

On the Intersection of Inverted Lists
Yangjun Chen1 and Weixin Shen2

Dept. Applied Computer Science, University of Winnipeg, Canada
1y.chen@uwinnipeg.ca, 2wxshen1985@gmail.com

Abstract— In this paper, we discuss an efficient and effective index

mechanism to support set intersections, which are important to

evaluation of conjunctive queries by search engines. The main idea

behind it is to decompose an inverted list associated with a word into

a collection of disjoint sub-lists by arranging a set of word sequences

into a trie structure. Then, by using a kind of tree encoding, we can

replace each inverted list with a much shorter interval sequence. In

this way, we can transform the comparison of document identifiers to

the checking of interval containment by associating each interval

with a sub-list. More importantly, for a sorted interval sequence the

binary search can also be used. With the lowest common ancestors

being utilized to control the search, a better theoretical time

complexity than any traditional method can be achieved.

Key words: Search engine; inverted files; conjunctive queries;

disjunctive queries.

1. INTRODUCTION

Indexing the Web for fast keyword search is among the

most challenging applications for scalable data management.

In the past several decades, different indexing methods have

been developed to speed up text search, such as inverted files

[14, 15], signature files and signature trees for indexing texts

[1, 5, 6, 11, 12]; and suffix trees and tries [13] for string

matching. Especially, different variants of inverted files have

been used by the Web search engines to find pages satisfying

conjunctive queries of the form:

 w1 w2 … wk.

A document D is an answer to such a query if it contains

every wi for 1 i k. The algorithms developed to evaluate

such a query typically use inverted lists, each of which

comprises all those document identifiers containing a certain

word. So, to find all the documents satisfying a query, set

intersections have to be conducted.

There has been considerable study on this topic, such as

adaptive algorithms [9], melding algorithms [2], building

additional data structures like skipping lists [32], treaps (a

kind of balanced trees) [4], hash tables over sorted lists [3, 10],

and so on. All of them can improve the time complexity at

most by a constant factor, but none of them is able to break

through the linear time bottleneck.

In this work, we explore a different way to speed up the

operation by constructing indexes, which are substantially

different from any existing strategy. Concretely, our method

works as follows.

- Represent each document as a word sequence, sorted

decreasingly by the word appearance frequency (referred to

as a document word sequence, or simply a word sequence),

and then construct a trie structure over all such sequences.

- Associate each word with an interval sequence L, where

each interval in L is created by applying a kind of tree

encoding over the generated trie structure.

- Associate each interval, rather than a word, with a set of

document identifiers. In this way, we decompose an

inverted list associated with a word into a collection of

disjoint sub-lists, and transform the comparison of

document identifiers to the checking of interval

containment.

- For each word w, instead of its interval sequence, we will

construct a balanced binary tree over an even shorter

interval sequence with each being an interval for a lowest

common ancestor of some nodes labelled with w. The set

intersection operation can then be done by searching a

binary tree against a series of intervals.

Let x and y be two inverted lists associated with two

words x and y, respectively. Without loss of generality,

assume that |x| < |y|. Up to now, the best comparison-based

algorithm for intersecting Lx and Ly requires O(|x|log
||

||

x

y

)

time. In contrast, our algorithm needs O(|Ly|log
|| y

x

L

) time,

where Lx and Ly are the interval sequences created for Lx and

Ly, respectively; and x is the size of a subset of nodes with

each being a lowest common ancestor of some nodes labeled

with x in the trie. Generally, we have |Ly| ≤ |Lx| ≤ |x| and x <

|x|. This time complexity is significantly better than the

traditional methods due to the following two key facts:

1. Each interval corresponds to a sub-list of an inverted list.

Therefore, in general, the length of an interval sequence

associated with a word is much shorter than the inverted list

for that word. Especially, the larger an inverted list is, the

smaller its corresponding interval sequence. Only for those

very short inverted lists (associated with low frequent

words), the sizes of their corresponding interval sequences

may be near their sizes.

2. During the search of a tree constructed over intervals, the

relationship between a set of nodes and their lowest

common ancestor can be used to skip over a lot of useless

interval containment checkings while it is not possible by

any tree built over an inverted list.

Moreover, our index structure can also be easily maintained.

mailto:y.chen@uwinnipeg.ca

2. NEW INDEX STRUCTURE

In this section, we mainly discuss our index structure, by

which each word with high frequency will be assigned an

interval sequence. We will then associate intervals, instead of

words, with inverted sub-lists. To clarify this mechanism, we

will first discuss interval sequences for words in 2.1. Then, in

2.2, how to associate inverted lists with intervals will be

addressed.

2.1 Interval sequences assigned to words

Let D = {D1, ..., Dn} be a set of documents. Let Wi =

{wi1, …,
1ijw } (i = 1,…, n) be all of the words appearing in Di,

to be indexed. Denote W =
n

i iW1
, called the vocabulary. For

each word w W, we will associate it with an inverted list

containing all the document identifiers with each containing w.

Thus, to answer a conjunctive query, a set intersection over

some inverted lists has to be conducted.

For the purpose of the new index structure, we will put

all the words in a sorted sequence = w1, w2, …, wm (m = |W |)

such that for any two words w and w if the frequency of w is

higher than w then w appears before w in , denoted as w ≺

w. Then, each document can be represented as a subsequence

of ; and over all these subsequences a trie structure can be

established as illustrated in Fig. 1.

In Fig. 1(a), we show a document database containing 11

documents, their words, and their sorted sequences by the

word frequency, where we use a character to represent a word

for simplicity. In Fig. 1(b), we show the inverted lists for all

the words in the database. The trie over all the sorted

sequences is shown in Fig. 1(c).

In this trie, v0 is a virtual root, labeled with an empty

word while any other node is labeled with a real word.

Therefore, all the words on a path from the root to a leaf spell

a sorted word sequence for a certain document. For instance,

the path from v0 to v13 corresponds to the sequence: c, f, a, p,
m. Then, to check whether two words w1 and w2 are in the

same document, we need only to check whether there exist

two nodes v1 and v2 such that v1 is labeled with w1, v2 with w2,

and v1 and v2 are on the same path. This shows that the

reachability needs to be checked for this task, by which we

ask whether a node v can reach another node u through a path.

If it is the case, we denote it as v ⇒u; otherwise, we denote it

as v ⇏u.

The reachability problem on tries can be solved very

efficiently by using a kind of tree encoding [7][8], which

labels each node v in a trie with an interval Iv = [αv, βv], where

βv denotes the rank of v in a post-order traversal of the trie.

Here the ranks are assumed to begin with 1, and all the

children of a node are assumed to be ordered and fixed during

the traversal. Furthermore, αv denotes the lowest rank for any

node u in T[v] (the subtree rooted at v, including v). Thus, for

any node u in T[v], we have Iu Iv since the post-order

traversal visits a node after all of its children have been

accessed. In Fig. 1(c), we also show such a tree encoding on

the trie, assuming that the children are ordered from left to

right. It is easy to see that by interval containment we can

check whether two nodes are on a same path. For example, v3

⇒ v19, since
3vI = [8, 19],

19vI = [12, 12], and [12, 12] [8, 19];

but v2 ⇏ v18, since
2vI = [5, 7],

18vI = [11, 11], and [11, 11]

[5, 7].

Let I = [α, β] be an interval. We will refer to α and β as

I[1] and I[2], respectively.

Lemma 1 For any two intervals I and I generated for two

nodes in a trie, one of four relations holds: I I, I I, I[2] <

I[1], or I[2] < I[1].

Proof. It is easy to prove.

However, more than one node may be labeled with the

same word, such as nodes v1, and v6 in Fig. 1(c). Both are

labeled with word d. Therefore, a word may be associated

with more than one node (or say, more than one node’s

interval). Thus, to know whether two words are in the same

document, multiple checkings may be needed. For example, to

check whether d and b are in the same document, we need to

check v1 and v6 each against both v16 and v19, by using the

node’s intervals.

In order to minimize such checkings, we associate each

word w with a word sequence of the form: Lw = 1
wI , 2

wI , …, k
wI ,

where k is the number of all those nodes labeled with w and

each i
wI = [i

wI [1], i
wI [2]] (1 i k) is an interval associated

with a certain node labeled with w. In addition, we can sort Lw

by the interval’s first value such that for 1 i < j k we have
i
wL [1] < j

wL [1], which will greatly reduce the time for the

v11 v15 v13
[1, 1]

v10

[1, 20]

e:

d:

f:

a:

c:

b:

v1

d

f

a

[1, 2]

[1, 4]

v0

v4

a

(c)

(b)

[3, 3]

v3

[10, 10]

[17, 17]

v8 [8, 14]

[10, 13]

[11, 11] [12, 12]

[9, 9] [8, 8]

e [8, 19]

v12

c [15, 15] d

v7

f [16, 18]
v9

c f a a

[16, 16]

c

a b c

v14

v17 v18 v19

{4, 5, 6, 7, 8, 9, 10, 11}

{1, 2, 4, 5, 6, 7, 8}

{1, 3, 5, 6, 7, 9, 10}

{1, 2, 3, 4, 7, 10}

{5, 6, 9, 11}

{3, 8}

v6

f

a [5, 6]

[5, 7]

v2

b [5, 5]

v5

v16

Fig. 1: A trie and a set of sorted interval sequences

Documents and word sequences:

DocId

1

2

3

4

5

6

7

8

9

10

11

words

a, f, d

a, d

a, e, d

f, b, a

c, d, e

d, f, e, c

f, d, e, a

f, d, e, b

e, c

a, e, f

f, e, c

words

d, f, a

d, a

e, d, a

f, a, b

e, d, c

e, d, f, c

e, d, f, a

e, d, f, b

e, c

e, f, a

e, f, c

(a)

reachability checking. We illustrate this in Fig. 2, in which

each word in Fig. 1(a) is associated with an interval sequence.

From this figure, we can see that for any two intervals I

and I in Lw we must have I I, and I I since in any trie no

two nodes on a path are labeled with the same word.

In addition, for any interval sequence L, we will use L[i]

to refer to the ith interval in L, and L[i .. j] to the segment from

the ith to the jth interval in L.

2.2 Assignment of DocIDs to intervals

Another important component of our index is to assign

document identifiers to intervals. An interval I can be

considered as a representative of some words, i.e., all those

words appearing on a prefix in the trie, which is a path P from

the root to a certain node that is labeled with I. Then, the

document identifiers assigned to I should be those containing

all the words on P. For example, the words appearing on the

prefix: v0 v3 v7 v14 in the trie shown in Fig. 1(c) are

words: , e, d, and f, represented by the interval [10, 13]

associated with v14. So, the document identifiers assigned to

[10, 13] should be {6, 7, 8}, indicating that documents D6, D7

and D8 all contain those three words. See the trie shown in Fig.

3 for illustration, in which each node v is assigned a set of

document identifiers that is also considered to be the set

assigned to the interval associated with v.

Let v be the ending node of a prefix P, labeled with I.

We will use I, interchangeably v, to represent the set of

document identifiers containing the words appearing on P.

Thus, we have, for example,
14v = [10, 13] = {6, 7, 8}.

Concerning the decomposition of inverted lists, the following

two lemmas can be easily proved.

Lemma 1 Let T be a trie constructed over a set of word

sequences (sorted by the appearance frequency) over W. Then,

we have

Ww

w
Tv

v .

Proof. Let v1, …,
wl

v be all the nodes labeled with a word w in

T. Then w =

w

i

l

i
v

1

 . Since in T no node is labeled with more

than one word, we have

Ww

l

i Tv
vv

Ww
w

w

i

1

 .

Lemma 2 Let u and v be two nodes in a trie T. If u and v are

not on the same path in T, then u and v are disjoint, i.e., u

 v = .

Proof. It is easy to prove.

Proposition 1 Assume that v1, v2, …, vj be all the nodes

labeled with the same word w in T. Then, w, the inverted list

of w (i.e., the list of all the documents identifiers containing

w) is equal to
1v ⊎

2v ⊎ … ⊎
jv , where ⊎ represents disjoint

union over disjoint sets that have no elements in common.

Proof. Obviously, w is equal to
1v

2v …
jv . Since

v1, v2, …, vj are labeled with the same word, they definitely

appear on different paths as no nodes on a path are labeled

with the same word. According to Lemma 1,
1v

2v …

jv is equal to

1v ⊎
2v ⊎… ⊎

jv .

As an example, see the nodes v1 and v7 in Fig. 2. Both are

labeled with word d. So the inverted list of d is
1v ⊎

7v = {1,

2} ⊎ {4, 5, 6, 7, 8} = {1, 2, 4, 5, 6, 7, 8}.

3. BASIC UERY EVALUATION

Based on the new index structure, we design our basic

algorithms.

We first consider a query containing only two words w

w with w ≺ w. It is easy to see that any interval in Lw cannot

be contained in any interval in Lw. Thus, to check whether w

and w are in the same document, we need only to check

whether there exist I Lw and I Lw such that I I.
Therefore, such a query can be evaluated by running a process,

denoted as conj(Lw, Lw), to find all those intervals in Lw with

each being contained in some interval in Lw, stored in a new

sequence L.

1. Let Lw =
1
wI ,

2
wI , …,

k
wI . Let Lw =

1
wI ,

2
wI , …,

k
wI

 . L .

2. Step through Lw and Lw from left to right. Let
p
wI and

q
wI be the

intervals currently encountered. We will do one of the following

checkings:

i) If
p
wI

q
wI , append

q
wI to the end of L. Move to

1

q
wI if q < k

(then, in a next step, we will check
p
wI against

1

q
wI).

ii) If
p
wI [1] >

q
wI [2], move to

1

q
wI if q < k. If q = k, stop.

iii) If
p
wI [2] <

q
wI [1], move to

1p
wI if p < k (then, in a next step,

we will check
1p

wI against
q
wI). If p = k, stop.

Assume that the result is L = I1, I2, …, Il (0 ≤ l ≤ k).

Then, for each 1 ≤ j ≤ l, there exists an interval I Lw such

e:

d:

f:

a:

c:

b:

[8,19]

[1, 4][8, 14]

[1, 2][5, 7][10, 13][16, 18]

[1, 1][3, 3][5, 6][8, 8][11, 11][16, 16]

[9, 9][10, 10][15, 15][17, 17]

[5, 5][12, 12]

Fig. 2: a set of interval sequences

v13

v17

v0

v3

{11}

v15

{6}

v8

{4, 5, 6, 7, 8}

{6, 7, 8}

{7} {8}

{5} {4}

e {4, 5, 6, 7, 8, 9, 10, 11}

v12

c {9} d

v7

f {10, 11}
v9

c f a a {10} c

a b c

v14 v17

v18 v19

{3}

{3}

{3}

{2} {1}

{1}
v10

v

1 d

f

a

{1, 2}

v4

a

v6

f

a

v2

v11

b

v5

Fig. 3: Illustration for assignment of document IDs

14vI = [10, 13]. The set {6, 7, 8} assigned to v14 can

be considered as the set assigned to [10, 13].

that Ij I, and we can return
1I ⊎… ⊎

kI as the answer. In

Fig. 4, we illustrate the working process on Lp and Lb shown

in Fig. 1(b).

In Fig. 4, we first notice that Ld = [1, 4][8, 14] and Lb =

[5, 5][12, 12]. In the 1
st
 step, we will check 1

dL = [1, 4] against

1
b

L = [5, 6]. Since 1
dL [2] = 4 < 1

b
L [1] = 5, we will check 2

dL =

[8, 14] against 1
b

L in a next step, and find 1
b

L [2] = 5 < 2
dL [1] =

8. So we will have to do the third step, in which we will check
2
dL against 2

b
L = [12, 12]. Since 2

dL 2
b

L , we get to know that

d and b are in the same document.

Lemma 3 Let L = I1, …, Ik be the result of conj(Lw, Lw). Then,

for each Ij (1 ≤ j ≤ k), there must be an interval I Lw such

that I Ij. For any interval I′ Lw′ but L, it definitely does

not belong to any interval in Lw.

Proof. It is easy to prove.

Since in this process, each interval in both Lw and Lw is

accessed only once, the time complexity of this process is

bounded by O(|Lw| + |Lw|). In addition, the above approach can

be easily extended to evaluate general queries of the form Q =

w1 w2 … wl with w1 ≺ w2 ≺ … ≺ wl and l 1 based on

the transitivity of intervals: I I′ I′′ I I′′.

What we need to do is to repeatedly apply conj() to the

corresponding interval sequences associated with the query

words one by one. The following is a formal description of the

process.

ALGORITHM conEvaluation(Q)

begin

1. let |Q| = l; assume that Q[1] ≺ Q[2] ≺ … ≺ Q[l];

2. L := Q[1];

3. for (j = 2 to l) do

4. { L conj(L, LQ[j]); }

5. let L = I1, …, Ik;

6. return
1I

 ⊎… ⊎
kI .

end

It is easy to see that the time complexity of the algorithm

is bounded by O(
Qw

wL ||).

Proposition 2 Let Q = w1 w2 … wl with w1 ≺ w2 ≺ …

≺ wl and l 1. The answer produced by algorithm

conEvaluation(Q) is correct.

Proof. Let L = I1, …, Ik be the interval sequence produced by

the main for-loop (line 3 – 4). Then, according to Lemma 3,

for each Ij (1 ≤ j ≤ k), there must exist an interval sequence 1,

2, …, l-1 such that i
iwL (1 ≤ i ≤ l - 1) and 1 2 … l-

1 Ii. Next, according to Proposition 1, we know that
1I

 ⊎ …

⊎
kI must be the correct answer.

Example 1 Consider Fig. 2 and 3. Let Q = d f a. Then, in

the first iteration, we will get L = conj(Ld, Lf) = [1, 2][10, 13].

In the second iteration, we will get L = conj(L, Lp) = [1, 1][11,

11]. The results is then R = [1, 1] ⊎ [11, 11] = {1} ⊎ {7} = {1,

7}.

4. Improvements

In this section, we discuss a new algorithm to improve

the naïve method shown in the previous subsection. The main

idea is to use lowest common ancestors (LCAs for short) of

nodes (in T) to control a binary search process. First, in 4.1,

we discuss the binary search of an Lw. Then, we show how to

use LCAs to speed up such a search in 4.2.

4.1 Set intersection based on binary search
Each interval sequence is sorted. So we can do the

conjunction of interval sequences based on binary search.

Let Lo = 1
oI , 2

oI , …, m
oI and Lw = 1

wI ,
2
wI , …,

n
wI be two

interval sequences with w ≺ o. Then, m = |Lo| ≤ n = |Lw|.

By using the binary search technique, we need to work

from the end to the start of Lw to incorporate the LCAs into the

process. To this end, we design an algorithm different from

conj(Lo, Lw), called conjB(), which can be mostly easily

described recursively. When m = 0, there is no conjunction to

be done and the result is . Otherwise, we will first check

m
oI against Lw. As with [46], let l =

m

n
lg . Then, 2

l
 is the

largest power of two

not exceeding

m

n
. Let t = n - 2

l
 + 1.

Compare m
oI and t

wI .

1. If m
oI [1] > t

wI [2], we should look for the intervals (in Lw)

covered by m
oI somewhere to the right of t

wI . By using the

traditional binary search, we try to find an interval I

covered by m
oI with l more comparisons. Around I, we

will continually (by a simple linear search) find the left-

most interval x in Lw, which can be covered by
m
oI ; and

then with l more comparisons, we will find the right-most

interval y covered by
m
oI , in a similar way. Obviously, all

the intervals between x and y, including x and y, can be

covered by
m
oI . (See Fig. 5(a).) This information allows us

to reduce the problem to the situation illustrated in Fig.

5(b). To complete the whole operation, it is sufficient to

apply the above process to Lo and Lw, where Lo

= 1
oI , …,

1m
oI and Lw = 1

wI , …, 1x
wI .

2. If, on the other hand, m
oI [2] < t

wI [1], we should check the

intervals to the left of t
wI , and the problem immediately

reduces to the checking of Lo = Lo against Lw = Lw[1 .. t -

p

[1, 4][8, 14]

q

[5, 5][12, 12]

p

q

 [1, 4][8, 14]

[5, 5][12, 12]

p

q

Lb: [5, 5][12, 12]

Ld: [1, 4][8, 14]

1st step: 2nd step: 3rd step:

Fig. 4: Illustration
for conj(Lw, Lw)

1]. We can complete the operation by applying the above

process to Lo and Lw.

However, Lo may become larger than Lw. So in the

recursive call to conjB(), the roles of Lo and Lw may be

reversed, by which we will check each interval I in Lw against

Lo to find an interval I in Lw such that I the last interval

in Lo. See Fig. 6 for illustration. Assume that that the last

interval 1x
wI in Lw is covered by an interval j

oI (1 ≤ j ≤ m - 2)

in Lo. Then, by the next recursive call, we will check Lw

= 1
wI , …,

2x
wI and Lu = 1

oI , …, 2j
oI .

3. If m
oI

t
wI , we will check linearly 1t

wI , 2t
wI , … until we

meet a first interval x which is to the left of t
wI and not

covered by m
oI . Then, check 1t

wI , 2t
wI , … until a first

interval y which is to the right of t
wI and not covered by

m
oI . All the encountered nodes, except x and y, must be

covered by m
oI . This reduces the problem to a checking of

Lo = Lo[1 .. m - 1] against Lw = Lw[1 .. x].

4. If m
oI

t
wI (we may have this case due to the roll

interchange), we add
m
oI to the result and the problem

reduces to a checking Lo = Lo[1 .. m - 1] against Lw = Lw[1

.. t].

According to the above discussion, we give the

following recursive algorithm, which takes three inputs: Lo,

Lw, b with |Lo| ≤ |Lw|, where b is a Boolean value used to

indicate how m
oI is checked against Lw. If o ≺ w, b = 0.

Otherwise (w ≺ o), b = 1. In addition, in the Algorithm a

global variable R is used to store the result.

ALGORITHM conjB(Lo, Lw, b)

begin

1. m |Lo|; n |Lw|;

2. if m = 0 then return;

3. l

m

n
lg ; t n - 2

l
 + 1; I m

oI ;

4. if I[2] <
t
wI [1] then {Lo Lo; Lw Lw[1 .. t - 1];}

5. if I[1] >
t
wI [2]

6. then if b = 1 then z binaryS-1(I, Lw[t + 1 .. n]

7. if z = 0 then {Lo Lo[1..m-1]; Lw Lw; }

8. else R := R {I};

9. Lo Lo[1 .. m - 1];

10. Lw Lw[1 .. t + z - 1];

11. else <x, y> binaryS-2(I, Lw[t + 1 .. n])

12. if x = 0 then {Lo Lo[1 .. m - 1]; Lw Lw; }

13. else R R {all interval between x and y, including x

and y};

14. Lo Lo[1 .. m - 1]; Lw Lw[1 .. x - 1];

15. if I
t
wI then <x, y> linearSearch(I, Lw, t

wI)

16. Lo Lo[1 .. m - 1]; Lw Lw[1 .. x - 1];

17. R R {all interval between x and y, including

x and y};

18. if I
t
wI then R := R {I};

19. Lo Lo[1 .. m - 1]; Lw Lw[1 .. t];

20. if |Lo| ≤ | Lw| then conjB(Lo, Lw, b)

21. else conjB(Lw, Lo, b);

end

The above algorithm can be divided into two parts. The

first part consists of lines 1 – 10; and the second part lines 20

– 21. In the first part, we will check the first interval m
oI in Lo

against Lw. According to the above discussion, four

cases are distinguished: m
oI [2] < t

wI [1] (line 4), m
oI [1] >

t
wI [2] (lines 4 – 14), m

oI [1] t
wI (lines 15 – 17), and m

oI [1]

 t
wI (18 – 19). Special attention should be paid to the use of

b, which indicates whether we check m
oI to find a covering

interval in Lw (by calling binaryS-1()) or to find all those

intervals that can be covered by m
oI (by calling binaryS-2())).

In the second part (lines 20 – 21), we make a recursive

call to check Lo and Lw, which are determined

respectively from Lo and Lw during the execution of

the first part. If |Lo| ≤ | Lw|, we simply call conjB(Lo, Lw,

b) (see line 14.) Otherwise, the rolls of Lo and Lw should

be interchanged and we will call conjB(Lw, Lo, b), where

b represents the negation of b (see line 21.)

It binaryS-1(I, L), we will find, by the binary search, an

interval Iz in L which covers I. If z = 0, it shows that such an

interval does not exist.

FUNCTION binaryS-1(I, L)

begin

1. z 0;

2. binary search of L to find an interval z, which covers I;

3. return z;

end

In binaryS-2(I, L), we will first find a pair <x, y> such

that Ix is the left-most interval in L, which can be covered by I;

Fig. 5: First comparison during an interval intersection

Lo:

Lw:
t x y

Lo

Lw

(a) (b)
t x y

Fig. 6: Illustration for interchanging rolls of Lw and Lu

Lo:

Lw:
t x y

Lo

Lw

x y

and Iy the right-most interval covered by I. Then, x = 0

indicates that no interval in L is covered by I.

FUNCTION binaryS-2(I, L)

begin

1. x 0; y 0;

2. binary search of L to find an interval Iz which is covered by

I;

3. return linearSearch(I, L, Iz);

end

In linearSearch(I, L, I), we will find a pair <x, y> such

that Ix, Ix+1, …, I, …, Iy-1, Iy are all the intervals that can be

covered by I.

FUNCTION linearSearch(I, L, I)

begin

1. Let I be Iz;

2. Search Iz-1, Iz-2, … until Ix such that Ix is covered by I, but

Ix-1 not;

3. Search Iz+1, Iz+2, … until Iy such that Iy is covered by I,

but Iy+1 not;
2. return <x, y>;

end

Example 2 Consider Ld = [1, 4][8, 14] and La = [1, 1][3, 3][5,

6][8, 8][11, 11][16, 16]. By calling conjB(Lf, La, false), the

following operations will be conducted:

Step 1: checking Ld[1] = [1, 4] against La. l =

2

6
lg = 1, t =

2
l
 = 2, La[2] = [3, 3]. Since [1, 4] [3, 3], we will call

linearSearch() to find x = 1 and y = 2.

Step 2: checking Ld[2] = [8, 14] against La[3 .. 6]. l =

1

4
lg = 2, t = 2

l
 = 4, La[4] = [16, 16]. Since [8, 14] is to the

left of [16, 16], we will make a binary search of La[3 .. 5], by

which we will find x = 4 and y = 5.

4.2 Search control by using LCAs
The method discussed in 4.1 can be significantly

improved by using LCAs. Given a word w, denote by Vw all

the nodes labeled with w. All the LCAs of the nodes in Vw (in

T), denoted as Vw′, can be efficiently recognized using a way

to be discussed in Section 6. For example, for the set of nodes

labeled with word a: Va = {v10, v5, v6, v12, v18, v15}, we can find

another set of nodes: Va′ = {v1, v7, v2, v0} with v1 being LCA of

{v10, v5}, v7 being LCA of {v12, v18}, v2 being LCA of {v6, v12,

v18, v15}, and v0 being LCA of {v10, v5, v6, v12, v18, v15}. Now

we construct a tree structure, called an LCA-tree and denoted

as Tw, which contains all the nodes in Vw Vw′. In Tw, there is

arc from v1 to v2 iff there exists a path P from v1 to v2 in T and

P does not pass any other node in Vw Vw′. In Fig. 7(a), we

show Ta for illustration.

Replacing each node in Tw with the corresponding

interval, we get another tree, denoted as
~

wT , in which each

internal node v must be an interval that is the smallest interval

covering all the intervals represented by the leaf nodes in

~
wT [v] (the subtree rooted at v in ~

wT). See ~
aT shown in Fig.

7(b) for illustration. From this, we can see that [1, 4] is the

smallest interval covering [1, 1] and [3, 3]; [8, 14] is the

smallest interval covering [8, 8] and [11, 11]; and [8, 19] is

the smallest interval covering [8, 8], [11, 11] and [16, 16].

Finally, [1, 20] is the smallest interval covering all the

intervals in La: [1, 1], [3, 3], [5, 6], [8, 8], [11, 11], [16, 16].

Here, our intention is to associate interval j
wI in Lw with

a second interval j, which is the parent of j
wI in ~

wT , and two

links, denoted as lj and rj, respectively pointing to two

intervals in Lw, which are respectively the left-most and right-

most leaf nodes in ~
wT [j]. Fig. 8 helps for illustration.

In Fig. 8, 3
aI = [5, 6] is associated with an LCA interval

3 = [8, 14], which is the parent of 3
aI in the corresponding

~
aT shown in Fig. 7(b). In addition, l3 is a link pointing to 1

aI

and r3 is a link pointing to 6
aI . They are respectively the laft-

most interval and the right-most interval covered by 3. In the

same way, we can check all the other intervals and links

shown in Fig. 8.

In addition, we will keep a sequence w containing all

the LCA intervals in the post-order of ~
wT . For example, a =

1463 = [1, 4][8, 14][8, 19][1, 20]. With such intervals and

links, the binary search of Lw against a certain interval (in Lo)

can be done much more efficiently by skipping over useless

checkings. Concretely, the checking of m
oI against Lw will be

done as follows.

1. If m
oI [1] > t

wI [2], compare m
oI and t. If

m
oI t, explore

Lw[rt + 1 .. n] by the binary search. Otherwise, explore Lw[t

+1 .. rt].

2. If
m
oI [2] < t

wI [1], compare
m
oI and t. If

m
oI t, explore

Lw[1 .. lt – 1]. Otherwise (
m
oI t), explore Lw[lt .. t – 1].

3. If
m
oI t

wI , compare
m
oI and t. If t

m
oI , t

wI must be the

[3, 3] [16, 16]

[8, 8]

[1, 1]

[5, 6]

[11, 11]

v1

0

v5

v1

v1

2

v1

8

v7

v6

v1

5

v2

v0

[1, 4]

[1, 20]

[8, 14]

Fig. 7: Illustration for Tw and ~
wT

[8, 19]

(a) (b)

Tw: :~
wT

Fig. 8: Illustration for links associated with intervals in Lw

[1, 1]

[1, 4]

14]

[3, 3]

[1, 4]

[5, 6]

[1, 20]

[8, 8]

[8, 14]

[11, 11]

[8, 14]

[16, 16]

[8, 19]

1

2
3

4

5 6

Ia

1
Ia

2
Ia

3
Ia

4
Ia

5
Ia

6

unique interval which can be covered by m
oI . Therefore, t

wI

is the result and the search stops. The problem reduces to a

checking of Lo[1 .. m – 1] against Lw[1 .. t – 1] with w[1 ..

k] to be used for control, where k is the position prior to t

in u. If t =
m
oI , we will return all those intervals between lt

and rt, including both lt and rt. The search also stops and the

problem reduces to a checking of Lo[1 .. m – 1] against Lw[1

.. lt – 1] with w[1 .. k]. If t
m
oI , we will search part of w

to the right of t to find the right-most interval f covered

by m
oI . Then, return all the intervals between lf and rf,

including lf and rf, which allows us to reduce the problem

to check Lo[1 .. m – 1] against Lw[1 .. lf – 1] with w[1 .. g],

where g is the position prior to f in w.

4. If m
oI t

wI , the above data structure cannot be utilized to

speed up the search. Thus, this case will be handled in the

same way as described for conjB().

Example 3 To see how the LCAs can be used to skip over

useless checkings, we check several single intervals against La

in Fig. 8 to show the working process.

1. Assume that I = [5, 7] is compared with I5 = [11, 11] in La.

Since [5, 7] is to the left of [11, 11], we will compare [5, 7]

with 5 = [8, 14] and [5, 7] [8, 14]. So we will check [5, 7]

against La[1 .. l5 - 1] = La[1 .. 3] in a next step, instead of the

sequence containing all the intervals to the left of I5.

2. Assume that I = [10, 13] is compared with I4 = [8, 8] in La.

Since [10, 13] is to the right of [8, 8], [10, 13] and 4 = [8, 14]

will be compared and [10, 13] [8, 14]. So, in the next step,

we will check [10, 13] against La[4 + 1 .. r5] = La[5 .. 5], not

the sequence containing all the intervals to the right of I4.

3. Assume that I = [10, 13] is compared with I5 = [11, 11] in

La. We have [10, 13] [11, 11]. However, [10, 13] 5 = [8,

14]. It shows that [11, 11] is the only interval in La, which can

be covered by [10, 13]. No further search is necessary.

4. Assume that I = [8, 14] is compared with I4 = [8, 8] in La.

We have [8, 14] [8, 8]. But we also have [8, 14] = 4. Then,

we know immediately that only the intervals in La[l4 .. r4] =

La[4 .. 5] can be covered by [8, 14].

By Example 3, we can clearly see that LCAs are quite

useful to speed up the operation. However, all of them should

be efficiently recognized. We will discuss this in the next

Section.

5. Conclusion

In this paper, a new index structure is discussed. It

associates each word w with a sequence of intervals, which

partition the inverted list (w) into a set of disjoint subsets,

and transform the evaluation of conjunctive queries to a series

of checkings of interval containment. Especially, the intervals

can be organized into a compact interval graph, which enables

us to skip over any useless checking of interval containment.

On average, to evaluate a two-word query, only O(logn) time

is required, where n is the number of documents. This is much

more efficient than any existing method for set intersection.

Also, how to maintain such an index is described in great

detail. Although the index is of a more complicated structure,

the cost of maintaining it in the cases of addition and deletion

of documents is (theoretically) comparable to the inverted file.

Extensive experiments have been conducted, which show that

our method outperformances the inverted file and the

signature tree by an order of magnitude or more.

REFERENCES

[1] V.N. Anh and A. Moffat: Inverted index compression

using word-alinged binary codes, Kluwer Int. Journal of

Information Retrieval 8, 1, pp. 151-166, 2005.

[2] J. Barbay, A. López-Ortiz, T. Lu, A. Salinger: An

experimental investigation of set intersection algorithms

for text searching, ACM Journal of Experimental

Algorithmics 14: (2009).

[3] P. Bille, A. Pagh, and R. Pagh. Fast-Evaluation of Union-

Intersection Expression. In ISAAC, pp. 739-750, 2007.

[4] G.E. Blelloch and M. Reid-Miller. Fast Set Operations

using Treaps. In ACM SPAA, pp. 16-26, 1998.

[5] Y. Chen, Y.B. Chen: On the Signature Tree Construction

and Analysis, IEEE TKDE, Sept. 2006, Vol.18, No. 9, pp

1207 – 1224.

[6] Y. Chen: Building Signature Trees into OODBs, Journal

of Information Science and Engineering, 20, 275-304

(2004).

[7] Y. Chen and Y.B. Chen: An Efficient Algorithm for An-

swering Graph Reachability Queries, in Proc. 24th Int.

Conf. on Data Engineering (ICDE 2008), IEEE, April

2008, pp. 892-901.

[8] Y. Chen and Y.B. Chen: Decomposing DAGs into

spanning trees: A new way to compress transitive

closures, in Proc. 27th Int. Conf. on Data Engineering

(ICDE 2011), IEEE, April 2011, pp. 1007-1018.

[9] K.D. Demaine, A. LÓpez-Ortiz, and J.I. Munro: Adaptive

set intersections, unions, and differences, in Proc. 11
th

ACM-SIAM Symposium on Discrete Algorithms,

Philadelphia, 743-752, 2000.

[10] B. Ding, A.C. König, Fast set intersection in memory,

Proc. of the VLDB Endowment, v.4 n.4, p.255-266,

January 2011.

[11] C. Faloutsos: Access Methods for Text, ACM Computing

Surveys, vol. 17, no. 1, pp. 49-74, 1985.

[12] C. Faloutsos and R. Chan: Fast Text Access Methods for

Optical and Large Magnetic Disks: Designs and

Performance Comparison, Proc. 14th Int’l Conf. Very

Large Data Bases, pp. 280-293, Aug. 1988.

[13] D.E. Knuth, The Art of Computer Programming, Vol. 3,

Massachusetts, Addison-Wesley Publish Com., 1975.

[14] J. Zobel and A. Moffat: Inverted Files for Text Search

Engines, ACM Computing Surveys, 38(2):1-56, July

2006.

[15] J. Zobel, A. Moffat, and K. Ramamohanarao: Inverted

Files Versus Signature Files for Text Indexing, in ACM

Trans. Database Syst., 1998, pp.453-490.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/L=oacute=pez=Ortiz:Alejandro.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Salinger:Alejandro.html
http://www.informatik.uni-trier.de/~ley/db/journals/jea/jea14.html#BarbayLLS09
http://www.informatik.uni-trier.de/~ley/db/journals/jea/jea14.html#BarbayLLS09
http://ion.uwinnipeg.ca/~ychen2/journalpapers/BuildingSigOO.pdf
http://ion.uwinnipeg.ca/~ychen2/journalpapers/BuildingSigOO.pdf
http://ion.uwinnipeg.ca/~ychen2/journalpapers/BuildingSigOO.pdf
http://ion.uwinnipeg.ca/~ychen2/conferencePapers/DE110024.pdf
http://ion.uwinnipeg.ca/~ychen2/conferencePapers/DE110024.pdf
http://ion.uwinnipeg.ca/~ychen2/conferencePapers/DE110024.pdf
http://ion.uwinnipeg.ca/~ychen2/conferencePapers/DE110024.pdf
http://dl.acm.org/citation.cfm?id=1938550&CFID=129637603&CFTOKEN=85219212
http://dl.acm.org/citation.cfm?id=1938550&CFID=129637603&CFTOKEN=85219212
http://dl.acm.org/citation.cfm?id=1938550&CFID=129637603&CFTOKEN=85219212

