algorithm SQT-fragmentation

1. Let T1, T2, ..., Tn be SQT trees;

2. Let , ..., be all the subtrees shared by Ti and Tj
(i ≠ j);

3. Repeat until fragments have been created for all (i ≠
j).

a) From unmarked subtrees, select and mark if

 for all , (i,j ≠ s,t). Generate a fragment for

. Mark any , if = .

b) For each , if , and there is no any other

 such that , replace by / .

4. Generate VBSQTs: T1/{all }, ..., Tn/{all }.

To explain the SQT-fragmentation algorithm we consider a
more complicated scenario involving Geography Physics,
and English, which are considered as T1, T2, T3 respec-

tively in Step 1. Step 2 determines 9 common subtrees as
shown below:

Major

Required
CoursesChoice

Q6 Q7Q8 Q9 Q10

Q11

Complete 3-Year BSc (Geography)

v3
v2v1

Graduation

Q1

v1:

Residence

Degree Major

Q2 Q3

v2:

General

Huma- Science

Q4 Q5

v3:

nities

(a) (b)

Major

Required
Courses

Q14 Q15 Q16

Q17

v3
v2v1

Complete 3-Year BSc (Physics)

(c)

Figure 4: Illustration for SQT fragmentation

T1 T2

T’T’
T’’

T3

T’’

Figure 5: Fragmentation of three SQTs

General

Science

Q5

v3:

Figure 6: Humanities as a fragment of General

Humanities

Q4

v4

v4:

(a) (b)

v4
v2v1

Complete 3-Year BA (English)

Figure 7: VBSQT for English

Major

Required
CoursesChoice

Q21Q20Q19Q18

∆ij
1 ∆ij

k

∆ij
l

∆ij
l

∆st
k ∆ij

l⊄ ∆ st
k

∆ij
l ∆uv

w ∆uv
w ∆ij

l

∆st
k ∆st

k ∆ij
l⊃

∆uv
w ∆st

k ∆uv
w ∆⊃ i j

l⊃ ∆ st
k ∆st

k ∆ij
l

∆st
k ∆st

k

4

For Geography and Physics:

= Graduation subtree

= Residence subtree

= General subtree

For Geography and English:

= Graduation subtree

= Residence subtree

= Humanities subtree

For Physics and English:

= Graduation subtree

= Residence subtree

= Humanities subtree

In Step 3, we first generate 3 fragments for Graduation

requirement (= =), Residence requirement

 (= =), and Humanities requirement (=

) as these do not contain any identified subtrees (see

(a) in Step 3). Then, the fragment for / will be cre-

ated (see (b) in Step 3). Finally, Step 4 generates the fol-

lowing VBSQTs: T1/{ ∪ ∪ }, T2/{ ∪

∪ , T3/{ ∪ ∪ .

The fragmentation algorithm creates fragments that, for a
given set of documents, controls redundancy present in
rules by extracting common rules into separate documents.
Dividing a collection of documents into sub-documents

where those sub-documents are common components is a
way of structuring documents into manageable pieces that
can be considered separately or in combination.

Figure 8 presents the 3-Year BSc Geography document as
presented in Figures 4(a) and 4(b). Note the use of the
Xinclude feature of XML [10] to link a pair of documents.

The next section discusses the evaluation of these docu-
ments which requires the documents be re-assembled in
some way.

3.2 Evaluation of fragmented SQTs

To determine the students who can graduate, we need to
evaluate the necessary SQTs for the students in question.
If we were to follow the procedure in [3] we would instan-
tiate all SQTs for each degree and every common fragment
would be evaluated many times. In contrast, we present
another more efficient procedure based on a fragment
graph for evaluating graduation status of students.

In order to evaluate a fragmented SQT, we construct a
directed graph, called a fragment graph, in which each
node represents a fragment (or say, a VBSQT), and we
have an edge from a node fraga to another node fragb if
fragb ⊂ fraga and there is not any node fragc such that

fragb ⊂ fragc ⊂ fraga. For instance, the VBSQTs shown in
Figure 4 and Figure 7 can be organized into graphs as
shown in Figure 9(a) and (b), respectively.

To evaluate the status of all students, we evaluate the frag-
ment graph bottom-up. During this process, for each
encountered node, we evaluate the VBSQT represented by
it and transfer the result obtained to its parents. For exam-

∆12
1

∆12
2

∆12
3

∆13
1

∆13
2

∆13
3

∆23
1

∆23
2

∆23
3

∆12
1 ∆13

1 ∆23
1

∆12
2 ∆13

2 ∆23
2 ∆13

3

∆23
3

∆12
3 ∆13

3

∆12
1 ∆12

2 ∆12
3 ∆12

1 ∆12
2

∆12
3 ∆12

1 ∆12
2 ∆13

3

<GeographyRule title= “Degree Requirement for 3-Year BSc (Geography)”,
 combining=”AND”>
< Xinclude href=”GraduationRule.xml” >
< Xinclude href=”ResidenceRule.xml” >
< Xinclude href=”GeneralRule.xml” >
<MajorRule> title=”Major Requirement”
 combining=”AND”>
 <MinMaxRule
 display=”Minimum 30 credit hours, Maximum 48 credit hours”,
 query=”... “, ...>
 </MinMaxRule>”
 <ReqCoursesRule title=”Required Courses” ,
 combining=”AND”>
 <Course
 display=”23.02 Intro Geography I”, query=”...”, ...> </Course>
 <Course
 display=”23.203 Intro Geography II”, query=”...”, ...> </Course>
 <Course
 display=”23.331 Advanced Geography”, query=”...”, ...> </Course>
 </ReqCoursesRule>
 <ChoiceRule title=”Choice”,
 display=”23.205 Atmos Sci or 23.206 Earth Sci”
 combining=”OR”>
 <Course query=”...” , ...></Course>
 <Course query=”...” , ...></Course>
 </ChoiceRule>
</MajorRule>

Figure 8. Requirements document referencing fragments
using the XML Xinclude feature.

v1 v2 v3

3-Year BSc
(Geography)

3-Year BSc
(Physics)

(a) Fragment graph derived from Figure 4

Figure 9: Fragment graphs

v1 v2 v3

3-Year BSc
(Geography) 3-Year BSc

(Physics)

(b) Fragment graph derived from Figure 6

v4

3-Year BA
(English)
5

ple, consider Figure 9(a) for students majoring in Geogra-
phy and Physics. In a bottom-up fashion, we first evaluate
the SQTs represented by v1, v2, and v3. The results are

then partitioned according to their majors and sent to the
corresponding parent nodes. In the next step, the SQTs
represented by the nodes labeled with Geography and
Physics are evaluated to find all the students eligible to
graduate.

The above process can be improved by using the constants
appearing in a query to speed up the computation. For
example, if we are considering only the students majoring
in Geography, we need to access only part of the graph
(marked grey) shown in Figure 9(a) or Figure 9(b).

4 Conclusion and Future work

In this paper, we consider a document type that includes
requirements and where a user comprehends these require-
ments as rules to be followed to achieve a certain designa-
tion. As a result, we consider each document a single
compound rule that may be assembled from many frag-
ments. When such a document (e.g. 3-Year BSc Geogra-
phy) is evaluated in a certain context (e.g. for a specific
student) there will be a value generated for it. For this type
of document, fragmented SQTs succinctly represent docu-
ment content, evaluation and query requirements; a simple
tree traversal is required to evaluate or display a docu-
ment.

Since there may exist some requirement appearing many
times in documents, these documents can exhibit a great
deal of redundancy. We have introduced an algorithm to
fragment a collection of documents, and described an effi-
cient approach for document evaluation where each frag-
ment/VBSQT is evaluated just once, but many results are
made available (i.e. for a set of students).

We have developed a prototype system that assembles and
displays requirements documents from fragments and
determines on request the graduation status for students on
a) an individual basis or b) a set-oriented approach for
handling many students at one time. The former is useful
by an individual student to measure their own progress,
and the latter approach is useful in a university setting at
say, the end of term, when students should be graduating.
The prototype has been constructed using Java, a SAX
parser, and student history data stored in a mySQL rela-
tional database. Requirements documents are stored as
fragments that are independent XML documents. Various
functions such as Logical And, Logical Or, Minimum, and
Arithmetic Add required for the general synthesized query
tree have been implemented. XML’s Xinclude is used for
linking (including) one document (fragment) to another.
The prototype is being extended as we explore the issues
identified here, and as we incorporate additional compo-
nents of our university’s general calendar.

We are examining algorithms for document evaluation,
query optimization, and other processing models such as
the pipe and filter architecture [11]. An interesting aspect
of the queries we see in our sample application is that the
queries in the leaves are examining similar sets of records
for a given student.

We are examining other situations to apply the query tree
approach for incorporating business rules into the docu-
ments themselves. We have not used functions that return
data in XML format. Such functions can be used to per-
form an include operation, in the same way that we have
used Xinclude to incorporate document fragments. Also, if
we allow functions as found in [6, 7, 8] that invoke arbi-
trary Web Services returning XML then our model allows,
as a special case, Active XML documents. We intend to
examine other issues related to the processing of these
types of query-based documents, such as the implications
of non-relational data stores (in particular XML data
stores), versioning of the general calendar, applications to
workflow, use of event-condition-action (ECA) rules, and
the implications of pertinent student questions such as
“Which majors, given my current status, would allow me
to gradually most quickly?” or “What are the added
requirements if I were to do a double major in Geography
and Physics, instead of a single major in Geography”?

5 References

[1] Business Rules Group, Defining business rules: What
are they really?, 3rd. edition, July 2000, http://
www.Business RulesGroup.org.

[2] R. G. Ross, The business rule book, 2nd. edition,
Business Rules Solutions, Houston, 1997.

[3] Ron McFadyen, Yangjun Chen, Fung-Yee Chan,
XML-based evaluation of synthesized queries, 1st
International Conference on Web Information Sys-
tems and Technologies (WEBIST 2005), May 26-28,
2005, Miami, USA.

[4] Airi Salminen, Frank Wm. Tompa, Requirements for
XML document database systems, Document Engi-
neerign, November 9-10, 2001, Atlanta, Georgia,
USA.

[5] Vincent Quint, Irene Vatton, Techniques for authoring
complex XML documents, ACM 2004

[6] Angela Bonifati, Stefano Ceri, Stefano Paraboschi,
Active rules for XML: A new paradigm for E-serv-
ices, VLDB Journal 10: 39-47 (2001)

[7] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, R.
Weber, Active XML: peer-to-peer data and web serv-
ices integration (demo), Proceedings of VLDB,
2002.[9] S. Abiteboul, O. Benjelloun, I. Manolescu,
6

T. Milo, R. Weber, Active XML: peer-to-peer data
and web services, Proceedings of VLDB, 2002.

[8] Serge Abiteboul, Angela Bonifati, Gregory Cobena,
Ioana Manolescu, Tova Milo, Dynamic XML docu-
ments with distribution and replication, SIGMOD
2003, June 9-12, 2003, San Diego, CA, USA.

[9] James Bailey, Alexandra Poulovassilis, Peter T.
Wood, An event-condition-action language for XML,
WWW2002, May 7-11, 2002, Honolulu, Hawaii,
USA.

[10] http://www.w3.org/TR/xinclude/, retrieved June 8,
2005

[11]Stephen T. Albin, The art of software architecture:

design methods and techniques, 1st edition, ISBN
0471228869, Wiley Publishing, 2003.
7

	Abstract
	1 Introduction
	2 Requirements Document and SQT Structure
	3 Documents: fragmentation and evaluation
	4 Conclusion and Future work
	5 References

