
Tree Inclusion Checking Revisited

Yangjun Chen
1
 and Yibin Chen

2

Dept. Applied Computer Science, University of Winnipeg, Poratge Ave., Winnipeg, Canada
1y.chen@uwinnipeg.ca, 2chenyibin@gmail.com

Keywords: Tree inclusion, ordered labelled trees, tree matching.

Abstract: In this paper, we discuss an efficient algorithm for the ordered tree inclusion problem, by which it is

checked whether a pattern tree (forest) P can be embedded in a target tree (forest) T. The time complexity of

this algorithm is bounded by O(|T|logDP), where DP is the depth of P; and its space overhead is bounded by

O(|T| + |P|). This computational complexity is better than any existing algorithm for this problem.

1 INTRODUCTION

Let T be a rooted tree. We say that T is ordered and

labeled if each node is assigned a symbol from an

alphabet and a left-to-right order among siblings in

T is specified. Let v be a node different of root in T

with parent node u. Denote by delete(T, v) the tree

obtained from T by removing the node v. The

children of v become children of u as illustrated in

Fig. 1.

Given two ordered labeled trees P and T, called

the pattern and the target, respectively. We may ask:

Can we obtain pattern P by deleting some nodes

from target T? That is, is there a sequence v1, ...,vk of

nodes such that for

 T0 = T and

Ti+1 = delete(Ti, vi+1) for i = 0, ..., k - 1,

we have Tk = P? If this is the case, we say, P is

included in T (H, Mannila and K.-J. Räiha, 1990).

Such a problem is called the tree inclusion problem.

This problem has been recognized as an

important query primitive for XML data and

received considerable attention (H. Mannila and K.-

J. Räiha, 1990), where a structured document

database is considered as a collection of parse trees

that represent the structure of the stored texts and the

tree inclusion is used as a means of retrieving

information from them.

Ordered labeled trees also appear in the natural

language processing. As an example, consider

querying grammatical structures as illustrated in Fig.

2, which is the parse tree of a natural language

sentence (H. Mannila and K.-J. Räiha, 1990).

One might want to locate, say, those sentences

that include a verb phrase containing the verb

“reads” and after it a noun “report” followed by any

adverb. This is exactly the sentences whose parse

tree can be obtained by deleting some nodes from

the tree shown in Fig. 2. (See Fig. 3 for illustration.)

A third application of the ordered tree inclusion

is the video content-based retrieval. According to

(Y. Rui et al., 1999), a video can be successfully

decomposed into a hierarchical tree structure, in

‘The’

s

np

det n v

vp

adv

‘professor’ ‘reads’

np

det adj n

‘the” ‘detailed’ ‘report’

‘carefully’

‘reads’ ‘report’

vp

v n adv

Figure 3. An included tree of the parse tree

Figure 2.The parse tree of a sentence

s

v
b d

e f

a a

b d e f

T
: delete(T, v)

c

Figure 1. Illustration for node deletion

which each node represents a scene, a group, a shot,

a frame, a feature, and so on. Especially, such a tree

is an ordered one since the temporal order is very

important for video. Some other areas, in which the

ordered tree inclusion finds its applications, are the

scene analysis, the computational biology (such as

RNA structure matching), and the data mining, such

as tree mining (M. Zaki, 2002), just to name a few.

In this paper, we discuss an efficient algorithm

for this problem.

2 BASIC DEFINITION

We concentrate on labeled trees that are ordered,

i.e., the order between siblings is significant.

Technically, it is convenient to consider a slight

generalization of trees, namely forests. A forest is a

finite ordered sequence of disjoint finite trees. A tree

T consists of a specially designated node root(T)

called the root of the tree, and a forest <T1, ..., Tk>,

where k 0. The trees T1, ...,Tk are the subtrees of

the root of T or the immediate subtrees of tree T, and

k is the outdegree of the root of T. A tree with the

root t and the subtrees T1, ..., Tk is denoted by <t; T1,

..., Tk>. The roots of the trees T1, ..., Tk are the

children of t and siblings of each other. Also, we call

T1, ..., Tk the sibling trees of each other. In addition,

T1, ..., Ti-1 are called the left sibling trees of Ti, and

Ti-1 the immediate left sibling tree of Ti. The root is

an ancestor of all the nodes in its subtrees, and the

nodes in the subtrees are descendants of the root.

The set of descendants of a node v is denoted by

desc(v). A leaf is a node with an empty set of

descendants.

Sometimes we treat a tree T as the forest <T>.

We may also denote the set of nodes in a forest F by

V(F). For example, if we speak of functions from a

forest G to a forest F, we mean functions mapping

the nodes in V(G) onto the nodes in V(F). The size

of a forest F, denoted by |F|, is the number of the

nodes in F. The restriction of a forest F to a node v

with its descendants desc(v) is called a subtree of F

rooted at v, denoted by F[v].

Let F = <T1, ..., Tk> be a forest. The preorder of a

forest F is the order of the nodes visited during a

preorder traversal. A preorder traversal of a forest

<T1, ..., Tk> is as follows. Traverse the trees T1, ..., Tk

in ascending order of the indices in preorder. To

traverse a tree in preorder, first visit the root and

then traverse the forest of its subtrees in preorder.

The postorder is defined similarly, except that in a

postorder traversal the root is visited after traversing

the forest of its subtrees in postorder. We denote the

preorder and postorder numbers of a node v by

pre(v) and post(v), respectively.

Using preorder and postorder numbers, the

ancestorship can be easily checked. If there is path

from node u to node v, we say, u is an ancestor of v

and v is a descendant of u. In this paper, by ancestor

(descendant), we mean a proper ancestor

(descendant), i.e., u v.

Lemma 1 Let v and u be nodes in a forest F. Then, v

is an ancestor of u if and only if pre(v) < pre(u) and

post(u) < post(v).

Proof. See Exercise 2.3.2-20 in (D. Knuth, 1969;

page 347).

Similarly, we check the left-to-right ordering as

follows.

Lemma 2 Let v and u be nodes in a forest F. v is

said to be to the left of u if they are not related by

the ancestor-descendant relationship and u follows v

when we traverse F in preorder. Then, v is to the left

of u if and only if pre(v) < pre(u) and post(v) <

post(u).

Proof. The proof is trivial.

In the following, we use to represent the left-

to-right ordering. Also, v v’ iff v v’ or v = v’.

Furthermore, we extend this ordering with two

special nodes ⏊ v ⏉ for any v in F. The left

relatives, lr(v), of a node v V(F) is the set of nodes

that are to the left of v and similarly the right

relatives, rr(v), are the set of nodes that are to the

right of v.

The following definition is due to (P. Kilpeläinen

and H. Mannila, 1995).

Definition 1 Let F and G be labeled ordered forests.

We define an ordered embedding (, G, F) as an

injective function : V(G) V(F) such that for all

nodes v, u V(G),

i) label(v) = label((v)); (label preservation

condition)

ii) v is an ancestor of u iff (v) is an ancestor of

(u), i.e., iff pre((v)) < pre((u)) and post((u))

< post((v)); (ancestor condition)

iii) v is to the left of u iff (v) is to the left of (u),

i.e., iff pre((v)) < pre((u)) and post((v)) <

post((u)). (Sibling condition)

If there exists such an injective function from

V(G) to V(F), we say, F includes G, F contains G, F

covers G, or say, G can be embedded in F.

Fig. 4 shows an example of an ordered inclusion.

Let P and T be two labeled ordered trees. An

embedding of P in T is said to be root-preserving

if (root(P)) = root(T). If there is a root-preserving

embedding of P in T, we say that the root of T is an

occurrence of P.)

3 ALGORITHM

Now we begin to describe our algorithm. First, we

discuss the main idea of the algorithm in 3.1. Then,

the formal description of the algorithm is given in

3.2.

3.1 Main Idea
Let T = <t; T1, ..., Tk> (k) be a tree and G = <P1,

..., Pq> (q 0) be a forest. We handle G as a tree P =

<pv; P1, ..., Pq>, where pv represents a virtual node,

matching any node in T. Note that even though G

contains only one single tree it is considered to be a

forest. So a virtual root is added. Therefore, each

node in G, except the virtual node, has a parent.

Consider a node v in G = <P1, ..., Pq> with

children v1, ..., vj. We use a pair <i, v> (i j) to

represent an ordered forest containing the first i

subtrees of v: <G[v1], ..., G[vi]>. If v is pv, or a node

on the left-most path in P1, <i, v> is called a left

corner of G. Especially, <i, pv> is a left corner,

representing the first i subtrees in G: P1, ..., Pi. In

addition, we use (G) to represent the left-most leaf

node of G. Then, <i, (G)> (with any i 0) or <0,

v> (with any v in G) stands for an empty left corner.

We also use LG to represent the set of all the left

corner in G, including the empty left corner. We also

use (v) to represent a link from a node v to the left-

most leaf node in G[v], as illustrated in Fig. 5.

Let v′ be a leaf node in G. (v′) is defined to be a

link to v′ itself. So in Fig. 5, we have (v1) = (v2) =

(v3) = v3. Denote by
-1

(v′) a set of nodes x such

that for each v x (v) = v′. Then, in Fig. 5, We

have
-1

(v3) = {v1, v2, v3},
-1

(v4) = {v4}, and
-1

(v5) =

{v5}.

Let p1 be the root of P1. We have (G) = (p1).

The outdegree of v in a tree is denoted by d(v)

while the height of v is denoted by h(v), defined to

be the number of edges on the longest downward

path from v to a leaf. The height of a leaf node is set

to be 0.

As with (Y. Chen and Y.B. Chen, 2006), we

arrange two functions to check the tree inclusion.

However, in [4], each function returns an integer j,

indicating that the first j subtrees in G can be

embedded in a target tree or a target forest while in

the new algorithm each function returns a left corner

in G which can be embedded in the target. Let T and

G represent the set of all trees and the set of all

forests, respectively. Then, we use LG to represent

all the left corners in all forests in G. That is:

 LG = GG LG

The first function is defined as

 A: T G LG

such that for T T and G G A(T, G) = <i, v> LG

with the following properties:

 If i > 0 and v ≠ (G), it shows that

- the first i subtrees of v
 -1

((G)) {pv} can

be embedded in T;

- for any i > i, <i, v> cannot be embedded in T;

- for any v’s ancestor u
-1

((G)) {pv}, there

exists no j > 0 such that <j, u> is able to be

embedded in T.

 If i = 0 or v = (G), it indicates that no left corner

of G can be embedded in T.

In this sense, we say, <i, v> is the highest and

widest left corner which can be embedded in T.

v3

v1

v2 v5

v4

P

:

(v1)

(v2)

a

c f

a

d f

e c

b
(

a)

(
b)

Figure 4: (a) The tree on the left can be included in
the tree on the right by deleting the nodes labeled: d,
e, and b; (b) the embedding corresponding to (a).

a

c f

a

d f

e c

b

Figure 5. A pattern tree

We notice that if v = pv and i > 0, it shows that

P1, ..., Pi can be included in T.

Similarly, we define the second function as

 B: G G LG

such that for G′ G and G G B(G′, G) = <i, v>

LG is the highest and widest left corner (in G) which

can be embedded in G′. Again, if i = 0 or v = (G), it

shows that no non-empty left corner of G can be

embedded in G′.

If the target is a tree and the pattern is a forest,

we call A-function. If both the target and pattern are

forests, we call B-function. However, during the

computation, they will be called from each other.

In the following, we first describe the working

process of A-function in great detail. Then, B-

function is specified.

- A-function

In A(T, G), we need to handle two cases.

Case 1: G = <P1>; or

 G = <P1, ..., Pq> (q >), but |T| |P1| + |P2|.

In this case, what we can do is to find whether P1 or

a highest and widest left corner <i, v> in P1 can be

embedded in T = <t; T1, ..., Tk>. For this purpose, the

following checkings should be conducted:

i) If t is a leaf node, we will check whether label(t)

= label((p1)), where p1 is the root of P1. If it is

the case, return <1, parent of (p1)>. Otherwise,

return <0, (p1)>.

 (Fig. 6 illustrates this case. Since T contains only

a single node, the only left-corner in G, which can

possibly be embedded in T is (p1), represented as

<1, parent of (p1)>.)

ii) If |T| > 1, but |T| |P1| and/or h(t) < h(p1), we

will make a recursive call A(T, <P11, ..., P1j>),

where <P11, ..., P1j> is a forest of the subtrees of

p1. The return value of A(T, <P11, ..., P1j>) is used

as the return value of A(T, G).

 (Since |T| |P1| and/or h(t) < h(p1), T is not able

to embed the whole P1. So we will check T

against <P11, ..., P1j> to find the highest and

widest left-corner within <P11, ..., P1j>, which

can be embedded in T. See Fig. 7 for illustration.)

iii) If |T| |P1| and h(t) h(p1) (but |T| |P1| + |P2|),

we further distinguish between two subcases:

 label(t) = label(p1). In this case, we will call

B(<T1, ..., Tk>, <P11, ..., P1j>).

 label(t) label(p1). In this case, we will call

B(<T1, ..., Tk>, <P1>).

In both cases, assume that the return value of B()

is <i, v>. We need to do an extra checking:

- If label(t) = label(v) and i = d(v), the return

value of A(T, G) is set to be <1, v’s parent>.

- Otherwise, the return value of A(T, G) is the

same as <i, v>.

Case 2: G = <P1, ..., Pq> (q >), and |T| > |P1| + |P2|.

In this case, we will call B(<T1, ..., Tk>, G). Assume

that the return value of B(<T1, ..., Tk>, G) is <i, v>.

The following checkings will be continually

conducted.

iv) If v p1’s parent, check whether label(t) =

label(v) and i = d(v). If it is not the case, the

return value of A(T, G) is the same as <i, v>.

Otherwise, the return value of A(T, G) will be set

to <1, v’s parent>.

v) If v = p1’s parent, the return value of A(T, G) is

the same as <i, v>.

- B-function

B(G′, G) is designed to handle the case that both G’

and G are forests made up of a set of subtrees rooted

at nodes that are consecutive siblings in T and P,

respectively. Let G’ = <T1, ..., Tk> and G = <P1, ...,

Pq>. Denote by tl the toot of Tl (l = 1, ..., k). Denote

by pj the root of Pj (j = 1, ...,q).In B(G’, G), we will

make a series of calls A(Tl, <
lj

P , ..., Pq>), where l =

pv

p1 pq

T containing only a single node:

Figure 6.Illustration for the execution of A()

t is checked against (p1)

t

… …

pv

p1 pq

T with |T| < |P1| and/or h(t) < h(p1):

Figure 7.Illustration for a recursive call within A()

check T against <P11, …, P1j>

t

…
…

…

p11 p1j

1, ..., x k, j1 = 1, and j1j2 ... jx q, controlled

as follows.

1. Two index variables l, j are used to scan T1, ..., Tk

and P1, ..., Pq, respectively. (Initially, l is set to 1,

and j is set to 0.) They also indicate that <P1, ...,

Pj> has been successfully embedded in <T1, ...,

Tl>.

2. Let <il, vl> be the return value of A(Tl, <Pj+1, ...,

Pq>). If vl = pj+1’s parent, set j to be j + il.

Otherwise, j is not changed. Set l to be l + 1. Go

to (2).

3. The loop terminates when all Tl’s or all Pj’s are

examined.

 (Fig. 8 helps for illustration of this iteration

process.)

4. If j > 0 when the loop terminates, B(G′, G) returns

<j, p1’s parent>, indicating that G’ contains P1, ...,

Pj. Otherwise, j = 0, indicating that even P1 alone

cannot be embedded in any Tl (l k}).

However, in this case, we need to continue

searching for a highest and widest left corner <i,

v> in P1, which can be embedded in G’. This can

be done as follows.

 i) Let <i1, v1>, ..., <ik, vk> be the return values of

A(T1, <P1, ..., Pq>), ..., A(Tk, <P1, ..., Pq>),

respectively. Since j = 0, each vl
-1

((G)) (l

= 1, ..., k).

 ii) If each il = 0, return <0, (G)>. Otherwise,

there must be some vl’s with il > 0. We call

such a node a non-zero point. Find the first

non-zero point vf with children w1, ...,ws such

that vf is not a descendant of any other non-

zero point. Then, we will check <Tf+1, ..., Tk>

against <P[1fiw], ..., P[ws]>. Let y be a

number such that <P[1fiw], ..., P[yi f
w]>

can be embedded in <Tf+1, ..., Tk>. The return

value of B(T’, G) should be set to <if + y, vf>.

In the above process, (1), (2) and (3) together are

referred to as a main checking while (4) alone as a

supplement checking.

We notice that in the main checking much

useless work is conducted since in the case j = 0

only one non-zero point <if, vf> is utilized in the

subsequent supplement checking while all the other

left corners are not used at all. Thus, the effort for

looking for such return values brings the void.

For this reason, we slightly change the

definitions of both A-function and B-function to let

them take a third input parameter which is a node u

V(G), used to transfer an important message: once

we have detected that only a left corner lower than u

can be produced by the corresponding computation,

it should stop immediately (since such a return value

will not be used.) We say, a left corner <i, v> is

lower than u if v = u or v is a descendant of u. u is

then called a controlling point. In A(T, G, u), this

checking can be made at the very beginning by

checking whether p1’s parent is an ancestor of u. If it

is not, the left corner to be returned must be lower

than u and the computation of the corresponding A-

function should not be carried out. In B(G’, G, u), u

is mainly used to avoid any useless supplement

checking (to be discussed in 3.2).

Let V(G) = GG V(G).

 Our functions are redefined as follows:

 A: T G V(G) LG

such that for T T, G G and u V(G) A(T, G, u)

= <i, v> LG is the highest and widest left corner (in

G) embeddable in T if it not lower than u.

Otherwise, A(T, G, u) returns an empty left corner.

 B: G G V(G) LG

such that for G’ G, G G and u V(G) B(G, G,

u) = <i, v> LG is the highest and widest left corner

(in G) embeddable in G if it not lower than u.

Otherwise, B(T, G, u) returns an empty left corner.

Initially, u is set to be (G) for both functions.

Elaboration on the controlling points leads to an

almost linear time algorithm.

3.2 Algorithm Description
In this subsection, we give the formal description of

our algorithm.

- A-function

…

Figure 8.Illustration for an execution of B()

T

1
… …

… … …

T

l

T

l+1

T

k

P

1

P

q

include

include

If <T1, …,Tl> includes <P1, …,
lj

P >,

Tl+1 will be checked against < 1lj
P , …,Pq>.

T

:

G

: 1lj
p 11lj

p
lj

p 1lj
p

function A(T, G, u) (*Initially, u = (G).*)
input: T = <t; T1, ..., Tk>, G = <P1, ..., Pq>.

output: <i, v> specified above.

begin

1. if p1’s parent is not an ancestor of u then return <0, (G)>;

2. if (q = 1 or |T| |P1| + |P2|)

3. then
 { let P1 = <p1; P11, ..., P1j>; (*Case 1*)

4. if t is a leaf then

 { let (p1) = v; (*Case 1 - (i)*)
5. if label(t) = label(v) then return <1, v’s parent>

6. else return <0, v>;

7. }

8. if (|T| |P1| h(t) < h(p1)) then return A(T, <P11, ..., P1j>, u);

 (*Case 1 - (ii)*)

9. if label(t) = label(p1) (*Case 1- (iii)*)

10. then { if p1 is a leaf then {v := p1’s parent; i := 1;}

11. else { if p1 = u

 then <i, v>:= B(<T1, ..., Tk>, <P11, ..., P1j>, p11)
12. else <i, v>:= B(<T1, ..., Tk>, <P11, ..., P1j>, u);

13. if label(t) = label(v) and i = d(v)

14. then {v := v’s parent; i := 1; }
15. }

16. }

17. else <i, v> := B(<T1, ..., Tk>, <P1>, u);

 (*If label(t) label(p1), call B().*)

18. return <i, v>;
19. }

20. else{ if label(t) = label(u) (*Case 2*)

21. then <i, v> := B(<T1, ..., Tk>, G, u’s first child);
22. else <i, v> := B(<T1, ..., Tk>, G, u)

23. if v p1’s parent (*Case 2 - (iv)*)

24. then { if (label(t) = label(v)) i = d(v)

25. then return <1, v’s parent>;

26. }

27. return <i, v>; (*Case 2 - (v)*)
28. }

end

The above algorithm can be viewed as composed

of three parts: line 1, lines 2 - 19, and lines 20 - 28.

In line 1, we only check whether p1’s parent is an

ancestor of u. If not, return <0, (G)>. Otherwise,

we go to the second part, in which we first check

whether q = 1 or |T| |P1| + |P2| (see line 2). If it is

the case, we have Case 1 and then lines 3 - 19 are

executed. In this process, all the three subcases (i),

(ii), and (iii) are checked. If q > 1 and |T| > |P1| +

|P2|, we go to the third part. That is, lines 20 - 28 will

be carried out, in which we handle Case 2. This is

done by calling B(<T1, ..., Tk>, G, u). Depending on

its return value, subcase (iv) or (v) will be

conducted.

Special attention should be paid to line 8, 11, 12,

17, 21, and 22 to see how a controlling point is

propagated by a recursive call. For this, we also

distinguish among five cases, i.e., Case 1 – (i), Case

1 – (ii), Case 1 – (iii), Case 2 – (iv), and Case 2 –

(v).

In Case 1 – (i), no recursive call is conducted
and thus the cut u is not transferred.

In Case 1 – (ii), we will call A(T , <P11, ..., P1j>,
u), by which the controlling point u is directly
transferred to the recursive call since its return value
will be used as the return value of A(T, G, u). (See
line 8.)

In Case 1 – (iii), we will call the B-function to
check <T1, ..., Tk> against <P11, ..., P1j> or against
<P1>, depending on whether label(t) = label(p1) or
label(t) ≠ label(p1). Concerning the controlling point
transfer, we need to consider three cases:

 label(t) = label(p1) and p1 = u. In this case, we

will call B(<T1, ..., Tk>, <P11, ..., P1j>, p11) with

the controlling point being set to be p11. It is

because in this case the main checking of the

B-function execution may reveal that <T1, ...,

Tk> is able to embed the whole <P11, ..., P1j>.

In the case, the return value of A(T, G, u) will

be set to <1, p1’s parent>, higher than u. So it

is a useful computation; and downgrading the

controlling point from u = p1 to p11 will let it

go through. On the other hand, p11 will

effectively prohibit any possible supplement

checking in this B-function execution since

such a checking can only bring out a left

corner lower than p11 and will not be used.

(See line 11.)

 label(t) = label(p1) and p1 ↝ u. In this case, we

will call B(<T1, ..., Tk>, <P11, ..., P1j>, u), by

which u is directly transferred since we must

have p11 ↝ u and no useful computation can be

eliminated by the controlling point u. (See line

12.)

 label(t) label(p1). In this case, we will call

B(<T1, ..., Tk>, <P1>, u), by which u is directly

transferred for the same reason as Case 1 – (ii).

(See line 17.)

In Case 2, we will call B(<T1, ..., Tk>, G, x),
where x is u or u’s first child, depending on whether
label(t) ≠ label(p1) or label(t) = label(p1).

 If label(t) = label(p1), the controlling point for

this recursive call should be set to u’s first

child. It is because <T1, ..., Tk> may not be able

to cover P1, but all the subtrees each rooted as

a child of u. In this case, the whole T embeds

G[u] and the return value of A(T, G, u) should

be set to <1, u’s parent>, higher than u. So,

setting the controlling point to u’s first child

will keep this computation not skipped over.

(See line 21.)

 If label(t) ≠ label(p1), the controlling point u

will be directly transferred (i.e., x = u) since in

this case, only the left corner (returned by

B(<T1, ..., Tk>, G, u)) higher than u will be

used. (See line 22.)

Accordingly, Case 2 – (iv) is handled in lines 24

- 25, while Case 2 – (v) in line 27.

- B-function

In B(G′, G, u), the treatment of controlling points

is more complicated than in Algorithm A():

1. Let G′ = <T1, ..., Tk> and G = <P1, ..., Pq>. At the

very beginning, we need to check whether u = p1,

where p1 is the root of P1. If it is the case, only

the main checking needs to be conducted. (The

supplement checking can only deliver a left

corner lower than p1 and therefore should not be

carried out.)

2. In the main checking, a series of calls of A-

functions will be carried out. During this process,

the controlling point for each A-function call

needs to be dynamically changed as described

below.

 - Let <il, vl> be the return value of A(Tl, <
lj

p ,

..., Pq>, ul) for l = 1, ..., x k, where j1 = 1,

j1j2 ... jx q, and u1 = u. In addition, for 2

l x, ul is determined as follows:

 - Let s be an integer such that any of T1, ..., Ts is

not able to embed P1, but Ts+1 embeds <P1, ...,

Pj> for some j > 0. Then, for 2 l s, we have

 and for s + 1 l k, we have

 ul = . (3.2)

The formula (3.1) shows how the controlling

points are changed before we find the first subtree in

T which is able to embed some subtrees in G. After

such a subtree is found, the controlling points are

determined in terms of the formula (3.2). It is

because for each subsequent A-function call to check

a Tl against <
lj

p , ...,Pq>, a returned left corner

lower than
lj

p will not be used in the continuing

computation.

If s < k, it shows that <T1, ..., Tk> includes <P1,

..., Pm> for some m (1 m q), and the supplement

checking will not be conducted. If s = k, <T1, ..., Tk>

does not include any subtree in G, but some Tl’s

each may include a non-empty left corner in P1.

Assume that we can find a subtree Tf such that it

embeds a left corner <if, vf> in P1 with the following

properties: i) if > 0, ii) vf is not a descendant of any

other non-zero point, and iii) vf is also an ancestor of

u. Then, a supplement checking will be performed as

described in 3.1. Otherwise, no supplement checking

is needed.

In terms of the above discussion, we design two

subfunctions of the B-function: B-without-s(G′, G),

in which no supplement checking will be carried

out; and B-with-s(G′, G, u), in which a supplement

checking may be invoked. Then, during the

execution of B(G′, G, u), if u = p1, call B-without-

s(G′, G); otherwise, call B-without-s(G′, G, u).

function B(G’, G, u) (*Initially, u = (G).*)

input: G’ = <T1, ..., Tk>, G = <P1, ..., Pq>

output: <i, v> specified above.

begin
1. if u = p1 then return B-without-s(G’, G)

2. else return B-with-s(G’, G, u);

end

function B-without-s(G’, G)

begin
1. l := 1; j := 0;

2. while (j < q and l k) do

3. { <il, vl> := A(Tl, <Pj+1, ..., Pq>, pj+1);
4. if vl = p1’s parent and il > 0) then j := j + il;

5. }

6. return <j, p1’s parent>

end

function B-with-s(G’, G, u)

begin
1. l := 1; j := 0; v := u; f := 0;

2. while (j < q and l k) do (*main checking*)

3. { <il, vl> := A(Tl, <Pj+1, ..., Pq>, v)
4. if (vl = p1’s parent and il > 0) then {j := j + il; v := pj;}

5. else if (vl is an ancestor of v and il > 0)

 then {v := vl; f := l;}
6. l:= l + 1;

7. }

8. if j > 0 then return <j, p1’s parent>;

9. if f = 0 then return <0, (p1)>;

10. let w1, ..., ws be the children of vf; (*supplement

checking*)
11. l := f + 1; j := if;

12. while (j < s and l k) do

13. { <il, vl> := A(Tl, <G[wj+1], ..., G[ws]>, wj+1);

14. if (vl = vf and il > 0) then j := j + il;

15. l:= l + 1;

16. }
17. return <j, vf>;

end

In B(G′, G, u), we first check whether u = p1. If it

is the case, we will call B-without-s(G′, G) (see line

1), in which, by a series of A-function calls, we try

to find a largest j such that <T1, ..., Tk> is able to

embed <P1, ..., Pj>, but not able to embed <P1, ..., Pj,

Pj+1>. In this process, for each A-function call of the

form A(Tl, <
lj

P , ..., Pq>, ul), ul is set to be
lj

p , the

root of
lj

P (see line 3 in B-without-s()). No

ul =

vl-1,

ul-1,

if vl-1 is an ancestor of ul-1 and il-1> 0;

if vl-1 is not an ancestor of ul-1 or il-1 = 0;

(3.1)

supplement checking will be conducted since the left

corner produced by a supplement checking must be

lower than
lj

p .

If u p1, we will call B-with-s(G′, G, u) (see line

2 in B()), in which we have two while-loops: one

from line 2 to 7 and the other from line 12 to 16. In

the first while-loop, we do the main checking to find

the largest j such that <T1, ..., Tk> embeds <P1, ...,

Pj>. In this process, by each A-function call, the

corresponding controlling point will be set according

to the formulas (3.1) and (3.2). In the second while-

loop, the supplement checking will be carried out.

However, this is done only when the following two

conditions are satisfied:

(1) j = 0, and

(2) There exists at least a non-zero point <if, vf>

such that vf is not lower than u.

In B-with-s(G′, G, u), we use a variable f to

record the first of such non-zero points, which is not

a descendant of any other non-zero point. Initially, f

is set 0. Therefore, if (2) is not satisfied, we must

have f = 0 after the main checking is completed. So

only when j = 0 and f > 0, the supplement checking

will be conducted (See lines 8 and 9.)

We also notice that in the supplement checking,

for each A-function call of the form A(Tl, <G[wj+1],

..., G[ws]>, wj+1), the controlling point is set to be

wj+1 to prohibit a further supplement checking since

this can only return a useless left corner lower than

wj+1.

4 CONCLUSIONS

In this paper, a new algorithm is proposed to solve

the ordered tree inclusion problem. Up to now, the

best algorithm for this problem needs quadratic time.

However, ours requires only O(|T|logDP) time and

O(|T| + |P|) space, where T and P are a target and a

pattern tree (forest), respectively; and DP is the depth

of P. The critical concept of our algorithm is the left

corner, which enables us to develop a deep insight

into the tree inclusion problem and extend it to a

more general one to return a left corner as a result.

In practice, the general problem seems to be more

useful than the original one since if P cannot be

embedded in T, we may want to know whether any

part of P can be embedded in T.

REFERENCES

L. Alonso and R. Schott. On the tree inclusion problem. In

Proceedings of Mathematical Foundations of

Computer Science, pages 211-221, 1993.

W. Chen. More efficient algorithm for ordered tree

inclusion. Journal of Algorithms, 26:370-385, 1998.

Y. Chen and Y.B. Chen, A New Tree Inclusion Algorithm,

Information Processing Letters 98(2006) 253-262,

Elsevier Science B.V.

Y. Chen, A New Algorithm for Twig Pattern Matching, in:

Proc. of Int. Conf. on Enterprise Information Systems

(ICEIS’2007), IEEE, Funchal-madeira, Portugal, June

2007, pp. 44-51.

Y. Chen and Y.B. Chen, Subtree Reconstruction, Query

Node Intervals and Tree Pattern Query Evaluation,

Journal of Information Science and Engineering 28,

263-293 (2012).

Y. Chen and Y.B. Chen, A Linear-Space Top-down

Algorithm for Tree Inclusion Problem, in: Proc. 2nd

Int. Conf. on Computer Science and Service System

(CSSS2012), April 2012, Nanjing, China, April 2012,

IEEE, pp. 2127-2131.

Y. Chen and Y.B. Chen, On the Tree Inclusion Problem,

2013 Int. Conf. on Computer, Networks and

Communication Engineering (ICCNCE 2013),

Beijing, China, May 23-24, 2013.

Y. Chen and L. Zou, Unordered tree matching and ordered

tree matching: the evaluation of tree pattern queries,

Int. J. Information Technology, Communications and

Convergence, Vol. 1, No. 3, 2011, pp. 254-279.

Y. Chen and Y.B. Chen, A New Tree Inclusion Algorithm,

Information Processing Letters 98(2006) 253-262,

Elsevier Science B.V.

H.L Cheng and B.F Wang, On Chen and Chen's new tree

inclusion algorithm, Information Processing Letters,

2007, Vol. 103, 14-18, Elsevier Science B.V.

P. Kilpeläinen and H. Mannila. Ordered and unordered

tree inclusion. SIAM J. Comput, 24:340-356, 1995.

D.E. Knuth, The Art of Computer Programming, Vol. 1

(1st edition), Addison-Wesley, Reading, MA, 1969.

H. Mannila and K.-J. Räiha, On Query Languages for the

p-string data model, in “Information Modelling and

Knowledge Bases” (H. Kangassalo, S. Ohsuga, and H.

Jaakola, Eds.), pp. 469-482, IOS Press, Amsterdam,

1990.

T. Richter. A new algorithm for the ordered tree inclusion

problem. In Proceedings of the 8th Annual

Symposium on Combinatorial Pattern Matching

(CPM), in Lecture Notes of Computer Science (LNCS),

volume 1264, pages 150-166. Springer, 1997.

Y. Rui, T.S. Huang, and S. Mehrotra, Constructing table-

of-content for videos, ACM Multimedia Systems

Journal, Special Issue Multimedia Systems on Video

Libraries, 7(5):359-368, Sept 1999.

M. Zaki, Efficiently mining frequent trees in a forest. In

Proc. of KDD, 2002.

