
Decomposing DAGs into Spanning Trees: A New
Way to Compress Transitive Closures

Abstract— Let G(V, E) be a digraph (directed graph) with n
nodes and e edges. Digraph G* = (V, E*) is the reflexive,
transitive closure if (v, u) � E* iff there is a path from v to u in G.
Efficient storage of G* is important for supporting reachability
queries which are not only common on graph databases, but also
serve as fundamental operations used in many graph algorithms.
A lot of strategies have been suggested based on the graph
labeling, by which each node is assigned with certain labels such
that the reachability of any two nodes through a path can be
determined by their labels. Among them are interval labelling,
chain decomposition, and 2-hop labeling. However, due to the
very large size of many real world graphs, the computational cost
and size of labels using existing methods would prove too
expensive to be practical. In this paper, we propose a new
approach to decompose a graph into a series of spanning trees
which may share common edges, to transform a reachability
query over a graph into a set of queries over trees. We
demonstrate both analytically and empirically the efficiency and
effectiveness of our method.
Key words: Directed graphs; spanning trees; reachability queries;
transitive closure compression.

I. INTRODUCTION

Given two nodes u and v in a directed graph G(V, E), we
want to know if there is path from u to v. The problem is
known as graph reachability. In many applications, such as
evaluation of recursive queries in deductive databases [7, 18,
33, 34], type checking in object-oriented databases [22], XML
query processing, transportation network, internet traffic
analyzing, semantic web, and metabolic network [35], graph
reachability is one of the most basic operations, and therefore
needs to be efficiently supported.

A naive method is to precompute the reachability between
every pair of nodes – in other words, to compute and store the
transitive closure (TC for short) of a graph as a boolean matrix
M such that M[i, j] = 1 if there is path from i to j; otherwise,
M[i, j] = 0. Then, a reachability query can be answered in
constant time. However, this requires O(n2) space, which
makes it impractical for massive graphs, where n = |V|. An-
other method is to compute the shortest path from u to v over
a graph on demand. Therefore, it needs only O(e) space, but
with high query processing cost - O(e) time in the worst case,
where e = |E|.

There is much research on this issue to reduce space over-
head but still keep constant query time, such as those dis-
cussed in [1, 4, 6, 8, 9, 19, 35]. All of them reduce the space

requirement to some extent. But the worst space cost is still in
the order of O(n2). In the case of large graphs, they cannot be
used.

In this paper, we investigate the problem from a different
angle: to decompose G into several components such that the
existing labeling techniques can be utilized for each smaller
graph without scarifying too much query time.

Concretely, we decompose G into a series of spanning trees:
T0, …, Tk-1 (for some k � 1), and a remaining graph G. They
may share common edges, but G is in general much smaller
than G. If we assign intervals [35] to the nodes in Ti (i = 0, …,
k - 1) and use Chen’s method [8] to label G, the total size of
labels is reduced to O(kn + n��), where n stands for the
number of the nodes in G, and � for the width of G, defined to
be the size of a largest node subset U of G such that for any
pair of nodes u, v � U there does not exist a path from u to v
or from v to u. The query time is bounded by O(k).

More importantly, it is a very flexible method. For different
applications, we can control the graph decomposition, i.e., to
set k to different constants, to get a trade-off of query time for
space. We will show that it is a biased trade-off of time for
space. While the query time increases linearly, the space
overhead decreases quadratically, in the sense that both the
number of the nodes and the width of G are decreased.

The remainder of the paper is organized as follows. In Sec-
tion II, we review the related work. In Section III, we discuss
the main step to decompose a directed acyclic graph, based on
which a transitive closure can be effectively compressed. In
Section IV, we show a recursive graph decomposition to
generate a series of spanning trees which may share common
edges. Also, how to evaluate reachability queries using such
trees is discussed. Section V is devoted to the experiments.
Finally, a short conclusion is set forth in Section VI.

II. RELATED WORK

In the past two decades, many interesting labeling-based
strategies have been proposed to reduce both the
precomputation time and storage cost with reasonable
answering time. In the following, we review some
representative ones.

Chain decomposition methods. In [19], Jagadish suggested an
interesting method to decompose a DAG (directed acyclic
graph) into node-disjoint chains. On a chain, if node v appears

Yangjun Chen#*1, Yibin Chen#2
#Dept. Applied Computer Science, University of Winnipeg, Canada

1y.chen@uwinnipeg.ca
2chenyibin@gmail.com

*School of Information Science and Engineering, Central South University, P.R. China

978-1-4244-8958-9/11/$26.00 © 2011 IEEE ICDE Conference 20111007

above node u, there is a path from v to u in G. Then, each
node v is assigned an index (i, j), where i is a chain number,
on which v appears, and j indicates v’s position on the chain.
These indexes can be used to check reachability efficiently
with O(�n) space overhead and O(1) query time, where � is
the number of chains. However, to find a minimized set of
chains for a graph, Jagadish’s algorithm needs O(n3) time (see
page 566 in [19]). For this reason, Jagadish suggested a
heuristic method to find all the node-disjoint paths of G and
then stitch some paths together to form a chain. In doing so,
the number of the produced chains is normally much larger
than the minimum number of chains, increasing significantly
both space and query time.

The method discussed in [8] greatly improves Jagadish’s
method. It needs only O(n2 + �1.5n) time to decompose a DAG
into a minimum set of node-disjoint chains, where �
represents G’s width. Its space overhead is O(��n) and its
query time is bounded by a constant. In [9], the concept of the
so-called general spanning tree is introduced, in which each
edge corresponds to a path in G. Based on this data structure,
the real space requirement becomes smaller than O(��n), but
the query time increases to log�.

Interval based methods. In [1], Agrawal et al. proposed a
method based on interval labeling. This method first figures
out a spanning tree T and assign to each node v in T an inter-
val (a, b), where b is v’s postorder number (which reflects v’s
relative position in a postorder traversal of T); and a is the
smallest postorder number among v and v’s descendants with
respect to T (i.e., all the nodes in T[v], the subtree rooted at v).
Another node u labeled (a’, b’) is a descendant of v (with
respect to T) iff a � b’ < b. This idea originates from Schubert
et al. [28]. In a next step, each node v in G will be assigned a
sequence L(v) of intervals such that another node u in G with
interval (x, y) is a descendant of v (with respect to G) iff there
exists an interval (a, b) in L(v) such that a � y < b. The length
of such a sequence (associated with a node in G) is bounded
by O(�), where � is the number of the leaf nodes in T. So the
time and space complexities are bounded by O(�e) and O(�n),
respectively. The querying time is bounded by O(log�). In the
worst case, � = O(n). (See [10, 11, 13].)

The method discussed in [35] can be considered as a
variant of the interval based method, and called Dual-I,
specifically designed for sparse graphs G(V, E). As with
Agrawal et al.’s, it first finds a spanning tree T, and then
assigns to each node v a dual label: [av, bv) and (xv, yv, zv). In
addition, a t 	 t matrix N (called a TLC matrix) is maintained,
where t is the number of non-tree edges (edges not appearing
in T). Another node u with [au, bu) and (xu, y, zu) is reachable
from v iff au � [av, bv), or N(xv, zu) - N(yv, zu) > 0. The size of
all labels is bounded by O(n + t2) and can be produced in O(n
+ e + t3) time. The query time is O(1). As a variant of Dual-I,
one can also store N as a tree (called a TLC search tree),
which can reduce the space overhead from a practical
viewpoint, but increases the query time to logt. This scheme is
referred to as Dual-II.

2-hop labeling. The method proposed by Cohen et al. [6]

labels a graph based on the so-called 2-hop covers. It is also
designed for sparse graphs. A hop is a pair (h, v), where h is a
path in G and v is one of the endpoints of h. A 2-hop cover is
a collection of hops H such that if there are some paths from v
to u, there must exist (h1, v) � H and (h2, u) � H and one of
the paths between v and u is the concatenation h1h2. Using this
method to label a graph, the worst space overhead is in the
order of O(n). The main theoretical barrier of this method is
that finding a 2-hop cover of minimum size is an NP-hard
problem. So a heuristic method is suggested in [6], by which
each node v is assigned two labels, Cin(v) and Cout(v), where
Cin(v) contains a set of nodes that can reach v, and Cout(v)
contains a set of nodes reachable from v. Then, a node u is
reachable from node v if Cin(v)
 Cout(v) � �. Using this
method, the overall label size is increased to O(n e logn). In
addition, a reachability query takes O(e) time because the
average size of each label is above O(e). The time for
generating labels is O(n4).

Path-tree decomposition. Recently, Jin et al. [20] discussed a
new method, by which a DAG G is decomposed into a set of
node-disjoint paths. Then, a weighted directed graph Gw is
constructed, in which each node represents a path and there is
an edge (i, j) if on path i there is a node connected to a node
on path j. The weight associated with (i, j) is the number of
such connections. Gw is then labeled in a way similar to
Agrawal et al.’s. Unfortunately, this method does not work in
some cases because Gw is in general a cyclic graph, but
Agrawal et al.’s method is applicable only to acyclic graphs.
By Agrawal et al.’s and also all the above methods, a
preprocessor is needed to recognize all the strongly connected
components (SCCs) in a graph by using Tajan’s algorithm [29]
and collapse each of them into a single node. It is because any
two nodes in an SCC are reachable from each other.

For illustration, see the following example.

The graph shown in Fig. 1(a) is decomposed into four paths:
P1 = {1, 2, 3, 4, 5}, P2 = {6, 7, 8}, P3 = {9, 10}, and P4 = {11}.
According to [20], a weighted directed graph will be created
as shown in Fig. 1(b), which contains an SCC (with path-
nodes P1, P2 and P3). Collapsing it to a single node, we will
get a graph as shown in Fig. 1(c). The problem is how to
handle such a node (corresponding to an SCC in Gw) is not
discussed at all in [20], which should be much more
complicated than the SCCs in a directed graph since each node
in Gw represents a path in G. Although any two path-nodes in
an SCC (in Gw) are reachable from each other, a node on one

P3

P4

1

1

1
1

2

3

4

5

6

7

8

9

11

10

P1

P2

P1 P2

P3

3

21
1

P4

The node represents an SCC
containing three path nodes:
P1, P2, and P3.

(c)(a) (b)

Fig. 1 Illustration for the path-tree

3P4

1

1008

of these two paths may not be reachable from some node on
the other path in G.

A possible correction of this method is to consider all the
possible spanning trees of each SCC in Gw. But in this way,
the labeling time will be dramatically increased. In the worst
case, it can be exponential in the size of Gw. For example, for
the SCC shown in Fig. 1(b), we need to consider altogether six
spanning trees. (In [20], only one spanning tree is considered.
Obviously, it cannot be correct.)

There are some other graph labeling methods, such as the
method using signatures [31], PE-Encoding [5] and PQ-En-
coding [36]. The idea of the signature-based method [31] is to
assign to each node a signature (which is in fact a bit string)
generated using a set of hash functions. The space complexity
is O(l�n), where l is the length of a signature. But this
encoding method suffers from the so-called signature conflicts
(two nodes are assigned the same signature). Moreover, in the
case of DAGs, a graph needs to be decomposed into a series
of trees; and no formal decomposition was reported in that
paper. The PE-Encoding [5] and the PQ-Encoding [36] are
similar to the 2-hop labeling, but with higher computational
complexities. The methods discussed in [25, 26] reduces 2-
hop’s labeling complexity from O(n4) to O(n3), but are still
not applicable to massive graphs. The method proposed in [4]
is a geometry-based algorithm to find high-quality 2-hop
covers. It also improves the 2-hop labeling by avoiding the
computation of transitive closures, which is required by
Cohen’s to find 2-hop covers. However, it has the same
theoretical computational complexities as Cohen’s method [6].
Finally, the method discussed in [32] is suitable only for
planar graphs with O(nlogn) labeling time and O(nlogn) space.
The query time is O(1). Finally, deductive databases can be
considered as a quite different extension to handle this
problem [12, 14, 15].

In the following table, we compare our labeling method
with the representative approaches.

COMPARISON OF STRATEGIES
 Query time Labeling time Space overhead
Graph traversal O(e) 0 O(e)
Jagadish [19] O(1) O(n3) O(�n)
Interval-based [1] O(logn) O(ne) O(n2)
Dual-I [35] O(1) O(n + e + t3) O(n + t2)
Dual-II [35] O(logt) O(n + e + t3) O(n + t2)
2-hop [6] O(e1/2) O(n4) O(nelogn)
Matrix-based [37] O(1) O(n3) O(n2)
Chen [8] O(1) O(n2 + �1.5n) O(�n)
ours O(k) O(ke + �1.5n) O(kn + �n)

III. GRAPH DECOMPOSITION

In this section, we discuss a new graph decomposition
approach to compress transitive closures. First, we give some
basic definitions related to spanning trees in Subsection A.
Then, in Subsection B, we demonstrate our basic graph
decomposition based on the concept of critical nodes, as well
as a method for checking the reachability by using such graph

decomposition. Finally, we show how to efficiently recognize
the critical nodes in a graph in Subsection C.

A. Basic Definition
Without loss of generality, we assume that G is acyclic (i.e.,

G is a DAG.) If not, we will find all SCCs of G and collapse
each of them into a representative node. Obviously, each node
in an SCC is equivalent to its representative node as far as
reachability is concerned. This process takes O(e) time using
Tarjan’s algorithm [29].

We also use V(G) and E(G) to represent its node set and
edge set, respectively.

It is well known that the preorder traversal of G introduces
a spanning tree (forest) T. With respect to T, E(G) can be clas-
sified into four groups:
 tree edges (Etree): edges appearing in T.
 cross edges (Ecross): any edge (u, v) such that u and v are

not on the same path in T.
 forward edges (Eforward): any edge (u, v) not appearing in T,

but there exists a path from u to v in T
 back edges (Eback): any edge (u, v) not appearing in T, but

there exists a path from v to u in T.
All cross, forward, and back edges are referred to as non-

tree edges. (But in a DAG, we do not have back edges since a
back edge implies a cycle.) For illustration, consider the DAG
shown in Fig. 2. For it, we may find a spanning tree as shown
by the solid arrows. (In the figure, each non-tree edge is
represented by a dashed arrow.)

As in [35], we can assign each node v in T an interval [�v,
�v), where � v is v’s preorder number (denoted pre(v)) and � v -
1 is equal to the largest preorder number among all the nodes
in T[v]. So another node u labeled [�u, � u) is a descendant of v
(with respect to T) iff �u � [�v, �v) [35], as shown in Fig. 2. If
�u � [�v, �v), we say, [�u, � u) is subsumed by [�v, �v). This
method is called the tree labeling.

B. Graph Decomposition and Reachability Checking
In this subsection, we discuss a decomposition of G(V, E):

a spanning tree T and a subgraph Gc such that |V(Gc)| < |V|.
What we want is to transform the reachability checking of any
two nodes in G to a checking over T and a checking over Gc.
Obviously, Gc has to contain Ecross. But some more edges need
to be included and carefully recognized. For this purpose, we
introduce some new concepts.

We denote by E’ the set of all cross edges. Denote by V’
the set of all the end points of the cross edges. That is, V’ =
Vstart � Vend, where Vstart contains all the start nodes while Vend
all the end nodes of the cross edges. For example, for the
graph shown in Fig. 2, we have Vstart = {h, g, f, d} and Vend =

Fig. 2 A spanning tree and intervals

a

b

d

r
h

e

f
g

i j

[0, 13)

[1, 5)

[2, 5)

[4, 5)

[5, 6)

[8, 9) [9, 10)

[6, 10) [10, 13)

[7, 10)
[11, 12) [12, 13)

c

k

p[3, 5)

TABLE I

1009

{e, g, c, d, k}. No attention is paid to the forward edge (a, e) in
the graph since it can simply be removed as far as the
reachability is concerned.

The first concept is the so-called crossing range, which is a
second pair of integers associated with each node v � V,
defined below.
Definition 1 (crossing range) Let T be a spanning tree (forest)
of G. Let v be a node in V, and v1, …, vj the children of v in G.
Let [�i, �i) (i = 1, …, j) be the interval of vi. Set av = mini{�i}
and bv = maxi{�i}. Then, {av, bv} is called the crossing range
of v.

For technical convenience, for any node v without child
nodes in G, both its av and bv are set to be �v. For example,
with respect to the spanning tree shown in Fig. 2, the crossing
ranges of the nodes in G can easily be computed, as shown in
Fig. 3.

We notice that the crossing range of node f in T shown in
Fig. 3 is {5, 5}. It is because f has only one child d in G,
whose interval is [5, 6). But node g’s crossing range is {2, 5}
since it has two children c and d with intervals [2, 5) and [5, 6),
respectively. The purpose of crossing edges is to define the
so-called critical nodes, which are used to determine all those
nodes � Vstart � Vend, but should be included in Gc.
Definition 2 (critical nodes) A node v in a spanning tree T of
G is critical if the following conditions are satisfied:
1) There is a subset U of Vstart with |U| > 1 such that for any

two nodes u1, u2 � U they are not related by the
ancestor/descendant relationship and v is the lowest
common ancestor of all the nodes in U.

2) For each u � U, its crossing range {au, bu} is not within
T[v]. That is, au or bu is a preorder number not appearing in
T[v].

All the critical nodes with respect to T are denoted by
Vcritical. For example, in the spanning tree shown in Fig. 2,
node e is the lowest common ancestor of {f, g} and both f and
g are in Vstart. In addition, the crossing ranges of f and g are
not within in T[e] (see Fig 3). So e is a critical node. We also
notice that node a is the lowest common ancestor of {d, f, g,
h}. But the crossing ranges of all the four nodes are in T[a].
Thus, a is not a critical node. In the same way, we can check
all the other nodes and find that Vcritical = {e}.

The reason for imposing condition (2) in the above
definition is that if any cross edge going out of a node in T[v]
reaches only a node in T[v], then the reachability between v
and any other node in G can be checked by the tree labeling.
So it is not necessary to include v in Gc if v � Vstart � Vend.

Now we consider a tree (forest) structure Tc, called a
critical tree of G (with respect to T), which contains all the
nodes in Vcritical � Vstart � Vend. In Tc, there is an edge from u

to v iff there is a path P from u to v in T and P contains no
other node in Vcritical � Vstart � Vend, as illustrated in Fig. 4(a).

Denote Tc � Ecross by Gc (see Fig. 4(b).) Then, T and Gc
make up a decomposition of G. It can be seen that V(Gc) is
much smaller than V.

For any two node u, v appearing on a path in T, their reach-
ability can be checked using their associated intervals.
However, our question is, if they are not on the same path in T,
can we check their reachability by using Gc?

To answer this question, we need another concept, the so-
called anchor nodes.

First, for any critical node v, we will change its crossing
range as follows.
 Assume that U is a subset of Vstart such that v is the lowest

common ancestor of all the nodes in it and satisfies
condition (1) and (2) in Definition 2.

 Set av � min{minu�U{au}, av};
 bv � max{maxu�U{bu}, bv}.

For instance, node e’s original crossing range is {8, 9} (see
Fig. 3(b)). The crossing ranges of node f and g are {5, 5} and
{2, 5}, respectively. So e’s original range will be changed to
{2, 9}.

Next, we denote by C(v) all the critical nodes in T[v] plus
all those start nodes of the cross edges which appear in T[v].
We consider a maximal subset of C(v) such that each node in
it does not have an ancestor in C(v). Denote such a subset as
Cs(v). It can be seen that in Cs(v) there is at most one node u
such that its crossing range is not within T[v]. Otherwise, a
new critical node in T[v] will be created (see Definition 2),
which is an ancestor of u and in C(v), contradicting the fact
that u � Cs(v) and thus has no ancestor in C(v).
Definition 3 (anchor nodes) Let G be a DAG and T a span-
ning tree of G. Let v be a node in T. We associate two nodes
with v as below.
i) A node y � Cs(v) is called an anchor node (of the first kind)

of v if its crossing range is not within T[v], denoted v*. If
such a node does not exist, v* is set to be the special sym-
bol “-”.

ii) A node w is called an anchor node (of the second kind) of
v if it is the lowest ancestor of v (in T), which has a cross
incoming edge. w is denoted v**. If such a node does not
exist, v** is set to be “-”.

For example, in the graph shown in Fig. 2, r* = e. It is be-
cause node e is a critical node in Cs(r) and its crossing range
{2, 9} (note that the crossing range of a critical node is
changed) is not within in T[r]. But r** does not exist since it
does not have an ancestor which has a cross incoming edge. In
the same way, we find that e* = e** = e. That is, both the first
and second kinds of anchor nodes of e are e itself. We can
easily recognize the anchor nodes for all the other nodes in
that graph.

d
he

f
g

(b)

d he

f g

(a)
Fig. 4 Illustration for Tc and Gc

c

k

c

k

a

b

d

r
h

e

f
g

i j

{1, 10}

{2, 5}

{2, 2}

{4, 4}

{4, 4}

{5, 5} {2, 5}

{7, 7} {4, 12}

{8, 9}
{11, 11} {12, 12}

c

k

p{4, 4}

Fig. 3 Start nodes, end nodes, and crossing ranges

1010

The following two lemmas are critical to the reachability
checking using Gc.
Lemma 1 Let u be a node, which is not a descendant of v in T;
but u is reachable from v via some non-tree edges. Then, any
way for v to reach u must be through v*.
Proof. According to Definition 4, v* is the only node in Cs(v)
such that its crossing range is not within T[v]. It indicates that
any start node in T[v] such that its crossing range is outside of
T[v] must be a descendant of v* in T. So any node that is not a
descendant of v but reachable from v via some cross edges
must be through v*.
Lemma 2 Let u be a node, which is not an ancestor of v in T;
but v is reachable from u via some non-tree edges. Then, any
way for u to reach v must be through v**.
Proof. This can be seen from the fact that any node which
reaches v via some cross edges is through v** to reach v.

In terms of the above discussion, we associate each v � G
with a triplet <x, y, z>:
- x = [�, �), an interval created by labeling the nodes in T;
- y = v*; and
- z = v**.
Proposition 1 Let u and v be two nodes in G, labeled ([�u, �u),
yu, zu) and ([�v, �v), yv, zv), respectively. Node u is reachable
from v iff one of the following conditions holds:
(i) [�u, �u) is subsumed by [�v, �v) (i.e., �u � [�v, �u)), or
(ii) zu is reachable from yv through a path in Gc.
Proof. The proposition can be derived from the following two
facts:
(1) u is reachable from v through tree edges iff [�u, �u) is

subsumed by [�v, �v).
(2) In terms of Lemma 1 and 2, u is reachable from v via

non-tree edges iff zu = u** and yv = v* exist and u** is
reachable from v* through a path in Gc.

In a triplet (x, y, z) associated with a node, y and z are
referred to as non-tree labels.
Example 1 Consider G and T shown in Fig. 2 once again. The
non-tree labels of the nodes are shown in Fig. 5.

In this figure, we can see that the non-tree label of node r is
<e, -> because (1) r* = e; and (2) r** does not exist. Similarly,
the non-tree label of node f is <f, e>. It is because f* is f itself;
but f** is e.

Especially, we notice that node r and node d are not on the
same path in T. But d is a descendant of r. Such reachability
has to be checked by using their anchor nodes. In fact, we
have a path: e � f � d in Gc. But d** = d and r* = e, which
shows that d is reachable from r by Proposition 1.

In order to check the reachability in Gc, we can use any ex-
isting method. For example, we can employ Chen’s algorithm
[8] to decompose Gc into two chains as shown in Fig. 6(a).

Recall that on each chain if node v appears above node u,
there is a path from v to u in Gc.

Below is a brief description of Chen’s algorithm [8], which
is given for the purpose of self-explanation.
1. Each node in Gc will be assigned an index (i, j) to show

that it is the jth node on the ith chain.
2. In addition, each node v on the ith chain will be

associated with an index sequence of length �c: (1, j1) …
(i, ji) … (�c, cwj) (as illustrated in Fig. 6(a)) such that any
node with index (x, y) is a descendant of v if x = i and y �
j or x � i but y � jx, where �c is the number of the node-
disjoint chains, equal to the width of Gc.

We can also store all the index sequences as a matrix M as
illustrated in Fig. 6(b), in which each entry M(v, j) is the jth
element in the index sequence associated with node v. So, a
node u with index(u) = (i, j) is a descendant of another node v
iff M(v, i) � j. Thus, using M, a reachability checking can be
done in O(1) time.

However, if we don’t decompose G, but directly apply
Chen’s algorithm to it, at least five chains will be produced
since there exists a subset of nodes U = {b, f, g, i, j} in G such
that each pair of nodes in it are not connected through a path
in G. So it is not possible to decompose G into a set with
fewer chains. Therefore, a 13 	 5 matrix has to be created,
which is much larger than the 7 	 2 matrix shown in Fig. 6(b),
generated for Gc. We notice that G contains 13 nodes.

C. Recognizing Critical Nodes
From the discussion in the previous subsection, we know

that all the critical nodes need to be recognized to construct Gc.
Now we discuss an efficient algorithm for this task.

We will search T bottom up and produce a subtree T’ of T
such that only the critical nodes and the nodes from Vstart are
included. Initially, T’ is set to �, and all the nodes in Vstart are
marked. Then, during the traversal of T, any node belonging
to Vstart or any critical node, once it is recognized, will be
inserted into T’. To this end, each node v inserted into T’ will
be associate with two links, denoted parent(v) and left-
sibling(v), respectively. parent(v) is used to point to the parent
of v in T’ while left-sibling(v) points to a node in T’ created
just before v, which is not a descendant of v in T.

Concretely, parent(v) and left-sibling(v) will be created as
follows.
(i) Let v be the node currently inserted into T’.
(ii) If v is not the first node inserted into T’, we do the

following:

Fig. 6 A Gc, its decomposition and its reachability matrix

h

e

g

c

k

f

d

c
d
e
f
g
h
k

1
4
5
2
5
3
1
5

2
-
2
1
1
2
1
-(a) (b)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(2, 1)

(2, 2)

(1, 1) (2, 1)

(1, 2) (2, 1)

(1, 3) (2, 2)

(1, 4)

(1, 5)

(1, 5) (2, 1)

(1, 5) (2, 2)

Index(v) Index sequence Index(v) Index sequence

a

b

d

r
h

e

f
g

i j

<-, ->

<d, ->

<-, c>

<-, k>

<d, d>

<f, e> <g, g>

<e, -> <h, ->

<e, e>
<-, -> <-, ->

Fig. 5 Non-tree labels

c

k

p<-, c>

1011

Let v’ be the node inserted just before v. If v’ is not a child
(descendant) of v, create a link from v to v’, called a left-
sibling link and denoted as left-sibling(v) = v’. If v’ is a
child (descendant) of v, we will first create a link from v’
to v, called a parent link and denoted as parent(v’) = v.
Then, we will go along the left-sibling chain starting from
v’ until we meet a node v’’ which is not a child
(descendant) of v. For each encountered node u except v’’,
set parent(u) � v. Finally, set left-sibling(v) � v’’.

Fig. 7 is a pictorial illustration of this process.

In Fig. 7(a), we show the navigation along a left-sibling
chain starting from v’ when we find that v’ is a child
(descendant) of v. This process stops whenever we meet v’’, a
node that is not a child (descendant) of v. Fig. 7(b) shows that
the left-sibling link of v is set to point to v’’, which is
previously pointed to by the left-sibling link of v’s left-most
child.

Extending the above process with the recognition of critical
nodes and the computation of crossing ranges, we get an
efficient algorithm for finding all the critical nodes.
Algorithm find-critical(T)
begin
1. T’ ��. Mark any node in T, which belongs to Vstart.
2. Let v be the first marked node encountered during the

bottom-up searching of T. Insert v in T’.
3. Let u be the currently encountered node in T. Let u’ be

the node inserted into T’ just before u. Do (4) or (5),
depending on whether u is a marked node or not.

4. If u is marked, then insert u into T’ and do the following.
 (a) If u’ is not a child (descendant) of u, set left-sibling(u)

= u’ (i.e., a link from u to u’).
 (b) If u’ is a child (descendant) of u, we will first set par-

ent(u’) = u. Then, we will go along a left-sibling chain
starting from u’ until we meet a node u’’ which is not
a child (descendant) of u. For each encountered node
w except u’’, set parent(w) � u. Also, set left-
sibling(u) � u’’. (See Fig. 7(b) for illustration.)
Calculate initial au and bu according to Definition 1.
Let W be the set of all the encountered nodes during
the navigation along the left-sibling chain (not
including u’’). Set au � min{minw�W{aw}, au} and bu

� max{maxw�W{bw}, bu}.
5. If u is a non-marked node, then do the following.
 (c) If u’ is not a child (descendant) of u, u is ignored.
 (d) If u’ is a child (descendant) of u, we will go along a

left-sibling chain starting from u’ until we meet a node
u’’ which is not a child (descendant) of u. If there are
more than one node in W such that their crossing
ranges not within T[u], insert u into T’, and compute
au and bu as (4.b). Otherwise, u is ignored.

end

In the algorithm, each node v belonging to Vstart is simply
inserted into T’, by which its {av, bv} is computed. (See 4.a
and 4.b. in the algorithm.) For a node not belonging to Vstart,
we will check whether it satisfy the conditions given in
Definition 2. If it is the case, it will be inserted into T’. At the
same time, its crossing range will be calculated. Otherwise, it
will be ignored. (See 5.c and 5.d in the algorithm.)

Obviously, the algorithm requires only O(e) time since each
node in T is accessed at most two times and for each node v
out-degree(v) edges will be visited. We have

�
�

�
Vv

vreeout)(deg = e.

Example 2 Consider the spanning tree T shown in Fig. 2. Ap-
plying the above algorithm to T, we will generate a series of
data structures shown in Fig. 8.

First, the nodes d, f, g, and h in T are marked. During the
bottom-up search of T the first node created for T’ is node d
(see Fig. 8(a).) In a next step, node b is met. But no node for b
in T’ is created since b is not marked and has only one child in
the current T’ (see 5.d in Algorithm find-critical()). In the
third step, node f is encountered. It is a marked node and to
the right of node d. So a link left-sibling(f) = d is created (see
Fig. 8(b).) In the fourth step, node g is encountered and a
second left-sibling link is generated (see Fig. 8(c).) In the fifth
step, node e is met. It is not marked. But it is the parent of
node g. So the left-sibling chain starting from node g will be
searched to find all the children (descendants) of e along the
chain, which appear in T’. Furthermore, the number of such
nodes is 2 and the crossing ranges of both nodes f and g are
outside of T[e]. Thus, node e is inserted into T’ (see Fig. 8(d).)
Here, special attention should be paid to the replacement of
left-sibling(f) = d with left-sibling(e) = d, which enable us to
easily find the lowest common ancestor of d and some other
nodes from Vstart if any. In the next two steps, we will meet
node i and j. But no nodes will be created for them. Fig. 8(e)
demonstrates the last step of the whole process. Especially,
the tree shown in Fig. 8(e) is T’, which contains all the critical
nodes and the nodes from Vstart.

Form T’, Tc and Gc can be easily constructed as shown in
Fig. 4.

The following proposition shows the correctness of the
algorithm.
Proposition 2 Let G = (V, E) be a DAG. Let T be a spanning
tree (or a spanning forest) of G. Algorithm find-critical()
generates T’ of G with respect to T correctly.
Proof. To show the correctness of the algorithm, we should
prove the following: (1) each node in T’ is a critical node or a
node from Vstart; (2) any node not in T’ is neither a critical

u’’ is not a
child of u. v

v’�v’’

v

v’�v’’

left-sibling(u’)

(a) (b)

Fig. 7 Illustration for the construction of T’

d d f d f g

d f g

e

d f g

e h

(a) (b) (c)

(d) (f)

Fig. 8 Sample trace

1012

node nor a node from Vstart; (3) for each edge (u, v) in T’ there
is a path from u to v in T, which does not contain a critical
node or a node from Vstart (except the two end points).

First, we prove (1) by induction on the height h of T’. The
height of a node v in T’ is defined to be the longest path from
v to a leaf node in T’.
Basis step. When h = 0, each leaf node in T’ is a node in Vstart.
So it is correct.
Induction hypothesis. Assume that every node appearing at
height h = k in T’ is a critical node or a node from Vstart. We
prove that every node v at height k + 1 in T’ is also a critical
node or a node from Vstart. If v ��Vstart, the proof is trivial.
Assume that v ��Vstart. According to the algorithm, v has at
least two children with their crossing ranges not within T[v]
(see 5.d in Algorithm find-critical()). Assume that v1 and v2
are two such nodes. If these two children belong to Vstart, the
claim holds. Now we assume that v1 does not belong to Vstart.
Then, its height must be the same as or lower than k.
According to the induction hypothesis, it is a critical node.
Therefore, there must exist a subset S � Vstart such that v1 is
the lowest common ancestor of all the nodes in S. Therefore, v
is an ancestor of all the nodes in S, which contains at least one
node whose crossing range is outside of T[v]. Let v3 be such a
node. Thus, v is the lowest common ancestor of v2 and v3.
(Here, we assume that v2 is from Vstart. If v2 does not belong to
Vstart, repeating the above argument for v2 will prove the
claim.)

In order to prove (2), we notice that only in two cases no
node is generated in T’ for a node v ��Vstart: (i) v is to the right
of a node, for which a node in T’ is created just before v is
encountered (see 5.c in Algorithm find-critical()); (ii) v is the
parent (ancestor) of a node u, for which a node in T’ is
generated; but u is the only node encountered when navigating
the corresponding left-sibling chain (see 5.d in Algorithm
find-critical()) or there are not more than one children such
that their crossing ranges are outside of v’s interval. Obviously,
in both cases, v cannot be a critical node.

(3) can be seen from the fact that each parent link
corresponds to a path in T and such a path cannot contain any
critical node (except the two end points) since the nodes in T
are checked level by level bottom-up.

In the following, we show that for any DAG G(V, E) we
always have:

 |Vcritical| < |V| - |Vstart� Vend|.
Since G is a DAG, it has at least one node whose in-degree

is 0. Using this node as the starting point to search G in
preorder, we get a spanning tree (forest) T. Then, with respect
to T, this node cannot be a critical node. Also, it does not
belong to Vstart� Vend. Thus, the above inequality holds, which
implies the following proposition.
Proposition 3 The number of the nodes in G is strictly larger
than the number of the nodes in Gc.
Proof. Remember that Gc = Tc � Ecross. So the node set of Gc

is Vcritical � Vstart� Vend. We notice that Vcritical
 (Vstart� Vend)
= �, which indicates that |Vcritical � Vstart � Vend| = |Vcritical| +
|Vstart� Vend| < |V|.

IV. RECURSIVE GRAPH DECOMPOSITION

We note that Gc itself can be decomposed, leading to a
further space decrement. Repeating this operation, we will get
a recursive decomposition of G. In this subsection, we
elaborate this process.

A. Recursive Decomposition
Let G0 be a DAG. Denote by T0 a spanning tree of G0.

Denote by 0
crossE the set of all the cross edges with respect to

T0. Then, as discussed in the previous section, T0 and G1 = 0
cT

� 0
crossE make up a decomposition of G0, where 0

cT is the
critical tree of G0. Our purpose is to find a series of tree
structures:

T0, T1, ..., Tk-1, (k � 1)
such that T0 is a spanning tree of G0 and each Ti (i = 1, ..., k - 1)
is a spanning tree of Gi = 1�i

cT � 1�i
crossE , where 1�i

cT is the critical
tree of Gi-1, and 1�i

crossE is a set of all the cross edges with respect
to Ti-1.

The following example helps for illustration.
Example 3 Denote by G0 the graph shown in Fig. 2. Denote
by T0 the spanning tree represented by the solid arrows in the
graph. With respect to T0, 0

crossE is a graph as shown by the
dashed arrows in the same figure, and 0

cT is a forest as shown
in Fig. 4(a). Then, G1 = 0

cT � 0
crossE is a graph as shown in Fig.

4(b).
A spanning tree T1 of it is shown by the solid arrows in Fig.

9(a). With respect to this spanning tree, (h, g) and (h, k) are
two forward edges and can be removed. So 1

crossE is a graph as
shown in Fig. 9(b), containing only two disconnected edges.
Their respective start nodes are g and c. Accordingly, 1

cT is
also a graph containing two disconnected edges, as shown in
Fig. 9(c).

G2 will be constructed in the same way as G1. That is, G2 is
equal to 1

cT � 1
crossE , as shown in Fig. 10(a).

A spanning tree T2 of G2 is shown in Fig. 10(b). With
respect to T2, 2

crossE is a graph containing only one edge, and 2
cT

contains only two single nodes, as shown in Fig. 10(c) and (d),

[1, 2]

g

c
d

k

G2:

(a)
Fig. 10 Illustration for recursive graph decomposition

d

k

d

k

(c) (d)

G3 = T3:
d

k

(e)

[3, 4]

(b)

T2: g

c
d

k

[0, 4]

[1, 3]

[2, 3]

[0, 2]

2
crossE : 2

cT :

g

c
d

k

g

c
d

k

1
crossE : 1

cT :h

e

g

c
f

d

k

[0, 7]

[1, 7]

[2, 4]

[3, 4]

[4, 7]

[5, 7]

[6, 7]

T1:

(a) (b) (c)

Fig. 9 Illustration for recursive graph decomposition

1013

respectively. So, we have G3 = 2
cT � 2

crossE = 2
crossE , and T3 is

the same as G3 (see Fig. 10(e)).

B. Reachability Checking Based on Recursive Decomposion
From the above discussion, we can see that for a given

DAG G, we can always find a series of trees: T0, T1, ..., Tk-1, (k
� 1), and a series of subgraphs: G0 = G, G1, ..., Gk such that Ti
is a spanning tree of Gi (i = 0, …, k – 1). We refer to Gk as the
remaining graph of G, denoted as G. It can be a graph or a tree.

In terms of the recursive graph decomposition, we are able
to associate each node v in G0 with two sequences: an interval
sequence and an anchor node sequence to check reachability:
1) [v

0� , v
0�), ..., [v

j� , v
j�), (j ��k - 1)

where each [v
i� , v

i�) is an interval generated by labeling Ti;
2) (vx0 , vy0), ..., (v

lx , v
ly), (l ��j)

where each v
ix is a pointer to an anchor node of the first kind

(a node appearing in Gi+1) while each v
iy a pointer to an an-

chor node of the second kind (also, a node in Gi+1). Each
(v

ix , v
iy) can be generated as described in the previous section.

See Fig. 11 for illustration.

In this figure, a dashed arrow marked with * stands for a
pointer to an anchor node of the first kind while a dashed ar-
row marked with ** for a pointer to an anchor node of the
second kind. Since a node may appear in more than one
spanning trees, its anchor node sequence may contain more
than one entries.
Example 4 Continued with Example 3. By creating intervals
for the nodes in T0, T1, T2 and T3 (see Fig. 2, Fig. 9(a), Fig.
10(b) and (e), respectively), we will generate an interval
sequence for each node as shown in Fig. 12(a).

Fig. 12(b) shows all anchor node sequences, which are
created by the non-tree labeling of the nodes in G0 (see Fig. 5),
G1 (see Fig. 13(a)), and G2 (see Fig. 13(b)). G3 is a tree and
no non-tree labels are established.

For this example, the remaining graph is �.
Now we discuss how to use the interval sequences and an-

chor node sequences to check reachability. First, we notice
that the anchor node sequences imply a graph, in which there
exists an edge (u, v) iff there is an entry <x, y> in the anchor
node sequence associated with u such that x = v, or y = v. The
edge is labeled with {i, *} or {i, **} with i used to indicate
that <x, y> is the ith entry in the corresponding anchor node
sequence. If x = v, the edge is labeled with {i, *}. If y = v, the
edge is labeled with {i, **}. We refer to such a graph as a
transitive closure core graph of G (or simply core graph of G)
and denote it by Gcore. In Fig. 14, we show a Gcore
corresponding to the anchor node sequences shown in Fig.
12(b).

In the graph, each loop represents an edge from a node to
itself, and each edge is labeled with one or more pairs. For
example, edge (b, d) labeled with {1, *} represents that d is an
anchor node (of the first kind) of b and d appears in G1 while
edge (f, e) labeled with {1, **} represents that e is an anchor
node (of the second kind) of f and e appears in G1. An edge
with multiple labels represents several edges with different
labels. For example, the edge (g, g) (represented as a loop)
labeled with {1, *},{1, **}, and {2, *} stands for three edges
with each going from g to g, but labeled differently.

In order to check whether v is an ancestor of u, we will
search two paths in Gcore, starting from v and u, respectively.
The path starting from v, referred to as Pv, contains only the
edges labeled with (i, *) while the path starting from u,
referred to as Pu, contains only the edges labeled with (i, **).
Each time we reach two nodes v’ and u’ through two edges
labeled respectively with (i, *) and (i, **), we will check
whether [v

i
�� , v

i
��) subsumes [u

i
�� , u

i
��). (Remember that each

node in G0 = G is associated with an interval sequence [v
0� ,

v
0�), ..., [v

m� , v
m�) for some m � 0.) If it is the case, v is an

ancestor of u. Otherwise, we traverse along Pv and Pu,
reaching v” and u’’ through two edges labeled respectively
with (i + 1, *) and (i + 1, **) and checking [v

i
��
�1� , v

i
��
�1�) against

[u
i
��
�1� , u

i
��
�1�). We continue this process. After l steps for some l,

a
b
c
d
e
f
g
h
i
j
k
p
r

<d, ->
<-, c> <c, ->
<d, d> <-, d> <d, ->
<e, e> <g, ->
<f, e>
<g, g> <g, -> <d, ->
<h, -> <g, ->

<-, k> <-, k> <-, k>
<-, c>
<e, ->

Fig. 12 Non-tree labels and sequences associated with nodes

a
b
c
d
e
f
g
h
i
j
k
p
r

[0, 13)
[1, 5)
[2, 5) [3, 4) [1, 3)
[5, 6) [5, 7) [3, 4) [0, 2)
[7, 10) [1, 7)
[8, 9) [4, 7)
[9, 10) [2, 4) [0, 4)
[10, 13) [0, 7)
[11, 12)
[12, 13)
[4, 5) [6, 7) [2, 4) [1, 2)
[3, 5)
[6, 10) (a) (b)

T0: T1: T2: T3: G0: G1: G2:

{2, *}

bd{1, *}, {1, **}
{2, **}, {3, *}

g{1, *}, {1, **}
{2, *}

e {1, *}
{1, **}

h{1, *}

f
{1, *}

k {1, **}
{2, **}
{3, **}

r

{1, *}

{2, *}

{1, **}

{1, *}

Fig. 14 A core graph

c {1, **}
{2, *}

{3, *}
p
{1, **}

a i j

Fig. 13 Non-tree labels and sequences associated with nodes

h

e

g

c
f

d

k

<g, ->

<g, ->

<g, ->

<c, ->

<-, ->

<-, d>

[-, k>

G1:

(a)

<d, ->

(b)

G2: g

c
d

k

<d, ->

<-, ->

<-, k>

…

**

*

*

**

*

*

Fig. 11 Illustration for anchor nodes

T0

…
u0

v0

T1

…
u1

v1

w1

**

Gk

……

Tk-1

…

1014

we will meet two nodes v’’’ and u’’’ such that v’’’ does not
have an out-going edge labeled with (l + 1, *) or u’’’ does not
have an out-going edge labeled with (l + 1, **). If [v

l
���� , v

l
����)

subsumes [u
l
���� , u

l
����), v is an ancestor of u. Otherwise, we

further check whether l = k. If it is the case, we will check
whether u’’’ is reachable from v’’’ in G.
Example 5 Continued with Example 4. To check whether r is
an ancestor of p, we will first explore two paths in the graph
shown in Fig. 14, starting from r and p, respectively. First, we
check [r

0� , r
0�) = [6, 10) against [p

0� , p
0�) = [3, 5) (see Fig. 2

to know the interval values) and find that [6, 10) does not
subsume [3, 5). Then, we go from r along an edge labeled
with (1, *) to e; and from p along an edge labeled with (1, **)
to c. Now, we check [e

1� , e
1�) = [1, 7) against [c

1� , c
1�) = [3, 4)

(see Fig. 9(a) to know the interval values). Since [1, 7)
subsumes [3, 4), we know that e is an ancestor of c, which
implies that r is an ancestor of p.
Proposition 4 Let G be a DAG, and G0 = G, G1, ..., Gk (k � 1),
be a series of subgraphs as defind in the previous subsection.
T0, T1, ..., Tk-1 be a series of trees such that each Ti is a
spanning tree of Gi. Let u and v be two nodes in G. u is
reachable from v through a path in G iff there exist two paths
in Gcore:

v0 = v � v1 � ... � vj (0 � j � k)
u0 = u � u1 � ... � uj

such that each (vi-1, vi) is labeled with (i, *), each (ui-1, ui) is
labeled with (i, **), and one of the following two conditions is
satisfied:
1. j < k, and uj is reachable from vj through a path in Tj; or
2. j = k, and uj is reachable from vj through a path in Gk.
Proof. if-part. We prove the if-part by induction on k.
Basis step. When k = 0, 1, the proof is trivial.
Induction hypothesis. Assume that when k = l the if-part holds.
We consider the case when k = l + 1. If j � l, in terms of the
induction hypothesis, the if-part holds. Assume that j = l + 1.
Since ul+1 is reachable from vl+1 through a path in Gl+1, ul must
be reachable from vl in Gl by Lemma 1 and 2. (Note that vl+1 is
an anchor node of the first kind of vl and ul+1 is an anchor node
of the second kind of ul.) In terms of the induction hypothesis,
u is reachable from v.
Only-if-part. If u0 = u is reachable from v0 = v, there will be a
path in T0 from v0 to u0 or u1 is reachable from v1 in G1.
Similarly, u1 is reachable from v1 in G1, there will be a path in
T1 from v1 to u1, or u2 is reachable from v2 in G2. Repeating
this argument, we will get the proof.

The above proposition shows that to check whether u is
reachable from v, we need to search two paths in Gcore and at
each step to examine whether iu

i� � [iv
i� , iv

i�).
Clearly, this process needs only O(k) time and the space re-

quirement for all the interval sequences and anchor node se-
quences is bounded by O(kn). In addition, we need O(n��) to
store the matrix created for the remaining graph G = Gk,
where n stands for the number of the nodes in G, and � for the
width of G. Since O(�1.5n) time is needed to decompose G
into node-disjoint chains by using Chen’s method [8], the total

cost for generating a compressed transitive closure is bounded
by O(ke + �1.5n).

For different applications, we can set k to be different
constants to get effective space deduction, but still have a
constant query time. We also notice that this is a biased trade-
off of time for space since each step of decomposition will
reduce both the number of the nodes and the width of G.

V. EXPERIMENTS

In this section, we report the test results. We conducted our
experiments on a DELL desktop PC equipped with Pentium
III 1.0 Ghz processor, 512 MB RAM and 20GB hard disk.
The programs are compiled using Microsoft virtual C++
compiler version 6.0, running standalone.

A. On the Tested Methods
In the experiments, we have tested six methods:

- Chain decomposition by Chen et al. (CD for short) [8],
- Tree encoding by Agrawal et al. (TE for short) [6],
- 2-hop labeling by Cohn et al. (2-hop for short) [9]
- Dual labeling by Wang et al. (Dual-II for short) [35],
- Matrix multiplication by Warren (MM for short) [37],
- Recursive DAG decomposition (discussed in this paper,

RDD for short).
The theoretical computational complexities of these meth-

ods are listed in Table 1 (in Section II).
In the experiments, the tree-path cover [20] is not included

since it does not work in some cases. In fact, for all the graphs
tested in our experiments, their weighted directed graphs
contain SCCs; but how to handle them is not discussed in [20].
Jagadish’s chain decomposition is not included, either. It is
because Chen’s method works in a similar way, but has a
much better labeling time. For the dual labeling, we imple-
mented Dual-II, instead of Dual-I for tests. For non-sparse
graphs, Dual-I needs even more space than any traditional
matrix-based method; no compression in any sense.

B. Test Results
The experiments altogether tested three groups of data:

large but sparse DAGs, large and non-sparse DAGs, and
dense DAGs (but with relatively small number of nodes) to
make a proper comparison. In these tests, we measured the
space overhead, and the time spent on the generation of
compressed transitive closures (i.e., labeling time), as well as
the time for checking reachability.

1) Tests on Sparse Graphs: In this group of tests, we first
generate a binary tree of 15000 nodes. Then, add randomly
edges to the tree. The number of the added edges ranges from
1000 to 5000 to create different graphs. For each generated
graph, Tarjan’s algorithm is used to find SCCs as a
preprocessor. All SCCs are then removed.

In Table II, we show the average size of the data structures
generated by the different methods, and the average times
spent on generating such data structures.

1015

In this table, RDD(k) (k = 1, 2, 3) represents a k-level
recursive DAG decomposition, by which a series of spanning
trees: T0, …, Tk-1 and a remaining graph are created.

DATA SIZE AND LABELING TIME – SPARSE GRAPH
Data size (16 bits) Labeling time (sec.)

CD 30254 15.764
TE 39247 12.023
2-hop 801217 24145
Dual-II 36380 42.227
MM 14063750 675.812
RDD(1) 28764 11.564
RDD(2) 21673 10.786
RDD(3) 18765 10.988

From the table, we can see that RDD(3) has the lowest
space overhead, but needs a little bit more labeling time than
RDD(2). But RDD(2) is better than DRR(1) in both space
overhead and labeling time. Although RDD(2) needs more
time to generate one more spanning tree than RDD(1), it
spends less time to decompose a smaller remaining graph than
RDD(1). Chen’s method is better than all the other four
approaches in space overhead. It is because for this kind of
graphs, the pair sequences associated with the nodes are quite
short. But Agrawal’s uses less time than it to label a graph
since generating the interval sequences for the nodes in a
graph by Agrawal’s needs much less time than decomposing
that graph into node-disjoint chains by Chen’s. Dual-II also
has very good performance since the TLC search trees created
by it are very small, which are proportional to the number of
non-tree edges. 2-hop can somehow reduce the size of
transitive closures stored as matrices. But it took too much
time (more than 6 hours) for the task.

Fig. 15 shows the average query time over the tested
graphs. Each query is a pair (x, y) to check whether node x is
an ancestor of node y. For each graph, we have checked up to
100,000 queries randomly generated and recorded the
accumulated time.

In this figure, we use RDD to represent all the three levels
of the recursive DAG decomposition since they have almost
the same query time. From this figure, we can see that
Warren’s method is best. (In our implementation, a boolean
matrix is simply stored as bit strings.) Chen’s method and the
RDD are comparable; and Agrawal’s tree encoding is slightly
better than Dual-II since each time to check reachability the
TLC search tree may be explored by Dual-II. But by the tree
encoding method, a quite short pair sequence is visited in a
binary searching way. Although by Chen’s method the matrix

maintained is much larger than the RDD, they both require a
constant query time and no significant difference can be
observed.

2) Test on Non-sparse Graphs: In the second group of experi-
ments, two kinds of DAGs are tested.

(i) tree-based
Any graph of this type is generated by constructing a tree of

20000 nodes. In the tree, each node is of a random number of
children from zero to six. Then, add randomly up to 10000
cross edges to the tree. On average, the outdegree of each
node is 2.5, and the length of each path is 8.
(ii) layered graph

Any graph of this type contains 8 levels with each
containing 680 nodes. Each node at a level (except for the
lowest level has a number of children from two to five.
Altogether, it has 68786 edges.

Table III shows the average size of generated data
structures and the average labeling time.

DATA SIZE AND LABELING TIME – TREE-BASED GRAPH
Data size (16 bits) Labeling time (sec.)

CD 196506 13.764
TE 210356 17.125
Dual-II 31613420 591.227
MM 25010001 286.812
RDD(1) 109646 10.064
RDD(2) 68276 11.786
RDD(3) 65300 12.568

In the table, 2-hop is not included since it took too long to
generate labels. We only report the results of the other five
methods. First, we remark that all the different levels of our
DAG decomposition are much better than the other four
strategies both in the space overhead and labeling time.
Especially, a higher level of the DAG decomposition needs
less space to store labels than a lower level of the
decomposition although some more labeling time is required.

Our method is better than Chen’s method since the matrix
constructed for a decomposed graph is much smaller than the
matrix for the original graph. However, Chen’s method is
better than Agrawal’s. It is because the width � of a graph is
in general much smaller than the number � of the leaf nodes
of a spanning tree. We notice that the number of the columns
of a matrix generated by Chen’s is bounded by � while the
length of an interval sequence created by Agrawal’s is by �.
Dual-II even needs more space and more time than Warren’s.
This shows that this method is totally not suitable for non-
sparse graphs since the space complexity O((e - n)2) and the
time complexity O((e - n)3) of this method become respec-
tively O(n2) and O(n3) or more when a graph is not sparse. Al-
though both Dual-II and Warren’s are of the same theoretical
space and time complexities, the boolean operations by War-
ren’s make it more efficient than Dual-II.

The third level of the graph decomposition is just a little
larger than the original graph while Agrawal’s needs more
than 7 times of space, Chen’s about 6 times, and Warren’s
about 800 times. Dual-II even needs more space and time than
Warren’s.

0
100
200
300
400
500
600
700
800
900
1000

2000 40000 60000 80000 100000

CD TE 2-hop Dual-II MM RDD

query time (ms)

number of queries
Fig. 15 Time for query evaluation over sparse graphs

TABLE II

TABLE III

1016

In Fig. 16, we show the time spent on the query evaluation.

From this figure, we can see that both our method and
Chen’s are a little bit worse than Warren’s, but much better
than Agrawal’s and Dual-II. The figure also shows that
Agrawal’s is better than Dual-II. The reason for this is that the
TLC search tree produced by Dual-II may not be balanced.
Then, the query time of Dual-II may be larger than logt [35].
This time complexity is derived based on the assumption that
TLC is well balanced [35].

Table IV shows the sizes of the data structures generated by
the different methods for storing the compressed transitive
closure of the layered graphs, and the times spent on
generating such data structures.

DATA SIZE AND LABELING TIME – LAYERED GRAPH
Data size (16 bits) Labeling time (sec.)

CD 176000 22.543
TE 289784 110.456
Dual-II 74026442 1556.228
MM 56250000 842.88
RDD(1) 92664 14.224
RDD(2) 82764 14.450
RDD(3) 80561 14.684

Form this table, it can be observed that the time used by our
method to generate a data structure for the layered graph’s
transitive closure is again much less than all the other graph
labeling strategies. More importantly, the discrepancy of the
space overhead between ours and all the other strategies is
huge.

We show the time for the query evaluation in Fig. 17. This
figure demonstrates that our method needs slightly more time
than Warren’s for checking reachability, but better than all the
other graph labeling approaches. Together with Table 4, this
shows that trading time for space by our method pays off.

3) Tests on Dense Graphs: In the third group of experiments,
we have tested some DAGs with density near 0.25 (referred to
as the dense-DAGs)

Any graph of this type contains 3000 nodes connected by
2230196 edges generated randomly. The density of the graph
is 2230196/9000000 = 0.247.

In Table V, we show the sizes of the data structures
generated by the different methods for storing the transitive
closure of a dense-DAG, and the times spent on generating
such data structures.

DATA SIZE AND LABELING TIME – DENSE GRAPH
Data size (16 bits) Labeling time (sec.)

CD 178654 23.722
TE 267838 56.556
Dual-II 771831 1400.786
MM 25010001 800.674
RDD(1) 102654 14.124
RDD(2) 60764 15.065
RDD(3) 58561 15.588

As we can see, even for very dense graphs our method
works well and compacts effectively the transitive closures.
The time for generating data structures is also very low. In
fact, a dense graph tends to have many forward edges, which
can simply be moved without loss of any information on
reachability. This may explain why our method has an
advantage over the others. We also notice that the space
overhead of Chen’s method is not much worse than ours. The
reason for this is that the denser a graph is, the fewer chains
will be generated.

Fig. 18 shows the query time. Again, our method works
well. Although it is a little bit inferior to Warren’s, it is much
more efficient than all the other graph labeling approaches.
For a dense graph, the average size of the data structure by
ours is small due to the large number of removed forward
edges, leading to a reduction of average query time.
Agrawal’s is in general worse than Chen’s since the number
of the leaf nodes of any spanning tree is always larger than the
number of chains found by Chen’s method. For this kind of
graphs, Dual-II shows the worst performance.

VI. CONCLUSION

In this paper, a new method is proposed to compress transi-
tive closures to support reachability queries. The main idea
behind it is to decompose G into a series of spanning trees:
T0, …, Tk-1 (for some k � 1), and a remaining graph G, which

0
5
10
15
20
25
30
35
40
45
50

2000 40000 60000 80000 100000

CD TE Dual-II MM RDD

query time (ms)

number of queries
Fig. 18 Time for query evaluation over dense graphs

0
100
200
300
400
500
600
700
800
900
1000

2000 40000 60000 80000 100000

CD TE Dual-II MM RDD

query time (ms)

number of queries
Fig. 17 Time for query evaluation over layered graphs

0
100
200
300
400
500
600
700
800
900
1000

2000 40000 60000 80000 100000

CD TE Dual-II MM RDD

query time (ms)

number of queries

Fig. 16 Time for query evaluation over tree based graphs

TABLE IV

TABLE V

1017

enables us to associate two sequences with each node in G: an
interval sequence and an anchor node sequence. Especially, in
terms of the anchor sequences, a directed graph, called a core
graph of G, can be constructed, which can be used to control
the process of reachability checking. The method needs O(ke
+ �1.5n) time to create a compressed transitive closure with
O(kn + n��) space requirement, and O(k) query time, where n
is the number of the nodes in G, and � is the width of G,
defined to be the size of a largest node subset U of G such that
for any pair of nodes u, v � U there does not exist a path from
u to v or from v to u.

 An extensive experiment is conducted to test different
strategies over different kinds of graphs, which shows that our
method is promising. Our method is also a flexible strategy.
For different applications, k can be set to different constants to
reduce space overhead. But the query time is still bounded by
a constant.

REFERENCES
[1] Agrawal, A. Borgida and H.V. Jagadish, “Efficient management of

transitive relationships in large data and knowledge bases,” Proc. of the
1989 ACM SIGMOD Intl. Conf. on Management of Data, Oregon,
1989, pp. 253-262.

[2] A.V. Aho, J.E., Hopcroft and J.D. Ullman, “On finding lowset
common ancestors in trees,” SIAM J. Comput. 5(1) (1976) 115-132.

[3] M.A. Bender and M. Farach-Colton, “The LCA Problem Revisited,” in:
Proc. LATIN 2000, pp. 88-94.

[4] J. Cheng, J.X. Yu, X. Lin, H. Wang, and P.S. Yu, Fast computation of
reachability labeling for large graphs, in Proc. EDBT, Munich,
Germany, May 26-31, 2006.

[5] N.H. Cohen, “Type-extension tests can be performed in constant
time,” ACM Transactions on Programming Languages and Systems,
13:626-629, 1991.

[6] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, Reachability and
distance queries via 2-hop labels, SIAM J. Comput, vol. 32, No. 5, pp.
1338-1355, 2003.

[7] M. Carey et al., “An Incremental Join Attachment for Starburst,” in:
Proc. 16th VLDB Conf., Brisbane, Australia, 1990, pp. 662 - 673.

[8] Y. Chen and Y.B. Chen, An Efficient Algorithm for Answering Graph
Reachability Queries, in Proc. 24th Int. Conf. on Data Engineering
(ICDE 2008), IEEE, April 2008, pp. 892-901.

[9] Y. Chen, General Spanning Trees and Reachability Query Evaluation,
in Proc: 2nd Canaidan Conference on Computer Science and Software
Engineering (C3S2E’09), ACM, Montreal, Canada, May 19-21, 2009,
pp. 243-252.

[10] Y. Chen and D. Cooke, On the transitive closure representation and
adjustable compression, SAC’2006, ACM, Dijon, France, April 23-27,
2006, pp. 450-455.

[11] Y. Chen, A New Algorithm for Computing Transitive Closures,
SAC’2004, ACM, Nicosia, Cyprus, March 14-17, 2004, pp. 1091-1092.

[12] Y. Chen, Graph Traversal and Linear Binary-chain Programs, IEEE
Transaction on Knowledge and Data Engineering, Vol. 15, No. 3,
May/June 2003, pp. 573-596.

[13] Y. Chen, Graph Decomposition and Recursive Closures, in Proc.
CaiSE’03 Forum at 15th Conf. on Advanced Information Systems
Engineering, Klagenfurt/Velden, Austria: Springer Verlag, June, 2003,
pp. 5-8.

[14] Y. Chen, Magic Sets and Stratified Databases, Int. Journal of
Intelligent Systems, John Wiley & Sons, Ltd., Vol. 12, No. 3, March
1997, pp. 203-231.

[15] Y. Chen, On the Bottom-up Evaluation of Recursive Queries, Int.
Journal of Intelligent Systems, John Wiley & Sons, Ltd., Vol. 11, No.
10, Oct. 1996, pp. 807-832.

[16] R. Diestel, Graph Theory (3rd ed.), Springer Verlag, Berlin, 2005.
[17] D. Harel and R.E. Tarjan, “Fast algorithms for finding nearest common

ancestors,” SIAM J. Comput. 13:338-355, 1984.
[18] R.L. Haskin and R.A. Lorie, “On Extending the Functions of a

Relational Database System,” Proc. ACM SIGMOD Conf., Orlando,
Fla., 1982, pp. 207-212.

[19] H.V. Jagadish, “A Compression Technique to Materialize Transitive
Closure,” ACM Trans. Database Systems, Vol. 15, No. 4, 1990, pp.
558 - 598.

[20] R. Jin, Y. Xiang, N. Ruan, and H. Wang, “Efficiently Answering
Reachability Queries on Very Large Directed Graphs,” Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, Vancouver, Canada,
2008.

[21] D.E. Knuth, The Art of Computer Programming, Vol.1, Addison-
Wesley, Reading, 1969.

[22] H.A. Kuno and E.A. Rundensteiner, “Incremental Maintenance of
Materialized Object-Oriented Views in MultiView: Strategies and
Performance Evaluation,” IEEE Transactions on Knowledge and Data
Engineering, vol. 10. No. 5, 1998, pp. 768-792.

[23] W.C. Lee and D.L Lee, “Path Dictionary: A New Access Method for
Query Processing in Object-Oriented Databases,” IEEE Transactions
on Knowledge and Data Engineering, vol. 10. No. 3, 1998, pp. 371-
388.

[24] I. Munro. Efficient determination of the transitive closure of directed
graphs. Information Processing Letters, vol. 1 (2), pp. 56-58, 1971.

[25] R. Schenkel, A. Theobald, and G. Weikum, HOPI: an efficient
connection index for complex XML document collections, in Proc.
EDBT, 2004.

[26] R. Schenkel, A. Theobald, and G. Weikum, Efficient creation and
incrementation maintenance of HOPI index for complex xml document
collection, in Proc. ICDE, 2006.

[27] L.D. Shapiro, “Join Processing in Database Systems with Large Main
Memories,” ACM Trans. Database Systems, vol. 11, no. 3, 1986, pp.
239-264.

[28] M.A. Schubert and J. Taugher, “Determing type, part, colour, and time
relationship,” 16 (special issue on Knowledge Representation):53-60,
Oct. 1983.

[29] R. Tarjan: Depth-first Search and Linear Graph Algorithms, SIAM J.
Compt. Vol. 1. No. 2. June 1972, pp. 146 -140.

[30] R. Tarjan: Finding Optimum Branching, Networks, 7. 1977, pp. 25 -35.
[31] J. Teuhola, "Path Signatures: A Way to Speed up Recursion in

Relational Databases," IEEE Trans. on Knowledge and Data
Engineering, Vol. 8, No. 3, June 1996, pp. 446 - 454.

[32] M. Thorup, “Compact Oracles for Reachability and Approximate
Distances in Planar Digraphs,” JACM, 51, 6(Nov. 2004), 993-1024.

[33] P. Valduriez and H. Boral, “Evaluation of Recursive Queries Using
Join Indices,” in: Proc. 1st Workshop on Expert Database Systems,
Charleston, S.C., 1986, pp. 197 - 208.

[34] P. Valduriez, S. Khoshafian and G. Copeland, “Implementation
Techniques of Complex Objects,” Proc. 12th VLDB Conf., Kyoto,
Japan, 1986, pp. 101-109.

[35] H. Wang, H. He, J. Yang, P.S. Yu, and J. X. Yu, Dual Labeling:
Answering Graph Reachability Queries in Constant time, in Proc. of
Int. Conf. on Data Engineering, Atlanta, USA, April -8 2006.

[36] Y. Zibin and J. Gil, "Efficient Subtyping Tests with PQ-Encoding,"
Proc. of the 2001 ACM SIGPLAN Conf. on Object-Oriented
Programming Systems, Languages and Application, Florida, October
14-18, 2001, pp. 96-107.

[37] H.S. Warren, “A Modification of Warshall’s Algorithm for the
Transitive Closure of Binary Relations,” Commun. ACM 18, 4 (April
1975), 218 - 220.

1018

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
