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Abstract - In this paper, we discuss an adjustable strategy for 
the transitive closure compression to support graph 
reachability queries, asking whether a given node u in a 
directed graph G is reachable from another node v through a 
path. The main idea behind it is to define a series of graph 
deductions G0(V0, E0) (= G), G1(V1, E1), ..., Gk(Vk, Ek) with ni 
> ni+1 (i = 0, ..., k - 1), where ni = |Vi|. Each node v will be 
associated with an interval sequence [ v

0α , v
0β ), ..., [ v

jα , v
jβ ) 

(j ≤ k - 1) with each [ v
iα , v

iβ ) used to check reachability in 
Gi. Together with a subgraph structure (called the core graph 
of G) and a small matrix (called the core matrix), the 
reachability checking can be done in O(k) time. The size of 
the compressed transitive closure is bounded by O(kn0 + 
bknk), where bk is the width of Gk, defined to be the size of a 
largest node subset U of Gk such that for every pair of nodes 
u, v ∈ U, there does not exist a path from u to v or from v to u 
in Gk.  The time for generating such a compressed transitive 

closure is bounded by O(e0 + kn0 + 2
kn  + bknk kb ), where e0 

= |E0|. For different applications, we can adjust k to different 
constants to get effective space reduction, but still have 
constant query time. 

Keywords: recursive graph deduction, transitive closure, 
reachability queries 

 

1 Introduction 
  Given two nodes u and v in a directed graph G(V, E), we 
want to know if there is path from u to v. The problem is 
known as graph reachability. In many applications, such as 
recursive queries [7, 12, 26, 27], object-oriented databases 
[15], as well as XML query processing, transportation 
network, internet traffic analyzing, semantic web, computer 
vision, and metabolic network [28], graph reachability is one 
of the most basic operations, and therefore needs to be 
efficiently supported. Among them, some use sparse graphs, 
such as XML documents which are a labeled tree plus several 
IDREF/ID links, and metabolic networks which are an evo-
lution tree plus some genes’ interactions. 
A naive method is to precompute the reachability between 
every pair of nodes – in other words, to compute and store the 
transitive closure (TC for short) of a graph. Then, a reach-
ability query can be answered in constant time. However, this 
requires O(|V|2) space, which makes it impractical for massive 
graphs. Another method is to compute the shortest path from 

u to v over such a large graph on demand, which results in 
high query processing cost. 
 In this paper, we propose a new method to compress 
transitive closures to support reachability queries. The main 
idea behind it is to find a series of graph deductions G0(V0, 
E0) (= G), G1(V1, E1), ..., Gk(Vk, Ek) with ni > ni+1 (ni = |Vi|, i = 
0, ..., k - 1), and associate each node v with an interval 
sequence [ v

0α , v
0β ), ..., [ v

jα , v
jβ ) (j ≤ k - 1) with each [ v

iα , 
v
iβ ) used to check reachability in Gi. In addition, a subgraph 

Gcore (called the core graph of G) and a small matrix Mcore 

(called the core matrix of G) are constructed. To check 
whether node u is reachable from node v through a path in G, 
we will search two paths in Gcore: 
 v0 = v → v1 → ... → vj   (0 ≤ j ≤ k) 
 u0 = u → u1 → ... → uj. 

 Along these two paths, we first check whether 0
0
uα  ∈ 

[ 0
0
vα , 0

0
vβ ). If it is the case, u must be a descendant of v. 

Otherwise, we traverse to v1 and u1, respectively; and check 
1

1
uα  against [ 1

1
vα , 1

1
vβ ). We repeat this process until we meet 

vj and uj with one of the following conditions satisfied: 
1. j < k but we cannot further traverse from vj or from uj to a 

next node. 
2. j = k. 

In case (1), we report that u is reachable from v if ju
jα  ∈ 

[ jv
jα , jv

jβ ). Otherwise, u cannot be a descendant of v. In case 

(2), we need to check Mcore to know whether uk is reachable 
from vk. The reachability of uk from vk implies the reachability 
of u from v. 
 Obviously, the above process needs only O(k) time to 
check reachability. But the space overhead is dramatically 

reduced to O( �
−

=

1

0

k

j
in + bknk) ≤ O(kn0 + bknk), where bk is the 

width of Gk, defined to be the size of a largest node subset U 
of Gk such that for every pair of nodes u, v ∈ U, there does 
not exist a path from u to v or from v to u in Gk. It is a biased 
trade-off of time for space. While the query time increases 
linearly, the space overhead decreases quadratically (in the 
sense that both bk and nk are reduced at each step of graph 
deduction.) The time for generating a compressed transitive 

closure is bounded by O(e0 +�
−

=

1

0

k

j
in + 2

kn  + bknk kb ) ≤ O(e0 + 

kn0 + 2
kn  + bknk kb ), where e0 = |E0|. More importantly, our 



method provides a flexible strategy to compress transitive clo-
sures. For different applications, we can set k to be different 
constants to get effective space deduction, but with constant 
query time. 
 The rest of the paper is organized as follows. In Section 
2, we review some related work. In Section 3, we show a 
basic method for the TC compression based on a kind of 
graph decomposition, which will be used in our strategy. In 
Section 4, we discuss our first graph deduction. Section 5 is 
devoted to the recursive graph deduction. The paper 
concludes in  Section 6. 

2 Related work 
In the past two decades, many interesting labeling-based 
methods have been proposed to speed up the reachability 
query evaluation, which can be roughly classified into two 
groups: strategies for sparse graphs and strategies for non-
sparse graphs. In the following, some of them are reviewed. 

- Strategies for sparse graphs 
 In [19], Wang et al. discussed an interesting approach, 
called Dual-I, for sparse graphs G(V, E). Its space overhead is 
bounded by O(n + t2) and can be produced in O(n + e + t3) 
time, where t is the number of non-tree edges. The query time 
is O(1). As a variant of Dual-I, one can also store a matrix N 
(maintained by Dual-I) as a tree (called a TLC search tree), 
which can reduce the space overhead from a practical 
viewpoint, but increases the query time to logt. This scheme is 
referred to as Dual-II. 
 The method proposed by Cohen et al. [6] labels a graph 
based on the so-called 2-hop covers. It is also designed spe-
cifically for sparse graphs. A hop is a pair (h, v), where h is a 
path in G and v is one of the endpoints of h. A 2-hop cover is 
a collection of hops H such that if there are some paths from v 
to u, there must exist (h1, v) ∈ H and (h2, u) ∈ H and one of 
the paths between v and u is the concatenation h1h2. The main 
theoretical barrier of this method is that finding a 2-hop cover 
of minimum size is an NP-hard problem. 

- Strategies for non-sparse graphs 
 In [13], Jagadish suggested an interesting method to 
decompose a DAG (directed acyclic graph) into node-disjoint 
chains. Then, each node v is assigned an index (i, j), where i is 
a chain number, on which v appears, and j indicates v’s po-
sition on the chain. These indexes can be used to check 
reachability efficiently. For this method, the space overhead 
and the query time are bounded by O(κn) and O(1), respec-
tively, where κ is the number of chains. However, to find a 
minimized set of chains for a graph, Jagadish’s algorithm 
needs O(n3) time (see page 566 in [13]). The method 
discussed in [8, 9] greatly improves Jagadish’s method. It 
uses only O(n2 + bn) time to decompose a DAG into a 
minimum set of node-disjoint chains, where b represents G’s 
width. Its space overhead is O(bn). In [9], the concept of the 
so-called general spanning tree is introduced, in which each 
edge corresponds to a path in G. Based on this, the real space 

requirement becomes smaller than O(bn), but the query time 
increases to logb. 
 In [1], Agrawal et al. proposed a method based on 
interval labeling. As with the dual labeling, this method first 
figures out a spanning tree T and assign to each node v in T an 
interval (a, b), where b is v’s postorder number (which 
reflects v’s relative position in a postorder traversal of T); and 
a is the smallest postorder number among v and v’s 
descendants with respect to T (i.e., all the nodes in T[v], the 
subtree rooted at v). Another node u labeled (a’, b’) is a 
descendant of v (with respect to T) iff a ≤ b’ < b. This idea 
originates from Schubert et al. [21]. In a next step, each node 
v in G will be assigned a sequence L(v) of intervals such that 
another node u in G with interval (x, y) is a descendant of v 
(with respect to G) iff there exists an interval (a, b) in L(v) 
such that a ≤ y < b. The length of a sequence associated with a 
node in G is bounded by O(κ’), where κ’ is the number of the 
leaf nodes in T. So the time and space complexities are 
bounded by O(κ’e) and O(κ’n), respectively. The querying 
time is bounded by O(logκ’). In the worst case, κ’ = O(n). 

3 About TC compression 
 In this section, we briefly show the method discussed in 
[8, 9] to compress TC based on a graph decomposition, by 
which G is not deducted, but directly decomposed into a 
minimum set of node-disjoint chains. On a chain, if node v is 
above node u, then there is a path from v to u in G. Without 
loss of generality, we assume that G is acyclic (i.e., G is a 
DAG.) If not, we will find all the strongly connected compo-
nents (SCCs) of G and collapse each of them into a represen-
tative node. Obviously, each node in an SCC is equivalent to 
its representative node as far as reachability is concerned. 
This process takes O(e) time using Tarjan’s algorithm [18]. 
 For illustration, consider the DAG shown in Fig. 1(a). 
Its transitive closure (stored as a 0-1 matrix) is shown in Fig. 
1(b). Obviously, it requires O(n2) space. 

  
 Using the algorithm discussed in [8, 9], however, we 
can always decompose a DAG into a minimum set of node-
disjoint chains, as illustrated in Fig. 2(a), in which the 1st, 2nd 
and 3rd chains are in fact three paths. But the 4th is a non-
trivial chain (i.e., it is not a path since node a is connected to 
node i through a path of length 2, instead of an edge.) The 
fifth chain contains only a single node. We also remark that 
the width of the graph is 5 since there exists a subset U = {b, 
f, g, i, j}, in which each pair of nodes are not connected. So it 
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Fig. 1. A DAG and a matrix representing its transitive closure 



is not possible to decompose the graph into a set with fewer 
chains. 
 
 We can then assign an index to each node in G as 
follows: 
(1) Number each chain and number each node on a chain. 
(2) The jth node v on the ith chain will be assigned a pair (i, 

j) as its index, denoted index(v).  
In addition, each node v on the ith chain will be associated 
with an index sequence of length b - 1: (1, j1) … (i – 1, ji-1) (i 
+ 1, ji+1) … (b, jb) (as illustrated in Fig. 2(a)) such that any 
node with index (x, y) is a descendant of v if x = i and y ≥ j or 
x ≠ i but y ≥ jx, where b is the number of the node-disjoint 
chains, equal to G’s width [8]. (Here, a node is considered to 
be an ancestor of itself.) 

 
 We can also store all the index sequences as an n × b 
matrix MG as shown in Fig. 2(b), in which each entry MG(v, j) 
is the jth element in the index sequence associated with node 
v. So, a node u with index(u): (i, j) is a descendant of another 
node v iff MG(v, i) ≤ j. Thus, based on MG, a reachability 
checking needs only O(1) time. MG is called the reachability 
matrix of G. 
 Obviously, MG dominates the space requirement. If we 
want to further decrease the space, MG should be reduced in 
some way, but without sacrificing too much query time. In the 
the next section, we address this issue in great detail. 

4 Graph deduction 
 In this section, we discuss our graph deduction. First, we 
give the general definition of graph deduction in 4.1. Then, in 
4.2, we discuss a very important concept, the so-called critical 
nodes, based on which a special kind of graph deduction can 
be established for checking reachability. In 4.3, we show how 
the reachability can be checked based on such a deducted 
graph. 

4.1  Basic definitions 

 Let G be a directed graph. We use V(G) and E(G) to 
represent its node set and edge set, respectively. It is well 
known that the preorder traversal of G introduces a spanning 
tree (forest) T. With respect to T, E(G) can be classified into 
four groups: 

• tree edges (Etree): edges appearing in T. 
• cross edges (Ecross): any edge (u, v) such that u and v are not 

on a path in T. 
• forward edges (Eforward): any edge (u, v) not appearing T, 

but there exists a path from u to v in T. 
• back edge (Eback): any edge (u, v) not appearing T, but there 

exists a path from v to u in T. 
 All cross, forward, and back edges are referred to as 
non-tree edges. If G is a DAG, we do not have back edges 
since a back edge implies a cycle. 
 For illustration, consider the DAG shown in Fig. 1(a) 
once again. For it, we may find a spanning tree as shown in 
Fig. 3, in which each solid arrow stands for a tree edge while 
a dashed arrow for a non-tree edge. 

 
 As in [19], we can assign each node v in T an interval 
[α, β), where α is v’s preorder number (denoted pre(v)) and β 
- 1 is equal to the largest preorder number among all the 
nodes in T[v]. So another node u labeled [α’, β’) is a 
descendant of v (with respect to T) iff α’ ∈ [α, β) [19], as 
illustrated in Fig. 3. If α’ ∈ [α, β), we say, [α’, β’) is 
subsumed by [α, β).   
 Let T be a spanning tree of G. Let e = (u, v) be an edge. 
By G\e we denote a graph obtained from G by performing one 
of the following two operations: 
1. If e is a forward edge, remove e from G. 
2. If e is a tree edge (an edge in T), remove e and v; and any 

edge incident to v becomes incident to u. 
Especially, for a tree edge e, T\e is still a spanning tree of G\e, 
based on which we define the following concept. 
Definition 1 (graph deduction) A graph G1 is a deduction of 
G if there are graphs G(0), ..., G(j) and forward or tree edges ei 
∈ G(i) such that G(0) = G, G(j) = G1, and G(i+1) = G(i)\ei. 
 The graph deduction is a special kind of graph minors 
[10]. Our purpose is to find a graph deduction G1 of G such 
that 
i) the reachability matrix of G1, 

1GM , is smaller than MG; 

ii) the reachability of G can be checked with help of 
1GM ; 

iii) the query time is increased only by a constant. 
 In the following, we discuss how such a G1 can be 
found. 

4.2  Critical nodes and critical subgraphs 

 Our main idea is to recognize a subset of nodes, the so-
called critical nodes, which enable us to construct a graph 
deduction satisfying all the above properties. 
 We denote by E’ the set of all cross edges. Denote by V’ 
the set of all the end points of the cross edges. That is, V’ = 
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Fig. 2. A set of chains and a matrix 
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Vstart ∪ Vend, where Vstart contains all the start nodes while Vend 
all the end nodes of the cross edges. In Fig. 4(a), we show the 
corresponding Vstart and Vend for the graph shown in Fig. 3. No 
attention is paid to the forward edge (a, e) in the graph since it 
can simply be removed as far as the reachability is concerned. 
Definition 2 (anti-subsuming subset) A subset S ⊆ Vstart is 
called an anti-subsuming set iff |S| > 1 and no two nodes in S 
are related by an ancestor-descendant relationship with re-
spect to T. 
 As an example, consider the spanning tree shown by the 
solid arrows in Fig. 3. With respect to this spanning tree, we 
have altogether 11 anti-subsuming subsets as shown in Fig. 
4(b). 

 
Definition 3 (critical nodes) A node v in a spanning tree T of 
G is critical if v ∈ Vstart or there exists an anti-subsuming 
subset S = {v1, v2, ..., vk} for k ≥ 2 such that v is the lowest 
common ancestor of v1, v2, ..., vk.       
 For example, in the spanning tree shown in Fig. 3, node 
e is the lowest common ancestor of {f, g}, and node a is the 
lowest common ancestor of {d, f, g, h}. So e and a are two 
critical nodes. In addition, each v ∈ Vstart is a critical node. So, 
all the critical nodes of G with respect to T are {d, f, g, h, e, 
a}. We call a critical node trivial if it belongs to Vstart; 
otherwise, non-trivial. We denote by Vc all the critical nodes. 
Based on the concept of critical nodes, we can now define our 
graph deduction G1, called a critical subgraph of G. 
 Let T be a spanning tree of G. Denote by Tr a reduction 
of T obtained by removing all those nodes v ∉ Vc ∪ Vend. De-
leting a node v entails connecting v’s parent to each of v’s 
children. So, removing a node in this way corresponds to the 
elimination of a tree edge. 
 For example, for the spanning tree T shown in Fig. 3, its 
Tr is a tree shown in Fig. 5. It is obtained by removing the 
nodes b, r, i, and j one by one. Note that none of them belongs 
to Vc ∪ Vend. (Remember that Vc = {a, d, e, f, g, h} and Vend = 
{c, d, e, g, k}.) 

 
Definition 4 (critical subgraph) Let G(V, E) be a DAG. Let T 
be a spanning tree of G. The critical subgraph Gc of G with 
respect to T is graph with node set V(Tr) and edge set E(Tr) ∪ 
Ecross.    
 In Fig. 6(a), we show a critical subgraph of the graph 
shown in Fig. 3, with respect to the corresponding spanning 
tree. 
 Again, using the algorithm discussed in [8, 9], we can 
decompose it into a set of node-disjoint chains as illustrated in 

Fig. 6(b); and construct a reachability matrix  as shown in Fig. 
6(c), which is much smaller that the matrix shown in Fig. 
1(b), and even smaller than that shown in Fig. 2(b). However, 
it seems that such a matrix can only be used to check the 
reachability between the nodes in Gc. 

 
The question is: can such a matrix also be used to check the 
reachability between the nodes in G? In the next section, we 
answer this question.   

4.3  Evaluation of reachability queries 

 For any two node u, v appearing on a path in T, their 
reachability can be checked using their associated intervals. 
However, if they are not on the same path, we have to use G’s 
reachability matrix MG to check whether u is reachable from v 
through a path in G, or vice versa. 
 Now what we have is

cGM , rather than MG. How can we 

check the reachability from v to u in G? 
 To do this, we need another concept, the so-called 
anchor nodes. 
Definition 5 (anchor nodes) Let G be a DAG and T a span-
ning tree of G. Let v be a node in T. Denote by Cv all the crit-
ical nodes in T[v]. We associate two anchor nodes with v as 
below. 
i) A node u ∈ Cv is called an anchor node (of the first kind) 

of v if u is closest to v. u is denoted v*. 
ii) A node w is called an anchor node (of the second kind) of 

v if it is the lowest ancestor of v (in T), which has a cross 
incoming edge. w is denoted v**.   

 For example, in the graph shown in Fig. 3, r* = e. It is 
because node e is critical and closest to node r in T[r]. But 
r** does not exist since it does not have an ancestor which 
has a cross incoming edge. In the same way, we find that e* = 
e** = e. That is, both the first and second kinds of anchor 
nodes of e are e itself. We can easily recognize the anchor 
nodes for all the other nodes in the graph.  
 The following two lemmas are critical to our non-tree 
labeling method. 
Lemma 1 Any critical node in Cv appears in T[v*]. 
Proof. Assume that there exists a critical node u in Cv, which 
does not appear in T[v*]. Let u1, ..., uk be all the critical nodes 
in T[v*]. Consider the lowest common ancestor node of u, u1, 
..., uk. It must be an ancestor node of v*, which is closer to v 
than v*, contradicting the fact that v* is the closest critical 
node (in T[v]) to v. 
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Lemma 2 Let u be a node, which is not an ancestor of v in T; 
but v is reachable from u via some non-tree edges. Then, any 
way for u to reach v must be through v**. 
Proof. This can be seen from the fact that any node which 
reaches v via some cross edges is through v** to reach v.  
Definition 6 (non-tree labels) Let v be a node in G. The non-
tree label of v is a pair <x, y>, where  
- x = v* if v* exists. If v* does not exists, let x be the special 

symbol “-”. 
- y = v** if v** exists. If v** does not exist, let y be “-”.  
The purpose of the non-tree labeling is to use the anchor 
nodes u** and v* to check the reachability of u from v 
through cross edges. 
Example 1 Consider G and T shown in Fig. 3. The non-tree 
labels of the nodes are shown in Fig. 7. 

 
 In this figure, we can see that the non-tree label of node 
r is <e, -> because (1) r* = e; and (2) r** does not exist. 
Similarly, the non-tree label of node f is <f, e>. It is because f* 
is f itself; but f** is e (see Fig. 7). 
 Especially, we notice that node r and node d are not on 
the same path in T. But d is a descendant of r. Such a 
reachability has to be checked by using their anchor nodes. In 
fact, we have d** = d, index(d) = (1, 4), r* = e, and (e, 1) = 2 
< 4 (see Fig. 6(c)), which shows that d** is a descendant of 
r*. By the following proposition, this indicates that d is a de-
scendant of r. 
Proposition 3 Assume that u and v are two nodes in G, la-
beled ([α1, β1), <x1, y1>) and ([α2, β2), <x2, y2>), respectively. 
Here, [αi, βi) (i = 1, 2) is the tree label while <xi, yi> (i = 1, 2) 
is the non-tree label. Node u is reachable from v iff one of the 
following conditions holds: 
(i) [α1, β1) is subsumed by [α2, β2) (i.e., α1 ∈ [α2, β2)), or 
(ii) index(y1) = (x, y), and (x2, x) ≤ y.  
Proof. The proposition can be derived from the following two 
facts: 
(1) u is reachable from v through tree edges iff [α1, β2) is 

subsumed by [α2, β2). 
(2) In terms of Lemma 2, u is reachable from v via non-tree 

edges iff u** exists and its index index(u**) is a pair (x, 
y) such that (v*, x) ≤ y. 

 Now we analyze the time complexity of the whole 
process. It mainly comprises three parts: 
i) the cost to find a spanning tree of G(V, E); 
ii) the cost to find all the critical nodes, and establish Gc; 

and 
iii) the cost to decompose the critical graph of G into a mini-

mum set of node-disjoint chains. 
 The cost of the first part is O(|V| + |E|). The second part 
is also bounded by O(|V| + |E|). According to [8, 9], the third 

part is bounded by O(m2 + bm b ), where m = |V(Gc)|, and b 
is the width of Gc.  
Proposition 4 Let G be a DAG with n nodes and e edges. 
Then, the labeling time of our method is bounded by O(n + e 
+ m2 + bm b ). 
Proof. See the above analysis. 

5  Recursive graph deduction 
 Now we discuss the recursive graph deduction.  

5.1 Recursive deduction 
 In the previous section, we showed how to reduce G to 
Gc. Especially, using T and 

cGM , we can check the 

reachability of G in constant time. 
 However, it can be observed that Gc itself can be further 
reduced, leading to a further decrement of space requirement. 
In fact, using the method discussed in 4.1 and 4.2, we can find 
a series of graph deductions: 

 G0 = G, G1, ..., Gk, (k ≥ 1) 
where Gi is a critical subgraph of Gi-1 (i = 1, ..., k). 
 In order to construct such critical subgraphs, a series of 
spanning trees have to be established: 
 T0, T1, ..., Tk-1, 
where each Ti is a spanning tree of Gi (i = 0, ..., k - 1), used to 
construct Gi+1. 

 Finally, similar to
kGM , we will have a reachability 

matrix  for Gk, called the core matrix of G and denoted Mcore. 
To check reachability efficiently, each node v in G will be as-
sociated with two sequences: an interval sequence and an an-
chor node sequence: 
1) [ v

0α , v
0β ), ..., [ v

jα , v
jβ )  (j ≤ k - 1) 

where each [ v
iα , v

iβ ) is an interval generated by labeling Ti; 

2) ( vx0 , vy0 ), ..., ( v
jx , v

jy ), 

where each v
ix  is a pointer to an anchor node of the first kind 

(a node appearing in Gi+1) while each v
iy  a pointer to an an-

chor node of the second kind (also, a node in Gi+1). 
Fig. 8(a) helps for illustration. 

 
 In this figure, a dashed arrow marked with * stands for a 
pointer to an anchor node of the first kind while a dashed ar-
row marked with ** for a pointer to an anchor node of the 
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second kind. For each node appearing in Gi, an interval and a 
pair of anchor pointers will be created. So, if node v appears 
in G0 = G, G1, ..., Gj for some j ≤ k, it will be associated with 
two sequence of length j, as described above.  
Example 3 Denote by G0 and G1 the graph shown in Fig. 3 
and the critical graph shown in Fig. 5(a), respectively. Fig. 
8(b) shows a possible spanning tree T1 of G1, and the corre-
sponding tree labels.  
 With respect to T1, we do not have any anti-subsuming 
subset (see Fig. 9(a)). Thus, we have no non-trivial critical 
nodes. The critical graph G2 is shown in Fig. 9(b), containing 
only one edge (c, k). Tackling this edge as a chain (as shown 
in Fig. 9(c)), we generate a reachability matrix as shown in 
Fig. 9(d). The non-tree labels of the nodes in G1 are shown in 
Fig. 10(a). The interval sequence and the anchor node 
sequence for each node of G are shown in Fig. 10(b). 

 

5.2  Evaluation of reachability queries 

 Now we discuss how to use the interval sequences and 
anchor node sequences to check reachability. First, we notice 
that the anchor node sequences imply a graph, called a core 
graph of G and denoted Gcore, in which there exists an edge 
(u, v) iff there is an entry <x, y> in the anchor node sequence 
associated with u such that x = v, or y = v. The edge is labeled 
with {i, *} or {i, **}, depending on whether x = v, or y = v, 
where i indicates that <x, y> is the ith entry in the anchor node 
sequence. In Fig. 11, we show the core graph corresponding 
to the anchor node sequences shown in Fig. 10(b). 

 
 In the graph, edge (r, e) labeled with {1, *} represents 
that e is an anchor node (of the first kind) of r, which appears 
in G1 while edge (a, c) labeled with {2, **} represents that c 
is an anchor node (of the second kind) of a, appearing in G2. 

An edge with multiple labels represents several edges with 
different labels. For example, the edge (e, e) (represented as a 
loop) labeled with {1, *}, and {1, **} stands for two edges 
with each going from e to e, but labeled differently. 
 Remark that each node v in Gcore is associated with an 
interval sequence [ v

0α , v
0β ), ..., [ v

xα , v
xβ ) for some x ≥ 0. In 

order to check whether v is an ancestor of u, we will search 
two paths in Gcore, starting from v and u, respectively. The 
path starting from v, denoted P1, contains only the edges 
labeled with (i, *) while the path starting from u, denoted P2, 
contains only the edges labeled with (i, **). Each time we 
reach two nodes v’ and u’ through two edges labeled 
respectively with (i, *) and (i, **), we will check whether 
[ v

i
′α , v

i
′β ) subsumes [ u

i
′α , u

i
′β ). If it is the case, v is an 

ancestor of u. Otherwise, we traverse along P1 and P2, 
reaching v” and u’’ through two edges labeled respectively 
with (i + 1, *) and (i + 1, **) and checking [ v

i
′′

+1α , v
i

′′
+1β )  

against [ u
i

′′
+1α , u

i
′′

+1β ). We continue this process. After j steps 
for some j, we will meet two nodes v’’’ and u’’’ such that v’’’ 
does not have an out-going edge labeled with (j + 1, *) or u’’’ 
does not have an out-going edge labeled with (j + 1, **). If 
[ v

j
′′′α , v

j
′′′β )   subsumes [ u

j
′′′α , u

j
′′′β ), v is an ancestor of u. 

Otherwise, we will check whether Mcore (v’’’, w) ≤ z, where 
index(u’’’) = (w, z).  
Example 4 Consider the graph shown in Fig. 3 once again. 
To check whether g is an ancestor of k, we will explore two 
paths in the graph shown in Fig. 11, starting from g and c, re-
spectively. First, we check [ g

0α , g
0β ) = [8, 9) against [ k

0α , 
k
0β ) = [3, 4) and find that [8, 9) does not subsume [3, 4) (see 

Fig. 10(b)). Then, we go from g along an edge labeled with 
(1, *) to g itself; and from k along an edge labeled with (1, **) 
to k itself (see Fig. 11). Now, we check [ g

1α , g
1β )  = [6, 8) 

against [ k
1α , k

1β )  = [5, 6). Since [6, 8) does not subsume [5, 
6), we will continue to explore the two paths along next two 
edges labeled with (2, *) and (2, **), respectively, reaching 
two nodes c and k (see Fig. 11). Note that index(k) = (1, 2) 
(see Fig. 9(d)). Since (c, 1) = 1 < 2, g is an ancestor of k. 
Proposition 4 Let G be a DAG, and G0 = G, G1, ..., Gk be a 
series of graph deduction as described above. Let u and v be 
two nodes in G. u is reachable from v through a path in G iff 
there exist two paths in Gcore: 
 v0 = v → v1 → ... → vj   (0 ≤ j ≤ k) 
  u0 = u → u1 → ... → uj 
such that each (vi-1, vi) is labeled with (i, *), each (ui-1, ui) is 
labeled with (i, **), and one of the following two conditions 
is satisfied: 
1. j < k, and uj is reachable from vj through a path in Tj; or 
2. j = k, and  uj is reachable from vj through a path in Gk. 
Proof. if-part. We prove the if-part by induction on k. 
Basis step. When k = 0, 1, the proof is trivial. 
Induction hypothesis. Assume that when k = l the if-part 
holds. We consider the case when k = l + 1. If j ≤ l, in terms 
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of the induction hypothesis, the if-part holds. Assume that j = 
l + 1. Since ul+1 is reachable from vl+1 through a path in Gl+1, 
ul must be reachable from vl in Gl by Lemma 1 and 2. (Note 
that vl+1 is an anchor node of the first kind of vl and ul+1 is an 
anchor node of the second kind of ul.) In terms of the 
induction hypothesis, u is reachable from v.   
Only-if-part. If u0 = u is reachable from v0 = v, there will be a 
path in T0 from v0 to u0 or u1 is reachable from v1 in G1. 
Similarly, u1 is reachable from v1 in G1, there will be a path in 
T1 from v1 to u1, or u2 is reachable from v2 in G2. Repeating 
this argument, we will get the proof.  
 The above proposition shows that to check whether u is 
reachable from v, we need to search two paths in Gcore and at 
each step to examine whether  u

iα ∈ [ v
iα , v

iβ ). If i = k, we 
have to check whether Mcore(vj, x) ≤ y, where index(uj) = (x, 
y). Clearly, it needs O(k) time. The space complexity is easy 
to analyze. Since for each appearance of a node v in Gi an in-
terval for v is created, the space overhead is bounded by 

O(�
−

=

1

0

k

j
in  + bknk), where ni is the size of Gi and bknk is the size 

of Mcore. According to [8, 9], the decomposition of Gk into a 
minimum set of node-disjoint paths needs O( 2

kn  + bknk kb ) 

time. So, the total labeling time is O(e0 +�
−

=

1

0

k

j
in  + 2

kn  + 

bknk kb ).  

6 Conclusion 
 In this paper, a new method is proposed to compress 
transitive closures to support reachability queries. Its main 
idea behind it is to find a series of graph deductions G0(V0, 
E0) (= G), G1(V1, E1), ..., Gk(Vk, Ek) with ni > ni+1 (ni = |Vi|, i = 
0, ..., k - 1), and associate each node v with an interval 
sequence [ v

0α , v
0β ), ..., [ v

jα , v
jβ ) (j ≤ k - 1) with each [ v

iα , 
v
iβ )  used to check reachability in Gi. In addition, a subgraph 

Gcore (called the core graph of G) and a small matrix Mcore 

(called the core matrix of G) are constructed, based on which 
a reachability query can be answered in O(k) time. But the 
space for storing a compressed transitive closure is only k 
times larger than the original graph. For different applications, 
k can be set to different constants.  
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