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Abstract: In this paper, we discuss an efficient algorithm for the ordered tree inclusion problem, by which it is 

checked whether a pattern tree (forest) P can be embedded in a target tree (forest) T. The time complexity of 

this algorithm is bounded by O(|T|logDP), where DP is the depth of P; and its space overhead is bounded by 

O(|T| + |P|). This computational complexity is better than any existing algorithm for this problem. 

1 INTRODUCTION 

Let T be a rooted tree. We say that T is ordered and 

labeled if each node is assigned a symbol from an 

alphabet and a left-to-right order among siblings in 

T is specified. Let v be a node different of root in T 

with parent node u. Denote by delete(T, v) the tree 

obtained from T by removing the node v. The 

children of v become children of u as illustrated in 

Fig. 1. 

 
Given two ordered labeled trees P and T, called 

the pattern and the target, respectively. We may ask: 

Can we obtain pattern P by deleting some nodes 

from target T? That is, is there a sequence v1, ...,vk of 

nodes such that for 

 T0 = T and 

Ti+1 = delete(Ti, vi+1) for i = 0, ..., k - 1, 

we have Tk = P? If this is the case, we say, P is 

included in T (H, Mannila and K.-J. Räiha, 1990). 

Such a problem is called the tree inclusion problem. 

This problem has been recognized as an 

important query primitive for XML data and 

received considerable attention (H. Mannila and K.-

J. Räiha, 1990), where a structured document 

database is considered as a collection of parse trees 

that represent the structure of the stored texts and the 

tree inclusion is used as a means of retrieving 

information from them. 

Ordered labeled trees also appear in the natural 

language processing. As an example, consider 

querying grammatical structures as illustrated in Fig. 

2, which is the parse tree of a natural language 

sentence (H. Mannila and K.-J. Räiha, 1990). 

 
One might want to locate, say, those sentences 

that include a verb phrase containing the verb 

“reads” and after it a noun “report” followed by any 

adverb. This is exactly the sentences whose parse 

tree can be obtained by deleting some nodes from 

the tree shown in Fig. 2. (See Fig. 3 for illustration.) 

A third application of the ordered tree inclusion 

is the video content-based retrieval. According to 

(Y. Rui et al., 1999), a video can be successfully 

decomposed into a hierarchical tree structure, in 
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which each node represents a scene, a group, a shot, 

a frame, a feature, and so on. Especially, such a tree 

is an ordered one since the temporal order is very 

important for video. Some other areas, in which the 

ordered tree inclusion finds its applications, are the 

scene analysis, the computational biology (such as 

RNA structure matching), and the data mining, such 

as tree mining (M. Zaki, 2002), just to name a few. 

In this paper, we discuss an efficient algorithm 

for this problem. 

2 BASIC DEFINITION 

We concentrate on labeled trees that are ordered, 

i.e., the order between siblings is significant. 

Technically, it is convenient to consider a slight 

generalization of trees, namely forests. A forest is a 

finite ordered sequence of disjoint finite trees. A tree 

T consists of a specially designated node root(T) 

called the root of the tree, and a forest <T1, ..., Tk>, 

where k  0. The trees T1, ...,Tk are the subtrees of 

the root of T or the immediate subtrees of tree T, and 

k is the outdegree of the root of T. A tree with the 

root t and the subtrees T1, ..., Tk is denoted by <t; T1, 

..., Tk>. The roots of the trees T1, ..., Tk are the 

children of t and siblings of each other. Also, we call 

T1, ..., Tk the sibling trees of each other. In addition, 

T1, ..., Ti-1 are called the left sibling trees of Ti, and 

Ti-1 the immediate left sibling tree of Ti. The root is 

an ancestor of all the nodes in its subtrees, and the 

nodes in the subtrees are descendants of the root. 

The set of descendants of a node v is denoted by 

desc(v). A leaf is a node with an empty set of 

descendants. 

Sometimes we treat a tree T as the forest <T>. 

We may also denote the set of nodes in a forest F by 

V(F). For example, if we speak of functions from a 

forest G to a forest F, we mean functions mapping 

the nodes in V(G) onto the nodes in V(F). The size 

of a forest F, denoted by |F|, is the number of the 

nodes in F. The restriction of a forest F to a node v 

with its descendants desc(v) is called a subtree of F 

rooted at v, denoted by F[v]. 

Let F = <T1, ..., Tk> be a forest. The preorder of a 

forest F is the order of the nodes visited during a 

preorder traversal. A preorder traversal of a forest 

<T1, ..., Tk> is as follows. Traverse the trees T1, ..., Tk 

in ascending order of the indices in preorder. To 

traverse a tree in preorder, first visit the root and 

then traverse the forest of its subtrees in preorder. 

The postorder is defined similarly, except that in a 

postorder traversal the root is visited after traversing 

the forest of its subtrees in postorder. We denote the 

preorder and postorder numbers of a node v by 

pre(v) and post(v), respectively. 

Using preorder and postorder numbers, the 

ancestorship can be easily checked. If there is path 

from node u to node v, we say, u is an ancestor of v 

and v is a descendant of u. In this paper, by ancestor 

(descendant), we mean a proper ancestor 

(descendant), i.e., u  v. 

Lemma 1 Let v and u be nodes in a forest F. Then, v 

is an ancestor of u if and only if pre(v) < pre(u) and 

post(u) < post(v). 

Proof. See Exercise 2.3.2-20 in (D. Knuth, 1969; 

page 347).     

Similarly, we check the left-to-right ordering as 

follows. 

Lemma 2 Let v and u be nodes in a forest F. v is 

said to be to the left of u if they are not related by 

the ancestor-descendant relationship and u follows v 

when we traverse F in preorder. Then, v is to the left 

of u if and only if pre(v) < pre(u) and post(v) < 

post(u). 

Proof. The proof is trivial.  

In the following, we use  to represent the left-

to-right ordering. Also, v  v’ iff v  v’ or v = v’. 

Furthermore, we extend this ordering with two 

special nodes  ⏊ v   ⏉ for any v in F. The left 

relatives, lr(v), of a node v  V(F) is the set of nodes 

that are to the left of v and similarly the right 

relatives, rr(v), are the set of nodes that are to the 

right of v. 

The following definition is due to (P. Kilpeläinen 

and H. Mannila, 1995). 

Definition 1 Let F and G be labeled ordered forests. 

We define an ordered embedding (, G, F) as an 

injective function : V(G)  V(F) such that for all 

nodes v, u  V(G), 

i) label(v) = label((v)); (label preservation 

condition) 

ii) v is an ancestor of u iff (v) is an ancestor of 

(u), i.e., iff pre((v)) < pre((u)) and post((u)) 

< post((v)); (ancestor condition) 

iii) v is to the left of u iff (v) is to the left of (u), 

i.e., iff pre((v)) < pre((u)) and post((v)) < 

post((u)). (Sibling condition)  



 

If there exists such an injective function from 

V(G) to V(F), we say, F includes G, F contains G, F 

covers G, or say, G can be embedded in F. 

Fig. 4 shows an example of an ordered inclusion. 

Let P and T be two labeled ordered trees. An 

embedding of P in T is said to be root-preserving 

if (root(P)) = root(T). If there is a root-preserving 

embedding of P in T, we say that the root of T is an 

occurrence of P.) 

 

3 ALGORITHM 

Now we begin to describe our algorithm. First, we 

discuss the main idea of the algorithm in 3.1. Then, 

the formal description of the algorithm is given in 

3.2. 

3.1 Main Idea 
Let T = <t; T1, ..., Tk> (k ) be a tree and G = <P1, 

..., Pq> (q  0) be a forest. We handle G as a tree P = 

<pv; P1, ..., Pq>, where pv represents a virtual node, 

matching any node in T. Note that even though G 

contains only one single tree it is considered to be a 

forest. So a virtual root is added. Therefore, each 

node in G, except the virtual node, has a parent. 

Consider a node v in G = <P1, ..., Pq> with 

children v1, ..., vj. We use a pair <i, v> (i j) to 

represent an ordered forest containing the first i 

subtrees of v: <G[v1], ..., G[vi]>. If v is pv, or a node 

on the left-most path in P1, <i, v> is called a left 

corner of G. Especially, <i, pv> is a left corner, 

representing the first i subtrees in G: P1, ..., Pi. In 

addition, we use (G) to represent the left-most leaf 

node of G. Then, <i, (G)> (with any i  0) or <0, 

v> (with any v in G) stands for an empty left corner. 

We also use LG to represent the set of all the left 

corner in G, including the empty left corner. We also 

use (v) to represent a link from a node v to the left-

most leaf node in G[v], as illustrated in Fig. 5. 

 

Let v′ be a leaf node in G. (v′) is defined to be a 

link to v′ itself. So in Fig. 5, we have (v1) = (v2) = 

(v3) = v3. Denote by 
-1

(v′) a set of nodes x such 

that for each v x (v) = v′. Then, in Fig. 5, We 

have 
-1

(v3) = {v1, v2, v3}, 
-1

(v4) = {v4}, and 
-1

(v5) = 

{v5}. 

Let p1 be the root of P1. We have (G) = (p1). 

The outdegree of v in a tree is denoted by d(v) 

while the height of v is denoted by h(v), defined to 

be the number of edges on the longest downward 

path from v to a leaf. The height of a leaf node is set 

to be 0.  

As with (Y. Chen and Y.B. Chen, 2006), we 

arrange two functions to check the tree inclusion. 

However, in [4], each function returns an integer j, 

indicating that the first j subtrees in G can be 

embedded in a target tree or a target forest while in 

the new algorithm each function returns a left corner 

in G which can be embedded in the target. Let T and 

G represent the set of all trees and the set of all 

forests, respectively. Then, we use LG to represent 

all the left corners in all forests in G. That is: 

 LG =  GG LG 

The first function is defined as 

 A: T  G  LG 

such that for T  T and G  G A(T, G) = <i, v>  LG 

with the following properties: 

 If i > 0 and v ≠ (G), it shows that 

- the first i subtrees of v 
 -1

((G))  {pv} can 

be embedded in T; 

- for any i > i, <i, v> cannot be embedded in T; 

- for any v’s ancestor u  
-1

((G))  {pv}, there 

exists no j > 0 such that <j, u> is able to be 

embedded in T. 

 If i = 0 or v = (G), it indicates that no left corner 

of G can be embedded in T.    

In this sense, we say, <i, v> is the highest and 

widest left corner which can be embedded in T. 
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We notice that if v = pv and i > 0, it shows that 

P1, ..., Pi can be included in T. 

Similarly, we define the second function as 

 B: G  G  LG 

such that for G′  G and G  G B(G′, G) = <i, v>  

LG is the highest and widest left corner (in G) which 

can be embedded in G′. Again, if i = 0 or v = (G), it 

shows that no non-empty left corner of G can be 

embedded in G′. 

If the target is a tree and the pattern is a forest, 

we call A-function. If both the target and pattern are 

forests, we call B-function. However, during the 

computation, they will be called from each other. 

In the following, we first describe the working 

process of A-function in great detail. Then, B-

function is specified. 

- A-function 

In A(T, G), we need to handle two cases. 

Case 1: G = <P1>; or 

 G = <P1, ..., Pq> (q > ), but |T|  |P1| + |P2|. 

In this case, what we can do is to find whether P1 or 

a highest and widest left corner <i, v> in P1 can be 

embedded in T = <t; T1, ..., Tk>. For this purpose, the 

following checkings should be conducted: 

i) If t is a leaf node, we will check whether label(t) 

= label((p1)), where p1 is the root of P1. If it is 

the case, return <1, parent of (p1)>. Otherwise, 

return <0, (p1)>. 

 (Fig. 6 illustrates this case. Since T contains only 

a single node, the only left-corner in G, which can 

possibly be embedded in T is (p1), represented as 

<1, parent of (p1)>.) 

 

ii) If |T| > 1, but |T| |P1| and/or h(t) < h(p1), we 

will make a recursive call A(T, <P11, ..., P1j>), 

where <P11, ..., P1j> is a forest of the subtrees of 

p1. The return value of A(T, <P11, ..., P1j>) is used 

as the return value of A(T, G). 

 (Since |T| |P1| and/or h(t) < h(p1), T is not able 

to embed the whole P1. So we will check T 

against <P11, ..., P1j> to find the highest and 

widest left-corner within <P11, ..., P1j>, which 

can be embedded in T. See Fig. 7 for illustration.) 

 

iii) If |T| |P1| and h(t)  h(p1) (but |T|  |P1| + |P2|), 

we further distinguish between two subcases: 

 label(t) = label(p1). In this case, we will call 

B(<T1, ..., Tk>, <P11, ..., P1j>). 

 label(t)  label(p1). In this case, we will call 

B(<T1, ..., Tk>, <P1>). 

In both cases, assume that the return value of B( ) 

is <i, v>. We need to do an extra checking: 

- If label(t) = label(v) and i = d(v), the return 

value of A(T, G) is set to be <1, v’s parent>. 

- Otherwise, the return value of A(T, G) is the 

same as <i, v>. 

Case 2: G = <P1, ..., Pq> (q > ), and |T| > |P1| + |P2|. 

In this case, we will call B(<T1, ..., Tk>, G). Assume 

that the return value of B(<T1, ..., Tk>, G) is <i, v>. 

The following checkings will be continually 

conducted. 

iv) If v p1’s parent, check whether label(t) = 

label(v) and i = d(v). If it is not the case, the 

return value of A(T, G) is the same as <i, v>. 

Otherwise, the return value of A(T, G) will be set 

to <1, v’s parent>. 

v) If v = p1’s parent, the return value of A(T, G) is 

the same as <i, v>.  

- B-function 

B(G′, G) is designed to handle the case that both G’ 

and G are forests made up of a set of subtrees rooted 

at nodes that are consecutive siblings in T and P, 

respectively. Let G’ = <T1, ..., Tk> and G = <P1, ..., 

Pq>. Denote by tl the toot of Tl (l = 1, ..., k). Denote 

by pj the root of Pj (j = 1, ...,q).In B(G’, G), we will 

make a series of calls A(Tl, <
lj

P , ..., Pq>), where l = 

pv 

p1 pq 
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1, ..., x k, j1 = 1, and j1j2  ... jx q, controlled 

as follows.  

1. Two index variables l, j are used to scan T1, ..., Tk 

and P1, ..., Pq, respectively. (Initially, l is set to 1, 

and j is set to 0.) They also indicate that <P1, ..., 

Pj> has been successfully embedded in <T1, ..., 

Tl>. 

2. Let <il, vl> be the return value of A(Tl, <Pj+1, ..., 

Pq>). If vl = pj+1’s parent, set j to be j + il. 

Otherwise, j is not changed. Set l to be l + 1. Go 

to (2). 

3. The loop terminates when all Tl’s or all Pj’s are 

examined. 

 (Fig. 8 helps for illustration of this iteration 

process.) 

 

4. If j > 0 when the loop terminates, B(G′, G) returns 

<j, p1’s parent>, indicating that G’ contains P1, ..., 

Pj. Otherwise, j = 0, indicating that even P1 alone 

cannot be embedded in any Tl (l k}). 

However, in this case, we need to continue 

searching for a highest and widest left corner <i, 

v> in P1, which can be embedded in G’. This can 

be done as follows. 

 i) Let <i1, v1>, ..., <ik, vk> be the return values of 

A(T1, <P1, ..., Pq>), ..., A(Tk, <P1, ..., Pq>), 

respectively. Since j = 0, each vl 
-1

((G)) (l 

= 1, ..., k). 

 ii) If each il = 0, return <0, (G)>. Otherwise, 

there must be some vl’s with il > 0. We call 

such a node a non-zero point. Find the first 

non-zero point vf with children w1, ...,ws such 

that vf is not a descendant of any other non-

zero point. Then, we will check <Tf+1, ..., Tk> 

against <P[ 1fiw ], ..., P[ws]>. Let y be a 

number such that <P[ 1fiw ], ..., P[ yi f
w  ]> 

can be embedded in <Tf+1, ..., Tk>. The return 

value of B(T’, G) should be set to <if + y, vf>.  

In the above process, (1), (2) and (3) together are 

referred to as a main checking while (4) alone as a 

supplement checking. 

We notice that in the main checking much 

useless work is conducted since in the case j = 0 

only one non-zero point <if, vf> is utilized in the 

subsequent supplement checking while all the other 

left corners are not used at all. Thus, the effort for 

looking for such return values brings the void. 

For this reason, we slightly change the 

definitions of both A-function and B-function to let 

them take a third input parameter which is a node u 

V(G), used to transfer an important message: once 

we have detected that only a left corner lower than u 

can be produced by the corresponding computation, 

it should stop immediately (since such a return value 

will not be used.) We say, a left corner <i, v> is 

lower than u if v = u or v is a descendant of u. u is 

then called a controlling point. In A(T, G, u), this 

checking can be made at the very beginning by 

checking whether p1’s parent is an ancestor of u. If it 

is not, the left corner to be returned must be lower 

than u and the computation of the corresponding A-

function should not be carried out. In B(G’, G, u), u 

is mainly used to avoid any useless supplement 

checking (to be discussed in 3.2). 

Let V(G) = GG V(G). 

 Our functions are redefined as follows: 

 A: T  G  V(G)  LG 

such that for T  T, G  G and u  V(G) A(T, G, u) 

= <i, v>  LG is the highest and widest left corner (in 

G) embeddable in T if it not lower than u. 

Otherwise, A(T, G, u) returns an empty left corner. 

 B: G  G  V(G)  LG 

such that for G’  G, G  G and u  V(G) B(G, G, 

u) = <i, v>  LG is the highest and widest left corner 

(in G) embeddable in G if it not lower than u. 

Otherwise, B(T, G, u) returns an empty left corner. 

Initially, u is set to be (G) for both functions. 

Elaboration on the controlling points leads to an 

almost linear time algorithm. 

3.2 Algorithm Description 
In this subsection, we give the formal description of 

our algorithm. 

- A-function  
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function A(T, G, u) (*Initially, u = (G).*) 
input: T = <t; T1, ..., Tk>, G = <P1, ..., Pq>. 

output: <i, v> specified above. 

begin 

1. if p1’s parent is not an ancestor of u then return <0, (G)>; 

2. if (q = 1 or |T|  |P1| + |P2|) 

3. then 
 { let P1 = <p1; P11, ..., P1j>; (*Case 1*) 

4. if t is a leaf then 

 { let (p1) = v; (*Case 1 - (i)*) 
5. if label(t) = label(v) then return <1, v’s parent> 

6.  else return <0, v>; 

7. } 

8. if (|T| |P1| h(t) < h(p1)) then return A(T, <P11, ..., P1j>, u);  

 (*Case 1 - (ii)*) 

9. if label(t) = label(p1) (*Case 1- (iii)*) 

10. then { if p1 is a leaf then {v := p1’s parent; i := 1;} 

11.  else { if p1 = u 

   then <i, v>:= B(<T1, ..., Tk>, <P11, ..., P1j>, p11)  
12.   else <i, v>:= B(<T1, ..., Tk>, <P11, ..., P1j>, u); 

13. if label(t) = label(v) and i = d(v) 

14. then {v := v’s parent; i := 1; } 
15. } 

16. } 

17. else <i, v> := B(<T1, ..., Tk>, <P1>, u); 

 (*If label(t)  label(p1), call B( ).*) 

18. return <i, v>; 
19. } 

20. else{ if label(t) = label(u) (*Case 2*)  

21.  then <i, v> := B(<T1, ..., Tk>, G, u’s first child); 
22. else <i, v> := B(<T1, ..., Tk>, G, u) 

23. if v p1’s parent (*Case 2 - (iv)*) 

24. then { if (label(t) = label(v))  i = d(v) 

25.  then return <1, v’s parent>; 

26. } 

27. return <i, v>; (*Case 2 - (v)*) 
28. } 

end 

The above algorithm can be viewed as composed 

of three parts: line 1, lines 2 - 19, and lines 20 - 28. 

In line 1, we only check whether p1’s parent is an 

ancestor of u. If not, return <0, (G)>. Otherwise, 

we go to the second part, in which we first check 

whether q = 1 or |T|  |P1| + |P2| (see line 2). If it is 

the case, we have Case 1 and then lines 3 - 19 are 

executed. In this process, all the three subcases (i), 

(ii), and (iii) are checked. If q > 1 and |T| > |P1| + 

|P2|, we go to the third part. That is, lines 20 - 28 will 

be carried out, in which we handle Case 2. This is 

done by calling B(<T1, ..., Tk>, G, u). Depending on 

its return value, subcase (iv) or (v) will be 

conducted. 

Special attention should be paid to line 8, 11, 12, 

17, 21, and 22 to see how a controlling point is 

propagated by a recursive call. For this, we also 

distinguish among five cases, i.e., Case 1 – (i), Case 

1 – (ii), Case 1 – (iii), Case 2 – (iv), and Case 2 – 

(v). 

In Case 1 – (i), no recursive call is conducted 
and thus the cut u is not transferred. 

In Case 1 – (ii), we will call A(T , <P11, ..., P1j>, 
u), by which the controlling point u is directly 
transferred to the recursive call since its return value 
will be used as the return value of A(T, G, u). (See 
line 8.) 

In Case 1 – (iii), we will call the B-function to 
check <T1, ..., Tk> against <P11, ..., P1j> or against 
<P1>, depending on whether label(t) = label(p1) or 
label(t) ≠ label(p1). Concerning the controlling point 
transfer, we need to consider three cases: 

 label(t) = label(p1) and p1 = u. In this case, we 

will call B(<T1, ..., Tk>, <P11, ..., P1j>, p11) with 

the controlling point being set to be p11. It is 

because in this case the main checking of the 

B-function execution may reveal that <T1, ..., 

Tk> is able to embed the whole <P11, ..., P1j>. 

In the case, the return value of A(T, G, u) will 

be set to <1, p1’s parent>, higher than u. So it 

is a useful computation; and downgrading the 

controlling point from u = p1 to p11 will let it 

go through. On the other hand, p11 will 

effectively prohibit any possible supplement 

checking in this B-function execution since 

such a checking can only bring out a left 

corner lower than p11 and will not be used. 

(See line 11.) 

 label(t) = label(p1) and p1 ↝ u. In this case, we 

will call B(<T1, ..., Tk>, <P11, ..., P1j>, u), by 

which u is directly transferred since we must 

have p11 ↝ u and no useful computation can be 

eliminated by the controlling point u. (See line 

12.) 

 label(t)  label(p1). In this case, we will call 

B(<T1, ..., Tk>, <P1>, u), by which u is directly 

transferred for the same reason as Case 1 – (ii). 

(See line 17.) 

In Case 2, we will call B(<T1, ..., Tk>, G, x), 
where x is u or u’s first child, depending on whether 
label(t) ≠ label(p1) or label(t) = label(p1). 

 If label(t) = label(p1), the controlling point for 

this recursive call should be set to u’s first 

child. It is because <T1, ..., Tk> may not be able 

to cover P1, but all the subtrees each rooted as 

a child of u. In this case, the whole T embeds 

G[u] and the return value of A(T, G, u) should 

be set to <1, u’s parent>, higher than u. So, 

setting the controlling point to u’s first child 

will keep this computation not skipped over. 

(See line 21.) 

 If label(t) ≠ label(p1), the controlling point u 

will be directly transferred (i.e., x = u) since in 

this case, only the left corner (returned by 



 

B(<T1, ..., Tk>, G, u)) higher than u will be 

used. (See line 22.) 

Accordingly, Case 2 – (iv) is handled in lines 24 

- 25, while Case 2 – (v) in line 27. 

- B-function 

In B(G′, G, u), the treatment of controlling points 

is more complicated than in Algorithm A(): 

1. Let G′ = <T1, ..., Tk> and G = <P1, ..., Pq>. At the 

very beginning, we need to check whether u = p1, 

where p1 is the root of P1. If it is the case, only 

the main checking needs to be conducted. (The 

supplement checking can only deliver a left 

corner lower than p1 and therefore should not be 

carried out.) 

2. In the main checking, a series of calls of A-

functions will be carried out. During this process, 

the controlling point for each A-function call 

needs to be dynamically changed as described 

below. 

 - Let <il, vl> be the return value of A(Tl, <
lj

p , 

..., Pq>, ul) for l = 1, ..., x k, where j1 = 1, 

j1j2  ... jx q, and u1 = u. In addition, for 2 

l x, ul is determined as follows: 

 - Let s be an integer such that any of T1, ..., Ts is 

not able to embed P1, but Ts+1 embeds <P1, ..., 

Pj> for some j > 0. Then, for 2 l s, we have 

 
 and for s + 1 l k, we have 

 ul = .  (3.2) 

The formula (3.1) shows how the controlling 

points are changed before we find the first subtree in 

T which is able to embed some subtrees in G. After 

such a subtree is found, the controlling points are 

determined in terms of the formula (3.2). It is 

because for each subsequent A-function call to check 

a Tl against <
lj

p , ...,Pq>, a returned left corner 

lower than 
lj

p  will not be used in the continuing 

computation. 

If s < k, it shows that <T1, ..., Tk> includes <P1, 

..., Pm> for some m (1 m q), and the supplement 

checking will not be conducted. If s = k, <T1, ..., Tk> 

does not include any subtree in G, but some Tl’s 

each may include a non-empty left corner in P1. 

Assume that we can find a subtree Tf such that it 

embeds a left corner <if, vf> in P1 with the following 

properties: i) if > 0, ii) vf is not a descendant of any 

other non-zero point, and iii) vf is also an ancestor of 

u. Then, a supplement checking will be performed as 

described in 3.1. Otherwise, no supplement checking 

is needed. 

In terms of the above discussion, we design two 

subfunctions of the B-function: B-without-s(G′, G), 

in which no supplement checking will be carried 

out; and B-with-s(G′, G, u), in which a supplement 

checking may be invoked. Then, during the 

execution of B(G′, G, u), if u = p1, call B-without-

s(G′, G); otherwise, call B-without-s(G′, G, u). 

function B(G’, G, u) (*Initially, u = (G).*) 

input: G’ = <T1, ..., Tk>, G = <P1, ..., Pq> 

output: <i, v> specified above. 

begin 
1. if u = p1 then return B-without-s(G’, G) 

2. else return B-with-s(G’, G, u); 

end 

function B-without-s(G’, G) 

begin 
1. l := 1; j := 0;   

2. while ( j < q and l k) do 

3. { <il, vl> := A(Tl, <Pj+1, ..., Pq>, pj+1); 
4.  if vl = p1’s parent and il > 0) then j := j + il; 

5. } 

6. return <j, p1’s parent> 

end 

function B-with-s(G’, G, u) 

begin 
1. l := 1; j := 0; v := u; f := 0;   

2. while (j < q and l k) do (*main checking*) 

3. { <il, vl> := A(Tl, <Pj+1, ..., Pq>, v) 
4.  if (vl = p1’s parent and il > 0) then {j := j + il; v := pj;} 

5.  else if (vl is an ancestor of v and il > 0) 

   then {v := vl; f := l;} 
6.   l:= l + 1; 

7. } 

8. if j > 0 then return <j, p1’s parent>; 

9. if f  = 0 then return <0, (p1)>; 

10. let w1, ..., ws be the children of vf; (*supplement 

checking*) 
11. l := f + 1; j := if; 

12. while (j < s and l k) do   

13. { <il, vl> := A(Tl, <G[wj+1], ..., G[ws]>, wj+1); 

14.  if (vl = vf  and il > 0) then j := j + il; 

15.  l:= l + 1;  

16. } 
17. return <j, vf>; 

end 

In B(G′, G, u), we first check whether u = p1. If it 

is the case, we will call B-without-s(G′, G) (see line 

1), in which, by a series of A-function calls, we try 

to find a largest j such that <T1, ..., Tk> is able to 

embed <P1, ..., Pj>, but not able to embed <P1, ..., Pj, 

Pj+1>. In this process, for each A-function call of the 

form A(Tl, <
lj

P , ..., Pq>, ul), ul is set to be 
lj

p , the 

root of 
lj

P (see line 3 in B-without-s( )). No 

ul =  

vl-1, 

ul-1, 

if vl-1 is an ancestor of ul-1 and il-1> 0;  

if vl-1 is not an ancestor of ul-1 or il-1 = 0; 

(3.1) 



 

supplement checking will be conducted since the left 

corner produced by a supplement checking must be 

lower than 
lj

p . 

If u  p1, we will call B-with-s(G′, G, u) (see line 

2 in B( )), in which we have two while-loops: one 

from line 2 to 7 and the other from line 12 to 16. In 

the first while-loop, we do the main checking to find 

the largest j such that <T1, ..., Tk> embeds <P1, ..., 

Pj>. In this process, by each A-function call, the 

corresponding controlling point will be set according 

to the formulas (3.1) and (3.2). In the second while-

loop, the supplement checking will be carried out. 

However, this is done only when the following two 

conditions are satisfied: 

(1) j = 0, and 

(2) There exists at least a non-zero point <if, vf> 

such that vf is not lower than u. 

In B-with-s(G′, G, u), we use a variable f to 

record the first of such non-zero points, which is not 

a descendant of any other non-zero point. Initially, f 

is set 0. Therefore, if (2) is not satisfied, we must 

have f = 0 after the main checking is completed. So 

only when j = 0 and f > 0, the supplement checking 

will be conducted (See lines 8 and 9.) 

We also notice that in the supplement checking, 

for each A-function call of the form A(Tl, <G[wj+1], 

..., G[ws]>, wj+1), the controlling point is set to be 

wj+1 to prohibit a further supplement checking since 

this can only return a useless left corner lower than 

wj+1. 

4 CONCLUSIONS 

In this paper, a new algorithm is proposed to solve 

the ordered tree inclusion problem. Up to now, the 

best algorithm for this problem needs quadratic time. 

However, ours requires only O(|T|logDP) time and 

O(|T| + |P|) space, where T and P are a target and a 

pattern tree (forest), respectively; and DP is the depth 

of P. The critical concept of our algorithm is the left 

corner, which enables us to develop a deep insight 

into the tree inclusion problem and extend it to a 

more general one to return a left corner as a result. 

In practice, the general problem seems to be more 

useful than the original one since if P cannot be 

embedded in T, we may want to know whether any 

part of P can be embedded in T. 
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