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Abstract—In this paper, we discuss an indexing method for 
solving the multiple string pattern matching problem, by which 
we are given a set of short strings R = {r1, …, rl} and required to 
locate all substrings of a target string s such that each of them 
matches an rj in R. The main idea is to construct a pattern 
matching machine A and transform the reverse s of s to a BWT-

array as an index, denoted as BWT( s ), and search A against it. 
During the process, the failure function of A is used to decrease 
the subranges of BWT( s ) to be searched at each step. In 

addition, we change a single-character checking against BWT( s )
to a multiple-character checking, by which multiple searches of 
BWT( s ) are reduced to a single scanning. In this way, high 
efficiency can be achieved. Extensive experiments have been 
conducted, which shows that our method works better than 
almost all the existing methods for this problem.

Keywords—string matching; DNA sequences; multiple pattern 
machine; automaton; BWT-transformation 

I. INTRODUCTION
By the multiple string pattern matching problem, we will 

be given a set R = {r1, …, rl}, where each ri (1 ≤ i ≤ l) is a 
(short) string (or say, a finite sequence of symbols) called a 
pattern, and a target (long) string s. We are required to locate 
and identify all substrings of s which are patterns in R. This 
problem becomes very important as the next-generation 
sequencing technique [4] comes into use, which needs to align 
a huge number of reads (short DNA sequences) against a very 
long sequence, known genome, which is previously well 
studied and often billions of characters long, for earlier 
diagnosis of cancers, or some other purposes. Normally, the 
number of reads is multiple millions and the length of a read is 
about 100 characters (pbs). 

This problem was studied as early as mid-1970’s. In [1], 
Aho and Corasick proposed an efficient algorithm for solving 
this problem, by which a pattern matching machine (PMM for 
short) or an automaton A is constructed over R and then 
searched against s by successively reading the characters in s, 
making state transition and occasionally reporting output. The 

running time of this process is bounded by O(
l

i
ir

1
|| + |s|). This 

algorithm has been extensively used in practise, such as 
bioinformatics [7, 8], multiple key-word searching [9] and 
two-dimensional pattern searching [2]; and also improved by 

different researchers, such as those discussed in [6, 16, 17, 18]. 
However, the worst-case time complexity remains unchanged. 

On the other hand, different indexes have been developed 
for a single string pattern searching in the past several decades, 
such as suffix trees [14, 15], suffix arrays [13], hashing [10], 
and BWT-arrays [5, 11]. However, no effort has been made to 
build indexes over s to expedite the multiple string pattern 
matching defined above. 

In this paper, we address this issue. We will show that an 
index over s, the so-called BWT array, can be established 
quickly, and can also be used to speed up scanning of s when 
we search A in some way to bring down the running time to 

O(
l

i
ir

1
|| ). (This time complexity does not include the time for 

taking an index into main memory from hard disk. However, 
in practice, this part of time can be completely ignored. For 
example, for reading the BWT array of a genome of 
1,464,443,456 bytes, only 3 milliseconds are used.)  

Specifically, two techniques are introduced, which will be 
combined with a BWT-array scanning:
1) Subrange reduction. During a search of A against the BWT 

array L for s  (the reverse of s), a series of subranges 
within L will be checked. By using the failure function of 
A, we design a mechanism to reduce each of them 
effectively. 

2) Change a single-character checking to a multiple-character 
checking. (That is, each time a set of characters 
respectively from more than one pattern string will be 
checked against L in one scan, instead of checking them 
separately one by one in multiple scans.) 
Our extensive experiments show that the new method can 

improve the running time of the existing methods by 40%. 
The remainder of the paper is organized as follows. In 

Section II, we briefly describe PMM and BWT, based on 
which our method is established. In Section III, we discuss our 
algorithm to find all occurrences of a set of string patterns in a 
target string. In Section IV, we discuss two possible 
improvements. Section V is devoted to the test results. Finally, 
we conclude with a short summary and a brief discussion on 
the future work in Section VI. 

II. BASIC TECHNIQUES: PMM AND BWT
In this section, we briefly describe two basic techniques 

used in our method. They are the pattern matching machine 
and the BWT transformation.
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A. Pattern Matching Machine 
Similar to the Aho-Corasik’s algorithm, we will first

construct a pattern matching machine (PMM) A over R =
{r1, …, rl}. Different from it, however, we will not search A
against s, but against BWT( s ).

Intuitively, the pattern matching machine A over R =
{r1, …, rl} can be considered as a directed graph composed of 
two parts: a trie T, denoted as trie(R), and a failure function
f(v) (v, f(v) A).

First, for each rj (j = 1, …, m) we will attach $ to its end 
and construct trie(R) as below.

If |R| = 0, trie(R) is, of course, empty. For |R| = 1, trie(R) 
is a single node. If |R| > 1, R is split into | | = k (possibly 
empty) subsets R1, R2, …, Rk so that each Ri (i  {1, …, k}) 
contains all those sequences with the same first character xi  
R {$}. The tries: trie(R1), trie(R2), …, trie(Rk) are 
constructed in the same way except that at the ith step, the 
splitting of sets is based on the ith characters in the sequences. 
They are then connected from their respective roots to a single 
node to create trie(R).

Example 1 As an example, consider a set of four pattern 
strings: 

r1: acaga
r2: ag
r3: acagc
r4: ca

For these pattern strings, a trie can be constructed as shown in 
Fig. 1(a). In this trie, v0 is a virtual root, representing an empty 
string while any other node v stands for a string equals the 
concatenation of all characters labelling the nodes on the path 
from v0 to v, denoted as P(v). Especially, if v is a leaf, P(v) 
must be a string in R. For instance, the path from v0 to v8 
corresponds to the third pattern r3 = acagc$. In general, 
however, we will associate some nodes v with an output such 
that each r output(v) is a string in R and also a suffix of P(v). 
For example, for v3 shown in Fig. 1(a), we have output(v3) = 
{r4}. It is because r4 = ca R is a suffix of P(v3) = aca . 

 
In addition, for a node v, we will use l(v) to represent its 

character.   
By the failure function f(v) (defined over v T\{v0}), we 

will give the node to be entered at a mismatch of P(v). 
Specifically, f(v) is the node labeled by the longest proper 
suffix w of P(v) such that w is a prefix of some pattern [1], as 
illustrated by the dashed arrows in Fig. 1(b). For example, 

f(v3) = v12 is represented by the dashed arrow from v3 to v12.
We have this since ca  is a suffix of P(v3), which is a prefix of 
r4, represented by P(v12).

Formally, we have A = T  {f(v) | v T\{v0}}. We will 
also simply use f(v) to represent a link from v to f(v).

B. BWT and String Searching 
Now, we describe the BWT transformation. We will use s

to denote a string that we would like to transform.  Again, 
assume that s terminates with $, which does not appear 
elsewhere in s and is alphabetically prior to all other 
characters. In the case of DNA sequences, we have $ < a < c <
g < t. As an example, consider s = ccagaca$.  

First, we can rotate s consecutively to create eight different 
strings, and put them in a matrix as illustrated in Fig. 2(a). 

Next, we sort the rows of the matrix alphabetically, and get 
another matrix, as demonstrated in Fig. 2(b), which is called 
the Burrow-Wheeler Matrix [5, 11] and denoted as BWM(s). 
Especially, the last column L of BWM(s), read from top to 
bottom, is called the BWT-transformation (or the BWT-array) 
and denoted as BWT(s). So for s = ccagaca$, we have BWT(s)
= acgcac$a (see Fig. 2(c)). The first column is referred to as 
F. 

Special attention should be paid to Fig. 2(b) and 2(c). In 
both of them, for ease of explanation, the position of a 
character in s is represented by its subscript. (That is, we 
rewrite s as c1c2a1g1a2c3a3$.) For example, a2 represents the 
second appearance of a in s; and c1 the first appearance of c in 
s. In the same way, we can check all the other appearances of 
different characters. 

In addition, when ranking the elements x in both F and L
in such a way that if x is the ith appearance of a certain 
character it will be assigned i, the same element will get the 
same number in the two columns. For instance, in F the rank 
of a3, denoted as rkF(a3), is 1 (showing that a3 is the first 
appearance of a in F). Its rank in L, rkL(a3) is also 1. We can 
check all the other elements and find that this property, called 
the rank correspondence, holds for all the elements. That is, 
for any element e in s, we always have 

rkF(e) = rkL(e) (1) 
According to this property, a string searching can be very 
efficiently conducted. To see this, let us consider a pattern 
string r = aca and try to find all its occurrences in s =
ccagaca$.  

v3v3

Figure 1. A trie and a pattern matching machine
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First, we notice that we can store F as | | + 1 intervals, 
such as F$ = F[1 .. 1], Fa = F[2 .. 4], Fc = F[5 .. 7], Fg = F[8 .. 
8], and Ft =  for the above example (see Fig. 2(c).) We can 
also represent a segment within an Fx (with x ) as a pair of 
the form <x, [ , β]>, where β are two ranks of x. Thus, we 
have Fa = F[2 .. 4] = <a, [1, 3]>,  Fc = F[5 .. 7] = <c, [1, 3]>, 
and Fg = F[8 .. 8] = <g, [1, 1]>. 

We will also use Yx and Zx to represent the positions of the 
first and the last element of Fx in F, respectively. For example, 
Ya is 2 and Za is 4. Also, we can use L  to represent a range in 
L corresponding to a pair = <x, [ , β]>. For example, in Fig. 
2(c), L<a, [1, 3]> = L[2 .. 4], L<c, [1, 2]> = L[5 .. 6]. L<a, [2, 3]> = L[3 .. 
4], and so on. 

Finally, we use a procedure search(z, ) to search L to 
find the first and the last rank of z (denoted as and β ,
respectively) within L , and return <z, [ , β ]> as the result: 

To locate r in s, we work on the characters in r in the 
reverse order (referred to as a backward search). That is, we 
will search r (reverse of r) against BWT(s), as shown below. 
Step 1 (checking the last character in r): Check r[3] = a in the 
pattern string r, and then figure out Fa = F[2 .. 4] = <a, [1, 
3]>.  
Step 2 (checking the second character from last): Check r[2] 
= c.  Call search(c, L<a, [1, 3]>). It will search L<a, [1, 3]>= L[2 .. 4] 
to find a range bounded by the first and last rank of c.
Concretely, we will find rkL(c3) = 1 and rkL(c2) = 2. So, 
search(c, L<a, [1, 3]>) returns <c, [1, 2]>. It is F[5 .. 6]. 
Step 3 (check the first character): Check r[3] = a. Call 
search(a, L<c, [1, 2]>). Notice that L<c, [1, 2]> = L[5 .. 6]. So, 
search(a, L<c, [1, 2]>) returns <a, [2, 2]>. It is F[2 .. 2]. Since 
now we have exhausted all the characters in r and F[2 .. 2]
contains only one element, one occurrence of r in s is found. It 
is represented by a2 in s. (In general, let l be the number of 
entries in the segment (in F) found at the last step of such a 
process. Then, there are l occurrences of r in s with each 
indicated by an entry in that segment.) 

The above working process can be represented as a 
sequence of three pairs: 

<a, [1, 3]>, <c, [1, 2]>, <a, [2, 2]>. 
In general, for r = c1 … cm, its search against BWT(s) can 

always be represented as a sequence of pairs (with each 
representing a segment in Fx for some x ):

<x1, [ 1, 1]>, …, <xm, [ m, m]>, 
where <x1, [ 1, 1]> = ,

1xF and <xi, [ i, i]> = search(xi,

,xi
L

1 ]β,[α 11 ii
) for 1 < i m. We call such a sequence as a 

search sequence. Thus, the time used for this process is 
bounded by O(

m

i
i

1
), where i is the time for an execution of 

search(xi, ,xi
L

1 ]β,[α 11 ii
). However, this time complexity 

can be reduced to O(m) by using the so-called rankAll method
(with more space to be used [11]) and the multi-character 
checking to be discussed in Section IV. 

From the above discussion, we can observe a very 
important property of the BWT transformation, by which we 
check, at each step, a subset of characters (represented by a 
subsegment of F) from a target string s while by any on-line 
strategy only one character from s is checked at one step. 

Finally, we point out that BWT(s) (or BWT( s )) can be 
constructed in O(|s|) time by using its relationship to the suffix 
array of s [5].

III. MAIN ALGORITHM 

In this section, we present our main algorithm. First, we 
show a breadth-first search of trie(R) against BWT( s ) in 
Subsection A. Then, in Subsection B, we discuss how the 
failure functions in an PMM can be used to speed up the 
working process. Subsection C is devoted to the correctness 
proof and the time complexity analysis.

A. Searching Tries over Pattern Strings 
It is easy to see that exploring a path in a trie T over R

corresponds to scanning a pattern r R. If we explore, at the 
same time, the L array (= BWT( s )) established over a 
reversed target sequence s , we will find all the occurrences of 
r (without $ involved) in s. Obviously, by a depth-first search 
of T, this can be done very efficiently. However, to use the 
failure function to reduce the subrange (within L) to be 
checked at each step, we need to explore T in the breadth-first 
manner. For this purpose, we use a queue Q to control the 
process, in which each entry is a triplet <v, a, b> with v being 
a node in T and a b, used to indicate a subsegment within 
Fl(v). For example, when searching the trie shown in Fig. 1(a) 
against the L array shown in Fig. 2(c), we may have an entry 
like <v1, 1, 3> in Q to represent a subsegment Fa[1 .. 3] (the 
first to the third entry in Fa) since l(v1) = a . In addition, for 
technical convenience, we use F€ to represent the whole F.
Then, F€[a .. b] represents the segment from the ath to the bth 
entry in F.

ALGORITHM trieSearch(T, LF) 
begin 
1. v root(T); ;
2. enqueue(Q, <v, 1, |s|>); 
3. while Q is not empty do {
4. <v, a, b> dequeue(S);
5. if output(v) then {<output(v), l(v), a, b>};
6. let v1, …, vk be the children of v;
7. for i = 1 to k do {
8. {denote Fl(v)[a .. b] by ; let x = l(vi);
9. if search(x, ) then
10. {let search(x, ) = <x, [ , ]>; enqueue(Q, <vi, , >); }
11. }
12. } 
end  

<z, [ , β ]>,
(2)

if z appears in L ;

, otherwise.
search(z, ) =
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In the algorithm, we first enqueue <root(T), 1, |s|> into 
queue Q (append at the end of Q) (lines 1 – 2). Then, we go 
into the main while-loop (lines 3 – 12), in which we will first 
dequeue the first element from Q (taken out from the front of
Q), stored as a triplet <v, a, b> (line 4). Then, we will check 
whether output(v) is empty. If it is not the case, a quadruple 
<output(v), l(v), a, b> will be added to the result (see line 5), 
which records all the occurrences of all those pattern strings 
represented by output(v) in s. (In practice, we store 
compressed suffix arrays [13, 15] and use their relationship 
with BWT to calculate positions of pattern strings in s.) For 
each child vi of v, we will determine a segment in L by 
executing search(x, ), where x = l(vi) and = <l(v), [a .. b])>
(= Fl(v)[a .. b]). Let search(x, ) = <x, [ , ]>. We will then 
enqueue each <vi, , > into Q. (see line 10.)
Example 2 Consider all pattern strings given in Example 1 
again. The trie T over these short strings are shown in Fig. 1(a). 
In order to find all the occurrences of them in s = ccagaca$, 
we will run trieSearch( ) on T and the LF of s shown in Fig. 
2(c). (By LF, we mean the L and F arrays together.) 

In the execution of trieSearch( ), the following steps will 
be carried out. 
Step 1: Enqueue <v0, 1, 8> into Q, as illustrated in Fig. 3(a). 
Step 2: Dequeue the first element <v0, 1, 8> from Q. Figure 
out the two children of v0: v1 and v11. First, for v1, we have l(v1)
= a. By executing search(a, F€[1 .. 8]), we get <a, [1, 3]> and 
then enqueue < v1, 1, 3> into Q. For v11, we have l(v11) = c and 
get <c, [1, 3]> by executing search(c, F€[1 .. 8]). So, <v11, 1, 
3> will also be enqueued into Q. See Fig. 3(b) for illustration.
Step 3: Dequeue the first element <v1, 1, 3> from Q. v1 also 
has two children: v2 and v9. For v2, we have l(v2) = c. By 
executing search(c, Fa[1 .. 3]), we get <c, [1, 2]>. For v9, we 
have l(v9) = g and get <g, [1, 1]> by executing search(g, Fa[1 .. 
3]). Similarly, we will consecutively enqueue <v2, 1, 2> and 
<v9, 1, 1> into Q. See Fig. 3(c).

The remaining steps 4, 5, 6, 7, 8, 9 will be done in the 
same way as above and Q will be accordingly changed as 
shown in Fig. 3(d), (e), (f), (g), (h), and (i), respectively. Here, 
special attention should be paid to Step 5 when <v9, 1, 1> is 
dequeued from Q. Since output(v9) = {r2}, we will store <{r2}, 
g, 1, 1> in as part of the result (see line 5 in trieSearch( )), 
which shows that r2 appears at g1-possition in s. �

B. Searching PMMs over Pattern Strings 
In the algorithm discussed in the previous subsection, the 

failure function is totally ignored. Indeed, due to the 
difference between the scanning of s and the searching of 
BWT( s ), the failure function cannot be used in a way as the 
Aho-Corasik’s algorithm [1]. It is because by searching 
BWT( s ), what we will produce is a sequence of pairs, and two 
such sequences corresponding to a same sequence of 
characters (respectively along two paths in T) may have 
different sequences of intervals. For instance, along the path v2

v3 shown in Fig. 4, we will create a sequence of pairs: <c,
[1, 2]>, <a, [2, 2]> while along the path v11 v12 the sequence 
generated is <c, [1, 3]>, <a, [2, 2]>. Although they have the 
same sequence of characters: ca, their sequences of intervals 
are different: one is [1, 2][2, 2] and the other is [1, 3][2, 2]. 

  
In addition, since a pair sequence cannot be created in a 

reverse order (by searching a PMM bottom-up), it is 
completely impossible for us to use the skip-table utilized in 
the Boyler-Moore’s algorithm [19] (by which substrings of s
need to be scanned backwards), or the DAWG structure 
(directed acyclic word graph) in the Crochemore’s algorithm 
[18] (by which a DAWG needs to be searched bottom-up.) 
However, the failure function can be really employed to 
reduce the size of subranges of L to be searched during an 
execution of search( ).

To this end, we will associate each node v in T with the 
corresponding interval [ v, v], referred to as I(v), which is 
found for l(v) by running search( ). That is, along an edge w

v in T, we will have search(l(v), <l(w), [ w, w]>) = <l(v), 
[ v, v]>. (See Fig. 4 for illustration.) With the help of such 
intervals, the failure function can be utilized as follows. 
Lemma 1 Let u, v be two nodes in A such that f(v) = u. Then, 
I(v) I(u).
Proof. According to the definition of f(v) = u, P(u) is a suffix 
of P(v). Assume that P(v) = x1 … xixi+1 … xi+j and P(u) = 
xi+1 … xi+j with i, j  0. Then, by the execution of trieSearch(T,
LF), along P(v) and P(u), two sequences of pairs will be 
generated:

1, …, i, i+1 , …, i+j; and
1 , …, j , 

where 1 = <x1, 1xF >, 1  = < xi+1, 1ixF >, l+1 = search(xl, l)

(l = 1, …, i + j – 1), and k+1 = search(xk, k ) (k = i + 1, …, i
+ j -1). Let Il be the interval in pair l (l = 1, …, i + j). Let Ik

<v0, 1, 8>

(a)

<v1, 1, 3>

(b)

<v11, 1, 3>

(c)

<v11, 1, 3>
<v2, 1, 2>

(d)

<v2, 1, 2>
<v9, 1, 1>

<v9, 1, 1> <v12, 2, 2>

(e)

<v9, 1, 1>
<v12, 2, 2>
<v3, 2, 2>

(f)

<v12, 2, 2>
<v3, 2, 2>

<v3, 2, 2>

(g)

<v4, 1, 1>

(h)

<v5, 3, 3>

(i)

Q:

[1, 1]

[1, 1]

[2, 2]

[1, 2]

v3

Figure 4. Illustration for intervals in a PMM

a

c

a

g

a

$

g

c

v0

v1

v2

v4

v5

v6

v7

v9

v11

v12

€

$ v8

$v10 v13

[1, 3]

[3, 3]

c

a

$

[1, 3]

[2, 2]

Figure 3. Illustration for Step 1 - 9

170



be the interval in pair k (k = i + 1, …, i + j). We must have Ik

Ik (k = i + 1, …, i + j). Thus, I(v) = Ii+j Ij = I(u). �
This lemma enables us to design an efficient procedure to 

replace search( ) for creating I(v)’s as follows.
Let w v be an edge in T. Assume that f(v) = u. Let l(u) = 

x. Since we explore T in the breadth-first manner, u must be 
visited before v. So its interval I(u) = [ u, u] must have been 
created when we meet v. Then, in terms of u, we can find an 
integer j such that u = rkL(xj) (recall that xj represents the jth 
appearance of x in s). Next, in terms of j, we can obtain 
another integer i such that xj = L[i]. Finally, using i, v can be 
immediately determined:  
1. If Yl(w) + w – 1 i, we will simply set v equal to u.

(Recall that Yl(w) represents the position of the first entry of 
Fl(w) in F.) It is because when searching a subrange in L,
which corresponds to I(w), we will definitely meet L[Yl(w) +

u – 1] as the first character equal to x according to Lemma 
1.

2. Otherwise (Yl(w) + w > i), we have to search L starting 
from L[Yl(w) + w - 1] downwards to find the first 
appearance of x and use it as v. 

Similarly, Let i , j be two integers such that u = rkL(xj ) and xj

= L[i ].
3. If Yl(w) + w – 1 i , we will simply set v equal to u. 
4. Otherwise (Yl(u) + u < i ), we have to search L starting 

from L[Yl(w) + w - 1] upwards to find the last appearance 
of x and use it as v. 
As an example, consider the search of A shown in Fig. 4 

against the LF of s  shown in Fig. 2(c), where s = ccagaca$. 
By the breadth-first search of T, v1 and v11 will be visited 
before v2. f(v2) = v11. As shown in Fig. 4(a), we have I(v1) = [1, 
3] and I(v11) = [1, 3], and v1 v2 is an edge in T. According to 
the above discussion, I(v2) = [

2
αv ,

2
βv ] will be determined as 

follows. 
To find

2
αv , we will first compare Ya +

1
αv - 1 and i, where 

rkL(L[i]) =
11

αv = 1. Since Ya +
1

αv - 1 = 2 + 1 – 1 = 2, 
which is equal to i = 2,

2
αv should be set equal to

11
αv and 

no search will be conducted to find this value. (Here, we 
have i = 2 since l(v11) = c  and L[2] = c3  with rank equal 
to

11
αv = 1. See Fig. 4.)

To determine
2

βv , we will compare Ya +
1

βv - 1 and i ,
where rkL(L[i ]) = 

11
βv = 3. Since Ya + 1

βv - 1 = 2 + 3 – 1 = 
4 < i  = 6, we need to search L starting from L[Ya +

1
βv - 1] 

= L[4] upwards to find the last appearance of c within a 
range (in L) corresponding to <a, [

1
αv ,

1
βv ]>. It is L[3] = 

c2 (with rkL(c2) = 2.) So, we get
2

βv = 2. 

Now, we further consider the evaluation of I(v3). Assume 
that I(v12) = [2, 2] has already been established. By doing a 
checking similar to the above, we will immediately get I(v12) = 

[2, 2], no searching of L at all. In this way, a lot of time can be 
saved. 

We will refer to the above process as searchI(v, w, f(v), LF)
to indicate its difference from search( ). Its output is an 
interval to be associated with v. 

According to the above discussion, we give the following 
algorithm, which works almost in the same way as 
trieSearch( ). The only difference is in the use of searchI( ). 
That is, we will still explore T breadth-first. However, each 
time we encounter a node v, we will call searchI(v, w, f(v), LF)
(instead of search( )) to determine the interval for v, where w
represents the parent of v. 
ALGORITHM pmmSearch(T, LF) 
begin 
1. v root(T); ;
2. enqueue(Q, v);
3. while Q is not empty do { 
4. v dequeue(S);
5. if output(v) then {<output(v), l(v), I(v)>}; 
6. let v1, …, vk be the children of v; 
7. for i = 1  to k do { 
8. I searchI(vi, v, f(vi), LF); associate I with vi;
9. if I then enqueue(Q, vi); }
10. } 
end  

C. Correctness and Time Complexity 
In this subsection, we prove the correctness of 

pmmSearch(T, LF) and analyze its time complexity. 
First, we have the following lemma. 

Lemma 2 Let u, v be two nodes in A such that f(v) = u. Let w
be the parent of v in T. The interval returned by searchI(v, w,
f(v), LF) is correct.
Proof. The lemma can be directly derived from Lemma 1. �

Proposition 1 Let A be a trie constructed over a collections of 
pattern strings: r1, …, rm, and LF a BWT-mapping established 
for a reversed genome s . Let  be the result of pmmSearch(T,
LF). Then, for each rj, if it occurs in s, there is a quadruple 
<output(v), l(v), [ , ]> such that rj output(v), l(v) is 
equal to the last character of rj, and Fl(v)[ ], Fl(v)[ + 1], …, 
Fl(v)[ ] show all the occurrences of rj in s.
Proof. We prove the proposition by induction on the height h
of A, which is defined to be the number of edges on the 
longest downward path from the root to a leaf node. 
Basic step. When h = 1. The proposition trivially holds. 
Induction hypothesis. Suppose that when the height of A is h,
the proposition holds. We consider the case that the height of 
A is h + 1. Let A  be a PMM obtained by removing all the leaf 
nodes in A. Then, the height of A  is at most h. According to 
the induction hypothesis, the interval generated by applying 
pmmSearch( ) to A  must be correct. Now, we consider a leaf 
node v in A . Let v1, …, vk be the children of v in A. Then, in 
terms of Lemma 2, I(vi) produced by executing searchI(vi, v,
f(vi), LF) for i = 1, …, k must also be correct. Considering that 
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all the nodes in A are visited in the breadth-first manner, the 
claim in the proposition is correct. �

Concerning the time complexity, we check the main 
while-loop, in which each node v in T is accessed only once. 
So the running time of trieSearch(T, LF) is bounded by 
O(

Tv
v ), where v represents the cost for an execution of 

searchI( ) to find I(v). In the next section, our focus will be on 
how to further reduce this cost.  

IV. IMPROVEMENTS
The algorithm discussed in the previous section can be 

further improved in two ways. One is to use the so-called 
rankAll mechanism [5, 11]. The other is to rearrange the 
search of a segment of L when we visit a node v in T to do the 
so-called multi-character checking to effectively decrease the 
searching cost of L. 

In the following, we will discuss these two methods in 
great detail. 

A. rankAll 
In this subsection, we first show the rankAll mechanism. 

Then, how it can be integrated into our general method will be 
described.

As mentioned above, the dominant cost of the whole 
process is the searching of L at each step. As shown in the 
previous section, by using the failure function, this problem 
can be mitigated to some extent. 

A quite different way for this purpose is to arrange | |
arrays, each for a character x in , denoted as x[ ], in which x[i]
(the ith entry in the array for x) is the number of appearances 
of x within L[1 .. i]. For example, for the L array shown in Fig. 
2(c), we will have five arrays: $[ ], a[ ], c[ ], g[ ], and t[ ], as 
illustrated in Fig. 5(a). Especially, we have [1] = 1 while a[5] 
= 2. It is because in L[1 .. 1] a appears only once while in 
L[1 .. 5] a appears two times. In the same way, we can check 
all the other entries in these arrays.

We also notice that it is not necessary to store the column 
for $  since it will never be actually checked. 

Now, instead of scanning a certain segment L[i .. j] (i j)
to find a subrange for a certain x by using searchI( ), we 
can simply look up the array for x to see whether x[i - 1] = x[j]. 
If it is the case, then x definitely does not occur in L[i .. j]. 
Otherwise, [x[i - 1] + 1, x[j]] should be the found range. For 
example, to find the first and the last appearance of c in L[2 .. 
5], we only need to find c[2 – 1] = c[1] = 0 and c[5] = 2. So 
the corresponding range is [c[2 - 1] + 1,  c[5]] = [1, 2].

Thus, with the help of such data structures, the time of 
search( ) can be reduced to O(1). 

The problem of this method is its high space requirement. 
For this reason, we will replace each x[ ] with a compact array 
Ax for x , in which, rather than for each L[i] (i {1, …, n}), 
only for some entries in L the number of their appearances 
will be stored. For example, we can divide L into a set of 
buckets of the same size and only for each bucket a value will 
be stored in Ax. Obviously, doing so, more searching will be 
required to find missing values. In practice, the size of a 
bucket (referred to as a compact factor) can be set to different 

values. For instance, we can set = 4, indicating that for each 
four contiguous elements in L a group of | | integers (each in 
an Ax) will be stored. That is, we will not store all the values in 
Fig. 5(a), but only store a[4], c[4], g[4], t[4], and a[8], c[8], 
g[8], t[8] in the corresponding compact arrays, as shown in 
Fig. 5(b). 

Obviously, each x[j] for x can be easily derived from 
Ax by using one of the following formulas:

x[j] = Ax[i] + , (4)
where i = j/  and is the number of x’s appearances within 
L[i + 1 .. j] which have to be searched, or

x[j] = Ax[i ] - , (5)
where i = j/  and is the number of x’s appearances within 
L[j + 1 .. i ]. Also, has to be obtained by searching part of 
L.

Therefore, we need two procedures: sDown(L, j, , x) and 
sUp(L, j, , x) to find and , respectively. In terms of 
whether j - i i - j, we will call sDown(L, j, , x) or 
sUp(L, j, , x) so that fewer entries in L will be scanned to find 
x[j].

More importantly, this method can be easily combined 
with the use of failure functions (as discussed in 4.3) to form a 
powerful strategy. To this end, step (2) and (4) in searchI(v, w,
f(v), LF) need to be slightly modified.
1. If Yl(w) + w – 1 i, we will simply set v equal to u,

where w v is an edge in T, f(v) = u, l(u) = x, u = rkL(xj),
 and xj = L[i].
2. Otherwise (Yl(w) + w > i), do the following operations to 

determine v: l Yl(w) + w – 2, sDown(L, l, , x) (or 
sUp(L, l, , x)), and v Ax[ l/ ] + + 1 (or v

Ax[ l/ ] - + 1).
3. If Yl(w) + w – 1 i , we will simply set v equal to u,

where u = rkL(xj ) and xj = L[i ].
4. Otherwise (Yl(u) + u < i ), do the following operations to 

determine v: l Yl(w) + w – 1, sDown(L, l, , x) (or 
sUp(L, l, , x)), and v Ax[ l/ ] + (or v

Ax[ l/ ] - ).
In the above process, (1) and (3) are exactly the same as in 

searchI( ). But in (2) and (4) a simple search of L is replaced 
with a function call sUp( ) (or sDown( )), by which the 

Figure 5. LF-mapping and rank-correspondence
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number of checked entries will be dramatically decreased by 
using the rankAll arrays. 

B. Multiple Character Checking 
In sUp( ) or in sDown( ), we search L once for each child 

of a certain node v. But we can manage to search the 
corresponding segment of L only once for all the children of v.
This arrangement can be very useful for applications with 
large alphabets, such as protein sequences, whose alphabet 
contains as many as 20 characters. Thus, in many cases, 20 
times of searching of L can be reduced to a single searching of 
L. To this end, we will use integers to represent characters in .
For example, we can use 1, 2, 3, 4 to represent a, c, g, t in a 
DNA sequence. In addition, two kinds of simple data 
structures will be employed: 
- Bv: a Boolean array of size | | associated with node v in T,

in which, for each i , Bv[i] = 1 if there exists a child 
node u of v such that l(u) = i; otherwise, Bv[i] = 0. 

- Ci: a counter associated with i  to record the number of 
i’s appearances during a search of some segment in L. 
See Fig. 6 for illustration. 

With these two data structures, we change sDown(L ,j , ,x)
and sUp(L, j, , x) to sDown(L, j, , v) and sUp(L, j, , v), 
respectively, to search part of L for all the children of v, but 
only in one scanning of it.  

In sDown(L, j, , v), we will search a segment L[ j/ +
1 .. j] from top to bottom, and store the result in an array D
of length | |, in which each entry D[i] is the rank of i
(representing a character), equal to Ci + Ai[ j/ ], where Ci is 
the number of i’s appearances within L[ j/ + 1 .. j].

FUNCTION sDown(L, j, , v) 
begin 
1. ci  0 for each i ;
2. l j/ + 1;
3. while l j do { 
4. if Bv[L[l]] = 1 then CL[l] CL[l] + 1;
5. l l + 1;
6. }
7. for k = 1 to | | do {
8. if Bv[k] = 1 then D[k] Ak[ j/ ] + Ck;
9. }
10. return D;
end  

In the algorithm, we search L[j′ .. j] only in one scanning in 
the main while-loop (see lines 3 – 6), where j′ = j/ + 1 

(see line 2.) For each encountered entry L[l] (j′ l j), we will 
check whether Bv[L[l]] = 1 (see line 4.) If it is the case, CL[l]
will be increased by 1 to count encountered entries which are 
equal to L[l]. After the while-loop, we compute the ranks for 
all the characters respectively labeling the children of v (see 
lines 7 – 8).

sUp(L, j, , v) is dual to sDown(L, j, , v), in which a 
segment of L will be searched bottom-up. 
FUNCTION sUp(L, j, , v) 
begin 
1. ci  0 for each i ;
2. l j/ ;
3. while l j + 1do {
4. if Bv[L[l]] = 1 then CL[l] CL[l] + 1;
5. l l - 1; }
6. }
7. for k = 1 to | | do {
8. if Bv[k] = 1 then D[k] Ak[ j/ ] - Ck;
9. }
10. return D;
end  

The following example helps for illustration.
Example 3 In this example, we trace the working process to 
generate ranges (by scanning L[2 .. 5] shown in Fig. 2(c)) for 
the two children v2 and v9 of v1 shown in Fig. 5. For this 
purpose, we will calculate c[1], c[5] for l(v2) = c , and g[1], 
g[5] for l(v9) = g . First, we notice that 

1vB = [0, 1, 1, 0] and 
all the counters C1, C2, C3, C4 are set to 0. 

By running sDown(L, 1, 4, v1) to  get c[1] and g[1], part of 
L will be scanned once, during which only one entry L[1] = a
(represented by 1) is accessed. Since 

1vB [L[1]] = 
1vB [1] = 0, 

C1 remains unchanged. Especially, both C2 (for c ) and C3 (for 
g ) remain 0. Then, c[1] = Ac[ 1/4 ] + C2 = 0 and g[1] = 

Ag[ 1/4 ] + C3 = 0. This shows that in a single scanning of L,
both c[1] and g[1] are found.  

Next, to get c[5] and g[5], we will run sDown(L, 5, 4, v1)
to scan another part of L, also only once. In this process, L[5] 
= a (represented by 1) is accessed. Since 

1vB [L[5]] = 
1vB [1] 

= 0, C2 is still 0. In addition, since C3 (for g ) is also 0, we 
have c[5] = Ac[ 5/4 ] + C2 = 2 + 0 = 2 and g[5] = Ag[ 5/4 ] + 
C3 = 1 + 0 = 1. 

Thus, the range for l(v2) = c  is [c[1] + 1, c[5]] = [1, 2], 
and the range for l(v9) = g  is [g[1] + 1, g[5]] = [1, 1].  �

Again, we need to integrate this mechanism with the use of 
failure functions. 

Let v1, …, vk be the children of v. Let f(vj) = uj (j = 1, …, k). 
Let ij be the position in L corresponding to 

juα (j = 1, …, k).

If Yl(v) + v – 1 min{i1, …, ik}, do
jvα juα for each j

{1, …, k}. Otherwise, divide {v1, …, vk} into two groups: G1

and G2 such that for any vj G1, we have Yl(v) + v – 1 ij,
and for any vj G2 Yl(v) + v – 1 > ij . Obviously, for each vj

G1, jvα can be directly determined as above. Thus, by setting 

Figure 6. Illustration for extra data structures
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Bv[L[vj]] = 0 for each vj G1, and Bv[L[vj ]] = 1 for each ij

G2, we can then use sDown( ) or sUP( ) to determine 
jvα for 

each vj G2.
In a similar way, we can determine

jvβ for j = 1, …, k. 

According to the above discussion, our final algorithm can 
be described as follows. 

ALGORITHM pmmS(T, LF, ) 
begin 
1. v root(T); ;
2. enqueue(Q, v);
3. while Q is not empty do { 
4. v dequeue(S);
5. if output(v) is not empty then  <output(v), l(v), I(v)>; 
6. let v1, …, vk be the children of v; 
7. let i1, …, ik be positions in L corresponding to 

1
αu , …, 

kuα ; 

8. divide {v1, …, vk} into G1 and G2 such that for any vj G1, Yl(v)
+ v – 1 ij, and for vj G2, Yl(v) + v – 1 > ij ;

9. if G2 then determine  
1vα , …, 

kvα as described above; 

10. else {
jvα juα for j = 1, …k;}

11. let l1, …, lk be positions in L corresponding to 
1uβ , …, 

kuβ ; 

12. divide {v1, …, vk} into H1 and H2 such that for any vj H1, Yl(w)
+ w – 1 lj, and for vj H2, Yl(w) + w – 1 < lj ;

13. if H2 then determine 
1vβ , …, 

kvβ as described above; 

14. else {
jvβ juβ for j = 1, …k;}

15. for j = 1 to k do if [
jvα ,

jvβ ] then enqueue(Q, vi);

18.} 
end  

The main difference of this algorithm from pmmSearch( ) 
is in their different ways to search L[a .. b]. Here, to find the 
ranks of the first appearances of all the labels of v’s children,
sDown( ) or sUp( ) is called to scan part of L only once (while 
by pmmSearch( ) this has to be done multiple times each for a 
different child.) See line 9 and 10. Similarly, to find the ranks 
of the last appearances of these labels, another part of L will
be scanned, also only once. See line 13 and 14. Besides these, 
all the other operations are almost the same as in 
pmmSearch( ). 

V. EXPERIMENTS
In our experiments, we have tested altogether six different 

methods:
- Burrows Wheeler Transformation [11] (BWT for short),
- Suffix tree based [14] (Suffix for short),
- Hash table based [10] (Hash for short),
- Commentz-Walter’s Algorithm [6] (CW for short),
- Crochemore’s Algorithm [18] (Cr for short), and 
- pmmS (pS for short, discussed in this paper).  

Among them, the codes for the suffix tree based and hash 
based methods are taken from the gsuffix package [3] while all 
the other four algorithms are implemented by ourselves. All of 
them are able to find all occurrences of every read in a 
genome. The codes are written in C++, compiled by GNU 
make utility with optimization of level 2. In addition, all of 

our experiments are performed on a 64-bit Ubuntu operating 
system, run on a single core of a 2.40GHz Intel Xeon E5-2630
processor with 32GB RAM.  

The test results are categorized in two groups: one is on a 
set of synthetic data and another is on a set of real data. For 
both of them, five reference genomes are used, which are 
taken from an RNA laboratory at University of Manitoba 
(http://home.cc.umanitoba.ca/~xiej/): 

TABLE I. CHARACTERISTICS OF GENOMES 
Genomes Genome sizes (bp)

Rat chr1 (Rnor_6.0) 290,094,217

C. merolae (ASM9120v1) 16,728,967

C. elegans (WBcel235) 103,022,290

Zebra fish (GRCz10) 1,464,443,456

Rat (Rnor_6.0) 2,909,701,677

A. Tests on Synthetic Data Sets 
All the synthetic data are created by simulating reads from 

the five genomes shown in Table I, with varying lengths and 
amounts. It is done by using the wgsim program included in 
the SAMtools package [12] with default model for single reads 
simulation. 

Over such data, the impact of five factors on the searching 
time are tested: number n of reads, length l of reads, size s of 
genomes, compact factors f1 of rankAlls (see Section IV) and 
compression factors f2 of suffix arrays [13], which are used to 
find locations of matching reads (in a reference genome) in 
terms of their relationship with BWT arrays.

A.1 Tests with varying amount of reads 
In this experiment, we vary the amount n of reads with n =

5, 10, 15, …, 50 millions while the reads are 50 bps or 100 bps 
in length extracted randomly from Rat chr1 and C. merlae
genomes. For this test, the compact factors f1 of rankAlls are 
set to be 32, 64, 128, 256, and the compression factors f2 of 
suffix arrays are set to 8, 16, 32, 64, respectively. These two 
factors are increasingly set up as the amount of reads gets 
increased.   

In Fig. 7(a) and (b), we report the test results of searching 
the Rat chr1 for matching reads of 100 and 50 bps, 
respectively. From these two figures, it can be clearly seen 
that the hash based method has the worst performance while 
ours works best. For long reads (of length 100 bps) the suffix-
based is worse than the BWT, but for short reads (of length 50 
bps) they are comparable. Both the the Crochemore’s and the 
Commentz-Walter’s are worse than the BWT. But the 
Crochemore’s is better than the Commentz-Walter’s. The poor 
performance of the hash-based is due to its inefficient brute-
force searching of genomes while for both the BWT and the 
suffix-based it is due to the huge amount of reads and each 
time only one read is checked.  In the opposite, for our method,
the combination of PMMs and BWT arrays enables us to 
avoid repeated checking for similar reads. In these two figures, 
the time for constructing PMMs over reads is included. To see 
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the impact of the construction of PMMs, we show the times 
for constructing them over different amounts of reads (of 
length 100 pbs), demonstrated in Table II. 

TABLE II. TIME FOR TRIE CONSTRUCTION OVER READS OF 
LENGTH 100 BPS 

No. of reads 30M 35M 40M 45M 50M

Time for PMM Con. 91s 123s 152s 195s 210s

The difference between the BWT and ours is due to the 
different number of BWT array accesses as shown in Table III. 
By an access of a BWT array, we will scan a segment in the 
array to find the first and last appearance of a certain character 
from a read (by BWT) or a set of characters from more than 
one read (by ours). 

TABLE III. NO. OF BWT ARRAY ACCESSES 

No. of reads 30M 35M 40M 45M 50M

BWT 67954K 75632K 83321K 90732K 98165K

pmmS 19105K 22177K 25261K 28227K 31204K

Fig. 8(a) and (b) show respectively the results for reads of 
length 50 bps and 100 bps over the C. merolae genome. Again, 
our methods outperform the other three methods. 

A.2 Tests with varying length of reads 
In this experiment, we test the impact of the read length on 

performance. For this, we fix all the other four factors but vary 

length l of simulated reads with l = 35, 50, 75, 100, 125, …,
200. The results in Fig. 9(a) shows the difference among five 
methods, in which each tested set has 20 million reads 
simulated from the Rat chr1 genome with f1 = 128 and f2 = 16.  
In Fig. 9(b), the results show the the case that each set has 50 
million reads. Fig. 10(a) and (b) show the results of the same 
data settings but on C. merlae genome. 

Again, in this test, the hash based performs worst while the 
suffix tree and the BWT method are comparable, and both the 
Commentz-Walter’s and Wu-Manber’s are worse than them. 
Our algorithm uniformly outperforms the others when 
searching on short reads (shorter than 100 bps). It is because 
shorter reads tend to have multiple occurrences in genomes, 
which makes the trie used in ours more beneficial. However, 
for long reads, the suffix tree beats the BWT since on one 
hand long reads have fewer repeats in a genome, and on the 
other hand higher possibility that variations occurred in long 
reads may result in earlier termination of a searching process. 
In practice, short reads are more often than long reads. 

B. Tests on Real Data Sets
For the performance assessment on real data, we obtain RNA-
sequence data from the project conducted in an RNA 
laboratory at University of Manitoba (lab website:
http://home.cc.umanitoba.ca/~xiej/, retrieved: 2014). This 
project includes over 500 million single reads produced by 
Illumina from a rat sample. Length of these reads is between 
36 bps and 100 bps after trimming using Trimmomatic [4]. 

Figure 8. Test results on varying amount of reads
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Figure 10. Test results on varying length of reads
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Figure 9. Test results on varying length of reads
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Figure 7. Test results on varying amount of reads
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The reads in the project are divided into 9 samples with 
different amount ranging between 20 million and 75 million. 
Two tests have been conducted. In the first test, we mapped 
the 9 samples back to rat genome of ENSEMBL release 79 [6]. 
We were not able to test the suffix tree due to its huge index 
size. The hash-based method was ignored as well since its 
running time was too high in comparison with the BWT. In 
order to balance between searching speed and memory usage 
of the BWT index, we set f1 = 128, f2 = 16 and repeated the 
experiment 20 times. Fig. 11(a) shows the average time 
consumed for each algorithm on the 9 samples.

Since the source of RNA-sequence data is the transcripts, 
the expressed part of the genome, we did a second test, in 
which we mapped the 9 samples again directly to the Rat 
transcriptome. This is the assembly of all transcripts in the Rat 
genome. This time more reads, which failed to be aligned in 
the first test, are able to be exactly matched. This result is 
showed in Fig. 11(b). 

From Fig. 11(a) and (b), we can see that the test results for 
real data set are consistent with the simulated data. Our 
algorithm is faster than the BWT, the Crochemore’s and the 
Commentz-Walter’s on all 9 samples. Counting all the data 
sets together, ours is more than 45% faster compared with 
these methods. Although the performance would be dropped 
by taking PMMs’ construction time into consideration, we are 
still able to save 40% time using our method.

VI. CONCLUSION AND FUTURE WORK 
In this paper, an efficient algorithm for solving the set 
matching problem has been discussed, by which we are 
required to locate and identify all substrings of a long string s
which match some short strings from a set R = {r1, …, rm}.
The main idea is to construct a pattern matching machine A 
and transform the reverse s  of s to a BWT-array as index, 
BWT( s ), and search A against it. During the process, the 
failure function of A is used to reduce the subranges of 
BWT( s ) at each step. In addition, we change a single-
character checking against BWT( s ) to a multiple-character 
checking, by which multiple searches of BWT( s ) are reduced 
to a single scanning of it. In this way, high efficiency can be 

achieved. Extensive experiments have been conducted, which 
shows that our method works better than the existing method 
for this problem.

As a future work, we will use the BWT to solve another 
important problem, the string matching with k mismatches, by 
which we will find all the substrings in a target string s having 
at most k positions different from a pattern string r.
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Figure 11. Test results on real data
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