
Decomposing DAGs into Spanning Trees: A New 
Way to Compress Transitive Closures 

Abstract— Let G(V, E) be a digraph (directed graph) with n
nodes and e edges. Digraph G* = (V, E*) is the reflexive, 
transitive closure if (v, u) � E* iff there is a path from v to u in G.
Efficient storage of G* is important for supporting reachability 
queries which are not only common on graph databases, but also 
serve as fundamental operations used in many graph algorithms. 
A lot of strategies have been suggested based on the graph 
labeling, by which each node is assigned with certain labels such 
that the reachability of any two nodes through a path can be 
determined by their labels. Among them are interval labelling, 
chain decomposition, and 2-hop labeling. However, due to the 
very large size of many real world graphs, the computational cost 
and size of labels using existing methods would prove too 
expensive to be practical. In this paper, we propose a new 
approach to decompose a graph into a series of spanning trees 
which may share common edges, to transform a reachability 
query over a graph into a set of queries over trees. We 
demonstrate both analytically and empirically the efficiency and 
effectiveness of our method. 
Key words: Directed graphs; spanning trees; reachability queries; 
transitive closure compression.

I. INTRODUCTION

Given two nodes u and v in a directed graph G(V, E), we 
want to know if there is path from u to v. The problem is 
known as graph reachability. In many applications, such as 
evaluation of recursive queries in deductive databases [7, 18, 
33, 34], type checking in object-oriented databases [22], XML 
query processing, transportation network, internet traffic 
analyzing, semantic web, and metabolic network [35], graph 
reachability is one of the most basic operations, and therefore 
needs to be efficiently supported. 

A naive method is to precompute the reachability between 
every pair of nodes – in other words, to compute and store the 
transitive closure (TC for short) of a graph as a boolean matrix 
M such that M[i, j] = 1 if there is path from i to j; otherwise, 
M[i, j] = 0. Then, a reachability query can be answered in 
constant time. However, this requires O(n2) space, which 
makes it impractical for massive graphs, where n = |V|. An-
other method is to compute the shortest path from u to v over 
a graph on demand. Therefore, it needs only O(e) space, but 
with high query processing cost - O(e) time in the worst case, 
where e = |E|.

There is much research on this issue to reduce space over-
head but still keep constant query time, such as those dis-
cussed in [1, 4, 6, 8, 9, 19, 35]. All of them reduce the space 

requirement to some extent. But the worst space cost is still in 
the order of O(n2). In the case of large graphs, they cannot be 
used. 

In this paper, we investigate the problem from a different 
angle: to decompose G into several components such that the 
existing labeling techniques can be utilized for each smaller 
graph without scarifying too much query time. 

Concretely, we decompose G into a series of spanning trees: 
T0, …, Tk-1 (for some k � 1), and a remaining graph G. They 
may share common edges, but G is in general much smaller 
than G. If we assign intervals [35] to the nodes in Ti (i = 0, …, 
k - 1) and use Chen’s method [8] to label G, the total size of 
labels is reduced to O(kn + n��), where n stands for the 
number of the nodes in G, and � for the width of G, defined to 
be the size of a largest node subset U of G such that for any 
pair of nodes u, v � U there does not exist a path from u to v
or from v to u. The query time is bounded by O(k).   

More importantly, it is a very flexible method. For different 
applications, we can control the graph decomposition, i.e., to 
set k to different constants, to get a trade-off of query time for 
space. We will show that it is a biased trade-off of time for 
space. While the query time increases linearly, the space 
overhead decreases quadratically, in the sense that both the 
number of the nodes and the width of G are decreased. 

The remainder of the paper is organized as follows. In Sec-
tion II, we review the related work. In Section III, we discuss 
the main step to decompose a directed acyclic graph, based on 
which a transitive closure can be effectively compressed. In 
Section IV, we show a recursive graph decomposition to 
generate a series of spanning trees which may share common 
edges. Also, how to evaluate reachability queries using such 
trees is discussed. Section V is devoted to the experiments. 
Finally, a short conclusion is set forth in Section VI. 

II. RELATED WORK

In the past two decades, many interesting labeling-based 
strategies have been proposed to reduce both the 
precomputation time and storage cost with reasonable 
answering time. In the following, we review some 
representative ones. 

Chain decomposition methods. In [19], Jagadish suggested an 
interesting method to decompose a DAG (directed acyclic 
graph) into node-disjoint chains. On a chain, if node v appears 

Yangjun Chen#*1, Yibin Chen#2 
#Dept. Applied Computer Science, University of Winnipeg, Canada 

1y.chen@uwinnipeg.ca 
2chenyibin@gmail.com 

*School of Information Science and Engineering, Central South University, P.R. China 

978-1-4244-8958-9/11/$26.00 © 2011 IEEE ICDE Conference 20111007



above node u, there is a path from v to u in G. Then, each 
node v is assigned an index (i, j), where i is a chain number, 
on which v appears, and j indicates v’s position on the chain. 
These indexes can be used to check reachability efficiently 
with O(�n) space overhead and O(1) query time, where � is
the number of chains. However, to find a minimized set of 
chains for a graph, Jagadish’s algorithm needs O(n3) time (see 
page 566 in [19]). For this reason, Jagadish suggested a 
heuristic method to find all the node-disjoint paths of G and
then stitch some paths together to form a chain. In doing so, 
the number of the produced chains is normally much larger 
than the minimum number of chains, increasing significantly 
both space and query time.  

The method discussed in [8] greatly improves Jagadish’s 
method. It needs only O(n2 + �1.5n) time to decompose a DAG 
into a minimum set of node-disjoint chains, where �
represents G’s width. Its space overhead is O(��n) and its 
query time is bounded by a constant. In [9], the concept of the 
so-called general spanning tree is introduced, in which each 
edge corresponds to a path in G. Based on this data structure, 
the real space requirement becomes smaller than O(��n), but 
the query time increases to log�.

Interval based methods. In [1], Agrawal et al. proposed a 
method based on interval labeling. This method first figures 
out a spanning tree T and assign to each node v in T an inter-
val (a, b), where b is v’s postorder number (which reflects v’s
relative position in a postorder traversal of T); and a is the 
smallest postorder number among v and v’s descendants with 
respect to T (i.e., all the nodes in T[v], the subtree rooted at v). 
Another node u labeled (a’, b’) is a descendant of v (with 
respect to T) iff a � b’ < b. This idea originates from Schubert 
et al. [28]. In a next step, each node v in G will be assigned a 
sequence L(v) of intervals such that another node u in G with 
interval (x, y) is a descendant of v (with respect to G) iff there 
exists an interval (a, b) in L(v) such that a � y < b. The length 
of such a sequence (associated with a node in G) is bounded 
by O(�), where � is the number of the leaf nodes in T. So the 
time and space complexities are bounded by O(�e) and O(�n), 
respectively. The querying time is bounded by O(log�). In the 
worst case, � = O(n). (See [10, 11, 13].) 

The method discussed in [35] can be considered as a 
variant of the interval based method, and called Dual-I,
specifically designed for sparse graphs G(V, E). As with 
Agrawal et al.’s, it first finds a spanning tree T, and then 
assigns to each node v a dual label: [av, bv) and (xv, yv, zv). In 
addition, a t 	 t matrix N (called a TLC matrix) is maintained, 
where t is the number of non-tree edges (edges not appearing 
in T). Another node u with [au, bu) and (xu, y, zu) is reachable 
from v iff au � [av, bv), or N(xv, zu) - N(yv, zu) > 0. The size of 
all labels is bounded by O(n + t2) and can be produced in O(n
+ e + t3) time. The query time is O(1). As a variant of Dual-I,
one can also store N as a tree (called a TLC search tree), 
which can reduce the space overhead from a practical 
viewpoint, but increases the query time to logt. This scheme is 
referred to as Dual-II.

2-hop labeling. The method proposed by Cohen et al. [6] 

labels a graph based on the so-called 2-hop covers. It is also 
designed for sparse graphs. A hop is a pair (h, v), where h is a 
path in G and v is one of the endpoints of h. A 2-hop cover is 
a collection of hops H such that if there are some paths from v
to u, there must exist (h1, v) � H and (h2, u) � H and one of 
the paths between v and u is the concatenation h1h2. Using this 
method to label a graph, the worst space overhead is in the 
order of O(n). The main theoretical barrier of this method is 
that finding a 2-hop cover of minimum size is an NP-hard 
problem. So a heuristic method is suggested in [6], by which 
each node v is assigned two labels, Cin(v) and Cout(v), where 
Cin(v) contains a set of nodes that can reach v, and Cout(v)
contains a set of nodes reachable from v. Then, a node u is
reachable from node v if Cin(v) 
 Cout(v) � �. Using this 
method, the overall label size is increased to O(n e logn). In 
addition, a reachability query takes O( e ) time because the 
average size of each label is above O( e ). The time for 
generating labels is O(n4).  

Path-tree decomposition. Recently, Jin et al. [20] discussed a 
new method, by which a DAG G is decomposed into a set of 
node-disjoint paths. Then, a weighted directed graph Gw is 
constructed, in which each node represents a path and there is 
an edge (i, j) if on path i there is a node connected to a node 
on path j. The weight associated with (i, j) is the number of 
such connections. Gw is then labeled in a way similar to 
Agrawal et al.’s. Unfortunately, this method does not work in 
some cases because Gw is in general a cyclic graph, but 
Agrawal et al.’s method is applicable only to acyclic graphs. 
By Agrawal et al.’s and also all the above methods, a 
preprocessor is needed to recognize all the strongly connected 
components (SCCs) in a graph by using Tajan’s algorithm [29] 
and collapse each of them into a single node. It is because any 
two nodes in an SCC are reachable from each other. 

For illustration, see the following example. 

The graph shown in Fig. 1(a) is decomposed into four paths: 
P1 = {1, 2, 3, 4, 5}, P2 = {6, 7, 8}, P3 = {9, 10}, and P4 = {11}. 
According to [20], a weighted directed graph will be created 
as shown in Fig. 1(b), which contains an SCC (with path-
nodes P1, P2 and P3). Collapsing it to a single node, we will 
get a graph as shown in Fig. 1(c). The problem is how to 
handle such a node (corresponding to an SCC in Gw) is not 
discussed at all in [20], which should be much more 
complicated than the SCCs in a directed graph since each node 
in Gw represents a path in G. Although any two path-nodes in 
an SCC (in Gw) are reachable from each other, a node on one 
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of these two paths may not be reachable from some node on 
the other path in G.

A possible correction of this method is to consider all the 
possible spanning trees of each SCC in Gw. But in this way, 
the labeling time will be dramatically increased. In the worst 
case, it can be exponential in the size of Gw. For example, for 
the SCC shown in Fig. 1(b), we need to consider altogether six 
spanning trees. (In [20], only one spanning tree is considered. 
Obviously, it cannot be correct.) 

There are some other graph labeling methods, such as the 
method using signatures [31], PE-Encoding [5] and PQ-En-
coding [36]. The idea of the signature-based method [31] is to 
assign to each node a signature (which is in fact a bit string) 
generated using a set of hash functions. The space complexity 
is O(l�n), where l is the length of a signature. But this 
encoding method suffers from the so-called signature conflicts 
(two nodes are assigned the same signature). Moreover, in the 
case of DAGs, a graph needs to be decomposed into a series 
of trees; and no formal decomposition was reported in that 
paper. The PE-Encoding [5] and the PQ-Encoding [36] are 
similar to the 2-hop labeling, but with higher computational 
complexities. The methods discussed in [25, 26] reduces 2-
hop’s labeling complexity from O(n4) to O(n3), but are still 
not applicable to massive graphs. The method proposed in [4] 
is a geometry-based algorithm to find high-quality 2-hop 
covers. It also improves the 2-hop labeling by avoiding the 
computation of transitive closures, which is required by 
Cohen’s to find 2-hop covers. However, it has the same 
theoretical computational complexities as Cohen’s method [6]. 
Finally, the method discussed in [32] is suitable only for 
planar graphs with O(nlogn) labeling time and O(nlogn) space. 
The query time is O(1). Finally, deductive databases can be 
considered as a quite different extension to handle this 
problem [12, 14, 15].  

In the following table, we compare our labeling method 
with the representative approaches. 

COMPARISON OF STRATEGIES
 Query time Labeling time Space overhead 
Graph traversal O(e) 0 O(e)
Jagadish [19] O(1) O(n3) O(�n)
Interval-based [1] O(logn) O(ne) O(n2)
Dual-I [35] O(1) O(n + e + t3) O(n + t2)
Dual-II [35] O(logt) O(n + e + t3) O(n + t2)
2-hop [6] O(e1/2) O(n4) O(nelogn)
Matrix-based [37] O(1) O(n3) O(n2)
Chen [8] O(1) O(n2 + �1.5n) O(�n)
ours O(k) O(ke + �1.5n) O(kn + �n)

III. GRAPH DECOMPOSITION

In this section, we discuss a new graph decomposition 
approach to compress transitive closures. First, we give some 
basic definitions related to spanning trees in Subsection A.
Then, in Subsection B, we demonstrate our basic graph 
decomposition based on the concept of critical nodes, as well 
as a method for checking the reachability by using such graph 

decomposition. Finally, we show how to efficiently recognize 
the critical nodes in a graph in Subsection C.

A. Basic Definition 
Without loss of generality, we assume that G is acyclic (i.e., 

G is a DAG.) If not, we will find all SCCs of G and collapse 
each of them into a representative node. Obviously, each node 
in an SCC is equivalent to its representative node as far as 
reachability is concerned. This process takes O(e) time using 
Tarjan’s algorithm [29]. 

We also use V(G) and E(G) to represent its node set and 
edge set, respectively. 

It is well known that the preorder traversal of G introduces 
a spanning tree (forest) T. With respect to T, E(G) can be clas-
sified into four groups: 
 tree edges (Etree): edges appearing in T.
 cross edges (Ecross): any edge (u, v) such that u and v are 

not on the same path in T.
 forward edges (Eforward): any edge (u, v) not appearing in T,

but there exists a path from u to v in T
 back edges (Eback): any edge (u, v) not appearing in T, but 

there exists a path from v to u in T.
All cross, forward, and back edges are referred to as non-

tree edges. (But in a DAG, we do not have back edges since a 
back edge implies a cycle.) For illustration, consider the DAG 
shown in Fig. 2. For it, we may find a spanning tree as shown 
by the solid arrows. (In the figure, each non-tree edge is 
represented by a dashed arrow.) 

As in [35], we can assign each node v in T an interval [�v,
�v), where � v is v’s preorder number (denoted pre(v)) and � v -
1 is equal to the largest preorder number among all the nodes 
in T[v]. So another node u labeled [�u, � u) is a descendant of v
(with respect to T) iff �u � [�v, �v) [35], as shown in Fig. 2. If 
�u � [�v, �v), we say, [�u, � u) is subsumed by [�v, �v). This 
method is called the tree labeling.

B. Graph Decomposition and Reachability Checking 
In this subsection, we discuss a decomposition of G(V, E): 

a spanning tree T and a subgraph Gc such that |V(Gc)| < |V|. 
What we want is to transform the reachability checking of any 
two nodes in G to a checking over T and a checking over Gc.
Obviously, Gc has to contain Ecross. But some more edges need 
to be included and carefully recognized. For this purpose, we 
introduce some new concepts. 

We denote by E’ the set of all cross edges. Denote by V’ 
the set of all the end points of the cross edges. That is, V’ =
Vstart � Vend, where Vstart contains all the start nodes while Vend
all the end nodes of the cross edges. For example, for the 
graph shown in Fig. 2, we have Vstart = {h, g, f, d} and Vend = 

Fig. 2 A spanning tree and intervals 
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{e, g, c, d, k}. No attention is paid to the forward edge (a, e) in 
the graph since it can simply be removed as far as the 
reachability is concerned. 

The first concept is the so-called crossing range, which is a 
second pair of integers associated with each node v � V,
defined below. 
Definition 1 (crossing range) Let T be a spanning tree (forest) 
of G. Let v be a node in V, and v1, …, vj the children of v in G.
Let [�i, �i) (i = 1, …, j) be the interval of vi. Set av = mini{�i}
and bv = maxi{�i}. Then, {av, bv} is called the crossing range
of v.

For technical convenience, for any node v without child 
nodes in G, both its av and bv are set to be �v. For example, 
with respect to the spanning tree shown in Fig. 2, the crossing 
ranges of the nodes in G can easily be computed, as shown in 
Fig. 3.  

We notice that the crossing range of node f in T shown in 
Fig. 3 is {5, 5}. It is because f has only one child d in G,
whose interval is [5, 6). But node g’s crossing range is {2, 5} 
since it has two children c and d with intervals [2, 5) and [5, 6), 
respectively. The purpose of crossing edges is to define the 
so-called critical nodes, which are used to determine all those 
nodes � Vstart � Vend, but should be included in Gc.
Definition 2 (critical nodes) A node v in a spanning tree T of 
G is critical if the following conditions are satisfied: 
1) There is a subset U of Vstart with |U| > 1 such that for any 

two nodes u1, u2 � U they are not related by the 
ancestor/descendant relationship and v is the lowest 
common ancestor of all the nodes in U.

2) For each u � U, its crossing range {au, bu} is not within 
T[v]. That is, au or bu is a preorder number not appearing in 
T[v].  

All the critical nodes with respect to T are denoted by 
Vcritical. For example, in the spanning tree shown in Fig. 2, 
node e is the lowest common ancestor of {f, g} and both f and
g are in Vstart. In addition, the crossing ranges of f and g are
not within in T[e] (see Fig 3). So e is a critical node. We also 
notice that node a is the lowest common ancestor of {d, f, g,
h}. But the crossing ranges of all the four nodes are in T[a]. 
Thus, a is not a critical node. In the same way, we can check 
all the other nodes and find that Vcritical = {e}.

The reason for imposing condition (2) in the above 
definition is that if any cross edge going out of a node in T[v]
reaches only a node in T[v], then the reachability between v
and any other node in G can be checked by the tree labeling. 
So it is not necessary to include v in Gc if v � Vstart � Vend.

Now we consider a tree (forest) structure Tc, called a 
critical tree of G (with respect to T), which contains all the 
nodes in Vcritical � Vstart � Vend. In Tc, there is an edge from u

to v iff there is a path P from u to v in T and P contains no 
other node in Vcritical � Vstart � Vend, as illustrated in Fig. 4(a). 

Denote Tc � Ecross by Gc (see Fig. 4(b).) Then, T and Gc
make up a decomposition of G. It can be seen that V(Gc) is 
much smaller than V.

For any two node u, v appearing on a path in T, their reach-
ability can be checked using their associated intervals. 
However, our question is, if they are not on the same path in T,
can we check their reachability by using Gc?

To answer this question, we need another concept, the so-
called anchor nodes.

First, for any critical node v, we will change its crossing 
range as follows. 
 Assume that U is a subset of Vstart such that v is the lowest 

common ancestor of all the nodes in it and satisfies 
condition (1) and (2) in Definition 2. 

 Set av � min{minu�U{au}, av};
   bv � max{maxu�U{bu}, bv}. 

For instance, node e’s original crossing range is {8, 9} (see 
Fig. 3(b)). The crossing ranges of node f and g are {5, 5} and 
{2, 5}, respectively. So e’s original range will be changed to 
{2, 9}. 

Next, we denote by C(v) all the critical nodes in T[v] plus 
all those start nodes of the cross edges which appear in T[v]. 
We consider a maximal subset of C(v)  such that each node in 
it does not have an ancestor in C(v). Denote such a subset as 
Cs(v). It can be seen that in Cs(v) there is at most one node u
such that its crossing range is not within T[v]. Otherwise, a 
new critical node in T[v] will be created (see Definition 2), 
which is an ancestor of u and in C(v), contradicting the fact 
that u � Cs(v) and thus has no ancestor in C(v).
Definition 3 (anchor nodes) Let G be a DAG and T a span-
ning tree of G. Let v be a node in T. We associate two nodes 
with v as below. 
i) A node y � Cs(v) is called an anchor node (of the first kind) 

of v if its crossing range is not within T[v], denoted v*. If 
such a node does not exist, v* is set to be the special sym-
bol “-”. 

ii) A node w is called an anchor node (of the second kind) of 
v if it is the lowest ancestor of v (in T), which has a cross 
incoming edge. w is denoted v**. If such a node does not 
exist, v** is set to be “-”.  

For example, in the graph shown in Fig. 2, r* = e. It is be-
cause node e is a critical node in Cs(r) and its crossing range 
{2, 9} (note that the crossing range of a critical node is 
changed) is not within in T[r]. But r** does not exist since it 
does not have an ancestor which has a cross incoming edge. In 
the same way, we find that e* = e** = e. That is, both the first 
and second kinds of anchor nodes of e are e itself. We can 
easily recognize the anchor nodes for all the other nodes in 
that graph.
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The following two lemmas are critical to the reachability 
checking using Gc.
Lemma 1 Let u be a node, which is not a descendant of v in T;
but u is reachable from v via some non-tree edges. Then, any 
way for v to reach u must be through v*.
Proof. According to Definition 4, v* is the only node in Cs(v)
such that its crossing range is not within T[v]. It indicates that 
any start node in T[v] such that its crossing range is outside of 
T[v] must be a descendant of v* in T. So any node that is not a 
descendant of v but reachable from v via some cross edges 
must be through v*.   
Lemma 2 Let u be a node, which is not an ancestor of v in T;
but v is reachable from u via some non-tree edges. Then, any 
way for u to reach v must be through v**. 
Proof. This can be seen from the fact that any node which 
reaches v via some cross edges is through v** to reach v.

In terms of the above discussion, we associate each v � G
with a triplet <x, y, z>:
- x = [�, �), an interval created by labeling the nodes in T;
- y = v*; and
- z = v**.
Proposition 1 Let u and v be two nodes in G, labeled ([�u, �u), 
yu, zu) and ([�v, �v), yv, zv), respectively. Node u is reachable 
from v iff one of the following conditions holds: 
(i) [�u, �u) is subsumed by [�v, �v) (i.e., �u � [�v, �u)), or 
(ii) zu is reachable from yv through a path in Gc.
Proof. The proposition can be derived from the following two 
facts:
(1) u is reachable from v through tree edges iff [�u, �u) is 

subsumed by [�v, �v). 
(2) In terms of Lemma 1 and 2, u is reachable from v via 

non-tree edges iff zu = u** and yv = v* exist and u** is
reachable from v* through a path in Gc.

In a triplet (x, y, z) associated with a node, y and z are 
referred to as non-tree labels. 
Example 1 Consider G and T shown in Fig. 2 once again. The 
non-tree labels of the nodes are shown in Fig. 5. 

In this figure, we can see that the non-tree label of node r is 
<e, -> because (1) r* = e; and (2) r** does not exist. Similarly, 
the non-tree label of node f is <f, e>. It is because f* is f itself; 
but f** is e.

Especially, we notice that node r and node d are not on the 
same path in T. But d is a descendant of r. Such reachability 
has to be checked by using their anchor nodes. In fact, we 
have a path: e � f � d in Gc. But d** = d and r* = e, which 
shows that d is reachable from r by Proposition 1. 

In order to check the reachability in Gc, we can use any ex-
isting method. For example, we can employ Chen’s algorithm 
[8] to decompose Gc into two chains as shown in Fig. 6(a).  

Recall that on each chain if node v appears above node u,
there is a path from v to u in Gc.

Below is a brief description of Chen’s algorithm [8], which 
is given for the purpose of self-explanation.  
1. Each node in Gc will be assigned an index (i, j) to show 

that it is the jth node on the ith chain. 
2. In addition, each node v on the ith chain will be 

associated with an index sequence of length �c: (1, j1) … 
(i, ji) … (�c, cwj ) (as illustrated in Fig. 6(a)) such that any 
node with index (x, y) is a descendant of v if x = i and y �
j or x � i but y � jx, where �c is the number of the node-
disjoint chains, equal to the width of Gc.

We can also store all the index sequences as a matrix M as 
illustrated in Fig. 6(b), in which each entry M(v, j) is the jth
element in the index sequence associated with node v. So, a 
node u with index(u) = (i, j) is a descendant of another node v
iff M(v, i) � j. Thus, using M, a reachability checking can be 
done in O(1) time. 

However, if we don’t decompose G, but directly apply 
Chen’s algorithm to it, at least five chains will be produced 
since there exists a subset of nodes U = {b, f, g, i, j} in G such 
that each pair of nodes in it are not connected through a path 
in G. So it is not possible to decompose G into a set with 
fewer chains. Therefore, a 13 	 5 matrix has to be created, 
which is much larger than the 7 	 2 matrix shown in Fig. 6(b), 
generated for Gc. We notice that G contains 13 nodes. 

C. Recognizing Critical Nodes
From the discussion in the previous subsection, we know 

that all the critical nodes need to be recognized to construct Gc.
Now we discuss an efficient algorithm for this task.  

We will search T bottom up and produce a subtree T’ of T
such that only the critical nodes and the nodes from Vstart are 
included. Initially, T’ is set to �, and all the nodes in Vstart are 
marked. Then, during the traversal of T, any node belonging 
to Vstart or any critical node, once it is recognized, will be 
inserted into T’. To this end, each node v inserted into T’ will 
be associate with two links, denoted parent(v) and left-
sibling(v), respectively. parent(v) is used to point to the parent 
of v in T’ while left-sibling(v) points to a node in T’ created 
just before v, which is not a descendant of v in T.

Concretely, parent(v) and left-sibling(v) will be created as 
follows. 
(i) Let v be the node currently inserted into T’.
(ii) If v is not the first node inserted into T’, we do the 

following: 

Fig. 6 A Gc, its decomposition and its reachability matrix 
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Let v’ be the node inserted just before v. If v’ is not a child 
(descendant) of v, create a link from v to v’, called a left-
sibling link and denoted as left-sibling(v) = v’. If v’ is a 
child (descendant) of v, we will first create a link from v’
to v, called a parent link and denoted as parent(v’) = v.
Then, we will go along the left-sibling chain starting from 
v’ until we meet a node v’’ which is not a child 
(descendant) of v. For each encountered node u except v’’,
set parent(u) � v. Finally, set left-sibling(v) � v’’.

Fig. 7 is a pictorial illustration of this process. 

In Fig. 7(a), we show the navigation along a left-sibling 
chain starting from v’ when we find that v’ is a child 
(descendant) of v. This process stops whenever we meet v’’, a 
node that is not a child (descendant) of v. Fig. 7(b) shows that 
the left-sibling link of v is set to point to v’’, which is 
previously pointed to by the left-sibling link of v’s left-most 
child. 

Extending the above process with the recognition of critical 
nodes and the computation of crossing ranges, we get an 
efficient algorithm for finding all the critical nodes. 
Algorithm find-critical(T)
begin
1. T’ ��. Mark any node in T, which belongs to Vstart.
2. Let v be the first marked node encountered during the 

bottom-up searching of T. Insert v in T’.
3. Let u be the currently encountered node in T. Let u’ be 

the node inserted into T’ just before u. Do (4) or (5), 
depending on whether u is a marked node or not. 

4. If u is marked, then insert u into T’ and do the following. 
 (a) If u’ is not a child (descendant) of u, set left-sibling(u)

= u’ (i.e., a link from u to u’). 
 (b) If u’ is a child (descendant) of u, we will first set par-

ent(u’) = u. Then, we will go along a left-sibling chain 
starting from u’ until we meet a node u’’ which is not 
a child (descendant) of u. For each encountered node 
w except u’’, set parent(w) � u. Also, set left-
sibling(u) � u’’. (See Fig. 7(b) for illustration.) 
Calculate initial au and bu according to Definition 1.  
Let W be the set of all the encountered nodes during 
the navigation along the left-sibling chain (not 
including u’’). Set au � min{minw�W{aw}, au} and bu

� max{maxw�W{bw}, bu}.
5. If u is a non-marked node, then do the following. 
 (c) If u’ is not a child (descendant) of u, u is ignored. 
 (d) If u’ is a child (descendant) of u, we will go along a 

left-sibling chain starting from u’ until we meet a node 
u’’ which is not a child (descendant) of u. If there are 
more than one node in W such that their crossing 
ranges not within T[u], insert u into T’, and compute 
au and bu as (4.b). Otherwise, u is ignored. 

end

In the algorithm, each node v belonging to Vstart is simply 
inserted into T’, by which its {av, bv} is computed. (See 4.a 
and 4.b. in the algorithm.) For a node not belonging to Vstart,
we will check whether it satisfy the conditions given in 
Definition 2. If it is the case, it will be inserted into T’. At the 
same time, its crossing range will be calculated. Otherwise, it 
will be ignored. (See 5.c and 5.d in the algorithm.) 

Obviously, the algorithm requires only O(e) time since each 
node in T is accessed at most two times and for each node v
out-degree(v) edges will be visited. We have 

�
�

�
Vv

vreeout )(deg = e.

Example 2 Consider the spanning tree T shown in Fig. 2. Ap-
plying the above algorithm to T, we will generate a series of 
data structures shown in Fig. 8. 

First, the nodes d, f, g, and h in T are marked. During the 
bottom-up search of T the first node created for T’ is node d
(see Fig. 8(a).) In a next step, node b is met. But no node for b
in T’ is created since b is not marked and has only one child in 
the current T’ (see 5.d in Algorithm find-critical( )). In the 
third step, node f is encountered. It is a marked node and to 
the right of node d. So a link left-sibling(f) = d is created (see 
Fig. 8(b).) In the fourth step, node g is encountered and a 
second left-sibling link is generated (see Fig. 8(c).) In the fifth 
step, node e is met. It is not marked. But it is the parent of 
node g. So the left-sibling chain starting from node g will be 
searched to find all the children (descendants) of e along the 
chain, which appear in T’. Furthermore, the number of such 
nodes is 2 and the crossing ranges of both nodes f and g are
outside of T[e]. Thus, node e is inserted into T’ (see Fig. 8(d).) 
Here, special attention should be paid to the replacement of 
left-sibling(f) = d with left-sibling(e) = d, which enable us to 
easily find the lowest common ancestor of d and some other 
nodes from Vstart if any. In the next two steps, we will meet 
node i and j. But no nodes will be created for them. Fig. 8(e) 
demonstrates the last step of the whole process. Especially, 
the tree shown in Fig. 8(e) is T’, which contains all the critical 
nodes and the nodes from Vstart.

Form T’, Tc and Gc can be easily constructed as shown in 
Fig. 4. 

The following proposition shows the correctness of the 
algorithm. 
Proposition 2 Let G = (V, E) be a DAG. Let T be a spanning 
tree (or a spanning forest) of G. Algorithm find-critical( )
generates T’ of G with respect to T correctly.
Proof. To show the correctness of the algorithm, we should 
prove the following: (1) each node in T’ is a critical node or a 
node from Vstart; (2) any node not in T’ is neither a critical 

u’’ is not a 
child of u. v

v’�v’’

v

v’�v’’

left-sibling( u’)

(a) (b)

Fig. 7 Illustration for the construction of T’
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node nor a node from Vstart; (3) for each edge (u, v) in T’ there 
is a path from u to v in T, which does not contain a critical 
node or a node from Vstart (except the two end points). 

First, we prove (1) by induction on the height h of T’. The 
height of a node v in T’ is defined to be the longest path from 
v to a leaf node in T’.
Basis step. When h = 0, each leaf node in T’ is a node in Vstart.
So it is correct. 
Induction hypothesis. Assume that every node appearing at 
height h = k in T’ is a critical node or a node from Vstart. We 
prove that every node v at height k + 1 in T’ is also a critical 
node or a node from Vstart. If v ��Vstart, the proof is trivial. 
Assume that v ��Vstart. According to the algorithm, v has at 
least two children with their crossing ranges not within T[v]
(see 5.d in Algorithm find-critical( )). Assume that v1 and v2
are two such nodes. If these two children belong to Vstart, the 
claim holds. Now we assume that v1 does not belong to Vstart.
Then, its height must be the same as or lower than k.
According to the induction hypothesis, it is a critical node. 
Therefore, there must exist a subset S � Vstart such that v1 is 
the lowest common ancestor of all the nodes in S. Therefore, v
is an ancestor of all the nodes in S, which contains at least one 
node whose crossing range is outside of T[v]. Let v3 be such a 
node. Thus, v is the lowest common ancestor of v2 and v3.
(Here, we assume that v2 is from Vstart. If v2 does not belong to 
Vstart, repeating the above argument for v2 will prove the 
claim.) 

In order to prove (2), we notice that only in two cases no 
node is generated in T’ for a node v ��Vstart: (i) v is to the right 
of a node, for which a node in T’ is created just before v is
encountered (see 5.c in Algorithm find-critical( )); (ii) v is the 
parent (ancestor) of a node u, for which a node in T’ is 
generated; but u is the only node encountered when navigating 
the corresponding left-sibling chain (see 5.d in Algorithm 
find-critical( )) or there are not more than one children such 
that their crossing ranges are outside of v’s interval. Obviously, 
in both cases, v cannot be a critical node. 

(3) can be seen from the fact that each parent link 
corresponds to a path in T and such a path cannot contain any 
critical node (except the two end points) since the nodes in T
are checked level by level bottom-up.  

In the following, we show that for any DAG G(V, E) we 
always have: 

 |Vcritical| < |V| - |Vstart� Vend|.
Since G is a DAG, it has at least one node whose in-degree 

is 0. Using this node as the starting point to search G in
preorder, we get a spanning tree (forest) T. Then, with respect 
to T, this node cannot be a critical node. Also, it does not 
belong to Vstart� Vend. Thus, the above inequality holds, which 
implies the following proposition. 
Proposition 3 The number of the nodes in G is strictly larger 
than the number of the nodes in Gc.
Proof. Remember that Gc = Tc � Ecross. So the node set of Gc

is Vcritical � Vstart� Vend. We notice that Vcritical 
 (Vstart� Vend)
= �, which indicates that |Vcritical � Vstart � Vend| = |Vcritical| + 
|Vstart� Vend| < |V|.

IV. RECURSIVE GRAPH DECOMPOSITION

We note that Gc itself can be decomposed, leading to a 
further space decrement. Repeating this operation, we will get 
a recursive decomposition of G. In this subsection, we 
elaborate this process. 

A. Recursive Decomposition   
Let G0 be a DAG. Denote by T0 a spanning tree of G0.

Denote by 0
crossE  the set of all the cross edges with respect to 

T0. Then, as discussed in the previous section, T0 and G1 = 0
cT

� 0
crossE make up a decomposition of G0, where 0

cT  is the 
critical tree of G0. Our purpose is to find a series of tree 
structures:

T0, T1, ..., Tk-1, (k � 1)
such that T0 is a spanning tree of G0 and each Ti (i = 1, ..., k - 1) 
is a spanning tree of Gi = 1�i

cT � 1�i
crossE , where 1�i

cT is the critical 
tree of Gi-1, and 1�i

crossE is a set of all the cross edges with respect 
to Ti-1.

The following example helps for illustration. 
Example 3 Denote by G0 the graph shown in Fig. 2. Denote 
by T0 the spanning tree represented by the solid arrows in the 
graph. With respect to T0, 0

crossE  is a graph as shown by the 
dashed arrows in the same figure, and 0

cT  is a forest as shown 
in Fig. 4(a). Then, G1 = 0

cT � 0
crossE  is a graph as shown in Fig. 

4(b).  
A spanning tree T1 of it is shown by the solid arrows in Fig. 

9(a). With respect to this spanning tree, (h, g) and (h, k) are 
two forward edges and can be removed. So 1

crossE  is a graph as 
shown in Fig. 9(b), containing only two disconnected edges. 
Their respective start nodes are g and c. Accordingly, 1

cT  is 
also a graph containing two disconnected edges, as shown in 
Fig. 9(c). 

G2 will be constructed in the same way as G1. That is, G2 is 
equal to 1

cT � 1
crossE , as shown in Fig. 10(a).  

A spanning tree T2 of G2 is shown in Fig. 10(b). With 
respect to T2, 2

crossE is a graph containing only one edge, and 2
cT

contains only two single nodes, as shown in Fig. 10(c) and (d), 
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respectively. So, we have G3 =  2
cT � 2

crossE = 2
crossE , and T3 is 

the same as G3 (see Fig. 10(e)). 

B. Reachability Checking Based on Recursive Decomposion 
From the above discussion, we can see that for a given 

DAG G, we can always find a series of trees: T0, T1, ..., Tk-1, (k
� 1), and a series of subgraphs: G0 = G, G1, ..., Gk such that Ti
is a spanning tree of Gi (i = 0, …, k – 1). We refer to Gk as the 
remaining graph of G, denoted as G. It can be a graph or a tree. 

In terms of the recursive graph decomposition, we are able 
to associate each node v in G0 with two sequences: an interval 
sequence and an anchor node sequence to check reachability: 
1) [ v

0� , v
0� ), ..., [ v

j� , v
j� ), (j ��k - 1) 

where each [ v
i� , v

i� ) is an interval generated by labeling Ti;
2) ( vx0 , vy0 ), ..., ( v

lx , v
ly ), (l ��j)

where each v
ix  is a pointer to an anchor node of the first kind 

(a node appearing in Gi+1) while each v
iy  a pointer to an an-

chor node of the second kind (also, a node in Gi+1). Each 
( v

ix , v
iy ) can be generated as described in the previous section. 

See Fig. 11 for illustration. 

In this figure, a dashed arrow marked with * stands for a 
pointer to an anchor node of the first kind while a dashed ar-
row marked with ** for a pointer to an anchor node of the 
second kind. Since a node may appear in more than one 
spanning trees, its anchor node sequence may contain more 
than one entries. 
Example 4 Continued with Example 3. By creating intervals 
for the nodes in T0, T1, T2 and T3 (see Fig. 2, Fig. 9(a), Fig. 
10(b) and (e), respectively), we will generate an interval 
sequence for each node as shown in Fig. 12(a). 

Fig. 12(b) shows all anchor node sequences, which are 
created by the non-tree labeling of the nodes in G0 (see Fig. 5), 
G1 (see  Fig. 13(a)), and G2 (see Fig. 13(b)). G3 is a tree and 
no non-tree labels are established. 

For this example, the remaining graph is �.
Now we discuss how to use the interval sequences and an-

chor node sequences to check reachability. First, we notice 
that the anchor node sequences imply a graph, in which there 
exists an edge (u, v) iff there is an entry <x, y> in the anchor 
node sequence associated with u such that x = v, or y = v. The 
edge is labeled with {i, *} or {i, **} with i used to indicate 
that <x, y> is the ith entry in the corresponding anchor node 
sequence. If x = v, the edge is labeled with {i, *}. If y = v, the 
edge is labeled with {i, **}. We refer to such a graph as a 
transitive closure core graph of G (or simply core graph of G)
and denote it by Gcore. In Fig. 14, we show a Gcore
corresponding to the anchor node sequences shown in Fig. 
12(b). 

In the graph, each loop represents an edge from a node to 
itself, and each edge is labeled with one or more pairs. For 
example, edge (b, d) labeled with {1, *} represents that d is an 
anchor node (of the first kind) of b and d appears in G1 while
edge (f, e) labeled with {1, **} represents that e is an anchor 
node (of the second kind) of f and e appears in G1. An edge 
with multiple labels represents several edges with different 
labels. For example, the edge (g, g) (represented as a loop) 
labeled with {1, *},{1, **}, and {2, *} stands for three edges 
with each going from g to g, but labeled differently. 

In order to check whether v is an ancestor of u, we will 
search two paths in Gcore, starting from v and u, respectively. 
The path starting from v, referred to as Pv, contains only the 
edges labeled with (i, *) while the path starting from u,
referred to as Pu, contains only the edges labeled with (i, **). 
Each time we reach two nodes v’ and u’ through two edges 
labeled respectively with (i, *) and (i, **), we will check 
whether [ v

i
�� , v

i
�� ) subsumes [ u

i
�� , u

i
�� ). (Remember that each 

node in G0 = G is associated with an interval sequence [ v
0� ,

v
0� ), ..., [ v

m� , v
m� ) for some m � 0.) If it is the case, v is an 

ancestor of u. Otherwise, we traverse along Pv and Pu,
reaching v” and u’’ through two edges labeled respectively 
with (i + 1, *) and (i + 1, **) and checking [ v

i
��
�1� , v

i
��
�1� ) against 

[ u
i
��
�1� , u

i
��
�1� ). We continue this process. After l steps for some l,
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we will meet two nodes v’’’ and u’’’ such that v’’’ does not 
have an out-going edge labeled with (l + 1, *) or u’’’ does not 
have an out-going edge labeled with (l + 1, **). If [ v

l
���� , v

l
���� )

subsumes [ u
l
���� , u

l
���� ), v is an ancestor of u. Otherwise, we 

further check whether l = k. If it is the case, we will check 
whether u’’’ is reachable from v’’’ in G.
Example 5 Continued with Example 4. To check whether r is 
an ancestor of p, we will first explore two paths in the graph 
shown in Fig. 14, starting from r and p, respectively. First, we 
check [ r

0� , r
0� ) = [6, 10) against [ p

0� , p
0� ) = [3, 5) (see Fig. 2 

to know the interval values) and find that [6, 10) does not 
subsume [3, 5). Then, we go from r along an edge labeled 
with (1, *) to e; and from p along an edge labeled with (1, **) 
to c. Now, we check [ e

1� , e
1� ) = [1, 7) against [ c

1� , c
1� )  = [3, 4) 

(see Fig. 9(a) to know the interval values). Since [1, 7) 
subsumes [3, 4), we know that e is an ancestor of c, which 
implies that r is an ancestor of p.
Proposition 4 Let G be a DAG, and G0 = G, G1, ..., Gk (k � 1), 
be a series of subgraphs as defind in the previous subsection. 
T0, T1, ..., Tk-1 be a series of trees such that each Ti is a 
spanning tree of Gi. Let u and v be two nodes in G. u is 
reachable from v through a path in G iff there exist two paths 
in Gcore:

v0 = v � v1 � ... � vj (0 � j � k)
u0 = u � u1 � ... � uj

such that each (vi-1, vi) is labeled with (i, *), each (ui-1, ui) is 
labeled with (i, **), and one of the following two conditions is 
satisfied: 
1. j < k, and uj is reachable from vj through a path in Tj; or 
2. j = k, and uj is reachable from vj through a path in Gk.
Proof. if-part. We prove the if-part by induction on k.
Basis step. When k = 0, 1, the proof is trivial. 
Induction hypothesis. Assume that when k = l the if-part holds. 
We consider the case when k = l + 1. If j � l, in terms of the 
induction hypothesis, the if-part holds. Assume that j = l + 1. 
Since ul+1 is reachable from vl+1 through a path in Gl+1, ul must 
be reachable from vl in Gl by Lemma 1 and 2. (Note that vl+1 is 
an anchor node of the first kind of vl and ul+1 is an anchor node 
of the second kind of ul.) In terms of the induction hypothesis, 
u is reachable from v.
Only-if-part. If u0 = u is reachable from v0 = v, there will be a 
path in T0 from v0 to u0 or u1 is reachable from v1 in G1.
Similarly, u1 is reachable from v1 in G1, there will be a path in 
T1 from v1 to u1, or u2 is reachable from v2 in G2. Repeating 
this argument, we will get the proof.  

The above proposition shows that to check whether u is 
reachable from v, we need to search two paths in Gcore and at 
each step to examine whether iu

i� � [ iv
i� , iv

i� ).  
Clearly, this process needs only O(k) time and the space re-

quirement for all the interval sequences and anchor node se-
quences is bounded by O(kn). In addition, we need O(n��) to 
store the matrix created for the remaining graph G = Gk,
where n stands for the number of the nodes in G, and � for the 
width of G. Since O(�1.5n)  time is needed to decompose G
into node-disjoint chains by using Chen’s method [8], the total 

cost for generating a compressed transitive closure is bounded 
by O(ke + �1.5n). 

For different applications, we can set k to be different 
constants to get effective space deduction, but still have a 
constant query time. We also notice that this is a biased trade-
off of time for space since each step of decomposition will 
reduce both the number of the nodes and the width of G.

V. EXPERIMENTS

In this section, we report the test results. We conducted our 
experiments on a DELL desktop PC equipped with Pentium 
III 1.0 Ghz processor, 512 MB RAM and 20GB hard disk. 
The programs are compiled using Microsoft virtual C++ 
compiler version 6.0, running standalone. 

A. On the Tested Methods 
In the experiments, we have tested six methods:

- Chain decomposition by Chen et al. (CD for short) [8], 
- Tree encoding by Agrawal et al.  (TE for short) [6], 
- 2-hop labeling by Cohn et al. (2-hop for short) [9] 
- Dual labeling by Wang et al. (Dual-II for short) [35], 
- Matrix multiplication by Warren (MM for short) [37],  
- Recursive DAG decomposition (discussed in this paper, 

RDD for short). 
The theoretical computational complexities of these meth-

ods are listed in Table 1 (in Section II). 
In the experiments, the tree-path cover [20] is not included 

since it does not work in some cases. In fact, for all the graphs 
tested in our experiments, their weighted directed graphs 
contain SCCs; but how to handle them is not discussed in [20]. 
Jagadish’s chain decomposition is not included, either.  It is 
because Chen’s method works in a similar way, but has a 
much better labeling time. For the dual labeling, we imple-
mented Dual-II, instead of Dual-I for tests. For non-sparse 
graphs, Dual-I needs even more space than any traditional 
matrix-based method; no compression in any sense. 

B. Test Results 
The experiments altogether tested three groups of data: 

large but sparse DAGs, large and non-sparse DAGs, and 
dense DAGs (but with relatively small number of nodes) to 
make a proper comparison. In these tests, we measured the 
space overhead, and the time spent on the generation of 
compressed transitive closures (i.e., labeling time), as well as 
the time for checking reachability.  

1)  Tests on Sparse Graphs: In this group of tests, we first 
generate a binary tree of 15000 nodes. Then, add randomly 
edges to the tree. The number of the added edges ranges from 
1000 to 5000 to create different graphs. For each generated 
graph, Tarjan’s algorithm is used to find SCCs as a 
preprocessor. All SCCs are then removed.

In Table II, we show the average size of the data structures 
generated by the different methods, and the average times 
spent on generating such data structures. 
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In this table, RDD(k) (k = 1, 2, 3) represents a k-level 
recursive DAG decomposition, by which a series of spanning 
trees: T0, …, Tk-1 and a remaining graph are created. 

DATA SIZE AND LABELING TIME – SPARSE GRAPH
Data size (16 bits) Labeling time (sec.) 

CD 30254 15.764 
TE 39247 12.023 
2-hop 801217 24145 
Dual-II 36380 42.227 
MM 14063750 675.812 
RDD(1) 28764 11.564 
RDD(2) 21673 10.786 
RDD(3) 18765 10.988 

From the table, we can see that RDD(3) has the lowest 
space overhead, but needs a little bit more labeling time than 
RDD(2). But RDD(2) is better than DRR(1) in both space 
overhead and labeling time. Although RDD(2) needs more 
time to generate one more spanning tree than RDD(1), it 
spends less time to decompose a smaller remaining graph than 
RDD(1). Chen’s method is better than all the other four 
approaches in space overhead. It is because for this kind of 
graphs, the pair sequences associated with the nodes are quite 
short. But Agrawal’s uses less time than it to label a graph 
since generating the interval sequences for the nodes in a 
graph by Agrawal’s needs much less time than decomposing 
that graph into node-disjoint chains by Chen’s. Dual-II also 
has very good performance since the TLC search trees created 
by it are very small, which are proportional to the number of 
non-tree edges. 2-hop can somehow reduce the size of 
transitive closures stored as matrices. But it took too much 
time (more than 6 hours) for the task. 

Fig. 15 shows the average query time over the tested 
graphs. Each query is a pair (x, y) to check whether node x is 
an ancestor of node y. For each graph, we have checked up to 
100,000 queries randomly generated and recorded the 
accumulated time.  

In this figure, we use RDD to represent all the three levels 
of the recursive DAG decomposition since they have almost 
the same query time. From this figure, we can see that 
Warren’s method is best. (In our implementation, a boolean 
matrix is simply stored as bit strings.) Chen’s method and the 
RDD are comparable; and Agrawal’s tree encoding is slightly 
better than Dual-II since each time to check reachability the 
TLC search tree may be explored by Dual-II. But by the tree 
encoding method, a quite short pair sequence is visited in a 
binary searching way.  Although by Chen’s method the matrix 

maintained is much larger than the RDD, they both require a 
constant query time and no significant difference can be 
observed. 

2) Test on Non-sparse Graphs: In the second group of experi-
ments, two kinds of DAGs are tested.

(i) tree-based
Any graph of this type is generated by constructing a tree of 

20000 nodes. In the tree, each node is of a random number of 
children from zero to six.  Then, add randomly up to 10000 
cross edges to the tree. On average, the outdegree of each 
node is 2.5, and the length of each path is 8.  
(ii) layered graph

Any graph of this type contains 8 levels with each 
containing 680 nodes. Each node at a level (except for the 
lowest level has a number of children from two to five. 
Altogether, it has 68786 edges. 

Table III shows the average size of generated data 
structures and the average labeling time. 

DATA SIZE AND LABELING TIME – TREE-BASED GRAPH
Data size (16 bits) Labeling time (sec.) 

CD 196506 13.764 
TE 210356 17.125 
Dual-II 31613420 591.227 
MM 25010001 286.812 
RDD(1) 109646 10.064 
RDD(2) 68276 11.786 
RDD(3) 65300 12.568 

In the table, 2-hop is not included since it took too long to 
generate labels. We only report the results of the other five 
methods. First, we remark that all the different levels of our 
DAG decomposition are much better than the other four 
strategies both in the space overhead and labeling time. 
Especially, a higher level of the DAG decomposition needs 
less space to store labels than a lower level of the 
decomposition although some more labeling time is required.  

Our method is better than Chen’s method since the matrix 
constructed for a decomposed graph is much smaller than the 
matrix for the original graph. However, Chen’s method is 
better than Agrawal’s. It is because the width � of a graph is 
in general much smaller than the number � of the leaf nodes 
of a spanning tree. We notice that the number of the columns 
of a matrix generated by Chen’s is bounded by � while the 
length of an interval sequence created by Agrawal’s is by �.
Dual-II even needs more space and more time than Warren’s. 
This shows that this method is totally not suitable for non-
sparse graphs since the space complexity O((e - n)2) and the 
time complexity O((e - n)3) of this method become respec-
tively O(n2) and O(n3) or more when a graph is not sparse. Al-
though both Dual-II and Warren’s are of the same theoretical 
space and time complexities, the boolean operations by War-
ren’s make it more efficient than Dual-II. 

The third level of the graph decomposition is just a little 
larger than the original graph while Agrawal’s needs more 
than 7 times of space, Chen’s about 6 times, and Warren’s 
about 800 times. Dual-II even needs more space and time than 
Warren’s. 
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Fig. 15 Time for query evaluation over sparse graphs 
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In Fig. 16, we show the time spent on the query evaluation. 

From this figure, we can see that both our method and 
Chen’s are a little bit worse than Warren’s, but much better 
than Agrawal’s and Dual-II. The figure also shows that 
Agrawal’s is better than Dual-II. The reason for this is that the 
TLC search tree produced by Dual-II may not be balanced. 
Then, the query time of Dual-II may be larger than logt [35]. 
This time complexity is derived based on the assumption that 
TLC is well balanced [35]. 

Table IV shows the sizes of the data structures generated by 
the different methods for storing the compressed transitive 
closure of the layered graphs, and the times spent on 
generating such data structures. 

DATA SIZE AND LABELING TIME – LAYERED GRAPH
Data size (16 bits) Labeling time (sec.) 

CD 176000 22.543 
TE 289784 110.456 
Dual-II 74026442 1556.228 
MM 56250000 842.88 
RDD(1) 92664 14.224 
RDD(2) 82764 14.450 
RDD(3) 80561 14.684 

Form this table, it can be observed that the time used by our 
method to generate a data structure for the layered graph’s 
transitive closure is again much less than all the other graph 
labeling strategies. More importantly, the discrepancy of the 
space overhead between ours and all the other strategies is 
huge. 

We show the time for the query evaluation in Fig. 17. This 
figure demonstrates that our method needs slightly more time 
than Warren’s for checking reachability, but better than all the 
other graph labeling approaches. Together with Table 4, this 
shows that trading time for space by our method pays off. 

3) Tests on Dense Graphs: In the third group of experiments, 
we have tested some DAGs with density near 0.25 (referred to 
as the dense-DAGs)

Any graph of this type contains 3000 nodes connected by 
2230196 edges generated randomly. The density of the graph 
is 2230196/9000000 = 0.247.

In Table V, we show the sizes of the data structures 
generated by the different methods for storing the transitive 
closure of a dense-DAG, and the times spent on generating 
such data structures.

DATA SIZE AND LABELING TIME – DENSE GRAPH
Data size (16 bits) Labeling time (sec.) 

CD 178654 23.722 
TE 267838 56.556 
Dual-II 771831 1400.786 
MM 25010001 800.674 
RDD(1) 102654 14.124 
RDD(2) 60764 15.065 
RDD(3) 58561 15.588 

As we can see, even for very dense graphs our method 
works well and compacts effectively the transitive closures. 
The time for generating data structures is also very low. In 
fact, a dense graph tends to have many forward edges, which 
can simply be moved without loss of any information on 
reachability. This may explain why our method has an 
advantage over the others. We also notice that the space 
overhead of Chen’s method is not much worse than ours. The 
reason for this is that the denser a graph is, the fewer chains 
will be generated. 

Fig. 18 shows the query time. Again, our method works 
well. Although it is a little bit inferior to Warren’s, it is much 
more efficient than all the other graph labeling approaches. 
For a dense graph, the average size of the data structure by 
ours is small due to the large number of removed forward 
edges, leading to a reduction of average query time. 
Agrawal’s is in general worse than Chen’s since the number 
of the leaf nodes of any spanning tree is always larger than the 
number of chains found by Chen’s method. For this kind of 
graphs, Dual-II shows the worst performance. 

VI. CONCLUSION

In this paper, a new method is proposed to compress transi-
tive closures to support reachability queries. The main idea 
behind it is to decompose G into a series of spanning trees: 
T0, …, Tk-1 (for some k � 1), and a remaining graph G, which 
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enables us to associate two sequences with each node in G: an 
interval sequence and an anchor node sequence. Especially, in 
terms of the anchor sequences, a directed graph, called a core 
graph of G, can be constructed, which can be used to control 
the process of reachability checking. The method needs O(ke
+ �1.5n) time to create a compressed transitive closure with 
O(kn + n��) space requirement, and O(k) query time, where n
is the number of the nodes in G, and � is the width of G,
defined to be the size of a largest node subset U of G such that 
for any pair of nodes u, v � U there does not exist a path from 
u to v or from v to u.

 An extensive experiment is conducted to test different 
strategies over different kinds of graphs, which shows that our 
method is promising. Our method is also a flexible strategy. 
For different applications, k can be set to different constants to 
reduce space overhead. But the query time is still bounded by 
a constant. 
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