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Abstract—In the problem of translating XPath expressions into 

SQL queries, the most challenging part is to find a way to 

minimize the use of least fixpoint (LFP) operators when a DTD 

graph contains cycles. In this paper, we address this issue and 

present a new algorithm to do the task based on the 

recognition of a kind of DTD graphs, which can be reduced to 

a single node by contracting nodes into their parents one by 

one. For this kind of DTD graphs, not only the corresponding 

relational algebra expressions can be efficiently generated, but 

the use of LFP operators can also be minimized. For those 

DTD graphs that are not reducible, we devise a different 

algorithm which is less efficient than the algorithm for 

reducible graphs, but more efficient than any existing method. 

Keywords: XML, XPath, Query Processing, XPath transformation 

I.  INTRODUCTION 

With the widespread of XML both as a document format 
and as a data exchange format, the interest in querying XML 
data stored in relational databases has increased. With this 
comes the need for answering XML queries in a relational 
database system, by translating XML queries to SQL 
statements [11, 19, 21]. It is quite different from the 
prevailing methods for evaluating twig joins [7, 8, 9, 10, 11]. 

Let D be a DTD (Document Type Definition). Let R be a 
relational schema defined for D by using the shared-inlining 

technique [24], denoted as a mapping f: D  R. Denote by 

D all the XML documents conforming to D. Denote by R 
all the possible relational states of R. Then, the storage of a 
set of documents conforming to D in DB(R) (a database 
with the relational schema R) can be considered as a 

mapping derived from f, denoted as  fs: 2D  
 R. 

Given an XPath expression Q, what we want is to find 
an equivalent relational algebra expression Q’, which can be 

evaluated against DB(R), such that for any document d  D, 
Q on d can be answered by Q’ on fs({d}). That is, the set of 
nodes selected by Q on T equals the set of tuples selected by 
Q’ on fs({d}). We denote this by 

 Q(T) = Q’(fs ({d})). 

When a DTD is simply a tree or a DAG (directed acyclic 
graph), a simple translation can be conducted by 
enumerating all matching paths of the input XPath 
expression in the DTD, sharing common subpaths, rewriting 
the paths as relational algebra expressions, and taking a 
union of all of them [12]. However, when a DTD contains 
recursive element type definition, the problem becomes 

challenging [4, 5]. In this case, the interaction between 
recursion in the DTD and recursion (descendant-or-self axis, 
represented by ‘//’) in an XPath expression significantly 
complicates the translation.  

In the past decade, a lot of work has been done on 
querying XML data stored in relational databases such as 
those discussed in [7, 9, 10, 12, 14, 23]. However, as 
surveyed in [15], in all these methods, except the strategies 
proposed in [14, 25], the problem of translating recursive 
XML queries over recursive DTD is not addressed. 

The method discussed in [14] is capable of translating 
path queries with ‘//’ to a sequence of SQL queries using the 
SQL’99 recursion operator. However, the SQL queries 
produced by [14] tend to be large and complicated and 
cannot be effectively optimized. Also, as pointed out by Fan 
et al. [25], the method is applicable only to a very limited 
class of path expressions. 

In [25], Fan et al. proposed a different method. The main 
idea of this method is to transform an XPath expression to 
an extended XPath expression, in which some variables may 
be used to represent sub-expressions. In addition, any ‘//’ is 
replaced with a Kleene closure. Given an extended XPath 
expression, a sequence of relational algebra expressions can 
be easily created. The time complexity of this process is 
bounded by O(|D|

3
|Q|log|D|). When translated to an 

extended XPath expressions, a Kleene closure of the form: 
E* corresponds to a sub-expression of the form: A//B in an 
XPath expression, and E represents all the paths from A to B 
in the corresponding DTD graph. 

However, the generated expressions are also very large 
with many unnecessary joins involved. For example, for the 
graph shown in Fig. 1, the regular expression generated by 
Fan’s algorithm [25] for the path from v1 to v1 would be  

 e0  e0*  ((e1  e0*e1)/( e4e0*e1)*  (e4  e4e0*)). 

 

But the minimized regular expression for this is (e0  e4 

 e2)*. In the Appendix, we will make a sample trace to 
show how Fan’s algorithm [25] works in generating such a 
complicated expression over the above graph. 

It is obvious that the Kleene closure is a very costly 
operation. It dominates the whole query evaluation time. So, 

Fig. 1. A directed graph 
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it is necessary to reduce the size of E such that as few joins 
as possible are involved. 

In this paper, we propose a new algorithm to mitigate the 
problem to some extent. We will recognize a class of DTD 
graphs G, for which a reduction sequence of nodes: v1, 
v2, …, vn = r can be found such that G can be reduced to a 
single node r, where n is the number of G’s nodes. For this 
kind of DTD graphs, we can create a relational algebra 
expression in O(mlogn) time, where m is the edges of G. 
More importantly, we can always find a way to generate 
minimized relational algebra expressions for them. For 
those non-reducible graphs, we propose a different 
algorithm. Although it is less efficient than the algorithm for 
the reducible graphs, it is more efficient than any existing 
strategies. 

The paper contains five sections. In Section 2, we review 
DTDs, XPath expressions, and schema-based mapping from 
XML to relations. In Section 3, we concentrate on the 
recursion in XPath expressions. Section 4 is devoted to the 
general process for transforming XPath queries to relational 
algebra expressions. Finally, the paper concludes in Section 
5. 

II. BASIC CONCEPTS 

In this section, we review DTDs and XPath expressions, 
as well as the XML data storage in relational databases to 
provide a discussion background. 

- DTD 
Abstractly, an XML DTD can be considered as a triple 

<H, S, r>, where H is a set of element types (corresponding 
to element tag names); r is the root type; and S is a set of 
rules defining the types in H. That is, for any type A in H, 
S(A) (the definition of A) is an expression: 

  ::=  | B | ,  | (| ) | *,  

where  is the empty word, B represents a type in H 
(referred to as a subelement or child type of A), and ‘|’, ‘,’ 
and ‘*’ denote disjunction, concatenation, and the Kleene 

star, respectively. We refer to A S(A) as the production of 
A. 

We will represent a DTD D as a graph, called the DTD 
graph of D and denoted by GD, as done in [24]. In GD, each 
node stands for a distinct element type and each edge for a 
parent/child relationship. In addition, an edge (A, B) is 
marked with ‘*’ if B is enclosed in a definition of A with the 

form: *.  
As an example, see the DTD graph shown in Fig. 2, 

representing a DTD: <H, S, dept> with 

 H = {dept, course, cno, title, time, prereq, takenBy, 

  taughtBy, professor, pno, pname, teaching, student, 

sno, sname, qualified}, and 

 S defined as follows: 

 dept  course* 

course  cno, title, time, prereq, takenBy, taughtBy 

 prereq  course* 

 takenBy  course* 

 taughtBy  professor* 

 student  sno, sname, qualified 

 qualified  course* 

 professor  pno, pname, teaching 

 teaching  course* 

 

In the above DTD graph, we handle each attribute as a 
primitive element type for simplicity. But it obviously does 
not lose any generality. 

A DTD is recursive if it has an element type that is 
defined (directly or indirectly) in terms of itself. When 
represented as a graph, it will contain a few nested and 
overlapping cycles. So the DTD shown in Fig. 2 is recursive. 

- XPath expressions 
XPath [6] is a popular language for querying XML data. 

It has been used in many XML applications and in some 
other languages for querying and transforming XML data, 
such as XQuery and XSLT. In this paper, we address a 
practical fragment of XPath, in which each path in a 
predicate can be compared with a constant, but not with 
another path, given as below: 

 p ::= | A | * | p/p | p//p | p[q] | 

 q ::= p| p c | q | q q | q q 

  ::= ‘=’| ‘!=’| ‘>’| ‘>=’| ‘<’| ‘<=’ 

where ‘.’, A, and * denote the self-axis, a type (element tag 
name) and a wild card, respectively. ‘/’ and ‘//’ are child-
axis and descendant-or-self-axis, respectively; and [q] is a 
predicate (also referred to as a qualifier), in which c is a 

constant and  represents a comparison relation. For 
example, the following XPath expression 

 /dept/course[title = ‘XML’ or 

 ((time = 2008) and prereq = ‘CS2201’)]//professor 

selects the professor who taught a course either with title 
‘XML’ or with the prerequisite ‘CS2201’ but not in 2008. 
Such an XPath expression can be represented as a tree with 
five kinds of nodes: axis-tag nodes (at-node), logical-AND 

nodes (-node), logical-OR nodes (-node), logic-negation 
node, and constant node: 

 at-node: An axis-tag node in the tree stands for one 
location step. It has the content /tag or //tag. 

 -node: A logical-AND node connects two or more child 
subtrees with AND logic. 

 -node: A logical-OR node connects two or more child 
subtrees with OR logic. 

 -node: A logical-negation node negates the result of its 
unique subtree. 

dept 

course 

cno title taughtBy 

pno pname teaching 

sno sname qualified 

student 

professor 

takenBy time prereq 

Fig. 2. A DTD graph 
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 C-node: A constant node is a value of the form: = c, != c, 
< c, > c, <= c, or >= c.  

For example, the above XPath expression can be 
represented as a tree shown in Fig. 3. 

 

For any at-node v, we use v.axis and v.tag to refer to the 
axis (‘/’ or ‘//’) and the tag appearing in v, respectively. In 
addition, we define some operations on query tree nodes: 

children(v) – returns all child nodes of v; 
parent(v) – returns the parent of v; 
atChildren(v) – returns a set of at-nodes in the subtree 
rooted at v, which are reachable without traversing through 
other at-nodes. 
atParent(v) – returns the nearest ancestor at-node of v. 

For example, given the query tree in Fig. 3, we have 
children(v1)  = {v2, v11}, parent(v5) = v2, atChildren(v1)  = 
{v3, v7, v9, v11}, atParent(v9) = v1. 

- Mapping a DTD into a relation schema 
In order to store a set of XML documents (conforming 

to a certain DTD D) in a relational database, we will first 

establish a map f: D R from D to a relational schema R. 
To this end, we will first remove all the edges marked with 
‘*’ in GD, dividing it into several node-disjoint components: 
G1, …, Gk. Each Gj is then mapped to a relation schema Rj 
in R, which has three attributes: ID (identifier of elements), 
P (parent of the current element) and V (for the values of all 
the other attributes). If Gj has more than one incoming edges, 
we will use a parentCode attribute [24] to distinguish 
among different parents. 

From f, one can easily derive a data mapping fs: 2D  
 R, 

representing the storage of a set of documents in DB(R). 
Let d be a document conforming to D. Then, in fs({d}) (the 

database storing d), a tuple (id, p, v) in a relation with a 

certain schema RA represents an element in d with its 

identifier equal to id, its parent element identifier to p, and 

all its attribute values represented by v. For example, the 

DTD shown in Fig. 1 can be mapped to four relation 

schemas: Rd, Rc, Rp, and Rs, representing dept, course, 

professor, and student, respectively. These four relation 

schemas are connected as shown in Fig. 3(a). In Fig. 3(b), 

we show a sample database, in which for each relation only 

values for ID and P are displayed. (See [24] for a detailed 

discussion.) 

 

III. ON THE RECURSION IN XPATH 

The most difficult issue in translation of XPath 
expressions is the treatment of //-axis. In this section, we 
mainly address this problem. The discussion of a general 
process for the transformation is shifted to the next section. 

A. Reducible subgraphs 

Consider an XPath query A//B over a DTD D. This 
query, when evaluated at an A-element in a document T 
conforming to D, is to find all B-elements which are the 
descendants of the A-element. To do this, Fan et al. [25] 
proposed an algorithm to create a sequence of extended 
XPath expressions to represent all the paths connecting A to 
B. (An extended XPath is a regular XPath expression [18] 
with variables being used.) As shown in the introduction, an 
extended XPath expression generated by Fan et al. [25] can 
be very large. 

To mitigate this problem, we recognize a class of graphs, 
for which not only the corresponding relational algebra 
expressions can be efficiently created, but the use of LFP 
operations is minimized. 

First, we notice that what we want is to produce an 
expression for a graph containing all the paths from a node 

 to another node in a certain graph G. We call such a 

graph an -graph, denoted as G[, ].  Obviously, every 

node in G[, ] is reachable from . 

Definition 1 An -graph G[,] is reducible if it can be 
reduced to a graph consisting of a single node by means of 
the following transformations: 

O1 (Remove a loop): If e is an edge such that head(e) = 
tail(e), delete e. (Note that for an edge e = (a, b), head(e) 
= a and tail(e) = b.) 

O2 (Remove a node): If u   is a node such that all edges e 
with tail(e) = u have head(e) being a same node v, 
contract u into v by deleting u and all edges from v to u, 
and converting any edge e with head(e) = u into an edge 
e’ with head(e’) = v and tail(e’) = tail(e). (We remark 

that v may be connected to u by multiple edges.)  

As an example, consider the subgraph G[Rc, Rp] of the 
graph shown in Fig. 4(a). It can be reduced as shown in Fig. 
5. 

From Fig. 5, we can see that in each step we remove 

some loops and then contract a node u ( ) into another 
node v if v is the unique parent of u. This process continues 
until only one node is left. 

/dept 

 

/title  

/year 

/prereq =XML 

/course 

//professor 

=2008 

= ‘CS2201’ 

v1 

v2 

v3 

v4 

v5 

v6 

v8 

v9 

v10 

v11 

v0 

Fig. 3. A tree representing an XPath expression 
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Fig. 4. A DTD graph and a set of relations 

ID P 

d1 - 

Rd 

ID P 

p1 c1 

p2 c5 

Rp 

ID P 

s1 c2 

Rs 

(b) 

Rd 

* 
* 

* 

Rs Rc Rp * 

* * 

Rc  ID   P 

c1 d1 

c2 d1 

c3 c1 

c4 s2 

c5 p1 

a1  



117 

 

 
If in a certain step we cannot find a node ( ) which 

has only one parent, the process gets stuck. Then the 

corresponding -graph is non-reducible. Since for the -
graph in the graph shown in Fig. 4(a) the reduction can 
always be conducted, it is reducible. 

To check whether an -graph is reducible, we do the 
following operation repeatedly. 
1. Remove all the loops. 

2. Check each u in the -graph to see whether O2 can be 
applied to it. If it is the case, contract it.  
Obviously, this process requires O(n

2
) time, where n is 

the numbers of the nodes of the -graph. 
From the above discussion, we can see that for a 

reducible -graph a reduction sequence of nodes: v1, v2, …, 

vn =  can be found such that the -graph can be reduced 

to  by removing vi in the sequence. For convenience, we 

call  the root of the -graph. For example, for the G[Rc, 
Rp] shown in Fig. 5, the reduction sequence of the nodes is: 
Rs, Rp, Rc. Its root is Rc. 

Accordingly, we also get a sequence of graphs: G0, 

G1, …, Gn-1 such that G0 is the original -graph and Gi = 
Gi-1/{vi} for i > 0 (see Fig. 5 for illustration). For an edge e 

 Gi, we use headi(e) and taili(e) to represent its head and 
tail in Gi, respectively. We notice that for the same edge e 

appearing in Gi and Gj with i  j, it is possible that headi(e) 

 headj(e). For instance, in G0 (see Fig. 5), head0(e2) = Rs. 
But in G1, head1(e2) = Rc. However, for any e, if it appears 
in G0, G1, …, Gi for some i, we must have tail0(e) = tail1(e) 
= … = taili(e). 

In the graph reduction process, we can associate each 
node v with three data structures to facilitate the creation of 
relational algebra expressions: 

loop(v): a set of edges such that for each e in the set 
there exists Gi for some i such that we have headi(v) = 
taili(v). 

non-loop(v): a set of edges, along which v is contracted 
into another node. (Remember that we may have multiple 
edges in a graph.) 

contractor(v): a node, into which v is contracted. 
Since each node has only one contractor, the contraction 

process can be represented by a tree (called a contraction 
spanning tree and denoted as CST), in which there is an 
edge from v to u if u is contracted into v. 
Example 1 In the graph reduction process shown in Fig. 5, 
a set of data structures will be constructed, as shown in Fig. 
6(a). Fig. 6(b) shows the corresponding CST tree. 

 

In order to generate an expression for a reducible -
graph, we explore the correspnding CST tree bottom-up. 
During the traversal of the CST, for each encountered node 
v, the associated data structures are used to generate an 
expression for it, which is then utilized to create an 
expression representing all the paths from the root to v.  
Algorithm gen-expression(T) (*T is a CST.*) 

begin 

1. search T bottom-up; 

2. for each encountered node v do 

3. { Ev  ; Qv  ; 

4.  for each e  non-loop(v) do 

5.   {Ev  Ev  )(0 eheadR  )(0 etailR ;} 

6.  for each e  loop(v) do 

7.  {let v1  …  vk be the path from v to head0(e) in T; 

8.   Q  
1vE ⋈ … ⋈

kvE ; 

9.   Qv  Qv   Q  ⋈ )(0 eheadR ⋈ )(0 etailR ; 

10.  } 

11.  Ev  Ev ⋈ Qv*; 

12. } 

13. for each node v do 

14. { let u1  …  uj be the path from  to v in T; 

15.  E-v   
1uE ⋈ … ⋈

juE ; 

16. } 

End 

The algorithm works in two phases. The first phase 
consists of lines 1 - 12. The second phase consists of lines 
13 - 16. In the first phase, we create an expression for each 
node v. In the second phase, for each node v, the expression 
representing all paths from the root to it is generated by 
using the expressions generated in the first phase. 
Example 2 Applying the above algorithm to the CST tree 
and the data structures shown in Fig. 6, we will generate the 
following expressions step by step. 
first phase: 

Step 1:  access Rs. loop(Rs) = . non-loop(Rs) = {e3}. 

  Es = Rc ⋈ Rs. 

Step 2:  access Rp. loop(Rp) = . non-loop(Rp) = {e1}. 

  Ep = Rc ⋈ Rp. 

Step 3:  access Rc. loop(Rp) = {e0, e2, e4}. 
  head0(e0) = Rc. head0(e2) = Rs. head0(e4) = Rp. 
  head0(e3) = Rpub. 

  Ec = (Rp ⋈ Rp  

   (Rc ⋈ Rs) ⋈ (Rs ⋈ Rc)  

Rc 

e4 

Rc 

remove loop e0 

contract Rs  into Rc 

remove loop e2 

contract Rp  into Rc remove loop e4 

Fig. 5. Illustration of graph reduction 

G2: 

Rs Rc Rp 

e4 

e3 

e2 

e1 

e0 

Rc Rp 

e4 

e1 

e2 

G0 = G(Rc, Rp): G1: 
loop(v) non-loop(v) contractor(v) 

Rs  e3 Rc 

Rp  e1 Rc 

Rc e0, e2, e4  

Rc 

Rs Rp (a) 

Fig. 6. Data structures and contraction tree 
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   (Rc ⋈ Rp) ⋈ (Rp ⋈ Rc))* 

   = (Rp  Rc ⋈ Rs  Rc ⋈ Rp)* 

second phase: 

Step 4:  Ec-s = Ec  ⋈ Es. 

Step 5:  Ec-p = Ec  ⋈ Ep. 

Step 6:  Ec-c = Ec  ⋈ Ec= Ec.  

Proposition 1 Let v be a node in a reducible -graph. 

Then the expression E-v produced by gen-expression( ) 

exactly represents all paths from  to v. 

Proof.  We use (E-v) to represent a set containing all the 

paths represented by E-v. We prove the proposition by 

induction on the length of the path p from  to v in the 
corresponding CST tree T. 

Basis. When |p| = 1,  is the contractor of v. E-v = E ⋈ Ev. 

The proposition holds. 
Induction step. Assume that when |p| = k the proposition 
holds. We consider the case that |p| = k + 1. Let v’ be the 

contractor of v. Then the length of the path from  to v’ is k. 

According to the induction assumption, E-v’ exactly 

represents all paths from  to v’. Since the -graph is 
reducible, all paths reaching v must go through v’. So the 

expression should be Ev’ ⋈  Ev. It is exactly done by the 

algorithm.      

B. Non-reducible subgraphs 

If an -graph G[,] is not reducible, then in the 
reduction process we will reach a graph G’, in which we are 

not able to find a node ( ) that has only one parent.  
Let v1, v2, …, vj (j < n) be the node sequence removed 

from G[,] in the incomplete reduction process. Let G0, 
G1, …, Gj+1 be the corresponding graph sequence such that 

G0 = G[,], Gi+1 = Gi/{vi} (i = 0, …, j), and Gj+1 cannot be 
reduced any more. We call Gj+1 a remaining graph. Let 
r1, …, rl be those nodes in Gj+1 such that into each of them 

some vi (1  i  j) is contracted. Then, we will construct l 
CST trees: T1, …, Tl in the same way as discussed in the 

previous subsection. Each Ti is rooted at ri (1  i  l). 

Assume that  is a node in some Tk (1  k  l). Then, we can 

construct an expression kr
E representing all paths from rk 

to , as discussed in 3.1. 

As an example, consider an G[,] shown in Fig. 7(a) 

with  = v2 and  = v7. 

 

For this graph, we can find a contraction sequence of 
nodes: v7, v6, v3, v8, v5, and a series of contracted graphs: G0 

= G[,], G1 = G0/{v7}, G2 = G1/{v6}, G3 = G2/{v3}, G4 = 
G3/{v8}, G5 = G4/{v5}. We show G5 in Fig. 7(b). It is a 
remaining graph and cannot be reduced any more. In G5, 
special attention should be paid to v1 and v2. They are the 
contractors of v3 and v5, respectively. So, two CST trees will 
be constructed for the removed nodes as shown in Fig. 7(c). 
The expression representing all the paths from v1 to v7 is 

easy to compute: 
71 vvE  = v7 ⋈ v6 ⋈ v3 ⋈ v1. 

In a next step, we need to calculate
kr

E  over the 

remaining graph, and produce an expression 
k

r
E  ⋈ kr

E  as 

the final result.  

However, 
k

r
E  cannot be calculated in the same way as 

an expression over a reducible graph. A different algorithm 
has to be devised. In the following, we discuss this 
algorithm in detail. Its time complexity is the same as Fan’s 
algorithm [25]. But much less computation will be 
conducted. 

Let G’ be a remaining graph. We number its nodes from 
1 to n’, where n’ is the number of the nodes in G’. Our 
purpose is to produce a set of expressions of the form Ei-j 

with each representing all paths from i to j, from which E-r 
can be created, where r is the root of some CST tree, in 

which  appears. 
So the algorithm works in two phases. In the first phase, 

we create necessary Ei-j’s. In the second phase, we generate 

E-r. 

Procedure phase-1(G’) 
begin 
1. for i = 1 to n do 
2. { for j = 1 to n do 

3.  { if e = (i, j) is an edge in E then Ei-j  i ⋈ j; 

4.   else Ei-j  ; 
5. } 
6. } 
7. for k = 1 to n do 

8. { Ek-k  Ek-k*; 
9.  for i = k + 1 to n do 

10.  { if Ei-k   then Ei-k  Ei-k ⋈ Ek-k; 

11. for j = k + 1 to n do 

12.   { if Ei-j   then Ei-j  Ei-j  Ei-k ⋈ Ek-j; 

13. } 
14.  } 
15. } 
end 

Example 3 In this example, we trace the computation when 
the above algorithm is applied to the graph shown in Fig. 
7(b). In the process, the three nodes v1, v2, and v4 in the 
graph are numbered with 1, 2, and 3, respectively. Besides, 

we use ‘’ and ei to represent respectively ⋈ and head(ei) ⋈

tail(ei) for simplicity. We also use I to represent an identity 

relation such that for any relation R we have I ⋈ R = R ⋈ I = 

v1 

v3 

v6 

v5 v4 
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Fig. 7. -graph, remaining graph, and CST trees 
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R. Finally, for a Kleene operation R*, if R is  or I, R* is 
defined to be I. 

Initialization (lines 1 – 5): 

E
(0)

 = 
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First iteration (k = 1): 
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Second iteration (k = 2): 
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Third iteration (k = 3): 
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Concerning the above algorithm, we have the following 

proposition. 
Proposition 2 After the execution of phase-1, the following 
statements are true: 

i) Ei-j for i  j is an expression representing exactly the 
paths from i to j which contain no intermediate node 
larger than j. 

ii) Ei-j for i < j is an expression representing exactly the 
paths from i to j all of whose intermediate nodes are 
smaller than i. 

Proof. Straightforward by induction on k.  
In terms of this proposition, we design the second phase 

to generate E-r. 

If   r, for all those joins of the form E-j ⋈ Ej-r, which 

should be included in E-r, j should be larger than r. If  < r, 

j should be larger than or equal to . 
According to the above analysis, we give the following 

procedure. 

Procedure phase-2(E) (*E contains all the expressions 

produced in phase-1.*) 

Begin 

1. If   r then j  r + 1; 

2. else j  ; 

3. E-r  
kr

E   (E-j  ⋈ Ej-r)  …  (E-n’  ⋈ En’-r); 

end 

For example, the expression representing all paths from 
v2 to v1 in the graph shown in Fig. 7(b) is 

 E2-1   (E2-2  ⋈ E2-1)  (E2-3  ⋈ E3-1) 

 = e2   (e12  e2e1)*  ⋈ e2  (e5  e2e4) ⋈ e3. 

Proposition 3 After the execution of phase-2, E-r is an 

expression representing exactly the paths from  to r. 

Proof. In terms of Proposition 2, E-r generated by phase-1 

represents only those paths from  to r, which contain no 

node larger than  or larger than r, depending on whether  

 r or  < r. By phase-2, the missing sub-expressions are 

calculated and included in the final expression.  

IV. GENERAL PROCESS 

In this section, we describe a general process to 
transform an XPath expression to a relational algebra 
expression. 

As shown in Section 2, an XPath expression Q, can 
always be represented as a tree TQ. Then, given a query tree, 
what we need to do is to construct an expression from TQ. 
Our method works in three steps. 

In the first step, we transform each node v of the form 
//B to a node of the form /E such that E may contain Kleene 
closures. It is done as follows. 

 If B is an attribute name, we will first find the relation 
name C, in which B appears. Then, find atParent(v).tag 

and construct an -graph G[atParent(v).tag, C]. 
Assume that the expression created for the graph is E. 
We will replace v with an edge (u, u’) such that u = ‘/E’ 
and u’ = ‘/B’ and the children of v become the children 
of u’. 

 If B is a relation name, we will construct an expression E 
for G[atParent(v).tag, B] and replace v with ‘/E’. In this 
way, we transform TQ to TQ’ which does not contain any 
‘//’. 

In the second step, we mainly handle attributes. For any 
at-node v of the form /tag with tag being an attribute in 
some relation R, we will find its child u if it exists. We 
distinguish two cases of u. 

 u is a logic node ‘’ or ‘’. In this case, we will find all 
children of u. Each of them must be a constant node of 

the form c, where c is a constant and is 

= != >, >=,<or <=. Let c1, …, kck be the children of 

u. If u = ‘’, construct a selection operation 

)(
11

R
kk ctagctag   . 

 Otherwise, construct 

  )(
11

R
kk ctagctag   . 

 Substitute it for v. 

 u is a constant node c. Replace v with )(Rctag . 

In this way, we transform TQ’ to TQ’’ which does not 
contain any attribute name. 

Now we have only logic nodes and at-nodes with 
relation names in TQ’’. (See Fig. 8 for illustration.) 

In the third step, we will search TQ’’ bottom-up. Let v be 
the node currently encountered. The following operations 
will be performed. 
1. If v is a leaf node, return v. 

2. If v is a non-leaf node, it will be checked as follows. 

v = ‘’: Let v1, …, vk be the children of v. Let Fi be the 
relational algebra expression Fi for Q[vi] (subtree rooted at vi) 

(i = 1, …, k).  Return F1   …  Fk. 
v = ‘’: Let v1, …, vk be the children of v. Let Fi be the 
relational algebra expression Fi for Q[vi] (i = 1, …, k).  

Return F1   …  Fk. 
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v = ‘’: Return R – F, where R is the relation name in its 
atParent, and F is the expression created for its unique child. 
v = ‘/tag’: Let v1, …, vk be the children of v. Let Fi be the 
relational algebra expression Fi for Q[vi] (i = 1, …, k).  If 

‘tag’ appears in at least one Fi , return F1 ⋈  … ⋈  Fk. 

Otherwise, return tag ⋈ F1  ⋈ … ⋈ Fk. 

Example 4 Applying the above process to the query tree 
shown in Fig. 3, we will get a tree shown in Fig. 8 after the 
first two steps. 

After the third step, we will get the following 
expression: 

dept ⋈ (title=XML(course)  ((course - 

year=2008(course))  prereq=CS2001(course)) ⋈ E.   

The above expression can be evaluated in any relational 
database system which supports the LFP operation. But 
such an expression should be optimized. This can be done 
by using the standard techniques [26]. 

 

V. CONCLUSION 

In this paper, a new method is proposed for transforming 
unique parents. For this kind of graphs, not only the 
expressions can be efficiently generated, but the use of the 
LFP operators can be minimized. The main idea behind it is 
to recognize a class of DTD graphs, which can be reduced 
by contracting nodes into their respective roots. For a non-
reducible graph, we divide it into two parts: a reducible part 
and a non-reducible part, and create expressions for them 
separately. In this way, the use of the LFP operators can also 
be dramatically decreased. In addition, a theoretical 
comparison of our method with Fan’s algorithm is 
conducted, showing that Fan’s algorithm is in essence a 
brute-force algorithm, by which no attention is paid to the 
structure of DTD graphs. So it cannot be efficient, 
especially for the reducible graphs.  
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APPENDIX 

In the Appendix, we describe Fan’s algorithm [25] and 
apply it to a simple graph to see how it works. Especially, 
showing that even for a simple graph the created regular 
expression can be very large. 

In Fan’s algorithm, the nodes in a graph are numbered, 
and a variable M[i, j, k] is used to store the expression 
representing all paths from node i to node j via nodes whose 
numbers are less than or equal to k. 

Through a nested loop, the algorithm checks all possible 
values for i, j, and k; and for each combination the value of 
the corresponding M[i, j, k] is established. Therefore, it is a 
brute-force algorithm. 

Algorithm CycleE(G, A, B) 
Input: a graph G with n nodes, and two nodes A and B in G. 
Output: a regular expression representing all paths from A to 
B in G. 
begin 
1. for i = 1 to n do { 
2. for j = 1 to n do { 
3.  if i = j 

4. then M[i, j, 0]  ; 

5. else if i  j and (i, j) is an edge e in G 

6. then M[i, j, 0]  e; 

7. else M[i, j, 0]  ; }} 
8. for k = 1 to n do { 
9.  for = 1 to n do { 
10.   for j = 1 to n do { 

11. if M[i, k, k - 1]   and M[k, j, k -1]   

12. then M[i, j, k]  M[i, j, k - 1]  

  M[i, k, k - 1] M[k, k, k - 1]* M[k, j, k - 1]; 

13. else M[i, j, k]  M[i, j, k - 1]; }}} 
14. return M[A, B, n]; 
end 

In the algorithm, all M[i, j, 0]’s are first initialized (lines 

1 – 7). Then M[i, j, k]’s with k  1 are calculated, by 
inspecting M[i, j, k - 1],  M[i, k, k - 1], and M[k, j, k -1], 
including all possible cycles, i.e.,  M[k, k, k - 1]* (lines 8 -
13). 

The following example helps for illustration. 
Example 5 In this example, we apply the algorithm to the 
graph shown in Fig. 9, and trace the computation process. 

 
 

k = 1, i = 1, j = 1. 
M[i, k, k-1] = M[1, 1, 0] = e0 
M[k, j, k-1] = M[1, 1, 0] = e0 

M[i, j, k] = M[i, j, k-1]  (M[i, k, k-1]M[k, k, k-1]*M[k, j, k-1]) 

M[1, 1, 1] = M[1, 1, 0]  (M[1, 1, 0]M[1, 1, 0]*M[1, 1, 0]) 

= e0  (e0e0*e0 ) = e0  e0*. 
k = 1, i = 1, j = 2. 
M[i, k, k-1] = M[1, 1, 0] = e0 
M[k, j, k-1] = M[1, 2, 0] = e1 

M[i, j, k] = M[i, j, k-1]  (M[i, k, k-1]M[k, k, k-1]*M[k, j, k-1]) 

M[1, 2, 1] = M[1, 2, 0]  (M[1, 1, 0]M[1, 1, 0]*M[1, 2, 0]) 

= e1  (e0e0*e1) = e1  e0*e1. 
k = 1, i = 1, j = 3. 
M[i, k, k-1] = M[1, 1, 0] = e0 
M[k, j, k-1] = M[1, 3, 0] = e3 

M[i, j, k] = M[i, j, k-1]  (M[i, k, k-1]M[k, k, k-1]*M[k, j, k-1]) 

M[1, 3, 1] = M[1, 3, 0]  (M[1, 1, 0]M[1, 1, 0]*M[1, 3, 0]) 

= e3  (e0e0*e3) = e3  e0*e3. 
k = 1, i = 2, j = 1. 
M[i, k, k-1] = M[2, 1, 0] = e4 
M[k, j, k-1] = M[1, 1, 0] = e0 

M[i, j, k] = M[i, j, k-1]  (M[i, k, k-1]M[k, k, k-1]*M[k, j, k-1]) 

M[2, 1, 1] = M[2, 1, 0]  (M[2, 1, 0]M[1, 1, 0]*M[1, 1, 0]) 

= e4  (e4e0*e0) = e4  e4e0*. 
k = 1, i = 2, j = 2. 
M[i, k, k-1] = M[2, 1, 0] = e4 
M[k, j, k-1] = M[1, 2, 0] = e1 

M[i, j, k] = M[i, j, k-1]  (M[i, k, k-1]M[k, k, k-1]*M[k, j, k-1]) 

M[2, 2, 1] = M[2, 2, 0]  (M[2, 1, 0]M[1, 1, 0]*M[1, 2, 0]) 

=   (e4e0*e1) = e4e0*e1. 
k = 1, i = 2, j = 3. 
M[i, k, k-1] = M[2, 1, 0] = e4 
M[k, j, k-1] = M[1, 3, 0] = e3 

M[i, j, k] = M[i, j, k-1]  (M[i, k, k-1]M[k, k, k-1]*M[k, j, k-1]) 

M[2, 3, 1] = M[2, 3, 0]  (M[2, 1, 0]M[1, 1, 0]*M[1, 3, 0]) 

=   (e4e0*e3) = e4e0*e3 
k = 1, i = 3, j = 1. 
M[i, k, k-1] = M[2, 1, 0] = e4 
M[k, j, k-1] = M[1, 1, 0] = e0 

M[i, j, k] = M[i, j, k-1]  (M[i, k, k-1]M[k, k, k-1]*M[k, j, k-1]) 

M[3, 1, 1] = M[3, 1, 0]  (M[3, 1, 0]M[1, 1, 0]*M[1, 1, 0]) 

= e4  (e4e0*e0) = e1  e4e0* 
k = 1, i = 3, j = 2. 
M[i, k, k-1] = M[3, 1, 0] = e2 
M[k, j, k-1] = M[1, 2, 0] = e1 

M[i, j, k] = M[i, j, k-1]  (M[i, k, k-1]M[k, k, k-1]*M[k, j, k-1]) 

M[3, 2, 1] = M[3, 2, 0]  (M[3, 1, 0]M[1, 1, 0]*M[1, 2, 0]) 

=   (e2e0*e1) =  e2e0*e1 
k = 1, i = 3, j = 3. 
M[i, k, k-1] = M[3, 1, 0] = e2 
M[k, j, k-1] = M[1, 3, 0] = e3 

M[i, j, k] = M[i, j, k-1]  (M[i, k, k-1]M[k, k, k-1]*M[k, j, k-1]) 

M[3, 3, 1] = M[3, 3, 0]  (M[3, 1, 0]M[1, 1, 0]*M[1, 3, 0]) 

=   (e2e0*e3) =  e2e0*e3 
k = 2, i = 1, j = 1. 

M[i, k, k-1] = M[1, 2, 1] = e1  e0*e1 

M[k, j, k-1] = M[2, 1, 1] = e1  e4e0* 

M[i, j, k] = M[i, j, k-1]  (M[i, k, k-1]M[k, k, k-1]*M[k, j, k-1]) 

M[1, 1, 2] = M[1, 1, 1]  (M[1, 2, 1]M[2, 2, 1]*M[2, 1, 1]) 

= e0  e0*  ((e1  e0*e1)  (e4e0*e1)*  (e4  e4e0*)).  
From the sample trace, we can see that the expressions 

produced by Fan’s algorithm tend to be large. For instance, 
the expression representing all paths from node 1 to node 1 
is 

 e0  e0*  ((e1  e0*e1)  (e4e0*e1)*  (e4  e4e0*)). 

But the minimized regular expression for this is (e0  e4 

 e2)*, which can be obtained by doing a computation 
similar to Example 1 since the graph is reducible.Fig. 9. A directed graph 
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