
A Linear-Space Top-down Algorithm for Tree
Inclusion Problem

Yangjun Chen1, Yibin Chen2

Dept. Applied Computer Science, University of Winnipeg, Canada
1y.chen@uwinnipeg.ca, 2chenyibin@gmail.com

Abstract— We consider the following tree-matching problem:
Given labeled, ordered trees P and T, can P be obtained from T
by deleting nodes? Deleting a node v entails removing all edges
incident to v and, if v has a parent u, replacing the edges from u
to v by edges from u to the children of v. The best known
algorithm for this problem needs O(|T|⋅⋅⋅⋅|leaves(P)|) time and
O(|leaves(P)|⋅⋅⋅⋅min{DT, |leaves(T)|} + |T| + |P|) space, where
leaves(T) (resp. leaves(P)) stands for the set of the leaves of T
(resp. P), and DT (resp. DP) for the height of T (resp. P). In this
paper, we present an efficient algorithm that requires
O(|T|⋅⋅⋅⋅|leaves(P)|) time and O(|T| + |P|) space.

I. INTRODUCTION

Let T be a tree and v be a node different of root in T with
parent node u. Denote by delete(T, v) the tree obtained from T
by removing the node v. The children of v become the
children of u as illustrated in Fig. 1.

Given two ordered labeled trees P and T, called the

pattern and the target, respectively. An interesting problem is:
Can we obtain pattern P by deleting some nodes from target
T? That is, is there a sequence v1, ..., vk of nodes such that for

 T0 = T and
 Ti+1 = delete(Ti, vi+1) for i = 0, ..., k - 1,

we have Tk = P? If this is the case, we say, P is included in T
[9]. Such a problem is called the tree inclusion problem.
Ordered labeled trees appear in various research fields,
including programming language implementation, natural
language processing, and molecular biology.

As an example [9], consider querying grammatical
structures as shown in Fig. 2(a), which is the parse tree of a
natural language sentence.

One might want to locate, say, those sentences that
include a verb phrase containing the verb “reads” and after it
a noun “book” followed by any adverb. This is exactly the
sentences whose parse tree can be obtained by deleting some
nodes from the tree shown in Fig. 2(a). See Fig. 2(b) for

illustration. The ordered tree inclusion problem was initially
introduced by Knuth [10], where only a sufficient condition
for this problem is given. The tree inclusion has been
suggested as an important primitive for expressing queries on
structured document databases [4, 5, 6, 12]. A structured
document database is considered as a collection of parse trees
that represent the structure of the stored texts and the tree
inclusion is used as a means of retrieving information from
them. Another application of the ordered tree matching is the
video content-based retrieval. According to Rui et al. [14], a
video can be successfully decomposed into a hierarchical tree
structure, in which each node represents a scene, a group, a
shot, a frame, a feature, and so on. Especially, such a tree is
an ordered one since the temporal order is very important for
video. In addition, the ordered tree matching can also be
applied in the scene analysis, the computational biology (such
as the RNA structure matching [11]), as well as in the data
mining (such as the tree mining [15]).

This problem has been the attention of much research.

Kilpeläinen and Mannila [9] presented the first polynomial
time algorithm using O(|T|⋅|P|) time and space. Most of the
later improvements are refinements of this algorithm. In [13],
Richter gave an algorithm using O(|α(P)|⋅|T| + m(P, T)⋅DT)
time, where α(P) is the alphabet of the labels of P, m(P, T) is
the size of a set called matches, defined as all the pairs (v, w)
∈ P × T such that label(v) = label(w), and DT (resp. DP) is the
depth of T (resp. P). Hence, if the number of matches is small,
the time complexity of this algorithm is better than O(T|⋅|P|).
The space complexity of the algorithm is O(|α(P)|⋅|T| + m(P,
T)). In [3], a more sophisticated algorithm was presented
using O(|T|⋅|leaves(P)|) time and O(|leaves(P)|⋅min{ DT,
|leaves(T)|} + |T| + |P|) space. In [1], an efficient average case
algorithm was discussed. Its average time complexity is O(|T|

s

np

det n v

vp

adv

‘The” ‘student” ‘reads”

np

det adj n

‘the” ‘interesting” ‘book”

‘intensively”

(a)

‘reads”

‘book”

vp

v

n

adv
(b)

Fig. 2 Illustration for ordered tree inclusion

c b d

e f

a a

b d e f (a) (b)

Fig. 1 The effect of removing a node from a tree

T: delete(T, v)

2127
978-1-4673-0719-2/12/$26.00 ©2012 IEEE

+ C(P, T)⋅|P|), where C(P, T) represents the number of T’s
nodes that have been examined during the inclusion search.
However, its worst time complexity is still O(|T|⋅|P|). In [2],
another bottom-up algorithm is proposed. The time
complexity of the algorithm is bounded by

But it is claimed that the algorithm needs only O(|T| + |P|)
space. A careful analysis reveals that the space complexity of
the algorithm is the same as that of [3]. In the algorithm, a
data structure EMB(v) for each v in P is used to record deep
occurrences of P[v] in T. It is of size O(|leaves(T)|) in the
worst case. EMB(v) is generated recursively and works in a
way similar to the concept of shell discussed in [3]. So the
analysis of shell applies to EMB(v)’s.

In our earlier work [7], a top-down algorithm was
proposed with O(|T| + |P|) space requirement. However, its
time complexity is not polynomial, as shown in [11].

In this paper, we revisit this issue and present a new top-
down algorithm to remove any redundancy of [10]. The time
complexity of the new one is bounded by O(|T|⋅|leaves(P)|).
Although the time complexity of our algorithm is comparable
to Chen’s algorithm [3], it is more efficient than Chen’s since
in Chen’s algorithm each node in T will be checked against,
besides some internal nodes, all the leaf nodes in P. But in
our algorithm, a node in T may be checked so many times
only when some conditions are satisfied.

More importantly, our algorithm needs only linear space
O(|T| + |P|).

The tree inclusion problem on unordered trees is NP-
complete [9] and not discussed in this paper.

II. BASIC DEFINIION

We concentrate on labeled trees that are ordered, i.e., the
order between siblings is significant. Technically, it is
convenient to consider a slight generalization of trees, namely
forests. A forest is a finite ordered sequence of disjoint finite
trees. A tree T consists of a specially designated node root(T)
called the root of the tree, and a forest <T1, ..., Tk>, where k
≥ 0. The trees T1, ..., Tk are the subtrees of the root of T or the
immediate subtrees of tree T, and k is the outdegree of the
root of T. A tree with the root t and the subtrees T1, ..., Tk is
denoted by <t; T1, ..., Tk>. The roots of the trees T1, ..., Tk are
the children of t and siblings of each other. Also, we call
T1, ..., Tk the sibling trees of each other. In addition, T1, ..., Ti-1
are called the left sibling trees of Ti, and Ti-1 the immediate
left sibling tree of Ti. The root is an ancestor of all the nodes
in its subtrees, and the nodes in the subtrees are descendants
of the root. The set of descendants of a node v is denoted by
desc(v). A leaf is a node with an empty set of descendants.

Sometimes we treat a tree T as the forest <T>. We may
also denote the set of nodes in a forest F by V(F). For
example, if we speak of functions from a forest G to a forest
F, we mean functions mapping the nodes of G onto the nodes
of F. The size of a forest F, denoted by |F|, is the number of
the nodes in F. The restriction of a forest F to a node v with

its descendants desc(v) is called a subtree of F rooted at v,
denoted by F[v].

Let F = <T1, ..., Tk> be a forest. The preorder of a forest F
is the order of the nodes visited during a preorder traversal. A
preorder traversal of a forest <T1, ..., Tk> is as follows.
Traverse the trees T1, ..., Tk in ascending order of the indices
in preorder. To traverse a tree in preorder, first visit the root
and then traverse the forest of its subtrees in preorder. The
postorder is defined similarly, except that in a postorder
traversal the root is visited after traversing the forest of its
subtrees in postorder. We denote the preorder and postorder
numbers of a node v by pre(v) and post(v), respectively.

Using preorder and postorder numbers, the ancestorship
can be easily checked. If there is path from node u to node v,
we say, u is an ancestor of v and v is a descendant of u. In this
paper, by ‘ancestor’ (‘descendant’), we mean a proper
ancestor (descendant), i.e., u ≠ v.
Lemma 1 Let v and u be nodes in a forest F. Then, v is an
ancestor of u if and only if pre(v) < pre(u) and post(u) <
post(v).
Proof. See Exercise 2.3.2-20 in [10] (page 347).
Similarly, we check the left-to-right ordering as follows.

Lemma 2 Let v and u be nodes in a forest F. v is said to be to
the left of u if they are not related by the ancestor-descendant
relationship and u follows v when we traverse F in preorder.
Then, v is to the left of u if and only if pre(v) < pre(u) and
post(v) < post(u).

Proof. The proof is trivial. �
In the following, we use the postorder numbers to define

an ordering of the nodes of a forest F given by v p v’ iff
post(v) < post(v’). Also, v p v’ iff v p v’ or v = v’.
Furthermore, we extend this ordering with two special nodes
7 p v p 6. The left relatives, lr(v), of a node v ∈ V(F) is the
set of nodes that are to the left of v and similarly the right
relatives, rr(v), are the set of nodes that are to the right of v.

The following definition is due to [9].
Definition 1 Let F and G be labeled ordered forests. We
define an ordered embedding (ϕ, G, F) as an injective
function ϕ: V(G) → V(F) such that for all nodes v, u ∈ V(G),

i) label(v) = label(ϕ(v)); (label preservation condition)

ii) v is an ancestor of u iff ϕ(v) is an ancestor of ϕ(u), i.e.,
pre(v) < pre(u) and post(u) < post(v) iff pre(ϕ(v)) <
pre(ϕ(u)) and post(ϕ(u)) < post(ϕ(v)); (ancestor condition)

iii) v is to the left of u iff ϕ(v) is to the left of ϕ(u), i.e., pre(v)
< pre(u) and post(v) < post(u) iff pre(ϕ(v)) < pre(ϕ(u))
and post(ϕ(v)) < post(ϕ(u)). (Sibling condition)
If there exists such an injective function from V(G) to

V(F), we say, F includes G, F contains G, F covers G, or say,
G can be embedded in F.

Fig. 3 shows an example of an ordered inclusion.
Let P and T be two labeled ordered trees. An embedding

ϕ of P in T is said to be root-preserving if ϕ(root(P)) =
root(T). If there is a root-preserving embedding of P in T, we
say that the root of T is an occurrence of P.

Fig. 3(b) also shows an example of a root preserving
embedding. According to [9], restricting to root-preserving

min

O(|T|⋅|leaves(P)|)

O(|leaves(T)|⋅|leaves(P)| ⋅loglog|leaves(P)| + |leaves(P))|

O(|T|⋅|P|/(log|T|) + |T|log|T|)

2128

embedding does not lose generality. In fact, what can be
found by the top-down algorithm to be discussed is a root-
preserving tree embedding.

Throughout the rest of the paper, we refer to the labeled

ordered trees simply as trees.

III. ALGORITHM DESCRIPTION

Let T = <t; T1, ..., Tk> (k ≥ 0) be a tree and G = <P1, ...,
Pq> (q ≥ 0) be a forest. We handle G as a tree P = <pv; P1, ...,
Pq>, where pv represent a virtual node, matching any node in
T. Note that even though G contains only one single tree it is
considered to be a forest. So a virtual root is added. Therefore,
each node in G, except the virtual node, has a parent.

Consider a node v in G = <P1, ..., Pq> with children v1, ...,
vj. We use a pair <i, v> (i ≤ j) to represent an ordered forest
containing the first i subtrees of v: <G[v1], ..., G[vi]>. If v is pv,
or a node on the left-most path in P1, <i, v> is called a left
corner of G. Especially, <i, pv> is a left corner, representing
the first i trees in G: P1, ..., Pi.

In addition, δ(v) represents a link from a node v to the
left-most leaf node in G[v], as illustrated in Fig. 4.

Let v’ be a leaf node in G. δ(v’) is defined to be a link to
v’ itself. So in Fig. 5, we have δ(v1) = δ(v2) = δ(v3) = v3. We
also denote by δ-1(v’) a set of nodes x such that for each v ∈ x
δ(v) = v’. Therefore, in Fig. 5, δ-1(v3) = {v1, v2, v3}, δ-1(v4) =
{ v4}, and δ-1(v5) = {v5}. The out-degree of v in a tree is
denoted by d(v) while the height of v is denoted by h(v),
defined to be the number of edges on the longest downward
path from v to a leaf. The height of a leaf node is set to be 0.

As with [7], we arrange two functions: top-down(T, G)
and bottom-up(T’, G) to check tree inclusion, where T is a
tree, and T’ and G are two forests. However, different from
[7], each of the two functions returns a left corner <i, v> of G
with the following properties:
• Let v’ be the left-most leaf in G[v]. If i > 0, it shows that

the first i subtrees of v in G can be embedded in T (or in T’),
and for any i’ > i, <i’ , v> cannot be embedded in T (or in
T’), and for any v’s ancestor u ∈ δ-1(v’) there exists no j > 0
such that <j, u> is able to be embedded in T (or in T’).

• If i = 0, v is the left-most leaf in G, indicating that no left
corner of G can be embedded in T (or in T’).

In this sense, we say, <i, v> is the highest and widest left cor-
ner which can be embedded in T (or in T’).

We notice that if v = pv and i > 0, it shows that P1, ..., Pi

can be included.
In [7], both top-down(T, G) and bottom-up(T’, G) return

an integer i to indicate that T embeds the first i trees in G.
Although our algorithm follows the arrangement of [7], the
main idea is quite different. It is not necessary to refer to [7]
to understand the following discussion.

If the target is a tree and the pattern is a forest, we call the
function top-down. If both the target and the pattern are for-
ests, we call the function bottom-up. But during the computa-
tion, they will be called from each other.

In top-down(T, G), we need to handle two cases.
Case 1: G = <P1> ; or G = <P1, ..., Pq> (q > 1), but |T | ≤ |P1|
+ |P2|. In this case, to find the highest and widest left corner
<i, v> that can be embedded in T = <t; T1, ..., Tk>, the
following checkings will be conducted:
i) If t is a leaf node, we will check whether label(t) = la-

bel(δ(p1)), where p1 is the root of P1. If it is the case,
return <1, parent of δ(p1)>. Otherwise, return <0, δ(p1)>.

ii) If |T| < |P1| or h(t) < h(p1), we will make a recursive call
top-down(T , <P11, ..., P1j>), where <P11, ..., P1j> is a for-
est of the subtrees of p1. The return value of top-down(T ,
<P11, ..., P1j>) is used as the return value of top-down(T,
G).

iii) If | T| ≥ |P1| and h(t) ≥ h(p1), we further distinguish
between two subcases:

• label(t) = label(p1). In this case, we will call bottom-
up(<T1, ..., Tk>, <P11, ..., P1j>).

• label(t) ≠ label(p1). In this case, we will call bottom-
up(<T1, ..., Tk>, <P1>).

 In both cases, assume that the return value of bottom-up()
is <i, v>. We need to perform a further checking:

- If label(t) = label(v) and i = d(v), the return value of
top-down(T, G) is set to be <1, v’s parent>.

- Otherwise, the return value of top-down(T, G) is the
same as <i, v>.

Case 2: G = <P1, ..., Pq> (q > 1), and |T | > |P1| + |P2|. In this
case, we will call bottom-up(<T1, ..., Tk>, G). Assume that the
return value of bottom-up(<T1, ..., Tk>, G) is <i, v>. The
following checkings will be continually conducted.

iv) If v ≠ p1’s parent, check whether label(t) = label(v) and i
= d(v). If so, the return value of top-down(T, G) will be
set to <1, v’s parent>. Otherwise, the return value of top-
down(T, G) is the same as <i, v>.

v) If v = p1’s parent, the return value of top-down(T, G) is the
same as <i, v>.

v3

v1

v2 v5

v4

P: δ(v1)

δ(v2)

Fig. 4 A pattern tree

a

b b

a

d b

e b

b

a

b b

a

d b

e b

b

(a)

(b)

Fig. 3: (a) The tree on the left can be included in the tree on
the right by deleting the nodes labelled : d, e, and b; (b) the
embedding corresponding to (a).

2129

The following is a formal description of the algorithm. In
the process, each node t in T is associated with a data
structure, referred to as κ(t). Initially, each κ(t) is set to φ.
Each time a call of the form top-down(T[t], G’) returns a left
corner <i, v>, κ(t) will be changed to <i, v>, where G’ is a
forest made up of a set of subtrees rooted respectively at a set
of consecutive child nodes (starting from a specific child to
the last child) of a certain node in G. This value is mainly
used in bottom-up() to avoid redundancy. However, for
simplicity, in the following algorithm κ(t) is not explicitly
represented.
function top-down(T, G)
input: T = <t; T1, ..., Tk>, G = <P1, ..., Pq>.
output: <i, v> specified above.
begin
1. if (q = 1 or |T | ≤ |P1| + |P2|)
2. then
 { let P1 = <p1; P11, ..., P1j>; (*Case 1*)
3. if t is a leaf then {
 { let δ(p1) = v; (*Case 1 - (i)*)
4. if label(t) = label(v) then return <1, v’s parent>
 else return <0, v>; }
5. if (|T| < |P1| or h(t) < h(p1))
 then return top-down(T , <P11, ..., P1j>); (*Case 1 - (ii)*)
6. if label(t) = label(p1) (*Case 1 - (iii)*)
7. then { if p1 is a leaf then { v := p1’s parent; i := 1;}
8. else {< i, v> := bottom-up(<T1, ..., Tk>, <P11, ..., P1j>);
9. if label(t) = label(v) and i = d(v)
 then {v := v’s parent; i := 1; }
10. }
11. else <i, v> := bottom-up(<T1, ..., Tk>, <P1>);
 (*If label(t) ≠ label(p1), call bottom-up().*)
12. return <i, v>;
13. }
14. else
 {< i, v> := bottom-up(<T1, ..., Tk>, G); (*Case 2*)
15. if v ≠ p1’s parent then (*Case 2 - (iv)*)
16. if (label(t) = label(v)) and i = d(v) then return <1, v’s parent>;
17. return <i, v>; (*Case 2 - (v)*)
18. }
end

In the above algorithm, we first check whether q = 1 or |T

| ≤ |P1| + |P2| (see line 1). If it is the case we have Case 1 and
then lines 2 - 13 are executed. In this process, all the three
subcases (i), (ii), and (iii) are checked. If q > 1 and |T | > |P1|
+ |P2|, we have Case 2 and lines 14 - 18 will be carried out, in
which we first call bottom-up(<T1, ..., Tk>, G). Depending on
its return value, (vi) or (v) is conducted.

bottom-up(T’, G) is designed to handle the case that both
T’ and G are forests made up of a set of subtrees rooted at
nodes that are consecutive siblings in T and P, respectively.
Let T’ = <T1, ..., Tk> and G = <P1, ..., Pq>. Denote by tl the
root of Tl (l = 1, ..., k). Denote by pj the root of Pj (j = 1, ..., q).
In bottom-up(T’, G), we will make a series of calls top-
down(Tl, < lj

P , ..., Pq>), where l = 1, ..., k, j1 = 1, and j1 ≤ j2 ≤ ...

≤ jh ≤ q (for some h ≤ k), controlled as follows.
1. Two index variables l, j are used to scan T1, ..., Tk and

P1, ..., Pq, respectively. (Initially, l is set to 1, and j is set
to 0.) They also indicate that <P1, ..., Pj> has been
successfully embedded in <T1, ..., Tl>.

2. Let <i l, vl> be the return value of top-down(Tl, <Pj+1, ...,
Pq>). If vl = p1’s parent, set j to be j + i l. Otherwise, j is
not changed. Set l to be l + 1. Go to (2).

3. The loop terminates when all Tl’s or all Pj’s are examined.
If j > 0 when the loop terminates, bottom-up(T’, G) returns <j,
p1’s parent>, indicating that T’ contains P1, ..., Pj.

Otherwise, j = 0, indicating that even P1 alone cannot be
embedded in any Tl (l ∈ {1, ..., k}). However, in this case, we
need to continue to search for a highest and widest left corner
<i, v> in G, which can be embedded in T’. This is done as
described below.
i) Let <i1, v1>, ..., <ik, vk> be the return values of top-

down(T1, <P1, ..., Pq>), ..., top-down(Tk, <P1, ..., Pq>),
respectively. Since j = 0, each vl ∈ δ-1(v’) (l = 1, ..., k),
where v’ is the left-most leaf in P1.

ii) If each i l = 0, return <0, left-most leaf of P1>. Otherwise,
there must be some vl’s such that i l > 0. We call such a
node a non-zero point. Find the first non-zero point vf
with children w1, ..., ws such that vf is not a descendant of
any other non-zero point. Then, we will check <Tf+1, ...,
Tk> against <P[1+fi

w], ..., P[ws]>. Let x (0 ≤ x ≤ s - if) be a

number such that <P[1+fi
w], ..., P[xi f

w +]> can be embed-

ded in <Tf+1, ..., Tk>. The return value of bottom-up(T’, G)
should be set to <i f + x, vf>.
In the bottom-up process, κ(t) can be used to avoid

redundant computation. Concretely, each time before we
make a call of the form top-down(Tl, <Pj, ..., Pq>), we will
calculate a function κ-checking(tl, pj) defined below to
determine whether this call can be skipped over, where tl and
pj are the roots of Tl and Pj, respectively.
function κ-checking(t, p)
input: t - a node in T; p - a node in G.
output: φ or <i, v> specified above.
begin
1. if κ(tl) ≠ φ then {
2. let κ(tl) = <i, v>;
3. if i = 0 then return φ;
4. if i > 0, δ(v) = δ(p), and p is equal to v’s first child or an ancestor
 of v’s first child
5. then return <i, v>;
6. if i > 0, δ(v) = δ(p), and p is a descendant of v’s first child
7. then return <d(p’s parent), p’s parent>.
8. else return φ.
end
Only when κ-checking(tl, pj) returns φ, top-down(Tl, <Pj, ...,
Pq>) will be carried out. Otherwise, we use the value of κ-
checking(tl, pj) as the return value of top-down(Tl, <Pj, ...,
Pq>).
In terms of the above discussion, we arrange a new subproce-
dure to check a Tl against a forest <Pj, ..., Pq>, doing the same
work as the top-down process but with κ-checking(tl, pj)
being used to avoid unnecessary checkings.

function top-down-κ(T, <P1, ..., Pq>)
input: T - a tree; <P1, ..., Pq> - a forest.
output: <v, i> specified above.
begin
1. if κ-checking(t, p1) = φ

2130

 then <i, v> := top-down(T, <P1, ..., Pq>)
2. else <i, v> = κ-checking(t, p1);
3. return <i, v>;
end

In the following algorithm, we use top-down-κ(), instead
of top-down(), to check a tree against a forest.

function bottom-up(T’, G)
input: T’ = <T1, ..., Tk>, G = <P1, ..., Pq>
output: <i, v> specified above.
begin
1. l := 1; j := 0;
2. while (j < q and l ≤ k) do (*main checking*)
3. { <i l, vl> := top-down-κ(Tl, <Pj+1, ..., Pq>)
4. if (vl = p1’s parent and i l > 0) then j := j + i l;
5. l := l + 1; }
6. if j > 0 then return <j, p1’s parent>;
7. if for all <i l, vl>’s i l = 0 then return <0, left-most leaf in G>
8. else { let vf be the first non-zero point such that it is not a
 descendant of any other non-zero point;
9. let w1, ..., ws be the children of vf;
10. l := f + 1; j := if ;
11. while (j < s and l ≤ k) do (*supplement checking*)
12. { <i l, vl> := top-down-κ(Tl, <G[wj+1], ..., G[ws]>);
13. if (vl = vf and i l > 0) then j := j + i l;
14. l := l + 1; }
15. return <j, vf>;
16. }
end

In bottom-up(T’, G), we have two while-loops: one from
line 2 to 5 and another from line 11 to 14. In the first while-
loop, we check <T1, ..., Tk> against <P1, ..., Pq>, referred to as
the main bottom-up checking (or simply the main checking).
In this checking, each Tl is checked one by one, by repeatedly
calling top-down-κ(Tl, <Pj+1, ..., Pq>) (line 3), by which κ-
checking(tl, pj+1) is used to remove redundancy (see lines 1 -
2 in top-down-κ()).

In the second while-loop, we do a supplement checking.
This is carried out only when the following two conditions
are satisfied (see lines 6 and 7):
(1) j = 0, and
(2) There exists at least a non-zero point <i l, vl> (return value

of top-down-κ(Tl, <P1, ..., Pq>) such that i l > 0.
We refer to these two conditions as the supplement checking
condition.

Let vf be the first non-zero point such that vf is not a
descendant of any other non-zero point. Let w1, ..., ws be the
children of vf. In the supplement checking, we will check
<Tf+1, ..., Tk> against <G[1+fi

w], ..., G[ws]> (see lines 10 - 16.)

IV. CONCLUSION

In this paper, a new algorithm is proposed to improve the
algorithm discussed in [7]. The main idea behind it is to let
any subprocedure call return a pair to indicate a subtree
(subforest) embedding while in [7], only a single integer is
returned to indicate whether a whole forest (or the first
several subtrees of the forest) is embedded by the
corresponding target subtree. Together with a simple data
structure associated with each node in the target tree to
transfer the result obtained in a previous step to the next step

computation to avoid any useless effort, high performance is
achieved. The time complexity of the new algorithm is
bounded by O(|T|⋅|leaves(P)|) while the space requirement is
bounded by O(|T| + |P|), where T and P are a target and a
pattern tree, respectively.

REFERENCES
[1] L. Alonso and R. Schott. On the tree inclusion problem. In

Proceedings of Mathematical Foundations of Computer Science,
pages 211-221, 1993.

[2] P. Bille and I.L. Gørtz, An Ordered Tree Inclusion Algorithm Based
on Dynamic Tree Labeling, in Proc.32th Intl. Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer
Science, vol. 3580, 2005, pp. 66-77.

[3] W. Chen. More efficient algorithm for ordered tree inclusion. Journal
of Algorithms, 26:370-385, 1998.

[4] Y. Chen and Y.B. Chen, Subtree Reconstruction, Query Node
Intervals and Tree Pattern Query Evaluation, Journal of Information
Science and Engineering 28, 263-293 (2012).

[5] Y. Chen and L. Zou, and Unordered tree matching and ordered tree
matching: the evaluation of tree pattern queries, Int. J. Information
Technology, Communications and Convergence, Vol. 1, No. 3, 2011,
pp. 254-279.

[6] Y. Chen, A New Algorithm for Twig Pattern Matching, in: Proc. of
Int. Conf. on Enterprise Information Systems (ICEIS’2007), IEEE,
Funchal-madeira, Portugal, June 2007, pp. 44-51.

[7] Y. Chen and Y.B. Chen, A New Tree Inclusion Algorithm,
Information Processing Letters 98(2006) 253-262, Elsevier Science
B.V.

[8] H.L Cheng and B.F Wang, On Chen and Chen's new tree inclusion
algorithm, Information Processing Letters, 2007, Vol. 103, 14-18,
Elsevier Science B.V.

[9] P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion.
SIAM J. Comput, 24:340-356, 1995.

[10] D.E. Knuth, The Art of Computer Programming, Vol. 1 (1st edition),
Addison-Wesley, Reading, MA, 1969.

[11] R.B. Lyngs, M. Zuker & C.N.S. Pedersen, Internal loops in RNA sec-
ondary structure prediction, in Proceedings of the 3rd annual interna-
tional conference on computational molecular biology (RECOMB),
260-267 (1999).

[12] H. Mannila and K.-J. Räiha, On Query Languages for the p-string data
model, in “Information Modelling and Knowledge Bases” (H.
Kangassalo, S. Ohsuga, and H. Jaakola, Eds.), pp. 469-482, IOS Press,
Amsterdam, 1990.

[13] Thorsten Richter. A new algorithm for the ordered tree inclusion prob-
lem. In Proceedings of the 8th Annual Symposium on Combinatorial
Pattern Matching (CPM), in Lecture Notes of Computer Science
(LNCS), volume 1264, pages 150-166. Springer, 1997.

[14] Y. Rui, T.S. Huang, and S. Mehrotra, Constructing table-of-content
for videos, ACM Multimedia Systems Journal, Special Issue
Multimedia Systems on Video Libraries, 7(5):359-368, Sept 1999.

[15] M. Zaki, Efficiently mining frequent trees in a forest. In Proc. of KDD,
2002.

2131

