
On the Transitive Closure Representation and
Adjustable Compression

Yangjun Chen* and Donovan Cooke
Dept. of Applied Computer Science

University of Winnipeg, Manitoba, Canada R3B 2E9
{ychen2@uwinnipeg.ca, holy_spawn@yahoo.com}
ABSTRACT
A composite object represented as a directed graph (digraph for
short) is an important data structure that requires efficient support
in CAD/CAM, CASE, office systems, software management, web da-
tabases, and document databases. It is cumbersome to handle such
objects in relational database systems when they involve ancestor-
descendant relationships (or say, recursive relationships). In this
paper, we present a new encoding method to label a digraph, which
reduces the footprints of all previous strategies. This method is
based on a tree labeling method and the concept of branchings that
are used in graph theory for finding the shortest connection net-
works. A branching is a subgraph of a given digraph that is in fact
a forest, but covers all the nodes of the graph. On the one hand, the
proposed encoding scheme achieves the smallest space require-
ments among all previously published strategies for recognizing re-
cursive relationships. On the other hand, it leads to a new algorithm
for computing transitive closures for DAGs (directed acyclic graph)
in O(e⋅b) time and O(n⋅b) space, where n represents the number of
the nodes of a DAG, e the numbers of the edges, and b the DAG’s
breadth. The method can also be extended to graphs containing cy-
cles. Especially, based on this encoding method, a multi-level com-
pression is developed, by means of which the space for the
representation of a transitive closure can be reduced to O((b/dk)⋅n),
where k is the number of compression levels and d is the average
outdegree of the nodes.

Categories & Subject Decriptors: H.2.4
General Terms: Databases, Algorithms, Performance
Key Words: directed acyclic graphs, transitive closures,
branchings, topological order, graph decomposition

1. INTRODUCTION
It is a general opinion that relational database systems are inadequate
for manipulating composite objects that arise in novel applications
such as web and document databases [11, 12], CAD/CAM, CASE,
office systems and software management [7, 27, 45]. Especially,
when recursive relationships are involved, it is cumbersome to han-
dle them in relational database environments, which sets current re-
lational systems far behind the navigational ones [30, 32].
A composite object can be generally represented as a directed graph
(digraph). For example, in a CAD database, a composite object cor-
responds to a complex design, which is composed of several subde-
signs [7]. Often, subdesigns are shared by more than one higher-
level designs, and a set of design hierarchies thus forms a directed
acyclic graph (DAG). As another example, the citation index of sci-

entific literature, recording reference relationships between authors,
constructs a directed cyclic graph. As a third example, we consider
the traditional organization of a company, with a variable number of
manager-subordinate levels, which can be represented as a hierar-
chical structure.
In a relational system, composite objects must be fragmented across
many relations, requiring joins to gather all the parts. A typical ap-
proach to improving join efficiency is to equip relations with hidden
pointer fields for coupling the tuples to be joined [10]. The so-called
join index is another auxiliary access path to mitigate this difficulty
[48, 49]. Also, several advanced join algorithms have been suggest-
ed, based on hashing and a large main memory, see, e.g., [39]. In ad-
dition, a different kind of attempts to attain a compromise solution is
to extend relational databases with new features, such as clustering
of composite objects, by which the concatenated foreign keys of an-
cestor paths are stored in a primary key (see [22, 33, 38] for detailed
description). Another extension to relational system is nested rela-
tions (or NF2 relations, see, e.g., [16]). Although it can be used to
represent composite objects without sacrificing the relational theory,
it suffers from the problem that subrelations cannot be shared. More-
over, recursive relationships cannot be represented by simple nest-
ing because the depth is not fixed. Finally, deductive databases and
object-relational databases can be considered as two quite different
extensions to handle this problem [13, 28, 36].
In this paper, we discuss a new encoding approach to pack “ancestor
paths” in a relational environment. The main idea of this method is
tree labeling, by means of which each node v is associated with a
pair of integers (α, β) such that if v’, another node associated with
(α’, β’), is a descendant of v, some arithmetical relationship between
α and α’, as well as β and β’ can be determined. Then, such relation-
ships can be used to find all descendants of a node, and the recursive
closure w.r.t. a tree can be computed very efficiently. This method
can be generalized to DAGs or digraphs containing cycles by de-
composing a graph into a series of trees, for which the approach de-
scribed above can be employed. As we can see later, a new method
for computing recursion efficiently in a relational environment can
be developed based on these techniques. In fact, it is a new algorithm
to handle this problem with a representation of transitive closures
different from traditional ones. It needs only O(e⋅b) time and O(n⋅b)
space, where b is the breadth of the graph, defined to be the least
number of disjoined paths that cover all the nodes of a graph. This
computational complexity is better than any existing method for this
problem, including the graph-based algorithms [18, 19, 34, 35, 37],
the graph encoding [1, 2, 6, 14, 26, 45, 50] and the matrix-based al-
gorithms [23, 31, 46, 47]. With such a representation, the time for
path checking to see whether a node is a descendant of another is on
(log2b). Furthermore, the representation of a transitive closure can
be compressed in an adjustable way to fit in different cases. For in-
stance, for a large transitive closure, we can use high level compres-
sion while for a small one, we use low level compression or no
compression at all. Generally, using a k-level compression, the space
overhead can be reduced to O((b/dk)⋅n), where d is the average out-
degree of the nodes.
The remainder of the paper is organized as follows. Section 2 is on
a simple tree labeling. Section 3 elaborates the technique to arbitrary
recursion pattern. In Section 4, we discuss how the representation of
a transitive closure can be compressed. Section 5 is devoted to the

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06, April 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004…$5.00.

The Author is supported by NSERC 239074-01 (242523) (Natural Sciences and Engineering Council of Canada).

maintenance of a compressed transitive closure. In Section 6, we
show how this method can be used in a relational database. Finally,
a short conclusion is set forth in Section 7.

2. TREE LABELING
In this section, we mainly discuss the concepts of tree labeling,
based on which our algorithm is designed. For any directed tree T,
we can label it as follows. By traversing T in preorder, each node v
will obtain a number pre(v) to record the order in which the nodes of
the tree are visited. In a similar way, by traversing T in postorder,
each node v will get another number post(v). These two numbers can
be used to characterize the ancestor-descendant relationships of
nodes as follows.
Proposition 1 Let v and v’ be two nodes of a tree T. Then, v’ is a de-
scendant of v iff pre(v’) > pre(v) and post(v’) < post(v).
Proof. See Exercise 2.3.2-20 in [29].
The following example helps for illustration.
Example 1 See the pairs associated with the nodes of the directed
tree shown in Fig. 1. The first element of each pair is the preorder
number of the corresponding node and the second is its postorder
number. Using such labels, the ancestor-descendant relationships of
nodes can be easily checked. For instance, by checking the label as-
sociated with b against the label for f, we know that b is an ancestor
of f in terms of Proposition 1. We can also see that since the pairs as-
sociated with g and c do not satisfy the condition given in Proposi-
tion 1, g must not be an ancestor of c and vice versa.

Let (p, q) and (p’, q’) be two pairs associated with nodes u and v. We
say that (p, q) is subsumed by (p’, q’), denoted (p, q) (p’, q’), if
p > p’ and q < q’. Then, u is a descendant of v if (p, q) is subsumed
by (p’, q’).

3. GRAPH DECOMPOSITION AND COMPU-
TATION OF TRANSITIVE CLOSURES
Now we discuss how to recognize the ancestor-descendant relation-
ships w.r.t. a general structure: a DAG or a graph containing no cy-
cles. First, we address the problem of DAGs in 3.1. Then, cyclic
graphs will be discussed in 3.2.
3.1 Recursion w.r.t. DAGs
What we want is to apply the technique discussed above to a DAG.
To this end, we establish a branching of the DAG as follows.
Definition 1 (branching [43]) A subgraph B = (V, E’) of a digraph G
= (V, E) is called a branching if it is cycle-free and dindegree(v) ≤ 1 for
every v ∈ V.
Clearly, if for only one node r, dindegree(r) = 0, and for all the rest of
the nodes, v, dindegree(v) = 1, then the branching is a directed tree
with root r. Normally, a branching is a set of directed trees. Now, we
assign each edge e a same cost (e.g., let cost c(e) = 1 for every edge).
We will find a branching for which the sum of the edge costs,

, is maximum.
For example, the trees shown in Fig. 2(b) are a maximal branching
of the graph shown in Fig. 2(a) if each edge has a same cost.
Assume that the maximal branching for G = (V, E) is a set of trees Ti
with root ri (i = 1, ..., m). We introduce a virtual root r for the branch-
ing and an edge r → ri for each Ti, obtaining a tree Gr, called the core
of G. For instance, the tree shown in Fig. 2(c) is the core of the graph
shown in Fig. 2(a). Using Tarjan’s algorithm for finding optimum
branchings [43], we can always find a maximal branching for a di-
rected graph in O(|E|) time if the cost for every edge is equal to each
other. Therefore, the core tree for a DAG can be constructed in linear
time.
By traversing Gr in preorder, each node v will obtain a number

pre(v); and by traversing Gr in postorder, each node v will get anoth-
er number post(v). These two numbers can be used to recognize the
ancestor-descendant relationships of all Gr’s nodes as discussed in
Section 2.

In a Gr (for some G), a node v can be considered as a representation
of the subtree rooted at v, denoted Tsub(v); and the pair (pre, post) as-
sociated with v can be considered as a pointer to v, and thus to
Tsub(v). (In practice, we can associate a pointer with such a pair to
point to the corresponding node in Gr.) In the following, what we
want is to construct a pair sequence: (pre1, post1), ..., (prek, postk) for
each node v in G, representing the union of the subtrees (in Gr) root-
ed respectively at (prej, postj) (j = 1, ..., k), which contains all the de-
scendants of v. In this way, the space overhead for storing the
descendants of a node is dramatically reduced. Later we will shown
that a pair sequence contains at most O(b) pairs, where b is the
breadth of G.
Example 2 The core tree Gr of the DAG G shown in Fig. 2(a) can
be labeled as shown in Fig. 3(a). Then, each of the generated pairs
can be considered as a representation of some subtree in Gr. For in-
stance, pair (3, 5) represents the subtree rooted at c in Fig. 3(a).
If we can construct, for each node v, a pair sequence as shown in Fig.
3(b), where it is stored as a linked list, the descendants of the nodes
can be represented in an economical way. Let L = (pre1, post1), ...,
(prek, postk) be a pair sequence and each (prei, posti) be a pair label-
ing vi (i = 1, ..., k). Then, L corresponds to the union of the subtrees
Tsub(v1) , ..., and Tsub(vk). For example, the pair sequence (4, 1)(5,
2)(8, 6) associated with g in Fig. 3(b) represents a union of 3 sub-
trees: Tsub(e), Tsub(f), and Tsub(g), which contains all the descendants
of g in G.
The question is how to construct such a pair sequence for each node
v so that it corresponds to a union of subtrees in Gr, which contains
all the descendants of v in G.
First, we notice that by labeling Gr, each node in G = (V, E) will be
initially associated with a pair as illustrated in Fig. 4. That is, if a
node v is labeled with (pre, post) in Gr, it will be initially labeled
with the same pair (pre, post) in G.

a

b g h

c e

f

(3, 1)

(5, 2)

(4, 3)

(2, 4) (6, 5)
(7, 6)

(1, 7)

Fig. 1 Labeling a tree

c e()
e E ′∈
∑

a b

c d
g

fe

(a) (b) (c)

r

ji

a b

c g

fe ji

d
h h

a b

c g

fe ji

d
h

Fig. 2 A DAG and its branching

a

d

c

e

f

g

2, 8

4, 1 5, 2 6, 3

3, 5

4, 1 5, 2 8, 6

4, 1

5, 2

Fig. 3. Tree labeling and illustration for transitive closure

(a)

(b)

Tsub(e) ∪ Tsub(f) ∪ Tsub(i) ∪ Tsub(j)
Tsub(a)

Tsub(c)
Tsub(e) ∪ Tsub(f) ∪ Tsub(i) ∪ Tsub(j)

Tsub(e)
Tsub(f)
Tsub(e) ∪ Tsub(f) ∪ Tsub(g)

r

a b

c g

fe ji

dh

(1, 11)

(2, 8)

(3, 5)

(4, 1) (5, 2) (6, 3) (7, 4)

(8, 6)

(10, 10)

(9, 7)

(11, 9)

h 6, 3 7, 4 9, 7

i 6, 3

j 7, 4

7, 4 8, 6 9, 7 11, 9

b 4, 1 5, 2 6, 3 7, 4 8, 6 9, 7 10, 10

∪ Tsub(g) ∪ Tsub(h) ∪ Tsub(d)

∪ Tsub(g) ∪ Tsub(h) ∪ Tsub(b)

Tsub(i) ∪ Tsub(j) ∪ Tsub(h)

Tsub(i)
Tsub(j)

representation

To compute the pair sequence for each node, we sort the nodes of G
topologically, i.e., (vi, vj) ∈ Ε implies that vj appears before vi in the
sequence of the nodes. The pairs to be generated for a node v are sim-
ply stored in a linked list Av. Initially, each Av contains only one pair
produced by labeling Gr.
We scan the topological sequence of the nodes from the beginning
to the end and at each step we do the following:

Let v be the node being considered. Let v1, ..., vk be the children
of v. Merge Av with each for the child node vi (i = 1, ..., k)
as follows. Assume Av = p1 → p2 → ... → pg and = q1 →
q2 → ... → qh, as illustrated in Fig. 5. Assume that both Av are

 increasingly ordered. (We say a pair p is larger than anoth-
er pair p’, denoted p > p’ if p.pre > p’.pre and p.post > p’.post.)

We step through both Av and from left to right. Let pi and qj be
the pairs encountered. We’ll make the following checkings to merge

 into Av.

(1) If pi.pre > qj.pre and pi.post > qj.post, insert qj into Av after pi-
1 and before pi and move to qj+1.

(2) If pi.pre > qj.pre and pi.post < qj.post, remove pi from Av and
move to pi+1. (*pi is subsumed by qj.*)

(3) If pi.pre < qj.pre and pi.post > qj.post, ignore qj and move to
qj+1. (*qj is subsumed by pi; but it should not be removed from

.*)

(4) If pi.pre < qj.pre and pi.post < qj.post, ignore pi and move to
pi+1.

(5) If pi = pj’ and qi = qj’, ignore both (pi, qi) and (pj’, qj’), and
move to (pi+1, qi+1) and (pj+1’, qj+1’), respectively.

We notice that initially each Av contains only one pair and is trivially
sorted. Then, when we merge a sorted pair sequence into another
sorted pair sequence as above, the result pair sequence must also be
sorted.

Proposition 1 The space used to store a transitive closure is bounded
by O(n⋅b), where b is the breadth of G (which is defined to be the
least number of disjoined paths that cover all the nodes) and n is the
number of the nodes of G.

Proof. In the above procedure, each node v is associated with a
linked list Av. We claim that the size of Av is bounded by b. Assume
that Av contains b + 1 pairs that are different from each other. Then,
there must exists two pairs p and q so that p subsumes q or vice ver-
sa. Therefore, the space needed for Algorithm all-sequence-genera-
tion is bounded by O(n⋅b).

Proposition 2 The time used to generate a transitive closure is
bounded by O(e⋅b), where b is the breadth of G and e is the number
of the edges of G.

Proof. Similar to Proposition 1.

4. COMPRESSING A TRANSITIVE CLO-
SURE
In this section, we discuss a trade-off between storage space and re-
trieving time by introducing an adjustable compression method to
reduce the size of pair sequences.
4.1 1-level compression
In Fig. 3, we notice that the pair sequences associated with nodes d
and b are almost the same, and different only at the last pair. This
hints a possible space reduction, but at cost of more retrieving time.
In the following, we address this issue in detail. For ease of explana-
tion, we first discuss a 1-level compression. Then, extend this idea
to the so-called multi-level compression.
To achieve the 1-level compression, we associate each node v with
three sequences: L0(v), L1(v), and L2(v), defined as follows:
L0(v) - a pair (p, q), where p and q are the preorder and postorder

number of v, respectively.
L1(v) - a pair sequence (pre1, post1), ..., (prek, postk), where each

(prei, posti) is a pair associated with a child node of v, but not
subsumed by (p, q), nor by any pair pointed to by any entry
in L2(v).

L2(v) - a list of links: l1, ..., lj, where each li points to a node vi, whose
L1(vi) should be merged into L1(v); but for the compression
purpose, L1(vi) is replaced with a link stored in L2(v).

The three sequences for each of the nodes in a graph can be con-
structed by using the following algorithm.

Algorithm 1-level-compression
begin
1 Let vn, vn-1, ..., v1 be the topological sequence of the

nodes of G;
2 for i from n downto 1 do
3 {let , ..., be the child nodes of vi;
4 for j from 1 to l do {
5 if (L1() ≠ nil) then
6 insert a link pointing to into L2(vi);
7 L2(v) ← L2(v) ∪ L2();

8 if (L0() not subsumed by L0(v),
not subsumed by any pair in L1(v), and
not subsumed by any pair pointed to by any
entry in L2(v))

9 then merge L0() into L1(v);}
10 }
end
Example. 3 Applying Algorithm 1-level-compression to the graph
shown in Fig. 2(a), we will produce a data structure as shown in Fig.
6.

From Fig. 6, we can see that L2(d) contains two links to h and g, re-
spectively. The first of them stands for L1(h) and the second for
L1(g). In L2(b), we have three links which represents L1(d), L1(h),
and L1(g), respectively.

With such a data structure, the space is reduced to O((b/d)⋅n). How-
ever, more time is needed to check whether a node u is a descendant

Fig. 4. Graph labeling

a b

c
dg

fe
ji

h

(2, 8)

(3, 5)

(4, 1)
(5, 2) (6, 3) (7, 4)

(8, 6)

(10, 10)

(9, 7)

(11, 9)

vi

vi

vi

Av:

 p1 p2 pg

viA :
 q1 q2 qh

Fig. 5. linked lists associated with nodes in G

Avi

Avi

Avi

i1
vil

vij vijvij
vij

vij

c { L0: (3, 3)
L1: ∅
L2: ∅

a { L0: (2, 5)
L1: ∅
L2: ∅

Fig. 6. Illustartion of 1-level compression

f { L0: (5, 2)
L1: ∅
L2: ∅

e { L0: (4, 1)
L1: ∅
L2: ∅

g { L0: (8, 6)
L1: (4, 1)(5, 2)
L2: ∅

d { L0: (11, 9)
L1: (8, 6)(9, 7)
L2:

i { L0: (6, 3)
L1: ∅
L2: ∅

j { L0: (7, 4)
L1: ∅
L2: ∅

h { L0: (9, 7)
L1: (6, 3)(7, 4)
L2: ∅

b { L0: (10, 10)
L1: ∅
L2:

of another node v. This can be done in three steps:

(1) Check whether L0(u) is subsumed by L0(v);

(2) Check whether L0(u) is subsumed by any pair in L1(v);

(3) Check whether L0(u) is subsumed by any pair pointed to by any
entry in L2(v).

Obviously, the time complexity of this operation is worse than
log2b, but bounded by O((1 + b/d)⋅log2d), where d is the average out-
degree of the nodes in G and log2d is the measurement of the time
for checking a pair for a node u against the pair sequence L1(v) for
another node v.

4.2 Multi-level compression
The idea discussed above can be extended to k-level compression (k
≥ 1), by which each node is associated with k+2 sequences, defined
as follows:
L0(v) - a pair (p, q), where p and q are the preorder and postorder

number of v, respectively.
L1(v) - a pair sequence (pre1, post1), ..., (preh, posth), where each

(prei, posti) is a pair associated with a child node of v, but not
subsumed by (p, q), nor by any pair pointed to by any entry
in any Ll(v) (2 ≤ l ≤ k+2).

For each l (2 ≤ l ≤ k+2), Ll(v) is a list of links: l1, ..., lj, where each li
points to a node vi, whose Ll-1(vi) should be merged into Ll(v); but
for the compression purpose, Ll-1(vi) is replaced with a link stored in
Ll+1(v).
The following is the algorithm to generate a multi-level-compressed
representation of a transitive closure.
Algorithm multi-level-compression(k) (*k - level of compression*)
begin
1 Let vn, vn-1, ..., v1 be the topological sequence of the nodes of G;
2 for i from n downto 1 do
3 {let , ..., be the child nodes of vi;

4 for j from 1 to l do {
5 for c from 2 to k+2 do
6 { if (Lc-1() ≠ nil) then

7 insert a link pointing to into Lc(vi);}}

8. Lk+2(v) ← Lk+2(v) ∪ Lk+2();

9 if (L0() not subsumed by L0(v),

not subsumed by any pair in L1(v), and

not subsumed by any pair pointed to by an

entry in any Lj(v) (2 ≤ j ≤ k+2)

10 then merge L0() into L1(v);}

11 }

end

Example 4 Applying Algorithm multi-level-compression(2) to the
graph shown in Fig. 2(a), we will produce a data structure as shown
in Fig.7.

In Fig. 10, L3(b) contains a link to d, which represents L2(d). Along
with the links in L2(d), we can find L1(h) and L1(g).

Using such a data structure to represent the transitive closure of a
graph G, the space overhead is bounded by O((b/dk)⋅n).

As with the 1-level compression, we check whether a node u is a de-
scendant of another node v in three steps:

(1) Check whether L0(u) is subsumed by L0(v);

(2) Check whether L0(u) is subsumed by any pair in L1(v);

(3) For each l (2 ≤ l ≤ k+2), do the following:

procedure label-checking(l, v)

c ← l;
if c = 1 then check whether L0(u) is subsumed by any pair in
L1(v);

else {let , ..., be the nodes pointed to by the entries

in Lc(v); for each call label-checking(l - 1,);}

From the above, we can see that in order to check whether a node u
is a descendant of another node v, we need to check all the entries in
all the sequences of v, along which O(dk-1) nodes will be accessed.
Therefore, the total time for this task is bounded by O(dk-1 +

⋅log2d).

Consider the function

f(k) = dk-1 + ⋅log2d + (b/dk)⋅n.

The first two items in f(k) represent the time for path checking while
the third item represents the space overhead. It can be shown that

when k = , f(k) reaches its minimum:

 .

So we can choose k = to make a compression to get a

combined optimization for both retrieving time and storage space.

5. MAINTENANCE
In this section, we discuss the maintenance of k-level com-
pression (k ≥ 1). Mainly, we consider two operations: insert-
ing an edge and inserting a node.
- Inserting an edge
Let v and u be two nodes in G. The insertion of the edge (v, u)
can be done as follows.

(1)Insert a link pointing to u to each Li(v) if Li-1(u) ≠ nil) (2
≤ i ≤ k+2);

(2)Lk+2(v) ← Lk+2(v) ∪ Lk+2(u);
(3)if (L0(u) not subsumed by L0(v),

not subsumed by any pair in L1(v), and
not subsumed by any pair pointed to by an
entry in any Lj(v) (2 ≤ j ≤ l+2))

then merge L0(u) into L1(v);}
(4)For any ancestor w of v, Lk+2(w) ← Lk+2(w) ∪ Lk+2(u).

Note that the union operation takes linear time. So the time
cost for inserting an edge is on O((b/dk)⋅n) since the whole
size of all the sequences associated with a node is bounded by
O(b/dk). For the practice purpose, however, each time when
we do Lk+2(w) ← Lk+2(w) ∪ Lk+2(u), we can simply establish
a link to connect Lk+2(w) and Lk+2(u), and delay the union op-

vi1
vil

vij
vij

vij
vij

vij

c{
L0: (3, 3)
L1: ∅
L2: ∅

a {L0: (2, 5)
L1: ∅
L2: ∅

f { L0: (5, 2)
L1: ∅
L2: ∅

e { L0: (4, 1)
L1: ∅
L2: ∅

g { L0: (8, 6)
L1: (4, 1)(5, 2)
L2: ∅

d { L0: (11, 9)
L1: (8, 6)(9, 7)
L2:

i { L0: (6, 3)
L1: ∅
L2: ∅

j { L0: (7, 4)
L1: ∅
L2: ∅

h { L0: (9, 7)
L1: (6, 3)(7, 4)
L2: ∅

b { L0: (10, 10)
L1: ∅
L2:

L3: ∅ L3: ∅ L3: ∅ L3: ∅

L3: ∅ L3: ∅ L3: ∅ L3:

L3: ∅ L3: ∅

c1 cj

ci
vci

b
d

b
d

1
2
--- bndlog+

2
b
d
--- n⋅ b

d
--- d2log⋅+

1
2
--- bndlog+

eration after many edges are inserted or to a late time point
when the system is not busy. In this way, the actual time for
inserting an edge is on (k⋅n).
- Inserting an node
To facilitate the insertion of nodes, we leave a certain gap be-
tween each two consecutive preorder (also postorder) num-
bers. When a new node is inserted, its preorder and postorder
numbers are chosen from the corresponding gap as discussed
below.
We first consider the calculation of the numbers for a new
node when it is inserted into a tree. We distinguish among
four cases.

1. A new node v is inserted into a tree T as a direct right sib-
ling of some node u.

2. A new node v is inserted into a tree T as a parent of some
node u.

3. A new node v is inserted into a tree T as a direct left sib-
ling of some node u.

4. A new node v is inserted into a tree T as a child of some
node u and the parent of one of u’s children.

In the first two cases, the pair (pre, post) associated with v is
calculated as follows.
Let the pair associated with u be (p, q). Let the pair associated
with the node s preceding u (according to the preorder num-
bering) be (ps, qs). Let the pair associated with the node t next
to s (according to the postorder numbering) be (pt, qt). We
have

pre = ps + , and post = qt - .

Obviously, if each node keeps a pointer to its predecessor (ac-
cording to the preorder numbering) and a pointer to its suc-
cessor (according to the postorder numbering), this operation
needs only a constant time.
Now we consider another two cases (3) and (4) that are dual
to case 1 and 2.
Let the pair associated with u be (p, q). Let the pair associated
with the node s preceding u (according to the postorder num-
bering) be (ps, qs). Let the pair associated with the node t next
to s (according to the preorder numbering) be (pt, qt). We have

pre = p + , and post = q - .

To calculate the pair for a new node to be inserted into a DAG,
we have to determine where to insert the node in the corre-
sponding branching. This can be done by checking the parent
of the new node, which is a easy task since the information on
its parent must be specified. Two cases will be considered:

(i) The node v is inserted as a child of some node in the
branching.

(ii)The node v is inserted between an edge (a, b) (i.e., it is
inserted as a child of a and the parent of b.)

For the first case, we will call the algorithm for inserting an
edge. For the second case, we also call the algorithm for in-
serting an edge, but two times: one is for inserting (v, b) and
the other is for inserting (a, v). Since the time for determining
the pair for a new node is O(1), the insertion of nodes has the
same time complexity as the insertion of edges.

6. COMPUTING RECURSION IN RELA-
TIONAL DATABASES
The algorithm discussed in Section 3 hints a new way to speed-up
recursion in a relational database.

We can physically store the label pair for each node, as well as its
label pair sequence produced using Algorithm all-sequence-genera-
tion. Concretely, the relational schema to handle recursion w.r.t. a

DAG can be established as follows:

Node(Node_id, label, label_sequence, ...),

where label and label_sequence are used to accommodate the label
pair and the label pair sequence associated with the nodes of a graph,
respectively. Then, to retrieve the descendants of node x, we issue
two queries. The first query is of the following form:

Q1: SELECT label_sequence
FROM Node
WHERE Node_id = x

Let the label sequence obtained by evaluating the above query be y.
Then, the second query will be of the following form:

Q2: SELECT *
FROM Node
WHERE φ(label, y),

where φ(p, s) is a boolean function with the input: p and s, where p
is a pair and s a pair sequence. If there exists a pair p’ in s such that
p p’ (i.e., p.pre > p’.pre and p.post < p’.post), then φ(p, s) returns
true; otherwise false.

To compute recursion w.r.t. a graph containing cycles, we first issue
a query same as Q1, and then issue another one slightly different
from Q2:

Q2’: SELECT *
FROM Node
WHERE γ(label, y),

where γ(p, s) is a boolean function with the input: p and s, where t is
a pair and s a pair sequence. If there exists a pair p’ in s such that
p’.pre ≤ p.pre and p’.post ≥ p.post, then γ(p, s) returns true; other-
wise false. (Note the difference between γ() and φ(). In Q2’, any two
nodes in the same SCC are considered to be the descendants of each
other.)

For a transitive closure which is k-level compressed, we need to
change the data structure slightly. For each node v, we store its se-
quences in a separate file, and put l (1 ≤ l ≤ k) addresses in the table
Node as a value of the attribute label_sequence with the ith address
pointing to the position where Li(v) can be found. Accordingly, the
functions φ() and γ() should be changed in terms of the discussion
in 4.2.

7. CONCLUSION
In this paper, a new technique for labeling a digraph has been pro-
posed. Using this technique, the recursion w.r.t. a tree hierarchy can
be computed very efficiently. In addition, we have devised an algo-
rithm to generate pair sequences for the nodes of a digraph which
can be used to identify the ancestor-descendant relationship of the
nodes. The method needs O(e⋅b) time and O(n⋅b) space, where e is
the number of the edges of a digraph, n is the number of the nodes,
and b is its breadth. More importantly, a multi-level compression can
be conducted based on the graph encoding method and is adjustable
for different cases. For an k-level compression (k ≥ 1), the space
complexity is on O((b/dk)⋅n), where d is the average outdegree of the
nodes.

REFERENCES
[1] S. Abdeddaim, On Incremental Computation of Transitive Clo-

sure and Greedy Alignment, in: Proc. 8th Symp. Combinatori-
al Pattern Matching, ed. Alberto Apostolico and Jotun Hein,
1997, pp. 167-179.

[2] R. Agrawal, A. Borgida and H.V. Jagadish, “Efficient manage-
ment of transitive relationships in large data and knowledge
bases,” Proc. of the 1989 ACM SIGMOD Intl. Conf. on Man-
agement of Data, Oregon, 1989, pp. 253-262.

[3] R. Agrawal, S. Dar, H.V. Jagadish, “Direct transitive closure
algorithms: Design and performance evaluation,” ACM Trans.
Database Syst. 15, 3 (Sept. 1990), pp. 427 - 458.

[4] R. Agrawal and H.V. Jagadish, “Materialization and Incremen-
tal Update of Path Information,” in: Proc. 5th Int. Conf. Data

p ps–

2

qt q–

2

pt p–

2

q qs–

2

Engineering, Los Angeles, 1989, pp. 374 - 383.
[5] R. Agarawal and H.V. Jagadish, “Hybrid transitive closure al-

gorithms,” In Proc. of the 16th Int. VLDB Conf., Brisbane,
Australia, Aug. 1990, pp. 326 -334.

[6] M.F. van Bommel and T.J. Beck, “Incremental Encoding of
Multiple Inheritance Hierarchies Supporting Lattice Opera-
tions, Linkoping Electronic Articles in Computer and Informa-
tion Science, http://www.ep.liu.se/ea/cis/2000/001.

[7] J. Banerjee, W. Kim, S. Kim and J.F. Garza, “Clustering a DAG
for CAD Databases,” IEEE Trans. on Knowledge and Data
Engineering, Vol. 14, No. 11, Nov. 1988, pp. 1684 - 1699.

[8] K.S. Booth and G.S. Leuker, “Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree al-
gorithms,” J. Comput. Sys. Sci., 13(3):335-379, Dec. 1976.

[9] F. Bancihon and R. Ramakrishnan, “An Amateurs Introduction
to Recursive Query Processing Strategies,” in: Proc. ACM
SIGMOD Conf., Washington D.C., 1986, pp. 16 - 52.

[10] M. Carey et al., “An Incremental Join Attachment for Star-
burst,” in: Proc. 16th VLDB Conf., Brisbane, Australia, 1990,
pp. 662 - 673.

[11] Y. Chen, K. Aberer, “Layered Index Structures in Document
Database Systems,” Proc. 7th Int. Conference on Information
and Knowledge Management (CIKM), Bethesda, MD, USA:
ACM, 1998, pp. 406 - 413.

[12] Y. Chen and K. Aberer, “Combining Pat-Trees and Signature
Files for Query Evaluation in Document Databases,” in: Proc.
of 10th Int. DEXA Conf. on Database and Expert Systems Ap-
plication, Florence, Italy: Springer Verlag, Sept. 1999. pp. 473
- 484.

[13] Y. Chen, “On the Graph Traversal and Linear Binary-chain
Programs,” IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 15, No. 3, May 2003, pp. 573-596.

[14] N.H. Cohen, “Type-extension tests can be performed in con-
stant time,” ACM Transactions on Programming Languages
and Systems, 13:626-629, 1991.

[15] R.G.G. Cattell and J. Skeen, “Object Operations Benchmark,”
ACM Trans. Database Systems, Vol. 17, no. 1, pp. 1 -31, 1992.

[16] P. Dadam et al., “A DBMS Prototype to Support Extended NF2

Relations: An Integrated View on Flat Tables and Hierarchies,”
Proc. ACM SIGMOD Conf., Washington D.C., 1986, pp. 356-
367.

[17] S. Dar and R. Ramarkrishnan, “A Performance Study of Tran-
sitive Closure Algorithm,” in Proc. of SIGMOD Int. Conf.,
Minneapolis, Minnesota, USA, 1994, pp. 454 - 465.

[18] J. Dzikiewicz, “An Algorithm for Finding the Transitive Clo-
sure of a Digraph,” Computing 15, 75 - 79, 1975.

[19] J. Ebert, “A Sensitive Transitive closure Algorithm,” Inf. Pro-
cess Letters 12, 5 (1981).

[20] J. Eve and R. Kurki-Suonio, “On Computing the Transitive
Closure of a Relation,” Acta Informatica 8, 303 - 314, 1977.

[21] M. Fredman and R. Tarjan, Fibonacci heaps and their uses in
improved network optimization algorithms, proc. 25th IEEE
Symp. on Foundations of Computer Science, pp. 338-346,
1984.

[22] R.L. Haskin and R.A. Lorie, “On Extending the Functions of a
Relational Database System,” Proc. ACM SIGMOD Conf., Or-
lando, Fla., 1982, pp. 207-212.

[23] T. Ibaraki and N. Katoh, On-line Computation of transitive clo-
sure for graphs, Information Processing Letters, 16:95-97,
1983.

[24] G.F. Italiano, Amortized efficiency of a path retrieval data
structure, Theoretical Computer Science, 48:273-281, 1986.

[25] Y.E. Ioannidis, R. Ramakrishnan and L. Winger, “Transitive
Closure Algorithms Based on Depth-First Search,” ACM
Trans. Database Syst., Vol. 18. No. 3, 1993, pp. 512 - 576.

[26] H.V. Jagadish, “A Compression Technique to Materialize
Transitive Closure,” ACM Trans. Database Systems, Vol. 15,
No. 4, 1990, pp. 558 - 598.

[27] T. Keller, G. Graefe and D. Maier, “Efficient Assembly of
Complex Objects,” Proc. ACM SIGMOD conf. Denver, Colo.,

1991, pp. 148-157.
[28] W. Kim, “Object-Oriented Database Systems: Promises, Real-

ity, and Future,” Proc. 19th VLDB conf., Dublin, Ireland, 1993,
pp. 676-687.

[29] D.E. Knuth, The Art of Computer Programming, Vol.1, Addi-
son-Wesley, Reading, 1969.

[30] H.A. Kuno and E.A. Rundensteiner, “Incremental Mainte-
nance of Materialized Object-Oriented Views in MultiView:
Strategies and Performance Evaluation,” IEEE Transactions
on Knowledge and Data Engineering, vol. 10. No. 5, 1998, pp.
768-792.

[31] J.A. La Poutre and J. van Leeuwen, Maintenance of Transitive
closure and transitive reduction of graphs, in Proc. Workshop
on Graph-Theoretic Concepts in Computer Science, pp. 106-
120. Lecture Notes in Computer Science 314, Springer-Verlag,
1988.

[32] W.C. Lee and D.L Lee, “Path Dictionary: A New Access Meth-
od for Query Processing in Object-Oriented Databases,” IEEE
Transactions on Knowledge and Data Engineering, vol. 10.
No. 3, 1998, pp. 371-388.

[33] B. Lindsay, J. McPherson and H. Pirahesh, “A Data Manage-
ment Extension Architecture,” Proc. ACM SIGMOD conf.,
1987, pp. 220-226.

[34] K. Mehlhorn, “Graph Algorithms and NP-Completeness: Data
Structure and Algorithm 2” Springer-Verlag, Berlin, 1984.

[35] P. Purdom, “A Transitive Closure Algorithm,” BIT 10, 76 - 94,
1970.

[36] R. Ramakrishnan and J.D. Ullman, “A Survey of Research in
Deductive Database Systems,” J. Logic Programming, May,
1995, pp. 125-149.

[37] L. Schmitz, “An Improved Transitive Closure Algorithm,”
Computing 30, 359 - 371 (1983).

[38] M. Stonebraker, L. Rowe and M. Hirohama, “The Implemen-
tation of POSTGRES,” IEEE Trans. Knowledge and Data
Eng., vol. 2, no. 1, 1990, pp. 125-142.

[39] L.D. Shapiro, “Join Processing in Database Systems with
Large Main Memories,” ACM Trans. Database Systems, vol.
11, no. 3, 1986, pp. 239-264.

[40] M.A. Schubert and J. Taugher, “Determing type, part, colour,
and time relationship,” 16 (special issue on Knowledge Repre-
sentation):53-60, Oct. 1983.

[41] D.D. Sleator and R. Tarjan, Amortized efficiency of list update
rules, Proc. 16th ACM Symp. on Theory of Computing, pp.488-
492, 1984.

[42] R. Tarjan: Depth-first Search and Linear Graph Algorithms,
SIAM J. Compt. Vol. 1. No. 2. June 1972, pp. 146 -140.

[43] R. Tarjan: Finding Optimum Branching, Networks, 7. 1977,
pp. 25 -35.

[44] R. Tarjan, Amortized computational complexity, SIAM J. Al-
gebraic Discrete Methods 6, pp. 306-318, 1985.

[45] J. Teuhola, “Path Signatures: A Way to Speed up Recursion in
Relational Databases,” IEEE Trans. on Knowledge and Data
Engineering, Vol. 8, No. 3, June 1996, pp. 446 - 454.

[46] S. Warshall, “A Theorem on Boolean Matrices,” JACM, 9.
1(Jan. 1962), 11 - 12.

[47] H.S. Warren, “A Modification of Warshall’s Algorithm for the
Transitive Closure of Binary Relations,” Commun. ACM 18, 4
(April 1975), 218 - 220.

[48] P. Valduriez and H. Boral, “Evaluation of Recursive Queries
Using Join Indices,” in: Proc. 1st Workshop on Expert Data-
base Systems, Charleston, S.C., 1986, pp. 197 - 208.

[49] P. Valduriez, S. Khoshafian and G. Copeland, “Implementation
Techniques of Complex Objects,” Proc. 12th VLDB Conf., Ky-
oto, Japan, 1986, pp. 101-109.

[50] Y. Zibin and J. Gil, “Efficient Subtyping Tests with PQ-Encod-
ing,” Proc. of the 2001 ACM SIGPLAN conf. on Object-Orient-
ed Programming Systems, Languages and Application,
Florida, October 14-18, 2001, pp. 96-107.

	Abstract
	A composite object represented as a directed graph (digraph for short) is an important data struc...
	Categories & Subject Decriptors: H.2.4
	General Terms: Databases, Algorithms, Performance
	Key Words: directed acyclic graphs, transitive closures, branchings, topological order, graph dec...
	1. Introduction
	It is a general opinion that relational database systems are inadequate for manipulating composit...
	A composite object can be generally represented as a directed graph (digraph). For example, in a ...
	In a relational system, composite objects must be fragmented across many relations, requiring joi...
	2. Tree labeling
	In this section, we mainly discuss the concepts of tree labeling, based on which our algorithm is...
	Proposition 1 Let v and v’ be two nodes of a tree T. Then, v’ is a descendant of v iff pre(v’) > ...
	Proof. See Exercise 2.3.2-20 in [29].
	The following example helps for illustration.
	Example 1 See the pairs associated with the nodes of the directed tree shown in Fig. 1. The first...
	Let (p, q) and (p’, q’) be two pairs associated with nodes u and v. We say that (p, q) is subsume...
	3. Graph decomposition and computation of transitive closures
	Now we discuss how to recognize the ancestor-descendant relationships w.r.t. a general structure:...
	3.1 Recursion w.r.t. DAGs
	What we want is to apply the technique discussed above to a DAG. To this end, we establish a bran...
	Definition 1 (branching [43]) A subgraph B = (V, E’) of a digraph G = (V, E) is called a branchin...
	Clearly, if for only one node r, dindegree(r) = 0, and for all the rest of the nodes, v, dindegre...
	For example, the trees shown in Fig. 2(b) are a maximal branching of the graph shown in Fig. 2(a)...
	Assume that the maximal branching for G = (V, E) is a set of trees Ti with root ri (i = 1, ..., m...
	By traversing Gr in preorder, each node v will obtain a number pre(v); and by traversing Gr in po...
	In a Gr (for some G), a node v can be considered as a representation of the subtree rooted at v, ...
	Example 2 The core tree Gr of the DAG G shown in Fig. 2(a) can be labeled as shown in Fig. 3(a). ...
	If we can construct, for each node v, a pair sequence as shown in Fig. 3(b), where it is stored a...
	The question is how to construct such a pair sequence for each node v so that it corresponds to a...
	First, we notice that by labeling Gr, each node in G = (V, E) will be initially associated with a...
	To compute the pair sequence for each node, we sort the nodes of G topologically, i.e., (vi, vj) ...
	We scan the topological sequence of the nodes from the beginning to the end and at each step we d...
	4. Compressing a transitive closure
	In this section, we discuss a trade-off between storage space and retrieving time by introducing ...
	4.1 1-level compression
	In Fig. 3, we notice that the pair sequences associated with nodes d and b are almost the same, a...
	To achieve the 1-level compression, we associate each node v with three sequences: L0(v), L1(v), ...
	L0(v) - a pair (p, q), where p and q are the preorder and postorder number of v, respectively.
	L1(v) - a pair sequence (pre1, post1), ..., (prek, postk), where each (prei, posti) is a pair ass...
	L2(v) - a list of links: l1, ..., lj, where each li points to a node vi, whose L1(vi) should be m...
	The three sequences for each of the nodes in a graph can be constructed by using the following al...
	From Fig. 6, we can see that L2(d) contains two links to h and g, respectively. The first of them...
	With such a data structure, the space is reduced to O((b/d)×n). However, more time is needed to c...
	4.2 Multi-level compression
	The idea discussed above can be extended to k-level compression (k ³ 1), by which each node is as...
	L0(v) - a pair (p, q), where p and q are the preorder and postorder number of v, respectively.
	L1(v) - a pair sequence (pre1, post1), ..., (preh, posth), where each (prei, posti) is a pair ass...
	For each l (2 £ l £ k+2), Ll(v) is a list of links: l1, ..., lj, where each li points to a node v...
	The following is the algorithm to generate a multi-level-compressed representation of a transitiv...
	In Fig. 10, L3(b) contains a link to d, which represents L2(d). Along with the links in L2(d), we...
	Using such a data structure to represent the transitive closure of a graph G, the space overhead ...
	As with the 1-level compression, we check whether a node u is a descendant of another node v in t...
	We first consider the calculation of the numbers for a new node when it is inserted into a tree. ...
	1. A new node v is inserted into a tree T as a direct right sibling of some node u.
	2. A new node v is inserted into a tree T as a parent of some node u.
	3. A new node v is inserted into a tree T as a direct left sibling of some node u.
	4. A new node v is inserted into a tree T as a child of some node u and the parent of one of u’s ...
	In the first two cases, the pair (pre, post) associated with v is calculated as follows.
	Let the pair associated with u be (p, q). Let the pair associated with the node s preceding u (ac...
	pre = ps + , and post = qt - .
	Obviously, if each node keeps a pointer to its predecessor (according to the preorder numbering) ...
	Now we consider another two cases (3) and (4) that are dual to case 1 and 2.
	Let the pair associated with u be (p, q). Let the pair associated with the node s preceding u (ac...
	pre = p + , and post = q - .
	To calculate the pair for a new node to be inserted into a DAG, we have to determine where to ins...
	(i) The node v is inserted as a child of some node in the branching.
	(ii) The node v is inserted between an edge (a, b) (i.e., it is inserted as a child of a and the ...
	For the first case, we will call the algorithm for inserting an edge. For the second case, we als...
	6. Computing recursion in relational databases
	The algorithm discussed in Section 3 hints a new way to speed-up recursion in a relational database.
	We can physically store the label pair for each node, as well as its label pair sequence produced...
	Node(Node_id, label, label_sequence, ...),
	where label and label_sequence are used to accommodate the label pair and the label pair sequence...
	Q1: SELECT label_sequence FROM Node WHERE Node_id = x
	Let the label sequence obtained by evaluating the above query be y. Then, the second query will b...
	Q2: SELECT * FROM Node WHERE f(label, y),
	where f(p, s) is a boolean function with the input: p and s, where p is a pair and s a pair seque...
	To compute recursion w.r.t. a graph containing cycles, we first issue a query same as Q1, and the...
	Q2’: SELECT * FROM Node WHERE g(label, y),
	where g(p, s) is a boolean function with the input: p and s, where t is a pair and s a pair seque...
	For a transitive closure which is k-level compressed, we need to change the data structure slight...
	7. Conclusion
	In this paper, a new technique for labeling a digraph has been proposed. Using this technique, th...
	References
	[1] S. Abdeddaim, On Incremental Computation of Transitive Closure and Greedy Alignment, in: Proc...
	[2] R. Agrawal, A. Borgida and H.V. Jagadish, “Efficient management of transitive relationships i...
	[3] R. Agrawal, S. Dar, H.V. Jagadish, “Direct transitive closure algorithms: Design and performa...
	[4] R. Agrawal and H.V. Jagadish, “Materialization and Incremental Update of Path Information,” i...
	[5] R. Agarawal and H.V. Jagadish, “Hybrid transitive closure algorithms,” In Proc. of the 16th I...
	[6] M.F. van Bommel and T.J. Beck, “Incremental Encoding of Multiple Inheritance Hierarchies Supp...
	[7] J. Banerjee, W. Kim, S. Kim and J.F. Garza, “Clustering a DAG for CAD Databases,” IEEE Trans....
	[8] K.S. Booth and G.S. Leuker, “Testing for the consecutive ones property, interval graphs, and ...
	[9] F. Bancihon and R. Ramakrishnan, “An Amateurs Introduction to Recursive Query Processing Stra...
	[10] M. Carey et al., “An Incremental Join Attachment for Starburst,” in: Proc. 16th VLDB Conf., ...
	[11] Y. Chen, K. Aberer, “Layered Index Structures in Document Database Systems,” Proc. 7th Int. ...
	[12] Y. Chen and K. Aberer, “Combining Pat-Trees and Signature Files for Query Evaluation in Docu...
	[13] Y. Chen, “On the Graph Traversal and Linear Binary-chain Programs,” IEEE Transactions on Kno...
	[14] N.H. Cohen, “Type-extension tests can be performed in constant time,” ACM Transactions on Pr...
	[15] R.G.G. Cattell and J. Skeen, “Object Operations Benchmark,” ACM Trans. Database Systems, Vol...
	[16] P. Dadam et al., “A DBMS Prototype to Support Extended NF2 Relations: An Integrated View on ...
	[17] S. Dar and R. Ramarkrishnan, “A Performance Study of Transitive Closure Algorithm,” in Proc....
	[18] J. Dzikiewicz, “An Algorithm for Finding the Transitive Closure of a Digraph,” Computing 15,...
	[19] J. Ebert, “A Sensitive Transitive closure Algorithm,” Inf. Process Letters 12, 5 (1981).
	[20] J. Eve and R. Kurki-Suonio, “On Computing the Transitive Closure of a Relation,” Acta Inform...
	[21] M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network optimization al...
	[22] R.L. Haskin and R.A. Lorie, “On Extending the Functions of a Relational Database System,” Pr...
	[23] T. Ibaraki and N. Katoh, On-line Computation of transitive closure for graphs, Information P...
	[24] G.F. Italiano, Amortized efficiency of a path retrieval data structure, Theoretical Computer...
	[25] Y.E. Ioannidis, R. Ramakrishnan and L. Winger, “Transitive Closure Algorithms Based on Depth...
	[26] H.V. Jagadish, “A Compression Technique to Materialize Transitive Closure,” ACM Trans. Datab...
	[27] T. Keller, G. Graefe and D. Maier, “Efficient Assembly of Complex Objects,” Proc. ACM SIGMOD...
	[28] W. Kim, “Object-Oriented Database Systems: Promises, Reality, and Future,” Proc. 19th VLDB c...
	[29] D.E. Knuth, The Art of Computer Programming, Vol.1, Addison-Wesley, Reading, 1969.
	[30] H.A. Kuno and E.A. Rundensteiner, “Incremental Maintenance of Materialized Object-Oriented V...
	[31] J.A. La Poutre and J. van Leeuwen, Maintenance of Transitive closure and transitive reductio...
	[32] W.C. Lee and D.L Lee, “Path Dictionary: A New Access Method for Query Processing in Object-O...
	[33] B. Lindsay, J. McPherson and H. Pirahesh, “A Data Management Extension Architecture,” Proc. ...
	[34] K. Mehlhorn, “Graph Algorithms and NP-Completeness: Data Structure and Algorithm 2” Springer...
	[35] P. Purdom, “A Transitive Closure Algorithm,” BIT 10, 76 - 94, 1970.
	[36] R. Ramakrishnan and J.D. Ullman, “A Survey of Research in Deductive Database Systems,” J. Lo...
	[37] L. Schmitz, “An Improved Transitive Closure Algorithm,” Computing 30, 359 - 371 (1983).
	[38] M. Stonebraker, L. Rowe and M. Hirohama, “The Implementation of POSTGRES,” IEEE Trans. Knowl...
	[39] L.D. Shapiro, “Join Processing in Database Systems with Large Main Memories,” ACM Trans. Dat...
	[40] M.A. Schubert and J. Taugher, “Determing type, part, colour, and time relationship,” 16 (spe...
	[41] D.D. Sleator and R. Tarjan, Amortized efficiency of list update rules, Proc. 16th ACM Symp. ...
	[42] R. Tarjan: Depth-first Search and Linear Graph Algorithms, SIAM J. Compt. Vol. 1. No. 2. Jun...
	[43] R. Tarjan: Finding Optimum Branching, Networks, 7. 1977, pp. 25 -35.
	[44] R. Tarjan, Amortized computational complexity, SIAM J. Algebraic Discrete Methods 6, pp. 306...
	[45] J. Teuhola, “Path Signatures: A Way to Speed up Recursion in Relational Databases,” IEEE Tra...
	[46] S. Warshall, “A Theorem on Boolean Matrices,” JACM, 9. 1(Jan. 1962), 11 - 12.
	[47] H.S. Warren, “A Modification of Warshall’s Algorithm for the Transitive Closure of Binary Re...
	[48] P. Valduriez and H. Boral, “Evaluation of Recursive Queries Using Join Indices,” in: Proc. 1...
	[49] P. Valduriez, S. Khoshafian and G. Copeland, “Implementation Techniques of Complex Objects,”...
	[50] Y. Zibin and J. Gil, “Efficient Subtyping Tests with PQ-Encoding,” Proc. of the 2001 ACM SIG...
	On the Transitive Closure Representation and Adjustable Compression
	Yangjun Chen* and Donovan Cooke
	Dept. of Applied Computer Science
	University of Winnipeg, Manitoba, Canada R3B 2E9
	{ychen2@uwinnipeg.ca, holy_spawn@yahoo.com}
	The Author is supported by NSERC 239074-01 (242523) (Natural Sciences and Engineering Council of ...

