
Searching BWT against Pattern Matching Machine to Find
Multiple String Matches

1Yangjun Chen and 2Yujia Wu
Dept. Applied Computer Science, University of Winnipeg, Canada

1y.chen@uwinnipeg.ca, 2wyj1128@yahoo.com

Abstract—In this paper, we discuss an indexing method for
solving the multiple string pattern matching problem, by which
we are given a set of short strings R = {r1, …, rl} and required to
locate all substrings of a target string s such that each of them
matches an rj in R. The main idea is to construct a pattern
matching machine A and transform the reverse s of s to a BWT-

array as an index, denoted as BWT(s), and search A against it.
During the process, the failure function of A is used to decrease
the subranges of BWT(s) to be searched at each step. In

addition, we change a single-character checking against BWT(s)
to a multiple-character checking, by which multiple searches of
BWT(s) are reduced to a single scanning. In this way, high
efficiency can be achieved. Extensive experiments have been
conducted, which shows that our method works better than
almost all the existing methods for this problem.

Keywords—string matching; DNA sequences; multiple pattern
machine; automaton; BWT-transformation

I. INTRODUCTION
By the multiple string pattern matching problem, we will

be given a set R = {r1, …, rl}, where each ri (1 ≤ i ≤ l) is a
(short) string (or say, a finite sequence of symbols) called a
pattern, and a target (long) string s. We are required to locate
and identify all substrings of s which are patterns in R. This
problem becomes very important as the next-generation
sequencing technique [4] comes into use, which needs to align
a huge number of reads (short DNA sequences) against a very
long sequence, known genome, which is previously well
studied and often billions of characters long, for earlier
diagnosis of cancers, or some other purposes. Normally, the
number of reads is multiple millions and the length of a read is
about 100 characters (pbs).

This problem was studied as early as mid-1970’s. In [1],
Aho and Corasick proposed an efficient algorithm for solving
this problem, by which a pattern matching machine (PMM for
short) or an automaton A is constructed over R and then
searched against s by successively reading the characters in s,
making state transition and occasionally reporting output. The

running time of this process is bounded by O(
l

i
ir

1
|| + |s|). This

algorithm has been extensively used in practise, such as
bioinformatics [7, 8], multiple key-word searching [9] and
two-dimensional pattern searching [2]; and also improved by

different researchers, such as those discussed in [6, 16, 17, 18].
However, the worst-case time complexity remains unchanged.

On the other hand, different indexes have been developed
for a single string pattern searching in the past several decades,
such as suffix trees [14, 15], suffix arrays [13], hashing [10],
and BWT-arrays [5, 11]. However, no effort has been made to
build indexes over s to expedite the multiple string pattern
matching defined above.

In this paper, we address this issue. We will show that an
index over s, the so-called BWT array, can be established
quickly, and can also be used to speed up scanning of s when
we search A in some way to bring down the running time to

O(
l

i
ir

1
||). (This time complexity does not include the time for

taking an index into main memory from hard disk. However,
in practice, this part of time can be completely ignored. For
example, for reading the BWT array of a genome of
1,464,443,456 bytes, only 3 milliseconds are used.)

Specifically, two techniques are introduced, which will be
combined with a BWT-array scanning:
1) Subrange reduction. During a search of A against the BWT

array L for s (the reverse of s), a series of subranges
within L will be checked. By using the failure function of
A, we design a mechanism to reduce each of them
effectively.

2) Change a single-character checking to a multiple-character
checking. (That is, each time a set of characters
respectively from more than one pattern string will be
checked against L in one scan, instead of checking them
separately one by one in multiple scans.)
Our extensive experiments show that the new method can

improve the running time of the existing methods by 40%.
The remainder of the paper is organized as follows. In

Section II, we briefly describe PMM and BWT, based on
which our method is established. In Section III, we discuss our
algorithm to find all occurrences of a set of string patterns in a
target string. In Section IV, we discuss two possible
improvements. Section V is devoted to the test results. Finally,
we conclude with a short summary and a brief discussion on
the future work in Section VI.

II. BASIC TECHNIQUES: PMM AND BWT
In this section, we briefly describe two basic techniques

used in our method. They are the pattern matching machine
and the BWT transformation.

2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery

978-1-5386-2209-4/17 $31.00 © 2017 IEEE

DOI 10.1109/CyberC.2017.26

167

A. Pattern Matching Machine
Similar to the Aho-Corasik’s algorithm, we will first

construct a pattern matching machine (PMM) A over R =
{r1, …, rl}. Different from it, however, we will not search A
against s, but against BWT(s).

Intuitively, the pattern matching machine A over R =
{r1, …, rl} can be considered as a directed graph composed of
two parts: a trie T, denoted as trie(R), and a failure function
f(v) (v, f(v) A).

First, for each rj (j = 1, …, m) we will attach $ to its end
and construct trie(R) as below.

If |R| = 0, trie(R) is, of course, empty. For |R| = 1, trie(R)
is a single node. If |R| > 1, R is split into | | = k (possibly
empty) subsets R1, R2, …, Rk so that each Ri (i {1, …, k})
contains all those sequences with the same first character xi
R {$}. The tries: trie(R1), trie(R2), …, trie(Rk) are
constructed in the same way except that at the ith step, the
splitting of sets is based on the ith characters in the sequences.
They are then connected from their respective roots to a single
node to create trie(R).

Example 1 As an example, consider a set of four pattern
strings:

r1: acaga
r2: ag
r3: acagc
r4: ca

For these pattern strings, a trie can be constructed as shown in
Fig. 1(a). In this trie, v0 is a virtual root, representing an empty
string while any other node v stands for a string equals the
concatenation of all characters labelling the nodes on the path
from v0 to v, denoted as P(v). Especially, if v is a leaf, P(v)
must be a string in R. For instance, the path from v0 to v8
corresponds to the third pattern r3 = acagc$. In general,
however, we will associate some nodes v with an output such
that each r output(v) is a string in R and also a suffix of P(v).
For example, for v3 shown in Fig. 1(a), we have output(v3) =
{r4}. It is because r4 = ca R is a suffix of P(v3) = aca .

In addition, for a node v, we will use l(v) to represent its

character.
By the failure function f(v) (defined over v T\{v0}), we

will give the node to be entered at a mismatch of P(v).
Specifically, f(v) is the node labeled by the longest proper
suffix w of P(v) such that w is a prefix of some pattern [1], as
illustrated by the dashed arrows in Fig. 1(b). For example,

f(v3) = v12 is represented by the dashed arrow from v3 to v12.
We have this since ca is a suffix of P(v3), which is a prefix of
r4, represented by P(v12).

Formally, we have A = T {f(v) | v T\{v0}}. We will
also simply use f(v) to represent a link from v to f(v).

B. BWT and String Searching
Now, we describe the BWT transformation. We will use s

to denote a string that we would like to transform. Again,
assume that s terminates with $, which does not appear
elsewhere in s and is alphabetically prior to all other
characters. In the case of DNA sequences, we have $ < a < c <
g < t. As an example, consider s = ccagaca$.

First, we can rotate s consecutively to create eight different
strings, and put them in a matrix as illustrated in Fig. 2(a).

Next, we sort the rows of the matrix alphabetically, and get
another matrix, as demonstrated in Fig. 2(b), which is called
the Burrow-Wheeler Matrix [5, 11] and denoted as BWM(s).
Especially, the last column L of BWM(s), read from top to
bottom, is called the BWT-transformation (or the BWT-array)
and denoted as BWT(s). So for s = ccagaca$, we have BWT(s)
= acgcac$a (see Fig. 2(c)). The first column is referred to as
F.

Special attention should be paid to Fig. 2(b) and 2(c). In
both of them, for ease of explanation, the position of a
character in s is represented by its subscript. (That is, we
rewrite s as c1c2a1g1a2c3a3$.) For example, a2 represents the
second appearance of a in s; and c1 the first appearance of c in
s. In the same way, we can check all the other appearances of
different characters.

In addition, when ranking the elements x in both F and L
in such a way that if x is the ith appearance of a certain
character it will be assigned i, the same element will get the
same number in the two columns. For instance, in F the rank
of a3, denoted as rkF(a3), is 1 (showing that a3 is the first
appearance of a in F). Its rank in L, rkL(a3) is also 1. We can
check all the other elements and find that this property, called
the rank correspondence, holds for all the elements. That is,
for any element e in s, we always have

rkF(e) = rkL(e) (1)
According to this property, a string searching can be very
efficiently conducted. To see this, let us consider a pattern
string r = aca and try to find all its occurrences in s =
ccagaca$.

v3v3

Figure 1. A trie and a pattern matching machine

a

(a) (b)

c

a

g

a

$

g

c

v0

v1

v2

v4

v5

v6

v7

v9

c v11

v12

{r1}

€

$ v8

$v10 v13$

a

c

a

g

a

$

g

c

v0

v1

v2

v4

v5

v6

v7

v9

c

a

v11

v12

$ v8

$ v10 v13${r4}

{r3}

{r2}{r4}

{r2}

a

€

Figure 2. Rotation of a string

$ c c a g a c a

c c a g a c a $
c a g a c a $ c
a g a c a $ c c
g a c a $ c c a
a c a $ c c a g
c a $ c c a g a
a $ c c a g a c

a3 $ c1 c2 a1 g1 a2 c3

a2 c3 a3 $ c1 c2 a1 g1

$ c1 c2 a1 g1 a2 c3 a3

c3 a3 $ c1 c2 a1 g1 a2

g1 a2 c3 a3 $ c1 c2 a1

a1 g1 a2 c3 a3 $ c1 c2

c1 c2 a1 g1 a2 c3 a3 $
c2 a1 g1 a2 c3 a3 $ c1

(a) (c)(b)

$ a3

a3 c3

c2 c1

a2 g1

g1 a1

c3 a2

c1 $

a1 c2

F L

168

First, we notice that we can store F as | | + 1 intervals,
such as F$ = F[1 .. 1], Fa = F[2 .. 4], Fc = F[5 .. 7], Fg = F[8 ..
8], and Ft = for the above example (see Fig. 2(c).) We can
also represent a segment within an Fx (with x) as a pair of
the form <x, [, β]>, where β are two ranks of x. Thus, we
have Fa = F[2 .. 4] = <a, [1, 3]>, Fc = F[5 .. 7] = <c, [1, 3]>,
and Fg = F[8 .. 8] = <g, [1, 1]>.

We will also use Yx and Zx to represent the positions of the
first and the last element of Fx in F, respectively. For example,
Ya is 2 and Za is 4. Also, we can use L to represent a range in
L corresponding to a pair = <x, [, β]>. For example, in Fig.
2(c), L<a, [1, 3]> = L[2 .. 4], L<c, [1, 2]> = L[5 .. 6]. L<a, [2, 3]> = L[3 ..
4], and so on.

Finally, we use a procedure search(z,) to search L to
find the first and the last rank of z (denoted as and β ,
respectively) within L , and return <z, [, β]> as the result:

To locate r in s, we work on the characters in r in the
reverse order (referred to as a backward search). That is, we
will search r (reverse of r) against BWT(s), as shown below.
Step 1 (checking the last character in r): Check r[3] = a in the
pattern string r, and then figure out Fa = F[2 .. 4] = <a, [1,
3]>.
Step 2 (checking the second character from last): Check r[2]
= c. Call search(c, L<a, [1, 3]>). It will search L<a, [1, 3]>= L[2 .. 4]
to find a range bounded by the first and last rank of c.
Concretely, we will find rkL(c3) = 1 and rkL(c2) = 2. So,
search(c, L<a, [1, 3]>) returns <c, [1, 2]>. It is F[5 .. 6].
Step 3 (check the first character): Check r[3] = a. Call
search(a, L<c, [1, 2]>). Notice that L<c, [1, 2]> = L[5 .. 6]. So,
search(a, L<c, [1, 2]>) returns <a, [2, 2]>. It is F[2 .. 2]. Since
now we have exhausted all the characters in r and F[2 .. 2]
contains only one element, one occurrence of r in s is found. It
is represented by a2 in s. (In general, let l be the number of
entries in the segment (in F) found at the last step of such a
process. Then, there are l occurrences of r in s with each
indicated by an entry in that segment.)

The above working process can be represented as a
sequence of three pairs:

<a, [1, 3]>, <c, [1, 2]>, <a, [2, 2]>.
In general, for r = c1 … cm, its search against BWT(s) can

always be represented as a sequence of pairs (with each
representing a segment in Fx for some x):

<x1, [1, 1]>, …, <xm, [m, m]>,
where <x1, [1, 1]> = ,

1xF and <xi, [i, i]> = search(xi,

,xi
L

1]β,[α 11 ii
) for 1 < i m. We call such a sequence as a

search sequence. Thus, the time used for this process is
bounded by O(

m

i
i

1
), where i is the time for an execution of

search(xi, ,xi
L

1]β,[α 11 ii
). However, this time complexity

can be reduced to O(m) by using the so-called rankAll method
(with more space to be used [11]) and the multi-character
checking to be discussed in Section IV.

From the above discussion, we can observe a very
important property of the BWT transformation, by which we
check, at each step, a subset of characters (represented by a
subsegment of F) from a target string s while by any on-line
strategy only one character from s is checked at one step.

Finally, we point out that BWT(s) (or BWT(s)) can be
constructed in O(|s|) time by using its relationship to the suffix
array of s [5].

III. MAIN ALGORITHM

In this section, we present our main algorithm. First, we
show a breadth-first search of trie(R) against BWT(s) in
Subsection A. Then, in Subsection B, we discuss how the
failure functions in an PMM can be used to speed up the
working process. Subsection C is devoted to the correctness
proof and the time complexity analysis.

A. Searching Tries over Pattern Strings
It is easy to see that exploring a path in a trie T over R

corresponds to scanning a pattern r R. If we explore, at the
same time, the L array (= BWT(s)) established over a
reversed target sequence s , we will find all the occurrences of
r (without $ involved) in s. Obviously, by a depth-first search
of T, this can be done very efficiently. However, to use the
failure function to reduce the subrange (within L) to be
checked at each step, we need to explore T in the breadth-first
manner. For this purpose, we use a queue Q to control the
process, in which each entry is a triplet <v, a, b> with v being
a node in T and a b, used to indicate a subsegment within
Fl(v). For example, when searching the trie shown in Fig. 1(a)
against the L array shown in Fig. 2(c), we may have an entry
like <v1, 1, 3> in Q to represent a subsegment Fa[1 .. 3] (the
first to the third entry in Fa) since l(v1) = a . In addition, for
technical convenience, we use F€ to represent the whole F.
Then, F€[a .. b] represents the segment from the ath to the bth
entry in F.

ALGORITHM trieSearch(T, LF)
begin
1. v root(T); ;
2. enqueue(Q, <v, 1, |s|>);
3. while Q is not empty do {
4. <v, a, b> dequeue(S);
5. if output(v) then {<output(v), l(v), a, b>};
6. let v1, …, vk be the children of v;
7. for i = 1 to k do {
8. {denote Fl(v)[a .. b] by ; let x = l(vi);
9. if search(x,) then
10. {let search(x,) = <x, [,]>; enqueue(Q, <vi, , >); }
11. }
12. }
end

<z, [, β]>,
(2)

if z appears in L ;

, otherwise.
search(z,) =

169

In the algorithm, we first enqueue <root(T), 1, |s|> into
queue Q (append at the end of Q) (lines 1 – 2). Then, we go
into the main while-loop (lines 3 – 12), in which we will first
dequeue the first element from Q (taken out from the front of
Q), stored as a triplet <v, a, b> (line 4). Then, we will check
whether output(v) is empty. If it is not the case, a quadruple
<output(v), l(v), a, b> will be added to the result (see line 5),
which records all the occurrences of all those pattern strings
represented by output(v) in s. (In practice, we store
compressed suffix arrays [13, 15] and use their relationship
with BWT to calculate positions of pattern strings in s.) For
each child vi of v, we will determine a segment in L by
executing search(x,), where x = l(vi) and = <l(v), [a .. b])>
(= Fl(v)[a .. b]). Let search(x,) = <x, [,]>. We will then
enqueue each <vi, , > into Q. (see line 10.)
Example 2 Consider all pattern strings given in Example 1
again. The trie T over these short strings are shown in Fig. 1(a).
In order to find all the occurrences of them in s = ccagaca$,
we will run trieSearch() on T and the LF of s shown in Fig.
2(c). (By LF, we mean the L and F arrays together.)

In the execution of trieSearch(), the following steps will
be carried out.
Step 1: Enqueue <v0, 1, 8> into Q, as illustrated in Fig. 3(a).
Step 2: Dequeue the first element <v0, 1, 8> from Q. Figure
out the two children of v0: v1 and v11. First, for v1, we have l(v1)
= a. By executing search(a, F€[1 .. 8]), we get <a, [1, 3]> and
then enqueue < v1, 1, 3> into Q. For v11, we have l(v11) = c and
get <c, [1, 3]> by executing search(c, F€[1 .. 8]). So, <v11, 1,
3> will also be enqueued into Q. See Fig. 3(b) for illustration.
Step 3: Dequeue the first element <v1, 1, 3> from Q. v1 also
has two children: v2 and v9. For v2, we have l(v2) = c. By
executing search(c, Fa[1 .. 3]), we get <c, [1, 2]>. For v9, we
have l(v9) = g and get <g, [1, 1]> by executing search(g, Fa[1 ..
3]). Similarly, we will consecutively enqueue <v2, 1, 2> and
<v9, 1, 1> into Q. See Fig. 3(c).

The remaining steps 4, 5, 6, 7, 8, 9 will be done in the
same way as above and Q will be accordingly changed as
shown in Fig. 3(d), (e), (f), (g), (h), and (i), respectively. Here,
special attention should be paid to Step 5 when <v9, 1, 1> is
dequeued from Q. Since output(v9) = {r2}, we will store <{r2},
g, 1, 1> in as part of the result (see line 5 in trieSearch()),
which shows that r2 appears at g1-possition in s. �

B. Searching PMMs over Pattern Strings
In the algorithm discussed in the previous subsection, the

failure function is totally ignored. Indeed, due to the
difference between the scanning of s and the searching of
BWT(s), the failure function cannot be used in a way as the
Aho-Corasik’s algorithm [1]. It is because by searching
BWT(s), what we will produce is a sequence of pairs, and two
such sequences corresponding to a same sequence of
characters (respectively along two paths in T) may have
different sequences of intervals. For instance, along the path v2

v3 shown in Fig. 4, we will create a sequence of pairs: <c,
[1, 2]>, <a, [2, 2]> while along the path v11 v12 the sequence
generated is <c, [1, 3]>, <a, [2, 2]>. Although they have the
same sequence of characters: ca, their sequences of intervals
are different: one is [1, 2][2, 2] and the other is [1, 3][2, 2].

In addition, since a pair sequence cannot be created in a

reverse order (by searching a PMM bottom-up), it is
completely impossible for us to use the skip-table utilized in
the Boyler-Moore’s algorithm [19] (by which substrings of s
need to be scanned backwards), or the DAWG structure
(directed acyclic word graph) in the Crochemore’s algorithm
[18] (by which a DAWG needs to be searched bottom-up.)
However, the failure function can be really employed to
reduce the size of subranges of L to be searched during an
execution of search().

To this end, we will associate each node v in T with the
corresponding interval [v, v], referred to as I(v), which is
found for l(v) by running search(). That is, along an edge w

v in T, we will have search(l(v), <l(w), [w, w]>) = <l(v),
[v, v]>. (See Fig. 4 for illustration.) With the help of such
intervals, the failure function can be utilized as follows.
Lemma 1 Let u, v be two nodes in A such that f(v) = u. Then,
I(v) I(u).
Proof. According to the definition of f(v) = u, P(u) is a suffix
of P(v). Assume that P(v) = x1 … xixi+1 … xi+j and P(u) =
xi+1 … xi+j with i, j 0. Then, by the execution of trieSearch(T,
LF), along P(v) and P(u), two sequences of pairs will be
generated:

1, …, i, i+1 , …, i+j; and
1 , …, j ,

where 1 = <x1, 1xF >, 1 = < xi+1, 1ixF >, l+1 = search(xl, l)

(l = 1, …, i + j – 1), and k+1 = search(xk, k) (k = i + 1, …, i
+ j -1). Let Il be the interval in pair l (l = 1, …, i + j). Let Ik

<v0, 1, 8>

(a)

<v1, 1, 3>

(b)

<v11, 1, 3>

(c)

<v11, 1, 3>
<v2, 1, 2>

(d)

<v2, 1, 2>
<v9, 1, 1>

<v9, 1, 1> <v12, 2, 2>

(e)

<v9, 1, 1>
<v12, 2, 2>
<v3, 2, 2>

(f)

<v12, 2, 2>
<v3, 2, 2>

<v3, 2, 2>

(g)

<v4, 1, 1>

(h)

<v5, 3, 3>

(i)

Q:

[1, 1]

[1, 1]

[2, 2]

[1, 2]

v3

Figure 4. Illustration for intervals in a PMM

a

c

a

g

a

$

g

c

v0

v1

v2

v4

v5

v6

v7

v9

v11

v12

€

$ v8

$v10 v13

[1, 3]

[3, 3]

c

a

$

[1, 3]

[2, 2]

Figure 3. Illustration for Step 1 - 9

170

be the interval in pair k (k = i + 1, …, i + j). We must have Ik

Ik (k = i + 1, …, i + j). Thus, I(v) = Ii+j Ij = I(u). �
This lemma enables us to design an efficient procedure to

replace search() for creating I(v)’s as follows.
Let w v be an edge in T. Assume that f(v) = u. Let l(u) =

x. Since we explore T in the breadth-first manner, u must be
visited before v. So its interval I(u) = [u, u] must have been
created when we meet v. Then, in terms of u, we can find an
integer j such that u = rkL(xj) (recall that xj represents the jth
appearance of x in s). Next, in terms of j, we can obtain
another integer i such that xj = L[i]. Finally, using i, v can be
immediately determined:
1. If Yl(w) + w – 1 i, we will simply set v equal to u.

(Recall that Yl(w) represents the position of the first entry of
Fl(w) in F.) It is because when searching a subrange in L,
which corresponds to I(w), we will definitely meet L[Yl(w) +

u – 1] as the first character equal to x according to Lemma
1.

2. Otherwise (Yl(w) + w > i), we have to search L starting
from L[Yl(w) + w - 1] downwards to find the first
appearance of x and use it as v.

Similarly, Let i , j be two integers such that u = rkL(xj) and xj

= L[i].
3. If Yl(w) + w – 1 i , we will simply set v equal to u.
4. Otherwise (Yl(u) + u < i), we have to search L starting

from L[Yl(w) + w - 1] upwards to find the last appearance
of x and use it as v.
As an example, consider the search of A shown in Fig. 4

against the LF of s shown in Fig. 2(c), where s = ccagaca$.
By the breadth-first search of T, v1 and v11 will be visited
before v2. f(v2) = v11. As shown in Fig. 4(a), we have I(v1) = [1,
3] and I(v11) = [1, 3], and v1 v2 is an edge in T. According to
the above discussion, I(v2) = [

2
αv ,

2
βv] will be determined as

follows.
To find

2
αv , we will first compare Ya +

1
αv - 1 and i, where

rkL(L[i]) =
11

αv = 1. Since Ya +
1

αv - 1 = 2 + 1 – 1 = 2,
which is equal to i = 2,

2
αv should be set equal to

11
αv and

no search will be conducted to find this value. (Here, we
have i = 2 since l(v11) = c and L[2] = c3 with rank equal
to

11
αv = 1. See Fig. 4.)

To determine
2

βv , we will compare Ya +
1

βv - 1 and i ,
where rkL(L[i]) =

11
βv = 3. Since Ya + 1

βv - 1 = 2 + 3 – 1 =
4 < i = 6, we need to search L starting from L[Ya +

1
βv - 1]

= L[4] upwards to find the last appearance of c within a
range (in L) corresponding to <a, [

1
αv ,

1
βv]>. It is L[3] =

c2 (with rkL(c2) = 2.) So, we get
2

βv = 2.

Now, we further consider the evaluation of I(v3). Assume
that I(v12) = [2, 2] has already been established. By doing a
checking similar to the above, we will immediately get I(v12) =

[2, 2], no searching of L at all. In this way, a lot of time can be
saved.

We will refer to the above process as searchI(v, w, f(v), LF)
to indicate its difference from search(). Its output is an
interval to be associated with v.

According to the above discussion, we give the following
algorithm, which works almost in the same way as
trieSearch(). The only difference is in the use of searchI().
That is, we will still explore T breadth-first. However, each
time we encounter a node v, we will call searchI(v, w, f(v), LF)
(instead of search()) to determine the interval for v, where w
represents the parent of v.
ALGORITHM pmmSearch(T, LF)
begin
1. v root(T); ;
2. enqueue(Q, v);
3. while Q is not empty do {
4. v dequeue(S);
5. if output(v) then {<output(v), l(v), I(v)>};
6. let v1, …, vk be the children of v;
7. for i = 1 to k do {
8. I searchI(vi, v, f(vi), LF); associate I with vi;
9. if I then enqueue(Q, vi); }
10. }
end

C. Correctness and Time Complexity
In this subsection, we prove the correctness of

pmmSearch(T, LF) and analyze its time complexity.
First, we have the following lemma.

Lemma 2 Let u, v be two nodes in A such that f(v) = u. Let w
be the parent of v in T. The interval returned by searchI(v, w,
f(v), LF) is correct.
Proof. The lemma can be directly derived from Lemma 1. �

Proposition 1 Let A be a trie constructed over a collections of
pattern strings: r1, …, rm, and LF a BWT-mapping established
for a reversed genome s . Let be the result of pmmSearch(T,
LF). Then, for each rj, if it occurs in s, there is a quadruple
<output(v), l(v), [,]> such that rj output(v), l(v) is
equal to the last character of rj, and Fl(v)[], Fl(v)[+ 1], …,
Fl(v)[] show all the occurrences of rj in s.
Proof. We prove the proposition by induction on the height h
of A, which is defined to be the number of edges on the
longest downward path from the root to a leaf node.
Basic step. When h = 1. The proposition trivially holds.
Induction hypothesis. Suppose that when the height of A is h,
the proposition holds. We consider the case that the height of
A is h + 1. Let A be a PMM obtained by removing all the leaf
nodes in A. Then, the height of A is at most h. According to
the induction hypothesis, the interval generated by applying
pmmSearch() to A must be correct. Now, we consider a leaf
node v in A . Let v1, …, vk be the children of v in A. Then, in
terms of Lemma 2, I(vi) produced by executing searchI(vi, v,
f(vi), LF) for i = 1, …, k must also be correct. Considering that

171

all the nodes in A are visited in the breadth-first manner, the
claim in the proposition is correct. �

Concerning the time complexity, we check the main
while-loop, in which each node v in T is accessed only once.
So the running time of trieSearch(T, LF) is bounded by
O(

Tv
v), where v represents the cost for an execution of

searchI() to find I(v). In the next section, our focus will be on
how to further reduce this cost.

IV. IMPROVEMENTS
The algorithm discussed in the previous section can be

further improved in two ways. One is to use the so-called
rankAll mechanism [5, 11]. The other is to rearrange the
search of a segment of L when we visit a node v in T to do the
so-called multi-character checking to effectively decrease the
searching cost of L.

In the following, we will discuss these two methods in
great detail.

A. rankAll
In this subsection, we first show the rankAll mechanism.

Then, how it can be integrated into our general method will be
described.

As mentioned above, the dominant cost of the whole
process is the searching of L at each step. As shown in the
previous section, by using the failure function, this problem
can be mitigated to some extent.

A quite different way for this purpose is to arrange | |
arrays, each for a character x in , denoted as x[], in which x[i]
(the ith entry in the array for x) is the number of appearances
of x within L[1 .. i]. For example, for the L array shown in Fig.
2(c), we will have five arrays: $[], a[], c[], g[], and t[], as
illustrated in Fig. 5(a). Especially, we have [1] = 1 while a[5]
= 2. It is because in L[1 .. 1] a appears only once while in
L[1 .. 5] a appears two times. In the same way, we can check
all the other entries in these arrays.

We also notice that it is not necessary to store the column
for $ since it will never be actually checked.

Now, instead of scanning a certain segment L[i .. j] (i j)
to find a subrange for a certain x by using searchI(), we
can simply look up the array for x to see whether x[i - 1] = x[j].
If it is the case, then x definitely does not occur in L[i .. j].
Otherwise, [x[i - 1] + 1, x[j]] should be the found range. For
example, to find the first and the last appearance of c in L[2 ..
5], we only need to find c[2 – 1] = c[1] = 0 and c[5] = 2. So
the corresponding range is [c[2 - 1] + 1, c[5]] = [1, 2].

Thus, with the help of such data structures, the time of
search() can be reduced to O(1).

The problem of this method is its high space requirement.
For this reason, we will replace each x[] with a compact array
Ax for x , in which, rather than for each L[i] (i {1, …, n}),
only for some entries in L the number of their appearances
will be stored. For example, we can divide L into a set of
buckets of the same size and only for each bucket a value will
be stored in Ax. Obviously, doing so, more searching will be
required to find missing values. In practice, the size of a
bucket (referred to as a compact factor) can be set to different

values. For instance, we can set = 4, indicating that for each
four contiguous elements in L a group of | | integers (each in
an Ax) will be stored. That is, we will not store all the values in
Fig. 5(a), but only store a[4], c[4], g[4], t[4], and a[8], c[8],
g[8], t[8] in the corresponding compact arrays, as shown in
Fig. 5(b).

Obviously, each x[j] for x can be easily derived from
Ax by using one of the following formulas:

x[j] = Ax[i] + , (4)
where i = j/ and is the number of x’s appearances within
L[i + 1 .. j] which have to be searched, or

x[j] = Ax[i] - , (5)
where i = j/ and is the number of x’s appearances within
L[j + 1 .. i]. Also, has to be obtained by searching part of
L.

Therefore, we need two procedures: sDown(L, j, , x) and
sUp(L, j, , x) to find and , respectively. In terms of
whether j - i i - j, we will call sDown(L, j, , x) or
sUp(L, j, , x) so that fewer entries in L will be scanned to find
x[j].

More importantly, this method can be easily combined
with the use of failure functions (as discussed in 4.3) to form a
powerful strategy. To this end, step (2) and (4) in searchI(v, w,
f(v), LF) need to be slightly modified.
1. If Yl(w) + w – 1 i, we will simply set v equal to u,

where w v is an edge in T, f(v) = u, l(u) = x, u = rkL(xj),
 and xj = L[i].
2. Otherwise (Yl(w) + w > i), do the following operations to

determine v: l Yl(w) + w – 2, sDown(L, l, , x) (or
sUp(L, l, , x)), and v Ax[l/] + + 1 (or v

Ax[l/] - + 1).
3. If Yl(w) + w – 1 i , we will simply set v equal to u,

where u = rkL(xj) and xj = L[i].
4. Otherwise (Yl(u) + u < i), do the following operations to

determine v: l Yl(w) + w – 1, sDown(L, l, , x) (or
sUp(L, l, , x)), and v Ax[l/] + (or v

Ax[l/] -).
In the above process, (1) and (3) are exactly the same as in

searchI(). But in (2) and (4) a simple search of L is replaced
with a function call sUp() (or sDown()), by which the

Figure 5. LF-mapping and rank-correspondence

$ a3

a3 c3

c2 c1

a2 g1

g1 a1

c3 a2

c1 $

a1 c2

F L

0

0

0

1

0

1

$
1
1

2

1

3

2

2

1

a

0
1

3

1

3

2

3

2

c

0
0

1

1

1

1

1

1

g

0
0

0

0

0

0

0

0

t

3

1

Aa

3

2

Ac

1

1

Ag

0

0

At

0 0 0 0

i

2

1

0

2

6

3

8

5

7

j

(a) (b)

For each = 4
values in L, a
rankAll value
is stored.

172

number of checked entries will be dramatically decreased by
using the rankAll arrays.

B. Multiple Character Checking
In sUp() or in sDown(), we search L once for each child

of a certain node v. But we can manage to search the
corresponding segment of L only once for all the children of v.
This arrangement can be very useful for applications with
large alphabets, such as protein sequences, whose alphabet
contains as many as 20 characters. Thus, in many cases, 20
times of searching of L can be reduced to a single searching of
L. To this end, we will use integers to represent characters in .
For example, we can use 1, 2, 3, 4 to represent a, c, g, t in a
DNA sequence. In addition, two kinds of simple data
structures will be employed:
- Bv: a Boolean array of size | | associated with node v in T,

in which, for each i , Bv[i] = 1 if there exists a child
node u of v such that l(u) = i; otherwise, Bv[i] = 0.

- Ci: a counter associated with i to record the number of
i’s appearances during a search of some segment in L.
See Fig. 6 for illustration.

With these two data structures, we change sDown(L ,j , ,x)
and sUp(L, j, , x) to sDown(L, j, , v) and sUp(L, j, , v),
respectively, to search part of L for all the children of v, but
only in one scanning of it.

In sDown(L, j, , v), we will search a segment L[j/ +
1 .. j] from top to bottom, and store the result in an array D
of length | |, in which each entry D[i] is the rank of i
(representing a character), equal to Ci + Ai[j/], where Ci is
the number of i’s appearances within L[j/ + 1 .. j].

FUNCTION sDown(L, j, , v)
begin
1. ci 0 for each i ;
2. l j/ + 1;
3. while l j do {
4. if Bv[L[l]] = 1 then CL[l] CL[l] + 1;
5. l l + 1;
6. }
7. for k = 1 to | | do {
8. if Bv[k] = 1 then D[k] Ak[j/] + Ck;
9. }
10. return D;
end

In the algorithm, we search L[j′ .. j] only in one scanning in
the main while-loop (see lines 3 – 6), where j′ = j/ + 1

(see line 2.) For each encountered entry L[l] (j′ l j), we will
check whether Bv[L[l]] = 1 (see line 4.) If it is the case, CL[l]
will be increased by 1 to count encountered entries which are
equal to L[l]. After the while-loop, we compute the ranks for
all the characters respectively labeling the children of v (see
lines 7 – 8).

sUp(L, j, , v) is dual to sDown(L, j, , v), in which a
segment of L will be searched bottom-up.
FUNCTION sUp(L, j, , v)
begin
1. ci 0 for each i ;
2. l j/ ;
3. while l j + 1do {
4. if Bv[L[l]] = 1 then CL[l] CL[l] + 1;
5. l l - 1; }
6. }
7. for k = 1 to | | do {
8. if Bv[k] = 1 then D[k] Ak[j/] - Ck;
9. }
10. return D;
end

The following example helps for illustration.
Example 3 In this example, we trace the working process to
generate ranges (by scanning L[2 .. 5] shown in Fig. 2(c)) for
the two children v2 and v9 of v1 shown in Fig. 5. For this
purpose, we will calculate c[1], c[5] for l(v2) = c , and g[1],
g[5] for l(v9) = g . First, we notice that

1vB = [0, 1, 1, 0] and
all the counters C1, C2, C3, C4 are set to 0.

By running sDown(L, 1, 4, v1) to get c[1] and g[1], part of
L will be scanned once, during which only one entry L[1] = a
(represented by 1) is accessed. Since

1vB [L[1]] =
1vB [1] = 0,

C1 remains unchanged. Especially, both C2 (for c) and C3 (for
g) remain 0. Then, c[1] = Ac[1/4] + C2 = 0 and g[1] =

Ag[1/4] + C3 = 0. This shows that in a single scanning of L,
both c[1] and g[1] are found.

Next, to get c[5] and g[5], we will run sDown(L, 5, 4, v1)
to scan another part of L, also only once. In this process, L[5]
= a (represented by 1) is accessed. Since

1vB [L[5]] =
1vB [1]

= 0, C2 is still 0. In addition, since C3 (for g) is also 0, we
have c[5] = Ac[5/4] + C2 = 2 + 0 = 2 and g[5] = Ag[5/4] +
C3 = 1 + 0 = 1.

Thus, the range for l(v2) = c is [c[1] + 1, c[5]] = [1, 2],
and the range for l(v9) = g is [g[1] + 1, g[5]] = [1, 1]. �

Again, we need to integrate this mechanism with the use of
failure functions.

Let v1, …, vk be the children of v. Let f(vj) = uj (j = 1, …, k).
Let ij be the position in L corresponding to

juα (j = 1, …, k).

If Yl(v) + v – 1 min{i1, …, ik}, do
jvα juα for each j

{1, …, k}. Otherwise, divide {v1, …, vk} into two groups: G1

and G2 such that for any vj G1, we have Yl(v) + v – 1 ij,
and for any vj G2 Yl(v) + v – 1 > ij . Obviously, for each vj

G1, jvα can be directly determined as above. Thus, by setting

Figure 6. Illustration for extra data structures

a c g

L:

L[i]

If Bv[L[i]] = 1, CL[i]
will be increased by 1.

.

.
.

Bv: 1 1 1 0

1 2 3 4

C1 C2 C3 C4

173

Bv[L[vj]] = 0 for each vj G1, and Bv[L[vj]] = 1 for each ij

G2, we can then use sDown() or sUP() to determine
jvα for

each vj G2.
In a similar way, we can determine

jvβ for j = 1, …, k.

According to the above discussion, our final algorithm can
be described as follows.

ALGORITHM pmmS(T, LF,)
begin
1. v root(T); ;
2. enqueue(Q, v);
3. while Q is not empty do {
4. v dequeue(S);
5. if output(v) is not empty then <output(v), l(v), I(v)>;
6. let v1, …, vk be the children of v;
7. let i1, …, ik be positions in L corresponding to

1
αu , …,

kuα ;

8. divide {v1, …, vk} into G1 and G2 such that for any vj G1, Yl(v)
+ v – 1 ij, and for vj G2, Yl(v) + v – 1 > ij ;

9. if G2 then determine
1vα , …,

kvα as described above;

10. else {
jvα juα for j = 1, …k;}

11. let l1, …, lk be positions in L corresponding to
1uβ , …,

kuβ ;

12. divide {v1, …, vk} into H1 and H2 such that for any vj H1, Yl(w)
+ w – 1 lj, and for vj H2, Yl(w) + w – 1 < lj ;

13. if H2 then determine
1vβ , …,

kvβ as described above;

14. else {
jvβ juβ for j = 1, …k;}

15. for j = 1 to k do if [
jvα ,

jvβ] then enqueue(Q, vi);

18.}
end

The main difference of this algorithm from pmmSearch()
is in their different ways to search L[a .. b]. Here, to find the
ranks of the first appearances of all the labels of v’s children,
sDown() or sUp() is called to scan part of L only once (while
by pmmSearch() this has to be done multiple times each for a
different child.) See line 9 and 10. Similarly, to find the ranks
of the last appearances of these labels, another part of L will
be scanned, also only once. See line 13 and 14. Besides these,
all the other operations are almost the same as in
pmmSearch().

V. EXPERIMENTS
In our experiments, we have tested altogether six different

methods:
- Burrows Wheeler Transformation [11] (BWT for short),
- Suffix tree based [14] (Suffix for short),
- Hash table based [10] (Hash for short),
- Commentz-Walter’s Algorithm [6] (CW for short),
- Crochemore’s Algorithm [18] (Cr for short), and
- pmmS (pS for short, discussed in this paper).

Among them, the codes for the suffix tree based and hash
based methods are taken from the gsuffix package [3] while all
the other four algorithms are implemented by ourselves. All of
them are able to find all occurrences of every read in a
genome. The codes are written in C++, compiled by GNU
make utility with optimization of level 2. In addition, all of

our experiments are performed on a 64-bit Ubuntu operating
system, run on a single core of a 2.40GHz Intel Xeon E5-2630
processor with 32GB RAM.

The test results are categorized in two groups: one is on a
set of synthetic data and another is on a set of real data. For
both of them, five reference genomes are used, which are
taken from an RNA laboratory at University of Manitoba
(http://home.cc.umanitoba.ca/~xiej/):

TABLE I. CHARACTERISTICS OF GENOMES
Genomes Genome sizes (bp)

Rat chr1 (Rnor_6.0) 290,094,217

C. merolae (ASM9120v1) 16,728,967

C. elegans (WBcel235) 103,022,290

Zebra fish (GRCz10) 1,464,443,456

Rat (Rnor_6.0) 2,909,701,677

A. Tests on Synthetic Data Sets
All the synthetic data are created by simulating reads from

the five genomes shown in Table I, with varying lengths and
amounts. It is done by using the wgsim program included in
the SAMtools package [12] with default model for single reads
simulation.

Over such data, the impact of five factors on the searching
time are tested: number n of reads, length l of reads, size s of
genomes, compact factors f1 of rankAlls (see Section IV) and
compression factors f2 of suffix arrays [13], which are used to
find locations of matching reads (in a reference genome) in
terms of their relationship with BWT arrays.

A.1 Tests with varying amount of reads
In this experiment, we vary the amount n of reads with n =

5, 10, 15, …, 50 millions while the reads are 50 bps or 100 bps
in length extracted randomly from Rat chr1 and C. merlae
genomes. For this test, the compact factors f1 of rankAlls are
set to be 32, 64, 128, 256, and the compression factors f2 of
suffix arrays are set to 8, 16, 32, 64, respectively. These two
factors are increasingly set up as the amount of reads gets
increased.

In Fig. 7(a) and (b), we report the test results of searching
the Rat chr1 for matching reads of 100 and 50 bps,
respectively. From these two figures, it can be clearly seen
that the hash based method has the worst performance while
ours works best. For long reads (of length 100 bps) the suffix-
based is worse than the BWT, but for short reads (of length 50
bps) they are comparable. Both the the Crochemore’s and the
Commentz-Walter’s are worse than the BWT. But the
Crochemore’s is better than the Commentz-Walter’s. The poor
performance of the hash-based is due to its inefficient brute-
force searching of genomes while for both the BWT and the
suffix-based it is due to the huge amount of reads and each
time only one read is checked. In the opposite, for our method,
the combination of PMMs and BWT arrays enables us to
avoid repeated checking for similar reads. In these two figures,
the time for constructing PMMs over reads is included. To see

174

the impact of the construction of PMMs, we show the times
for constructing them over different amounts of reads (of
length 100 pbs), demonstrated in Table II.

TABLE II. TIME FOR TRIE CONSTRUCTION OVER READS OF
LENGTH 100 BPS

No. of reads 30M 35M 40M 45M 50M

Time for PMM Con. 91s 123s 152s 195s 210s

The difference between the BWT and ours is due to the
different number of BWT array accesses as shown in Table III.
By an access of a BWT array, we will scan a segment in the
array to find the first and last appearance of a certain character
from a read (by BWT) or a set of characters from more than
one read (by ours).

TABLE III. NO. OF BWT ARRAY ACCESSES

No. of reads 30M 35M 40M 45M 50M

BWT 67954K 75632K 83321K 90732K 98165K

pmmS 19105K 22177K 25261K 28227K 31204K

Fig. 8(a) and (b) show respectively the results for reads of
length 50 bps and 100 bps over the C. merolae genome. Again,
our methods outperform the other three methods.

A.2 Tests with varying length of reads
In this experiment, we test the impact of the read length on

performance. For this, we fix all the other four factors but vary

length l of simulated reads with l = 35, 50, 75, 100, 125, …,
200. The results in Fig. 9(a) shows the difference among five
methods, in which each tested set has 20 million reads
simulated from the Rat chr1 genome with f1 = 128 and f2 = 16.
In Fig. 9(b), the results show the the case that each set has 50
million reads. Fig. 10(a) and (b) show the results of the same
data settings but on C. merlae genome.

Again, in this test, the hash based performs worst while the
suffix tree and the BWT method are comparable, and both the
Commentz-Walter’s and Wu-Manber’s are worse than them.
Our algorithm uniformly outperforms the others when
searching on short reads (shorter than 100 bps). It is because
shorter reads tend to have multiple occurrences in genomes,
which makes the trie used in ours more beneficial. However,
for long reads, the suffix tree beats the BWT since on one
hand long reads have fewer repeats in a genome, and on the
other hand higher possibility that variations occurred in long
reads may result in earlier termination of a searching process.
In practice, short reads are more often than long reads.

B. Tests on Real Data Sets
For the performance assessment on real data, we obtain RNA-
sequence data from the project conducted in an RNA
laboratory at University of Manitoba (lab website:
http://home.cc.umanitoba.ca/~xiej/, retrieved: 2014). This
project includes over 500 million single reads produced by
Illumina from a rat sample. Length of these reads is between
36 bps and 100 bps after trimming using Trimmomatic [4].

Figure 8. Test results on varying amount of reads

Time (s)

Amount of reads (million) Amount of reads (million)

(b)(a)

0

300

600

900

1200

1500

1800

5 10 15 20 25 30 35 40 45 50

Time (s)

Figure 10. Test results on varying length of reads

0

200

400

600

800

1000

1200

35 50 75 100 125 150 175 200

Time (s) Time (s)

Read length (pb)

(b)(a)

Read length (pb)

Figure 9. Test results on varying length of reads

0

300

600

900

1200

1500

1800

35 50 75 100 125 150 175 200

Time (s)Time (s)

Read length (pb)

(b)(a)

Read length (pb)

Figure 7. Test results on varying amount of reads

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

Suf f ix Hash BWT

Cr CW pmmS

0
200
400
600
800
1000
1200
1400
1600
1800
2000

5 10 15 20 25 30 35 40 45 50

Time (s) Time (s)

Amount of reads (million)

(b)(a)

Amount of reads (million)

0

500

1000

1500

2000

2500

3000

3500

35 50 75 100 125 150 175 200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5 10 15 20 25 30 35 40

0

500

1000

1500

2000

2500

3000

35 50 75 100 125 150 175 200

175

The reads in the project are divided into 9 samples with
different amount ranging between 20 million and 75 million.
Two tests have been conducted. In the first test, we mapped
the 9 samples back to rat genome of ENSEMBL release 79 [6].
We were not able to test the suffix tree due to its huge index
size. The hash-based method was ignored as well since its
running time was too high in comparison with the BWT. In
order to balance between searching speed and memory usage
of the BWT index, we set f1 = 128, f2 = 16 and repeated the
experiment 20 times. Fig. 11(a) shows the average time
consumed for each algorithm on the 9 samples.

Since the source of RNA-sequence data is the transcripts,
the expressed part of the genome, we did a second test, in
which we mapped the 9 samples again directly to the Rat
transcriptome. This is the assembly of all transcripts in the Rat
genome. This time more reads, which failed to be aligned in
the first test, are able to be exactly matched. This result is
showed in Fig. 11(b).

From Fig. 11(a) and (b), we can see that the test results for
real data set are consistent with the simulated data. Our
algorithm is faster than the BWT, the Crochemore’s and the
Commentz-Walter’s on all 9 samples. Counting all the data
sets together, ours is more than 45% faster compared with
these methods. Although the performance would be dropped
by taking PMMs’ construction time into consideration, we are
still able to save 40% time using our method.

VI. CONCLUSION AND FUTURE WORK
In this paper, an efficient algorithm for solving the set
matching problem has been discussed, by which we are
required to locate and identify all substrings of a long string s
which match some short strings from a set R = {r1, …, rm}.
The main idea is to construct a pattern matching machine A
and transform the reverse s of s to a BWT-array as index,
BWT(s), and search A against it. During the process, the
failure function of A is used to reduce the subranges of
BWT(s) at each step. In addition, we change a single-
character checking against BWT(s) to a multiple-character
checking, by which multiple searches of BWT(s) are reduced
to a single scanning of it. In this way, high efficiency can be

achieved. Extensive experiments have been conducted, which
shows that our method works better than the existing method
for this problem.

As a future work, we will use the BWT to solve another
important problem, the string matching with k mismatches, by
which we will find all the substrings in a target string s having
at most k positions different from a pattern string r.

VII. REFERENCES
[1] A.V. Aho and M.J. Corasick, Efficient string matching: an aid to

bibliographic search, Communication of the ACM, Vol. 23, No.
1, pp. 333 -340, June 1975.

[2] R.A. Baeza-Yates and M. Régnier, Fast algorithms for two-
dimensional and multiple pattern matching, in Proc. SWAT '90
the second Scandinavian workshop on Algorithm theory,
Springer-Verlag, Bergen, Sweden, pp. 332-347.

[3] S. Bauer, M.H. Schulz, P.N. Robinson, gsuffix: http:://gsuffix.
 Sourceforge.net/, 2014.
[4] A.M.Bolger, M. Lohse and B. Usadel, Trimmomatic: Bolger: A

flexible trimmer for Illumina Sequence Data. Bioinformatics,
btu170, 2014.

[5] M. Burrows and D.J. Wheeler, A block-sorting lossless data
compression algorithm, 1994.

[6] B. Commentz-Walter, A String Matching Algorithm Fast on the
Average, in Proc. 6th Colloquium on Automata, Languages and
Programming, July 16-20, 1979, pp. 118-132.

[7] F. Cunningham, et al., Nucleic Acids Research 2015, 43,
Database issue: D662-D669.

[8] Y. S. Dandass, S. C. Burgess, M. Lawrence, and S. M. Bridges,
Accelerating String Set Matching in FPGA Hardware for
Bioinformatics Research, BMC Bioinformatics2008, 9:197.

[9] J. Y. Kim and J. S. Yaylor, Fast Multiple Keyword Searching, in
Proc. Third Annual Symposium on Combinatorial Pattern
Matching, Springer-Verlag, April 29 - May 01, 1992, pp. 41-51.

[10] R.L. Karp and M.O. Rabin, Efficient randomized pattern-
matching algorithms, IBM Journal of Research and
Development, Vol. 31, No. 2, pp. 249 – 260, March 1987.

[11] B. Langmead, Introduction to the Burrows-Wheeler Transform
www.youtube.com /watch?v=4n7N Pk5lwbI Sept., 2014.

[12] H. Li, wgsim: a small tool for simulating sequence reads from a
reference genome, https://github.com/lh3/wgsim/, 2014.

[13] U. Manber and E.W. Myers, Suffix arrays: a new method for
on-line string searches, Proc. the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 319 – 327, SIAM,
Philadelphia, PA, 1990.

[14] E.M. McCreight, A space-economical suffix tree construction
algorithm, Journal of the ACM, Vol. 23, No. 2, pp. 262 – 272,
April 1976.

[15] P. Weiner, Linear pattern matching algorithm, Proc. 14th IEEE
Symposium on Switching and Automata Theory, pp. 1 – 11,
1973.

[16] S. Wu and U. Manber, “A fast algorithm for multi-pattern
searching,” Technical Report TR-94-17, Dept. Computer
Science, Chung-Cheng University, 1994.

[17] L. Salmela, J. Tarhio and J. Kyt¨ojoki: Multi-pattern string
matching with q-grams, ACM Journal of Experimental
Algorithmics, Volume 11, 2006.

[18] M. Crochemore, at al., Fast practical multi-pattern matching,
Information Processing Letters, 71 (1999) 107–113.

[19] R.S. Boyer and J.S. Moore, A fast string searching algorithm,
Communication of the ACM, Vol. 20, No. 10, pp. 762 -772, Oct.
1977.

Figure 11. Test results on real data

0

300

600

900

1200

1500

S1 S2 S3 S4 S5 S6 S7 S8 S9

BWT pmmS

CM Cr

0

400

800

1200

1600

2000

2400

S1 S2 S3 S4 S5 S6 S7 S8 S9

Time (s) Time (s)

(b)(a)

176

