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Abstract— In this paper, we propose an efficient algorithm to if u> v. Removing any ara - v if there is path of length 2
decompose a partially ordered setS into a minimum set of from u tov, we get another grapB’. A minimum set of
chains. It requires only OKM?) time and space, wheren is the chains that cover§&' must be a decomposition & (On a
number of the elements inS and k is the size of a maximum anti- chain, ifu appears above, there is a path from to v.) The
chain of S. minimal number of chains is also called the width of G
Our algorithm runs in @(@?) time and in OX[?) space.
The poset decomposition is quite useful in practice. As
A partially orderedset posetfor short)S is a pair § =) shown in [4], if we can decompose a DAGGinto a minimum
of a setSand a binary relatios such that for each, b, andc set of chains, the transitive closure [24] Gf can be
inS effectively compressed to support the so-called reachability
1. axais true ¢ isreflexive, queries [5, 6].
2. axbandb> cimply a> c (> istransitive), and
3. axbandb:> aimply a=b (> is antisymmetri}.
If we have goosetS = (S >), achainin Sis a non-empty

|. INTRODUCTION

Il. GRAPH STRATIFICAION AND BIPARTITE GRAPH

Our method is based on a DAG stratification strategy and
an algorithm for finding a maximum matching in a bipartite

subseC = {ay, &, ...,a¢ U Ssuch thag, > g ... - & graph. Therefore, the relevant concepts and techniques should
Two elements ofS are calledcomparableif they appear be first reviewed and discussed.

together in some chain 1§ elements which are not compara- Let G(V, E) be a DAG. We decompoa&into subsets/q

ble are calledncomparable A non-empty set, in which every _ _
pair of elements is not comparable, is callecuatichain lea’s".ft\s/hcshlilfjr;etzaz;\:);;e\gi?]g\/lcgl;.wDi Vi ansoe(;ac_h fode rl:;'
Sy ey - y sasy ’

S!nce each Siﬂg'e element$nis itself a chajn,_it is alvyays whereh is the height ofG, i.e., the length of the longest path
possible to partition the elements $into disjoint chains. in.G. For each nodein Vi, we say, its level is denoted(v)
Such a partition is called a decomposition, and a decompasi-, NP X : .
tion consisting of the smallest number of disjoint chains (I,%‘c';ryveoiar:fig ui’f‘g\geo c;fls) é%i{gr%rﬁs%];ighsgt ngli'rr;ki’w‘_'\"th
called minimum. According to Dilworth [8], the size of p g ' pp I

- ! . ; herefore, for eackin V;, there existy, ...,ix (i <i, 1 =1, ...,
minimum decomposition equals the size of a maximum ark- . .
chain. such that the set of its children equals O ... U C;, . Let

In _1956, Fulkerson [10] provided a very.simple proof of; = {v;, v,, ...,v}. We use [<i) c| to represenCi(vy) O ...
the Dilworth’s theorem. He constructed a bipartite gr&gh 0 G(v)
V1)

with bipartite ¥, V,) for S={ay, a,, ..., a.}, whereV; = {x,, . N
_ RS _ As an example, consider the graph shown in Fig. 1(a). We
X, oo Xoh V2= {y1, Yz, ... Yo} and an edge joining D Vi 10y oy givide it into three levels as shown in Fig. 1(b).

0 V, wheneverg; > . Let M be a maximum matching @s
and D a minimum decomposoition & Fulkerson proved that

[D| =n - [M|. On the other hand, by the Konig’s theorem ([2], ve | o ’ -
page 180), we also hawe= n - M|, wherex is the size of a cyle coe ol
maximum antichain ofs. So, P| = k. Using the algorithm b Ve b, e, hy, |
proposed by Hopcroft and Karp [11}) can be found in e et e Sk
O(m3/n ) time, wherem is the number of all pairs(c) such ¢ K vgice feo e je ae ke
that a > c. So the maximum size of antichains can be (@) ®)
determined in Ofi3/n ) time. However, Fulkerson did not
g’]OW hOW to decomposﬁ intO a minimum set Of Chains. In F|g 1 Illustration for DAG stratification
fact, it is a problem that has not yet been solved. In their book,
Asratianet al [2] wrote: In Fig. 1(b), the nodes of the DAG shown in Fig. 1(a) are
“Less clear is how to decompoSénto as few chains divided into three levelsy, = {c, f, i, ], a, k}, V. = {b, e h},
as possible.” (See [2], page 190.) andV, ={d, g, I}. Associated with each node at each level is a
In this paper, we address this problem and propose sat of links pointing to its children at different levels.
efficient algorithm to find a minimized set of chains ®r~or Using the algorithm discussed in [4], we need onlynO(

this purpose, we represefit as aDAG (Directed Acyclic time to stratify a DAGG.
Graph, containing no cycles), in which we have anuarc v

978-1-4673-0719-2/12/$26.00 ©2012 IEEE
1115



_Now we restate two concepts from _the graph theory Whi@?: C'_, O {all the new arcs from the nodes\Vhto the vir-
will be used in the subsequent discussion. , .
tual nodes added M’} for1 <i <h-1.}

Definition 1 (bipartite graph[2]) An undirected grapl&(V, e "
E) is bipartite if the node s&tcan be partitioned into two setsG(V;, Vi."; C) - the bipartite graph containing andV,.,’.
TandSin such a way that no two nodes from the same set §fe. a3 maximum matching @&(V;, Vi.'; C).

adjacent. We also denote such a grapB(@ss E). Ll Definition 3 (virtual node$ Let G(V, E) be a DAG, divided

For any nodes 0 G, neighbou(v) represents a set containingnto Vo, ..., Vi (i.e,, V.=V, U ... 00 ;). Let M; be a maximum
all the nodes connected\vo matching of the bipartite grapB(V,, Vi.i'’; C)). For each free

Definition 2 (matching[2]) Let G(V, E) be a bipartite graph. nodev in Vi.;" with respect tavi;, a virtual nodes’ created for
A subset of edgeR’ [ E is called amatchingif no two edges Vis a new node added¥p(1<i <h-1). 0
have a common end node. A matching with the largest pos-The goal of virtual nodes is to establish the connection be-
sible number of edges is calledreaximal matchingdenoted tween the free nodes (with respect to a certain maximum
asMe. 7] matching) and the nodes that may be several levels apart.
. . . Therefore, for each virtual node (added td/; and created for

Let M be_a matching of a blparﬁlte gra@(T, S E). A Vin Vi1'), a bunch of virtual arcs incident to it will be created.
nodev is said to becoveredby M, if some edge oM IS According to three different ways to create a virtual arc, a
incident withv. We will also call an uncovered noftee A

path or cycle isalternating relative toM, if its edges are virtual arc can be labeled or not:

alternately inE\M andM. A path is araugmenting pattf it is m;derlted ?rcsr-]_lfhthere tlsiubD lvid(J:' 1) such L’;fhau ? VIfD_ E,
an alternating path with free origin and terminus. et v, adau - v, whic ,'S not labeled. However,ur - VIISell IS a
— ... —vkbe an alternating path withi{Vi.;) 0 E\M and (i virtual arc,u — v’ will inherit the label ofu — v. In both
Vi) OM (i = 1, 3, ...). By transferring the edges on the patf@Sesyl — V' is referred to as an inherited arc.

we change it to another alternating path with\{,,) 0 M and transitivearc - If there exisu - w O E andw - v O C; with
(Vis1, Viex) OEWM (i = 1, 3, ..). In addition, we will useu OV, (j > i) andw O V;, addu - V' if it has not yet been
freau(T) andfreey(S) to represent all the free nodesTiandS,  created as an inherited arc. Such an arc is labeledoveitid

respectively. Finally, if, v) 0 M, we say,u coversv with  referred to as a transitive axc-arc for short).
respect tdVl, andvice versa

Much research on finding a maximal matching in &ltérnating arc- If there existw [l Vix' such thaw is con-
bipartite graph has been done. The best algorithm for this tBgted tav through an alternating path, andl V; (j > i) such

is due to Hopcroft and Karp [11] and runs im@{n ) time, that one of the two conditions holds:
wheren = V| andm = [E|. The algorithm proposed by Alt,- U - WUE, or

Blum, Melhorn and Paul [1] needs®¢}/m/(logn) ) time. In - there is a node’ 0 V;such that — w’ OE andw’ - w

the case of largm, the latter is better than the former. 0 G,
In addition, for a grapks, we will useV(G) to represent all its addu — v’ if it has not yet been created as an inherited or a
nodes and(G) all its edges (arcs). transitive arc. We label such an arc wghand call it an al-

ternating arcf{-arc for short).

[1l. ALGORITHM DESCRIPTION . ; o
A virtual arc fromv’ to v is also generated to indicate the

In this section, we describe our algorithm for the DAG de-, _.. ; oy
composition. The main idea of our algorithm is to constructi%ﬁg?gjgg(\?)etweem andv'. vis also called the source o

series of bipartite graphs foG(V, E) and then find a . -
maximum matching for each of such bipartite graphs usiﬁ ample 1 Consider the graph shown in Fig. 1(a) and the

: : h stratification shown in Fig. 1(b). The bipartite graph
Hopcroft-Karp algorithm. All these matchings make up a sgap ) i A
of disjoint chains and the size of this set is equal to the sizd§d€ UP oMoandVy, G(Vy, Vo, By), is shown in Fig. 2(a) and
a maximum antichain. During the process, some virtual node80SSible maximum matching, of it is shown in Fig. 2(b).
may be introduced intw; (i = 1, ...h- 1;V =Vo 0 Vo0 ... Vi) R_elatlve toMl, i ] and k are t.hree free nodgs. Thelj, three
to facilitate the computation. However, such virtual nodes wiltual nodes’, j' andk’ (for i, j andk, respectively) will be
be eventually resolved to obtain the final result. created and added ¥. Thus, we hav&/y” = {b, & h, 7", J',

In the following, we first give a formal definition of virtualk’}. Especially, five virtual arcsd - i',d - j,9 - ', 9 -
nOdeS and ShOW hOW. a Vil’tual n.Ode can t-)e efficien]l){ and| = k> will be generated, as Shown in F|g 2(C) D
constructed in SubsectioA. Then, in SubsectiorB, we . L. . . .

Among these virtual arc$,— k’ is an inherited arc since

discuss how the virtual nodes can be resolved (removed) from 2 X
created chains. in the original graph (see Fig. 1(a)) we have ar arck.

d - andg - j are twoa-arcs since is reachable
A. Virtual nodes respectively fromd and g throughe, a node inV; (see Fig.
We start our discussion with the following specification: ~ 1(a)).
Vo =V Finally,d - i andg — i’ are twop-arcs. We joird andi’
o= v ) since there is a nodethat is connected tothrough an alter-
Vi =V, O {virtual nodes added tv;} for 1 <i <h- 1.} nating pathf —e - c - b - i (see Fig. 1(a)) anflis reachable
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from d through a node in V;. (We also note thatis another - cis connected tothrough an alternating path- b - i, and
node connected fothrough an alternating patb=b -i, and  fis also connected tiothrough an alternating pafh- e - ¢
d -~ ¢ OE. If one such node exists, the corresponding arc-p —j: and

should be established.) For the same reason, we podi’. _d.cOE andd - eDE e fOE

Vi b, e. b Wi be en h Similarly, theB-arcg — i’ shown in Fig. 2(c) should also
: \ \ : *\\ be associated with a data structifg - i') = <1, {c, f}>.
Ve CNT\AN” Ci L . .*j\\a . For ap(e) = <, W>, we useB;(e) andp(€) to refer toi and
: W, respectively.
@ (b) In the following, we discuss the data structure associated
with ana-arc.
.o LetVv’ be a virtual node created fgradded to/,. Lete=u
i - V' be ana-arc. Then, there must exisg, ..., w (k=1) in
«i o; e Visuch that for eacly; (1 <j sk)u -~ w DE andw; - v
O C withu OV, (for somel >1i), as illustrated in Fig. 4.

Fig. 2 lllustration for virtual nodes Vi u

In Fig. 2(d), we show a possible maximum matchifygpf v M\ w
G(V,, V1'; Cy). CombiningM, and M;, we get a set of six b
chains as shown in Fig. 3(a). Ly

Fig. 4 lllustration for the creation of-arcs

'u ARG (o) We distinguish among three cases:
f P » >$f< \ ) i) There existsy, , ..., w; (1<j; <j, <k) such that for each
c a I i c i * a d * P

wj, (=<gs<p) wj, -V is an arc in the original graph or an

Fig. 3 lllustration chains with and withouirtual node: unlabeled virtual arc.

i) Eachw; - v is neither an arc in the original graph nor an
The virtual nodeg’ and k' can be simply removed. In  unlabeled virtual arc. However, There exigts ..., w; (1
order to remové , however, we have to transfer the edges on
the alternating pathf:— e - c - b —i and then connegt andf,

obtaining the chains shown in Fig. 3(b). 0 ana-arc.

From the above discussion, we can see that any virtiialEachw; - vis aB-arc.
node will be eventually resolved. Its roll is just to bridge th@ case (i), the data structure is set ta@ = <I, ¢». In case
nodes at different levels. Each time a virtual node is removeg), and (jii), the data structure is set to de) = <II, { W,
a node at a higher level may be connected to a node at a lower ) '
level in terms of the information represented by thej, }> anda(e) = <lil, {w, ..., w}>, respectively.
corresponding virtual arc. Concretely, how to establish a For ana(e) = <5, W>, we useny(e) anda(e) to refer tod
connection depends on the property of the virtual arc thgidw, respectively.
connects the virtual node and its parent along the

<j1 <ja<K) such that for eaclw; (1<b <a), w;, - vis

corresponding chain. B. Virtual node resolution
For this purpose, we associate eaearc and3-arc with a All the virtual nodes have to be resolved. For this purpose,
data structure to facilitate the virtual node resolution. we work top-down level by level. Thus, when we try to re-
The data structure for@arce =u - v’, denoted by(e), move the virtual nodes %, all the virtual nodes appearing
is a pair of the form ik {wy, ...,wi}>, where aboveV;’ must have been resolved. So we need only to clarify
- iis the level number, to whioH is added, how the virtual nodes iV, are resolved. All the other
- eachw; is connected tw (= s(v')) through an alternating virtual nodes at lower levels can be removed in the same way.
path, and ConsiderG(Vy, Vhr; Cp). Relative to the found maximum

- for eachw; we haveu — w; [ E, or there is a node’ [V, mz.atchilnth of it, all the virtual nodes iV,.;’ can be clas-
, ) sified into four groups: uncovered (free nodas)labeled-
such thau - w' O E andw’ - w C,. " . -
y covered transitive-covered and alternating-covered A vir-
~ For example, the data structure for flrarcd — i shown tyal node is unlabeled-covered, transitive-covered, or alter-
in Fig. 2(c) should b@(d - ') = <1, {c, f}> for the following nating-covered if it is covered by an edge Nk, which
reason: corresponds to an unlabeled, transitive, or alternating arc, re-
- i" is a virtual node added 4; spectively.
Each uncovered virtual node can be simply removed. But
for an unlabeled-covered virtual nogdgwe will connect its
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parentu and its childs(v) (along the corresponding chain) and .,
then removey. The new ara - s(v) is handled as unlabeled.
However, the treatments of transitive-covered and aIternating\;_
covered nodes are a little bit more difficult. e
In the following, we discuss their resolution in great detail.

(@) (b)
Fig. 5 An alternating graph

- Resolution of transitive-covered virtual nodes

Let v be a transitive-covered virtual node. lLebe a node
in V}, such thaty, v) O M. We will removev and connecti to

s(v). Foru - s(v), we need to do two tasks: It is redrawn in Fig. 5(b) for a clear explanation. [

- Determine whether it is amn-arc, aB-arc, or unlabeled. In order to resolve all the alternating-covered virtual nodes

- Ifitis labeled, figure out the data structure for it. in Vi, we combineG,,, andG; by connecting each of these

To this end, we will do the following operations: nodes inV in G, to some nodes M4 in G, as follows:

1. Leta(u — v) be b, W>, whered O{, II, lll} and Wisa ° Letv;, ..., wDbe all those alternating-covered virtual nodes in
subset of,;. Vi in G, with B(u; - v) = <, W>, wherey; is the parent

2. Removev. of v; along the corresponding chain alis a set of nodes

3. If 5=1, create an unlabeled arc- (v). inViy'in G;.

4. 1f 5= I, create am-arcu — s(v). LetW = {wi, ..., wg. Let ° FOr €achy, connect; to every node iW; § =1, ....k).
aw, - S(v)) = <&, W> (j = 1, ...,k). If there exists ai We denote such a combined graphdy O G, .

such thad; = |, seta(u - s(v)) = <I, ¢». For illustration, consideG(V,, V;'; C;) shown in Fig. 2(c).

OtherwiseX := UW‘ yi= UW' . Assume that the found maximum matchMgis as shown in
=" = Fig. 2(d). The alternating graph, (with respect tdvl,) is a
: : graph shown in Fig. 6(a).

i) If X#£ @ seta(u - s(v)) to be <II,X>. Among the three virtual nodésj’, andk’, onlyi’ is an al-

i) If X = @ seta(u — s(v)) to be <III,Y>. ternating-covered virtual node. That isl, () O M, corre-

sponds to g-arcd - i’ with B(d - i) = <1, {c, f}> (since
there is an alternating path relativeMg: i - b - ¢ - e - f such
thatd —» ¢ O E andf is reachable frond throughein V).

5. If 8 = lll, find W' O W such that for eack OW’ B(x -
s(v)) is of the form 4 - 2, W,>, whereW, is a subset of
nodes inV,.3'.

i) If W # @ create g-arcu - s(v) and sef3(u - s(v)) =
<h-2, W, >.
Y

i) If W =g create a transitive arc — s(v) and seto(u
- (V) =a(u - v).
In the above process, replacingvith i, we get a general

. Vy':
working process. vee
- Resolution of alternating-covered virtual nodes

Now we discuss how to resolve an alternating-covered
virtual node.
First, we define a new concept.
Definition 4 (alternating graph Let M; be a maximum Fig. 6 lllustration for combined graph
matching ofG(V;, Vi4'; C). The alternating grapls; with

) | } _ G, 0 G, is shown in Fig. 6(b). It is formed by connectiihg
respect toM; is a directed graph with the following sets o{n V,' (in ) tocandfin Vi =\Vp(in ) in terms ofg(d - i') =

nodes and arcs: <1, {c, f}>.
V(G)=V,0V., and We also notice that a node @,, and a node ir5; may
E(G)={u - v|uDOViy,vOV, and ¢, v) O M} O share the same node name. But they will be handled as dif-

ferent nodes. For example, noglin G, and nodeein G, are
{vouluOV.,,vOV,and @, v)OCWM}. [1 different. _ _
Example 2 Consider the graph shown in Fig. 1(a) once again. !n order to resolve as many virtual nodes (appearing)n
Its stratification is shown in Fig. 1(b). Assume thatof G, = &S Possible, we need to find a maximum set of node-disjoint
G(V, Vi, Cy) is a set of edges shown in Fig. 2(b). Then, ﬂ{@ths (i.e., no two of these paths share any nod(?s), each start-
alternating graph with respect &t is a directed graph showning at an alternating-covered virtual node\ih (in G,,,) and
in Fig. 5(a). ending at a actual free node (i.e., a free node that is not
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virtual) in Vi’ in G,,, or ending at a free node W, in G,. [
For example, to removie, we need to find a path in the abovegg)
combined graph, as shown in Fig. 7(a).

., [71
I I |
,- [8]
f e c b i “f e 7° ¢ b i
R e ) o0 >e>e 9]
(@ (b) (c)
Fig. 7 lllustration for node-disjoint paths [10]
[11]
By transferring the arcs on such a path, the correspondin?
virtual node can be resolved as follows: (12
e Letv; » W, - ... » Vi be a found path. Transfer the arcs on
the path. [13]

« If v is a node inG,,;, we simply remove the corresponding4)
virtual nodev;.

 If v is a node inG,, connect the parent of along the 1ol

corresponding chain t@. Removev;. [16]
For instance, by transferring the arcs on the path fram

i (in G,) in Fig. 7(a), we will makd (in G,) free. Then, we [17]
connectg andf. Note thatg is the parent of along the cor-

responding chain (see Fig. 3(a)). [18]

In this way, we will change the chains shown in Fig. 5 to the
chains shown in Fig. 3(b) with all the virtual nodes being g9l
moved. The number of chains is not increased.
20
IV. CONCLUSION 20
In this paper, a new algorithm for finding a minimal chaif!l
decomposition of a partially ordered setis proposed. The [22]
algorithm needs @(@°) time and Okm?) space, whera is
the number of the elements $)andk is the size of the max-
imum antichain. The main idea of the algorithm is the concg%
of virtual nodes and the DAG stratification that generate
series of bipartite graphs which may contain virtual nodes. By;
executing Hopcropt-Karp’s algorithm, we find a maximum
matching for each of such bipartite graphs, which make up a
set of disjoint chains. A next step is needed to resolve all the
virtual nodes appearing on the chains to get the final result.
We also point out that our algorithm can be easily
modified to a 0-1 network flow algorithm by defining a chain
to be a path and accordingly changing the conditions for
creating transitive and alternating arcs.
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