
On the Decomposition of Posets
Yangjun Chen1, Yibin Chen2

Dept. Applied Computer Science, University of Winnipeg, Canada
1y.chen@uwinnipeg.ca, 2chenyibin@gmail.com

Abstract— In this paper, we propose an efficient algorithm to
decompose a partially ordered set S into a minimum set of
chains. It requires only O(κκκκ⋅⋅⋅⋅n2) time and space, where n is the
number of the elements in S and κκκκ is the size of a maximum anti-
chain of S.

I. INTRODUCTION

A partially ordered set (poset for short) S is a pair (S, f)
of a set S and a binary relation f such that for each a, b, and c
in S:

1. a f a is true (f is reflexive),
2. a f b and b f c imply a f c (f is transitive), and
3. a f b and b f a imply a = b (f is antisymmetric).
If we have a poset S = (S, f), a chain in S is a non-empty

subset C = {a1, a2, ..., ak} ⊆ S such that a1 f a2 f ... f ak.
Two elements of S are called comparable if they appear

together in some chain in S; elements which are not compara-
ble are called incomparable. A non-empty set, in which every
pair of elements is not comparable, is called an antichain.

Since each single element in S is itself a chain, it is always
possible to partition the elements in S into disjoint chains.
Such a partition is called a decomposition, and a decomposi-
tion consisting of the smallest number of disjoint chains is
called minimum. According to Dilworth [8], the size of a
minimum decomposition equals the size of a maximum anti-
chain.

In 1956, Fulkerson [10] provided a very simple proof of
the Dilworth’s theorem. He constructed a bipartite graph GS
with bipartite (V1, V2) for S = {a1, a2, ..., an}, where V1 = {x1,
x2, ..., xn}, V2 = {y1, y2, ..., yn} and an edge joining xi ∈ V1 to yj
∈ V2 whenever ai f aj. Let M be a maximum matching of GS
and D a minimum decomposoition of S. Fulkerson proved that
|D| = n - |M|. On the other hand, by the König’s theorem ([2],
page 180), we also have κ = n - |M|, where κ is the size of a
maximum antichain of S. So, |D| = κ. Using the algorithm
proposed by Hopcroft and Karp [11], M can be found in

O(m⋅ n) time, where m is the number of all pairs (a, c) such
that a f c. So the maximum size of antichains can be

determined in O(m⋅ n) time. However, Fulkerson did not
show how to decompose S into a minimum set of chains. In
fact, it is a problem that has not yet been solved. In their book,
Asratian et al. [2] wrote:

 “Less clear is how to decompose S into as few chains
as possible.” (See [2], page 190.)

In this paper, we address this problem and propose an
efficient algorithm to find a minimized set of chains for S. For
this purpose, we represent S as a DAG (Directed Acyclic
Graph, containing no cycles), in which we have an arc u → v

if u f v. Removing any arc u → v if there is path of length ≥ 2
from u to v, we get another graph G’. A minimum set of
chains that covers G’ must be a decomposition of S. (On a
chain, if u appears above v, there is a path from u to v.) The
minimal number of chains is also called the width of G.

Our algorithm runs in O(κ⋅n2) time and in O(κ⋅n2) space.
The poset decomposition is quite useful in practice. As

shown in [4], if we can decompose a DAG G into a minimum
set of chains, the transitive closure [24] of G can be
effectively compressed to support the so-called reachability
queries [5, 6].

II. GRAPH STRATIFICAION AND BIPARTITE GRAPH

Our method is based on a DAG stratification strategy and
an algorithm for finding a maximum matching in a bipartite
graph. Therefore, the relevant concepts and techniques should
be first reviewed and discussed.

Let G(V, E) be a DAG. We decompose V into subsets V0,
V1,..., Vh such that V = V0 ∪ V1 ∪ ... ∪ Vh and each node in Vi
has its children appearing only in Vi-1, ..., V0 (i = 1, ..., h),
where h is the height of G, i.e., the length of the longest path
in G. For each node v in Vi, we say, its level is i, denoted l(v)
= i. We also use Cj(v) (j < i) to represent a set of links with
each pointing to one of v’s children, which appears in Vj.
Therefore, for each v in Vi, there exist i1, ..., ik (i l < i, l = 1, ...,
k) such that the set of its children equals

1i
C ∪ ... ∪

ki
C . Let

Vi = {v1, v2, ..., vl}. We use (j < i) i
jCCCC to represent Cj(v1) ∪ ...

∪ Cj(vl).
As an example, consider the graph shown in Fig. 1(a). We

can divide it into three levels as shown in Fig. 1(b).

In Fig. 1(b), the nodes of the DAG shown in Fig. 1(a) are

divided into three levels: V0 = {c, f, i, j, a, k }, V1 = {b, e, h},
and V2 = {d, g, l}. Associated with each node at each level is a
set of links pointing to its children at different levels.

Using the algorithm discussed in [4], we need only O(m)
time to stratify a DAG G.

Fig. 1 Illustration for DAG stratification

b e h

d g l

c f i j a k

C0(b) = {c, f, i} C0(e) = {c, f, j} C0(h) = {a, k}

C1(d) = {e}
C0(d) = {c}

C1(l) = {h}
C0(l) = {k}

C1(g) = {e}

c f i a k j

b e h

d g l

V0:

V1:

V2:

(a) (b)

1115
978-1-4673-0719-2/12/$26.00 ©2012 IEEE

Now we restate two concepts from the graph theory which
will be used in the subsequent discussion.
Definition 1 (bipartite graph [2]) An undirected graph G(V,
E) is bipartite if the node set V can be partitioned into two sets
T and S in such a way that no two nodes from the same set are

adjacent. We also denote such a graph as G(T, S; E). �

For any node v ∈ G, neighbour(v) represents a set containing
all the nodes connected to v.

Definition 2 (matching [2]) Let G(V, E) be a bipartite graph.
A subset of edges E’ ⊆ E is called a matching if no two edges
have a common end node. A matching with the largest pos-
sible number of edges is called a maximal matching, denoted

as MG. �

Let M be a matching of a bipartite graph G(T, S; E). A
node v is said to be covered by M, if some edge of M is
incident with v. We will also call an uncovered node free. A
path or cycle is alternating, relative to M, if its edges are
alternately in E\M and M. A path is an augmenting path if it is
an alternating path with free origin and terminus. Let v1 − v2
− ... − vk be an alternating path with (vi, vi+1) ∈ E\M and (vi+1,
vi+2) ∈ M (i = 1, 3, ...). By transferring the edges on the path,
we change it to another alternating path with (vi, vi+1) ∈ M and
(vi+1, vi+2) ∈ E\M (i = 1, 3, ...). In addition, we will use
freeM(T) and freeM(S) to represent all the free nodes in T and S,
respectively. Finally, if (u, v) ∈ M, we say, u covers v with
respect to M, and vice versa.

Much research on finding a maximal matching in a
bipartite graph has been done. The best algorithm for this task

is due to Hopcroft and Karp [11] and runs in O(m⋅ n) time,
where n = |V| and m = |E|. The algorithm proposed by Alt,

Blum, Melhorn and Paul [1] needs O(n1.5⋅)/(lognm) time. In
the case of large m, the latter is better than the former.
In addition, for a graph G, we will use V(G) to represent all its
nodes and E(G) all its edges (arcs).

III. ALGORITHM DESCRIPTION

In this section, we describe our algorithm for the DAG de-
composition. The main idea of our algorithm is to construct a
series of bipartite graphs for G(V, E) and then find a
maximum matching for each of such bipartite graphs using
Hopcroft-Karp algorithm. All these matchings make up a set
of disjoint chains and the size of this set is equal to the size of
a maximum antichain. During the process, some virtual nodes
may be introduced into Vi (i = 1, ..., h - 1; V = V0 ∪ V1 ∪ ... Vh)
to facilitate the computation. However, such virtual nodes will
be eventually resolved to obtain the final result.

In the following, we first give a formal definition of virtual
nodes and show how a virtual node can be efficiently
constructed in Subsection A. Then, in Subsection B, we
discuss how the virtual nodes can be resolved (removed) from
created chains.

A. Virtual nodes

We start our discussion with the following specification:

V0’ = V0.

Vi’ = Vi ∪ {virtual nodes added to Vi} for 1 ≤ i ≤ h - 1.}

Ci = i
i 1−CCCC ∪ {all the new arcs from the nodes in Vi to the vir-

tual nodes added to Vi-1’ } for 1 ≤ i ≤ h - 1.}

G(Vi, Vi-1’ ; Ci) - the bipartite graph containing Vi and Vi-1’ .

Mi - a maximum matching of G(Vi, Vi-1’ ; Ci).

Definition 3 (virtual nodes) Let G(V, E) be a DAG, divided
into V0, ..., Vh (i.e., V = V0 ∪ ... ∪ Vh). Let Mi be a maximum
matching of the bipartite graph G(Vi, Vi-1’ ; Ci). For each free
node v in Vi-1’ with respect to Mi, a virtual node v’ created for

v is a new node added to Vi (1 ≤ i ≤ h - 1). �

The goal of virtual nodes is to establish the connection be-
tween the free nodes (with respect to a certain maximum
matching) and the nodes that may be several levels apart.
Therefore, for each virtual node v’ (added to Vi and created for
v in Vi-1’), a bunch of virtual arcs incident to it will be created.
According to three different ways to create a virtual arc, a
virtual arc can be labeled or not:
inherited arcs - If there is u ∈ Vj (j > i) such that u → v ∈ E,
add u → v’, which is not labeled. However, if u → v itself is a
virtual arc, u → v’ will inherit the label of u → v. In both
cases, u → v’ is referred to as an inherited arc.

transitive arc - If there exist u → w ∈ E and w → v ∈ Ci with
u ∈ Vj (j > i) and w ∈ Vi, add u → v’ if it has not yet been
created as an inherited arc. Such an arc is labeled with α and
referred to as a transitive arc (α-arc for short).

alternating arc - If there exist w ∈ Vi-1’ such that v is con-
nected to w through an alternating path, and u ∈ Vj (j > i) such
that one of the two conditions holds:

- u → w ∈ E, or

- there is a node w’ ∈ Vi such that u → w’ ∈ E and w’ → w
∈ Ci,

add u → v’ if it has not yet been created as an inherited or a
transitive arc. We label such an arc with β and call it an al-
ternating arc (β-arc for short).

A virtual arc from v’ to v is also generated to indicate the
relationship between v and v’. v is also called the source of v’,
denoted as s(v’).
Example 1 Consider the graph shown in Fig. 1(a) and the
graph stratification shown in Fig. 1(b). The bipartite graph
made up of V0 and V1, G(V1, V0; E1), is shown in Fig. 2(a) and
a possible maximum matching M1 of it is shown in Fig. 2(b).
Relative to M1, i, j and k are three free nodes. Then, three
virtual nodes i’ , j’ and k’ (for i, j and k, respectively) will be
created and added to V1. Thus, we have V1’ = {b, e, h, i’ , j’ ,
k’}. Especially, five virtual arcs: d → i’ , d → j’ , g → i’ , g →

j’ , and l → k’ will be generated, as shown in Fig. 2(c). �

Among these virtual arcs, l → k’ is an inherited arc since
in the original graph (see Fig. 1(a)) we have an arc l → k.

d → j’ and g → j’ are two α-arcs since j is reachable
respectively from d and g through e, a node in V1 (see Fig.
1(a)).

Finally, d → i’ and g → i’ are two β-arcs. We join d and i’
since there is a node f that is connected to i through an alter-
nating path: f − e − c − b − i (see Fig. 1(a)) and f is reachable

1116

from d through a node e in V1. (We also note that c is another
node connected to i through an alternating path: c − b − i, and
d → c ∈ E. If one such node exists, the corresponding arc
should be established.) For the same reason, we join g and i’.

In Fig. 2(d), we show a possible maximum matching M2 of

G(V2, V1’ ; C2). Combining M2 and M1, we get a set of six
chains as shown in Fig. 3(a).

The virtual nodes j’ and k’ can be simply removed. In

order to remove i’ , however, we have to transfer the edges on
the alternating path: f − e − c − b − i and then connect g and f,

obtaining the chains shown in Fig. 3(b). �
From the above discussion, we can see that any virtual

node will be eventually resolved. Its roll is just to bridge the
nodes at different levels. Each time a virtual node is removed,
a node at a higher level may be connected to a node at a lower
level in terms of the information represented by the
corresponding virtual arc. Concretely, how to establish a
connection depends on the property of the virtual arc that
connects the virtual node and its parent along the
corresponding chain.

For this purpose, we associate each α-arc and β-arc with a
data structure to facilitate the virtual node resolution.

The data structure for a β-arc e = u → v’, denoted by β(e),
is a pair of the form <i, {w1, ..., wk}>, where
- i is the level number, to which v’ is added,
- each wj is connected to v (= s(v’)) through an alternating

path, and
- for each wj we have u → wj ∈ E, or there is a node w’ ∈ Vi

such that u → w’ ∈ E and w’ → w ∈ Ci.

For example, the data structure for the β-arc d → i’ shown
in Fig. 2(c) should be β(d → i’) = <1, {c, f}> for the following
reason:
- i’ is a virtual node added to V1;

- c is connected to i through an alternating path c − b − i, and
f is also connected to i through an alternating path f − e − c
− b − i; and

- d → c ∈ E, and d → e ∈ E, e → f ∈ E.

Similarly, the β-arc g → i’ shown in Fig. 2(c) should also
be associated with a data structure β(g → i’) = <1, {c, f}>.

For a β(e) = <i, W>, we use β1(e) and β2(e) to refer to i and
W, respectively.

In the following, we discuss the data structure associated
with an α-arc.

Let v’ be a virtual node created for v, added to Vi. Let e = u
→ v’ be an α-arc. Then, there must exist w1, ..., wk (k ≥ 1) in
Vi such that for each wj (1 ≤ j ≤ k) u → wj ∈ E and wj → v
∈ Ci with u ∈ Vl (for some l > i), as illustrated in Fig. 4.

We distinguish among three cases:

i) There exists
1j

w , ...,
pj

w (1 ≤ j1 ≤ jp ≤ k) such that for each

qj
w (1 ≤ q ≤ p)

qj
w → v is an arc in the original graph or an

unlabeled virtual arc.
ii) Each wj → v is neither an arc in the original graph nor an

unlabeled virtual arc. However, There exists
1j

w , ...,
aj

w (1

≤ j1 ≤ ja ≤ k) such that for each
bj

w (1 ≤ b ≤ a),
bj

w → v is

an α-arc.
iii) Each wj → v is a β-arc.
In case (i), the data structure is set to be α(e) = <I, φ>. In case
(ii) and (iii), the data structure is set to be α(e) = <II, {

1j
w , ...,

aj
w }> and α(e) = <III, { w1, ..., wk}>, respectively.

For an α(e) = <δ, W>, we use α1(e) and α2(e) to refer to δ
and W, respectively.

B. Virtual node resolution

All the virtual nodes have to be resolved. For this purpose,
we work top-down level by level. Thus, when we try to re-
move the virtual nodes in Vi’ , all the virtual nodes appearing
above Vi’ must have been resolved. So we need only to clarify
how the virtual nodes in Vh-1’ are resolved. All the other
virtual nodes at lower levels can be removed in the same way.

Consider G(Vh, Vh-1’; Ch). Relative to the found maximum
matching Mh of it, all the virtual nodes in Vh-1’ can be clas-
sified into four groups: uncovered (free nodes), unlabeled-
covered, transitive-covered, and alternating-covered. A vir-
tual node is unlabeled-covered, transitive-covered, or alter-
nating-covered if it is covered by an edge in Mh, which
corresponds to an unlabeled, transitive, or alternating arc, re-
spectively.

Each uncovered virtual node can be simply removed. But
for an unlabeled-covered virtual node v, we will connect its

b h h

Fig. 2 Illustration for virtual nodes

b e i’ j’ k’ h

d g l

V1’ :

V’:

b e i’ j’ k’ h

d l g M2:

(c) (d)

b e

c f i j a k

M1

:

(a) (b)

e

c f i j a k V0

:

V1

:

Fig. 3 Illustration chains with and without virtual nodes

b e h

d l g

c f a i j k

i’ j’ k’
b e h

d

g

l

c f i j a k

(b) (a)

Fig. 4 Illustration for the creation of α-arcs

v’ w2

u

Vi:

Vl:

w1

wk

v

1117

parent u and its child s(v) (along the corresponding chain) and
then remove v. The new arc u → s(v) is handled as unlabeled.
However, the treatments of transitive-covered and alternating-
covered nodes are a little bit more difficult.

In the following, we discuss their resolution in great detail.

- Resolution of transitive-covered virtual nodes

Let v be a transitive-covered virtual node. Let u be a node
in Vh such that (u, v) ∈ Mh. We will remove v and connect u to
s(v). For u → s(v), we need to do two tasks:
- Determine whether it is an α-arc, a β-arc, or unlabeled.

- If it is labeled, figure out the data structure for it.

To this end, we will do the following operations:

1. Let α(u → v) be <δ, W>, where δ ∈ {I, II, III} and W is a
subset of Vh-1.

2. Remove v.

3. If δ = I, create an unlabeled arc u → s(v).

4. If δ = II, create an α-arc u → s(v). Let W = {w1, ..., wk}. Let
α(wj → s(v)) = <δj, Wj> (j = 1, ..., k). If there exists an j
such that δj = I, set α(u → s(v)) = <I, φ>.

 Otherwise, X := U
II=j

jW

δ

, Y := U
III=j

jW

δ

.

 i) If X ≠ φ, set α(u → s(v)) to be <II, X>.

 ii) If X = φ, set α(u → s(v)) to be <III, Y>.

5. If δ = III, find W’ ⊆ W such that for each x ∈ W’ β(x →
s(v)) is of the form <h - 2, Wx>, where Wx is a subset of
nodes in Vh-3’ .

i) If W’ ≠ φ, create a β-arc u → s(v) and set β(u → s(v)) =

<h - 2, U
Wx

xW

′∈

>.

ii) If W’ = φ, create a transitive arc u → s(v) and set α(u
→ s(v)) = α(u → v).

In the above process, replacing h with i, we get a general
working process.

- Resolution of alternating-covered virtual nodes

Now we discuss how to resolve an alternating-covered
virtual node.
First, we define a new concept.

Definition 4 (alternating graph) Let Mi be a maximum
matching of G(Vi, Vi-1’ ; Ci). The alternating graph iG

r
 with

respect to Mi is a directed graph with the following sets of
nodes and arcs:

 V(iG
r

) = Vi ∪ Vi-1’ , and

 E(iG
r

) = {u → v | u ∈ Vi-1’ , v ∈ Vi, and (u, v) ∈ Mi} ∪

 {v → u | u ∈ Vi-1’ , v ∈ Vi, and (u, v) ∈ Ci\Mi}. �

Example 2 Consider the graph shown in Fig. 1(a) once again.
Its stratification is shown in Fig. 1(b). Assume that M1 of G1 =
G(V1, V0; C1) is a set of edges shown in Fig. 2(b). Then, the
alternating graph with respect to M1 is a directed graph shown
in Fig. 5(a).

It is redrawn in Fig. 5(b) for a clear explanation. �
In order to resolve all the alternating-covered virtual nodes

in Vi’ , we combine 1+iG
r

 and iG
r

 by connecting each of these

nodes in Vi’ in 1+iG
r

 to some nodes in Vi-1’ in iG
r

 as follows:

• Let v1, ..., vk be all those alternating-covered virtual nodes in
Vi’ in 1+iG

r
 with β(uj → vj) = <i, Wj>, where uj is the parent

of vj along the corresponding chain and Wj is a set of nodes
in Vi-1’ in iG

r
.

• For each vj, connect vj to every node in Wj (j = 1, ..., k).
We denote such a combined graph by 1+iG

r
 ⊕ iG

r
.

For illustration, consider G(V2, V1’ ; C2) shown in Fig. 2(c).
Assume that the found maximum matching M2 is as shown in
Fig. 2(d). The alternating graph 2G

r
 (with respect to M2) is a

graph shown in Fig. 6(a).
Among the three virtual nodes i’ , j’ , and k’, only i’ is an al-

ternating-covered virtual node. That is, (d, i’) ∈ M2 corre-
sponds to a β-arc d → i’ with β(d → i’) = <1, {c, f}> (since
there is an alternating path relative to M1: i - b - c - e - f such
that d → c ∈ E and f is reachable from d through e in V1).

 2G
r

⊕ 1G
r

 is shown in Fig. 6(b). It is formed by connecting i’
in V1’ (in) to c and f in V0’ = V0 (in) in terms of β(d → i’) =
<1, {c, f}>.

We also notice that a node in 1+iG
r

 and a node in iG
r

 may
share the same node name. But they will be handled as dif-
ferent nodes. For example, node e in 2G

r
 and node e in 1G

r
 are

different.
In order to resolve as many virtual nodes (appearing in Vi’)

as possible, we need to find a maximum set of node-disjoint
paths (i.e., no two of these paths share any nodes), each start-
ing at an alternating-covered virtual node in Vi’ (in 1+iG

r
) and

ending at a actual free node (i.e., a free node that is not

Fig. 6 Illustration for combined graph

b e i’ j’ k’ h

d g l

V1’ :

V’:

i’

j’

k’

g

e

h

d

l

f e c b i

j a h k

b

(a)
(b)

Fig. 5 An alternating graph

b e h

c f i j a k V0:

V1:

f e c b i

j a h k

(a) (b)

1118

virtual) in Vi’ in 1+iG
r

, or ending at a free node in Vi-1’ in iG
r

.
For example, to remove i’ , we need to find a path in the above
combined graph, as shown in Fig. 7(a).

By transferring the arcs on such a path, the corresponding

virtual node can be resolved as follows:
• Let v1 → v2 → ... → vk be a found path. Transfer the arcs on

the path.

• If vk is a node in 1+iG
r

, we simply remove the corresponding

virtual node v1.

• If vk is a node in iG
r

, connect the parent of v1 along the

corresponding chain to v2. Remove v1.

For instance, by transferring the arcs on the path from i’ to
i (in 1G

r
) in Fig. 7(a), we will make f (in 1G

r
) free. Then, we

connect g and f. Note that g is the parent of i’ along the cor-
responding chain (see Fig. 3(a)).
In this way, we will change the chains shown in Fig. 5 to the
chains shown in Fig. 3(b) with all the virtual nodes being re-
moved. The number of chains is not increased.

IV. CONCLUSION

In this paper, a new algorithm for finding a minimal chain
decomposition of a partially ordered set S is proposed. The
algorithm needs O(κ⋅n2) time and O(κ⋅n2) space, where n is
the number of the elements in S, and κ is the size of the max-
imum antichain. The main idea of the algorithm is the concept
of virtual nodes and the DAG stratification that generates a
series of bipartite graphs which may contain virtual nodes. By
executing Hopcropt-Karp’s algorithm, we find a maximum
matching for each of such bipartite graphs, which make up a
set of disjoint chains. A next step is needed to resolve all the
virtual nodes appearing on the chains to get the final result.

We also point out that our algorithm can be easily
modified to a 0-1 network flow algorithm by defining a chain
to be a path and accordingly changing the conditions for
creating transitive and alternating arcs.

REFERENCES
[1] H. Alt, N. Blum, K. Mehlhorn, and M. Paul, Computing a maximum

cardinality matching in a bipartite graph in time O(n1.5)/(lognm),

Information Processing Letters, 37(1991), 237 -240.
[2] A.S. Asratian, T. Denley, and R. Haggkvist, Bipartite Graphs and their

Applications, Cambridge University, 1998.
[3] C. Chekuri and M. Bender, An Efficient Approximation Algorithm for

Minimizing Makespan on Uniformly Machines, Journal of Algorithms
41, 212-224(2001).

[4] Y. Chen and Y.B. Chen, An Efficient Algorithm for Answering Graph
Reachability Queries, in Proc. 24th Int. Conf. on Data Engineering
(ICDE 2008), IEEE, April 2008, pp. 892-901.

[5] Y. Chen, General Spanning Trees and Reachability Query Evaluation,
in Proc. C3S 2E 2009: 243-252, IEEE, 2009, pp. 243-252.

[6] Y. Chen and Y.B. Chen, Decomposing DAGs into spanning trees: A
new way to compress transitive closures, in Proc. 27th Int. Conf. on
Data Engineering (ICDE 2011), IEEE, April 2011, pp. 1007-1018.

[7] G.B. Dantzig and A. Hoffman, On a theorem od Dilworth, Linear
Inequalities and related systems (H.W. Kuhn and A.W. Tucker, eds.)
Annals of Math. Studies 38(1966), 207-214.

[8] R.P. Dilworth, A decomposition theorem for partially ordered sets,
Ann. Math. 51 (1950), pp. 161-166.

 [9] T. Gallai and A.N. Milgram, Verallgemeinerung eines
Graphentheoretischen Satzes von Reedei. Acta Sci. Math. Hung.,
21(1960), 429-440.

[10] D.R. Fulkerson, Note on Dilworth’s embedding theorem for partially
ordered sets, Proc. Amer. Math. Soc. 7(1956), 701-702.

[11] J. E. Hopcroft, and R.M. Karp, An n2.5 algorithm for maximum
matching in bipartite graphs, SIAM J. Comput. 2(1973), 225-231.

[12] H. V. Jagadish, "A Compression Technique to Materialize Transitive
Closure," ACM Trans. Database Systems, Vol. 15, No. 4, 1990, pp. 558
- 598.

[13] A.V. Karzanov, Determining the Maximal Flow in a Network by the
Method of Preflow, Soviet Math. Dokl., Vol. 15, 1974, pp. 434-437.

[14] E. L. Lawler, Combinatorial Optimization and Matroids, Holt,
Rinehart, and Winston, New York (1976).

[15] R.-D. Lou, M. Sarrafzadeh, An optimal algorithm for the maximum
two-chain problem, SIAM J. Disc. Math. 5(2), 1992, pp. 285-304.

[16] V.M. Malhotra, M.P. Kumar, and S.N. Maheshwari, An O(|V|3)
Algorithm For Finding Maximum Flows in Networks, Computer
Science Program, Indian Institute of Technology, Kanpur 208016,
India, 1978.

[17] M.A. Perles, A proof of Dilworth’s decomposition theorem for partially
ordered sets, Israel J. of Math. 1(1963), 105-107.

[18] H. Tverberg, On Dilworth’s decomposition theorem for partially
ordered sets, J. Comb. Th. 3(1967), 305-306.

[19] D. Coppersmith, and S. Winograd. Matrix multiplication via arithmetic
progression. Journal of Symbolic Computation, vol. 9, pp. 251-280,
1990.

[20] S. Even, Graph Algorithms, Computer Science Press, Inc., Rockville,
Maryland, 1979.

[21] L. Lamport, Time, clocks, and the ordering of events in a distributed
system, Communication of the ACM 21(7), July 1978, 95-114.

[22] H. Goeman, Time and Space Efficient Algorithms for Decomposing
Certain Patially Ordered Sets, PhD thesis, Department of Mathematics-
Science, Rheinischen Friedrich-Wilhelms Universität Bonn, Germany,
Dec. 1999.

[23] R. Tarjan: Depth-first Search and Linear Graph Algorithms, SIAM J.
Compt. Vol. 1. No. 2. June 1972, pp. 146 -140.

[24] H.S. Warren, A Modification of Warshall’s Algorithm for the
Transitive Closure of Binary Relations, Commun. ACM 18, 4 (April
1975), 218 - 220.

Fig. 7 Illustration for node-disjoint paths

f e c b i

i’

f e

j

i’

c b i

i’

(a) (b) (c)

1119

