
Recursive Graph Deduction and Reachability Queries

Yangjun Chen
Dept. Applied computer Science

University of Winnipeg, Winnipeg, Manitoba, Canada, R3b 2E9

Abstract - In this paper, we discuss an adjustable strategy for
the transitive closure compression to support graph
reachability queries, asking whether a given node u in a
directed graph G is reachable from another node v through a
path. The main idea behind it is to define a series of graph
deductions G0(V0, E0) (= G), G1(V1, E1), ..., Gk(Vk, Ek) with ni
> ni+1 (i = 0, ..., k - 1), where ni = |Vi|. Each node v will be
associated with an interval sequence [v

0α , v
0β), ..., [v

jα , v
jβ)

(j ≤ k - 1) with each [v
iα , v

iβ) used to check reachability in
Gi. Together with a subgraph structure (called the core graph
of G) and a small matrix (called the core matrix), the
reachability checking can be done in O(k) time. The size of
the compressed transitive closure is bounded by O(kn0 +
bknk), where bk is the width of Gk, defined to be the size of a
largest node subset U of Gk such that for every pair of nodes
u, v ∈ U, there does not exist a path from u to v or from v to u
in Gk. The time for generating such a compressed transitive

closure is bounded by O(e0 + kn0 + 2
kn + bknk kb), where e0

= |E0|. For different applications, we can adjust k to different
constants to get effective space reduction, but still have
constant query time.

Keywords: recursive graph deduction, transitive closure,
reachability queries

1 Introduction
 Given two nodes u and v in a directed graph G(V, E), we
want to know if there is path from u to v. The problem is
known as graph reachability. In many applications, such as
recursive queries [7, 12, 26, 27], object-oriented databases
[15], as well as XML query processing, transportation
network, internet traffic analyzing, semantic web, computer
vision, and metabolic network [28], graph reachability is one
of the most basic operations, and therefore needs to be
efficiently supported. Among them, some use sparse graphs,
such as XML documents which are a labeled tree plus several
IDREF/ID links, and metabolic networks which are an evo-
lution tree plus some genes’ interactions.
A naive method is to precompute the reachability between
every pair of nodes – in other words, to compute and store the
transitive closure (TC for short) of a graph. Then, a reach-
ability query can be answered in constant time. However, this
requires O(|V|2) space, which makes it impractical for massive
graphs. Another method is to compute the shortest path from

u to v over such a large graph on demand, which results in
high query processing cost.
 In this paper, we propose a new method to compress
transitive closures to support reachability queries. The main
idea behind it is to find a series of graph deductions G0(V0,
E0) (= G), G1(V1, E1), ..., Gk(Vk, Ek) with ni > ni+1 (ni = |Vi|, i =
0, ..., k - 1), and associate each node v with an interval
sequence [v

0α , v
0β), ..., [v

jα , v
jβ) (j ≤ k - 1) with each [v

iα ,
v
iβ) used to check reachability in Gi. In addition, a subgraph

Gcore (called the core graph of G) and a small matrix Mcore

(called the core matrix of G) are constructed. To check
whether node u is reachable from node v through a path in G,
we will search two paths in Gcore:
 v0 = v → v1 → ... → vj (0 ≤ j ≤ k)
 u0 = u → u1 → ... → uj.

 Along these two paths, we first check whether 0
0
uα ∈

[0
0
vα , 0

0
vβ). If it is the case, u must be a descendant of v.

Otherwise, we traverse to v1 and u1, respectively; and check
1

1
uα against [1

1
vα , 1

1
vβ). We repeat this process until we meet

vj and uj with one of the following conditions satisfied:
1. j < k but we cannot further traverse from vj or from uj to a

next node.
2. j = k.

In case (1), we report that u is reachable from v if ju
jα ∈

[jv
jα , jv

jβ). Otherwise, u cannot be a descendant of v. In case

(2), we need to check Mcore to know whether uk is reachable
from vk. The reachability of uk from vk implies the reachability
of u from v.
 Obviously, the above process needs only O(k) time to
check reachability. But the space overhead is dramatically

reduced to O(�
−

=

1

0

k

j
in + bknk) ≤ O(kn0 + bknk), where bk is the

width of Gk, defined to be the size of a largest node subset U
of Gk such that for every pair of nodes u, v ∈ U, there does
not exist a path from u to v or from v to u in Gk. It is a biased
trade-off of time for space. While the query time increases
linearly, the space overhead decreases quadratically (in the
sense that both bk and nk are reduced at each step of graph
deduction.) The time for generating a compressed transitive

closure is bounded by O(e0 +�
−

=

1

0

k

j
in + 2

kn + bknk kb) ≤ O(e0 +

kn0 + 2
kn + bknk kb), where e0 = |E0|. More importantly, our

method provides a flexible strategy to compress transitive clo-
sures. For different applications, we can set k to be different
constants to get effective space deduction, but with constant
query time.
 The rest of the paper is organized as follows. In Section
2, we review some related work. In Section 3, we show a
basic method for the TC compression based on a kind of
graph decomposition, which will be used in our strategy. In
Section 4, we discuss our first graph deduction. Section 5 is
devoted to the recursive graph deduction. The paper
concludes in Section 6.

2 Related work
In the past two decades, many interesting labeling-based
methods have been proposed to speed up the reachability
query evaluation, which can be roughly classified into two
groups: strategies for sparse graphs and strategies for non-
sparse graphs. In the following, some of them are reviewed.

- Strategies for sparse graphs
 In [19], Wang et al. discussed an interesting approach,
called Dual-I, for sparse graphs G(V, E). Its space overhead is
bounded by O(n + t2) and can be produced in O(n + e + t3)
time, where t is the number of non-tree edges. The query time
is O(1). As a variant of Dual-I, one can also store a matrix N
(maintained by Dual-I) as a tree (called a TLC search tree),
which can reduce the space overhead from a practical
viewpoint, but increases the query time to logt. This scheme is
referred to as Dual-II.
 The method proposed by Cohen et al. [6] labels a graph
based on the so-called 2-hop covers. It is also designed spe-
cifically for sparse graphs. A hop is a pair (h, v), where h is a
path in G and v is one of the endpoints of h. A 2-hop cover is
a collection of hops H such that if there are some paths from v
to u, there must exist (h1, v) ∈ H and (h2, u) ∈ H and one of
the paths between v and u is the concatenation h1h2. The main
theoretical barrier of this method is that finding a 2-hop cover
of minimum size is an NP-hard problem.

- Strategies for non-sparse graphs
 In [13], Jagadish suggested an interesting method to
decompose a DAG (directed acyclic graph) into node-disjoint
chains. Then, each node v is assigned an index (i, j), where i is
a chain number, on which v appears, and j indicates v’s po-
sition on the chain. These indexes can be used to check
reachability efficiently. For this method, the space overhead
and the query time are bounded by O(κn) and O(1), respec-
tively, where κ is the number of chains. However, to find a
minimized set of chains for a graph, Jagadish’s algorithm
needs O(n3) time (see page 566 in [13]). The method
discussed in [8, 9] greatly improves Jagadish’s method. It
uses only O(n2 + bn) time to decompose a DAG into a
minimum set of node-disjoint chains, where b represents G’s
width. Its space overhead is O(bn). In [9], the concept of the
so-called general spanning tree is introduced, in which each
edge corresponds to a path in G. Based on this, the real space

requirement becomes smaller than O(bn), but the query time
increases to logb.
 In [1], Agrawal et al. proposed a method based on
interval labeling. As with the dual labeling, this method first
figures out a spanning tree T and assign to each node v in T an
interval (a, b), where b is v’s postorder number (which
reflects v’s relative position in a postorder traversal of T); and
a is the smallest postorder number among v and v’s
descendants with respect to T (i.e., all the nodes in T[v], the
subtree rooted at v). Another node u labeled (a’, b’) is a
descendant of v (with respect to T) iff a ≤ b’ < b. This idea
originates from Schubert et al. [21]. In a next step, each node
v in G will be assigned a sequence L(v) of intervals such that
another node u in G with interval (x, y) is a descendant of v
(with respect to G) iff there exists an interval (a, b) in L(v)
such that a ≤ y < b. The length of a sequence associated with a
node in G is bounded by O(κ’), where κ’ is the number of the
leaf nodes in T. So the time and space complexities are
bounded by O(κ’e) and O(κ’n), respectively. The querying
time is bounded by O(logκ’). In the worst case, κ’ = O(n).

3 About TC compression
 In this section, we briefly show the method discussed in
[8, 9] to compress TC based on a graph decomposition, by
which G is not deducted, but directly decomposed into a
minimum set of node-disjoint chains. On a chain, if node v is
above node u, then there is a path from v to u in G. Without
loss of generality, we assume that G is acyclic (i.e., G is a
DAG.) If not, we will find all the strongly connected compo-
nents (SCCs) of G and collapse each of them into a represen-
tative node. Obviously, each node in an SCC is equivalent to
its representative node as far as reachability is concerned.
This process takes O(e) time using Tarjan’s algorithm [18].
 For illustration, consider the DAG shown in Fig. 1(a).
Its transitive closure (stored as a 0-1 matrix) is shown in Fig.
1(b). Obviously, it requires O(n2) space.

 Using the algorithm discussed in [8, 9], however, we
can always decompose a DAG into a minimum set of node-
disjoint chains, as illustrated in Fig. 2(a), in which the 1st, 2nd
and 3rd chains are in fact three paths. But the 4th is a non-
trivial chain (i.e., it is not a path since node a is connected to
node i through a path of length 2, instead of an edge.) The
fifth chain contains only a single node. We also remark that
the width of the graph is 5 since there exists a subset U = {b,
f, g, i, j}, in which each pair of nodes are not connected. So it

a

b

c

k

r

d

e g

h

i

j

f

a

b

c

d

e

f

g

h

i

j

k

r

a

1

0

0

0

0

0

0

0

0

0

0

0

b

1

1

0

0

0

0

0

0

0

0

0

0

c

1

1

1

0

1

0

1

1

0

0

0

1

d

1

1

0

1

0

1

0

1

0

0

0

1

e

1

0

0

0

1

0

0

1

0

0

0

1

f

1

0

0

0

1

1

0

1

0

0

0

1

g

1

0

0

0

1

0

1

1

0

0

0

1

h

1

0

0

0

0

0

0

1

0

0

0

0

i

1

0

0

0

0

0

0

1

1

0

0

1

j

1

0

0

0

0

0

0

1

0

1

0

1

k

1

0

1

1

1

1

1

1

0

0

0

1

r

1

0

0

0

0

0

0

0

0

0

0

1 (a) (b)

Fig. 1. A DAG and a matrix representing its transitive closure

is not possible to decompose the graph into a set with fewer
chains.

 We can then assign an index to each node in G as
follows:
(1) Number each chain and number each node on a chain.
(2) The jth node v on the ith chain will be assigned a pair (i,

j) as its index, denoted index(v).
In addition, each node v on the ith chain will be associated
with an index sequence of length b - 1: (1, j1) … (i – 1, ji-1) (i
+ 1, ji+1) … (b, jb) (as illustrated in Fig. 2(a)) such that any
node with index (x, y) is a descendant of v if x = i and y ≥ j or
x ≠ i but y ≥ jx, where b is the number of the node-disjoint
chains, equal to G’s width [8]. (Here, a node is considered to
be an ancestor of itself.)

 We can also store all the index sequences as an n × b
matrix MG as shown in Fig. 2(b), in which each entry MG(v, j)
is the jth element in the index sequence associated with node
v. So, a node u with index(u): (i, j) is a descendant of another
node v iff MG(v, i) ≤ j. Thus, based on MG, a reachability
checking needs only O(1) time. MG is called the reachability
matrix of G.
 Obviously, MG dominates the space requirement. If we
want to further decrease the space, MG should be reduced in
some way, but without sacrificing too much query time. In the
the next section, we address this issue in great detail.

4 Graph deduction
 In this section, we discuss our graph deduction. First, we
give the general definition of graph deduction in 4.1. Then, in
4.2, we discuss a very important concept, the so-called critical
nodes, based on which a special kind of graph deduction can
be established for checking reachability. In 4.3, we show how
the reachability can be checked based on such a deducted
graph.

4.1 Basic definitions

 Let G be a directed graph. We use V(G) and E(G) to
represent its node set and edge set, respectively. It is well
known that the preorder traversal of G introduces a spanning
tree (forest) T. With respect to T, E(G) can be classified into
four groups:

• tree edges (Etree): edges appearing in T.
• cross edges (Ecross): any edge (u, v) such that u and v are not

on a path in T.
• forward edges (Eforward): any edge (u, v) not appearing T,

but there exists a path from u to v in T.
• back edge (Eback): any edge (u, v) not appearing T, but there

exists a path from v to u in T.
 All cross, forward, and back edges are referred to as
non-tree edges. If G is a DAG, we do not have back edges
since a back edge implies a cycle.
 For illustration, consider the DAG shown in Fig. 1(a)
once again. For it, we may find a spanning tree as shown in
Fig. 3, in which each solid arrow stands for a tree edge while
a dashed arrow for a non-tree edge.

 As in [19], we can assign each node v in T an interval
[α, β), where α is v’s preorder number (denoted pre(v)) and β
- 1 is equal to the largest preorder number among all the
nodes in T[v]. So another node u labeled [α’, β’) is a
descendant of v (with respect to T) iff α’ ∈ [α, β) [19], as
illustrated in Fig. 3. If α’ ∈ [α, β), we say, [α’, β’) is
subsumed by [α, β).
 Let T be a spanning tree of G. Let e = (u, v) be an edge.
By G\e we denote a graph obtained from G by performing one
of the following two operations:
1. If e is a forward edge, remove e from G.
2. If e is a tree edge (an edge in T), remove e and v; and any

edge incident to v becomes incident to u.
Especially, for a tree edge e, T\e is still a spanning tree of G\e,
based on which we define the following concept.
Definition 1 (graph deduction) A graph G1 is a deduction of
G if there are graphs G(0), ..., G(j) and forward or tree edges ei
∈ G(i) such that G(0) = G, G(j) = G1, and G(i+1) = G(i)\ei.
 The graph deduction is a special kind of graph minors
[10]. Our purpose is to find a graph deduction G1 of G such
that
i) the reachability matrix of G1,

1GM , is smaller than MG;

ii) the reachability of G can be checked with help of
1GM ;

iii) the query time is increased only by a constant.
 In the following, we discuss how such a G1 can be
found.

4.2 Critical nodes and critical subgraphs

 Our main idea is to recognize a subset of nodes, the so-
called critical nodes, which enable us to construct a graph
deduction satisfying all the above properties.
 We denote by E’ the set of all cross edges. Denote by V’
the set of all the end points of the cross edges. That is, V’ =

b

c

k

1st chain

(1, 1)
(2, 4)(3, -)(4, -)(5, -)

(1, 2)
(2, -)(3, -)(4, -)(5, -)

(1, 3)
(2, -)(3, -)(4, -)(5, -)

r

e

f

2nd chain

(2, 1)
(1, 2)(3, 2)(4, -)(5, -)

(2, 2)
(1, 2)(3, 2)(4, -)(5, -)

(2, 3)
(1, 3)(3, -)(4, -)(5, -)

d (2, 4)
(1, 3)(3, -)(4, -)(5, -)

a

i

4th chain

(4, 1)
(1, 1)(2, 1)(3, 1)(5, 1)

(4, 2)
(1, -)(2, -)(3, -)(5, -)

h

g

3rd chain

(3, 1)
(1, 2)(2, 2)(4, 2)(5, 1)

(3, 2)
(1, 2)(2, -)(4, -)(5, -)

j

5th chain

(5, 1)
(1, -)(2, -)(3, -)(4, -)

Index(b)

a

b

c

d

e

f

g

h

i

j

k

r

1

1

1

2

3

2

3

2

2

-

-

3

2

2

1

4

-

4

2

3

2

2

-

-

-

1

3

1

-

-

-

2

-

2

3

-

-

-

2

4

1

-

-

-

-

-

-

2

2

-

-

-

5

1

-

-

-

-

-

-

1

-

1

-

-

(a) (b)

Fig. 2. A set of chains and a matrix

a

b

c

k

d

r
h

e

f g

i j

[0, 12)

[1, 5)

[2, 4)

[3, 4)

[4, 5)

[7, 8) [8, 9)

[5, 9) [9, 12)

[6, 9)
[10, 11) [11, 12)

Fig. 3. A spanning tree and intervals

Vstart ∪ Vend, where Vstart contains all the start nodes while Vend
all the end nodes of the cross edges. In Fig. 4(a), we show the
corresponding Vstart and Vend for the graph shown in Fig. 3. No
attention is paid to the forward edge (a, e) in the graph since it
can simply be removed as far as the reachability is concerned.
Definition 2 (anti-subsuming subset) A subset S ⊆ Vstart is
called an anti-subsuming set iff |S| > 1 and no two nodes in S
are related by an ancestor-descendant relationship with re-
spect to T.
 As an example, consider the spanning tree shown by the
solid arrows in Fig. 3. With respect to this spanning tree, we
have altogether 11 anti-subsuming subsets as shown in Fig.
4(b).

Definition 3 (critical nodes) A node v in a spanning tree T of
G is critical if v ∈ Vstart or there exists an anti-subsuming
subset S = {v1, v2, ..., vk} for k ≥ 2 such that v is the lowest
common ancestor of v1, v2, ..., vk.
 For example, in the spanning tree shown in Fig. 3, node
e is the lowest common ancestor of {f, g}, and node a is the
lowest common ancestor of {d, f, g, h}. So e and a are two
critical nodes. In addition, each v ∈ Vstart is a critical node. So,
all the critical nodes of G with respect to T are {d, f, g, h, e,
a}. We call a critical node trivial if it belongs to Vstart;
otherwise, non-trivial. We denote by Vc all the critical nodes.
Based on the concept of critical nodes, we can now define our
graph deduction G1, called a critical subgraph of G.
 Let T be a spanning tree of G. Denote by Tr a reduction
of T obtained by removing all those nodes v ∉ Vc ∪ Vend. De-
leting a node v entails connecting v’s parent to each of v’s
children. So, removing a node in this way corresponds to the
elimination of a tree edge.
 For example, for the spanning tree T shown in Fig. 3, its
Tr is a tree shown in Fig. 5. It is obtained by removing the
nodes b, r, i, and j one by one. Note that none of them belongs
to Vc ∪ Vend. (Remember that Vc = {a, d, e, f, g, h} and Vend =
{c, d, e, g, k}.)

Definition 4 (critical subgraph) Let G(V, E) be a DAG. Let T
be a spanning tree of G. The critical subgraph Gc of G with
respect to T is graph with node set V(Tr) and edge set E(Tr) ∪
Ecross.
 In Fig. 6(a), we show a critical subgraph of the graph
shown in Fig. 3, with respect to the corresponding spanning
tree.
 Again, using the algorithm discussed in [8, 9], we can
decompose it into a set of node-disjoint chains as illustrated in

Fig. 6(b); and construct a reachability matrix as shown in Fig.
6(c), which is much smaller that the matrix shown in Fig.
1(b), and even smaller than that shown in Fig. 2(b). However,
it seems that such a matrix can only be used to check the
reachability between the nodes in Gc.

The question is: can such a matrix also be used to check the
reachability between the nodes in G? In the next section, we
answer this question.

4.3 Evaluation of reachability queries

 For any two node u, v appearing on a path in T, their
reachability can be checked using their associated intervals.
However, if they are not on the same path, we have to use G’s
reachability matrix MG to check whether u is reachable from v
through a path in G, or vice versa.
 Now what we have is

cGM , rather than MG. How can we

check the reachability from v to u in G?
 To do this, we need another concept, the so-called
anchor nodes.
Definition 5 (anchor nodes) Let G be a DAG and T a span-
ning tree of G. Let v be a node in T. Denote by Cv all the crit-
ical nodes in T[v]. We associate two anchor nodes with v as
below.
i) A node u ∈ Cv is called an anchor node (of the first kind)

of v if u is closest to v. u is denoted v*.
ii) A node w is called an anchor node (of the second kind) of

v if it is the lowest ancestor of v (in T), which has a cross
incoming edge. w is denoted v**.

 For example, in the graph shown in Fig. 3, r* = e. It is
because node e is critical and closest to node r in T[r]. But
r** does not exist since it does not have an ancestor which
has a cross incoming edge. In the same way, we find that e* =
e** = e. That is, both the first and second kinds of anchor
nodes of e are e itself. We can easily recognize the anchor
nodes for all the other nodes in the graph.
 The following two lemmas are critical to our non-tree
labeling method.
Lemma 1 Any critical node in Cv appears in T[v*].
Proof. Assume that there exists a critical node u in Cv, which
does not appear in T[v*]. Let u1, ..., uk be all the critical nodes
in T[v*]. Consider the lowest common ancestor node of u, u1,
..., uk. It must be an ancestor node of v*, which is closer to v
than v*, contradicting the fact that v* is the closest critical
node (in T[v]) to v.

a

c

k

d h e

f g

Fig. 6. A Gc, its decomposition and its reachability matrix

a

e

f

d

k

h

g

c

a

c

d

e

f

g

h

k

1

1

-

4

2

3

-

2

3

2

1

3

-

2

-

2

1

-
(a) (b)

(1, 1)

(2, 3)

(1, 4)

(1, 2)

(1, 3)

(2, 2)

(2, 1)

(1, 5)

Index(v)

(c)

a

c

k

d h e

f g

Fig. 5. A tree reduction

Vstart = {h, g, f, d}
Vend = {e, g, c, d, k}

anti-subsuming subsets:

{d, f} {f, h} {d, g, h}
{d, g} {g, h} {f, g, h}
{d, h} {d, f, g} {d, f, g, h}
{f, g} {d, f, h} (a) (b)

Fig. 4. Anti-subsuming sbsets

Lemma 2 Let u be a node, which is not an ancestor of v in T;
but v is reachable from u via some non-tree edges. Then, any
way for u to reach v must be through v**.
Proof. This can be seen from the fact that any node which
reaches v via some cross edges is through v** to reach v.
Definition 6 (non-tree labels) Let v be a node in G. The non-
tree label of v is a pair <x, y>, where
- x = v* if v* exists. If v* does not exists, let x be the special

symbol “-”.
- y = v** if v** exists. If v** does not exist, let y be “-”.
The purpose of the non-tree labeling is to use the anchor
nodes u** and v* to check the reachability of u from v
through cross edges.
Example 1 Consider G and T shown in Fig. 3. The non-tree
labels of the nodes are shown in Fig. 7.

 In this figure, we can see that the non-tree label of node
r is <e, -> because (1) r* = e; and (2) r** does not exist.
Similarly, the non-tree label of node f is <f, e>. It is because f*
is f itself; but f** is e (see Fig. 7).
 Especially, we notice that node r and node d are not on
the same path in T. But d is a descendant of r. Such a
reachability has to be checked by using their anchor nodes. In
fact, we have d** = d, index(d) = (1, 4), r* = e, and (e, 1) = 2
< 4 (see Fig. 6(c)), which shows that d** is a descendant of
r*. By the following proposition, this indicates that d is a de-
scendant of r.
Proposition 3 Assume that u and v are two nodes in G, la-
beled ([α1, β1), <x1, y1>) and ([α2, β2), <x2, y2>), respectively.
Here, [αi, βi) (i = 1, 2) is the tree label while <xi, yi> (i = 1, 2)
is the non-tree label. Node u is reachable from v iff one of the
following conditions holds:
(i) [α1, β1) is subsumed by [α2, β2) (i.e., α1 ∈ [α2, β2)), or
(ii) index(y1) = (x, y), and (x2, x) ≤ y.
Proof. The proposition can be derived from the following two
facts:
(1) u is reachable from v through tree edges iff [α1, β2) is

subsumed by [α2, β2).
(2) In terms of Lemma 2, u is reachable from v via non-tree

edges iff u** exists and its index index(u**) is a pair (x,
y) such that (v*, x) ≤ y.

 Now we analyze the time complexity of the whole
process. It mainly comprises three parts:
i) the cost to find a spanning tree of G(V, E);
ii) the cost to find all the critical nodes, and establish Gc;

and
iii) the cost to decompose the critical graph of G into a mini-

mum set of node-disjoint chains.
 The cost of the first part is O(|V| + |E|). The second part
is also bounded by O(|V| + |E|). According to [8, 9], the third

part is bounded by O(m2 + bm b), where m = |V(Gc)|, and b
is the width of Gc.
Proposition 4 Let G be a DAG with n nodes and e edges.
Then, the labeling time of our method is bounded by O(n + e
+ m2 + bm b).
Proof. See the above analysis.

5 Recursive graph deduction
 Now we discuss the recursive graph deduction.

5.1 Recursive deduction
 In the previous section, we showed how to reduce G to
Gc. Especially, using T and

cGM , we can check the

reachability of G in constant time.
 However, it can be observed that Gc itself can be further
reduced, leading to a further decrement of space requirement.
In fact, using the method discussed in 4.1 and 4.2, we can find
a series of graph deductions:

 G0 = G, G1, ..., Gk, (k ≥ 1)
where Gi is a critical subgraph of Gi-1 (i = 1, ..., k).
 In order to construct such critical subgraphs, a series of
spanning trees have to be established:
 T0, T1, ..., Tk-1,
where each Ti is a spanning tree of Gi (i = 0, ..., k - 1), used to
construct Gi+1.

 Finally, similar to
kGM , we will have a reachability

matrix for Gk, called the core matrix of G and denoted Mcore.
To check reachability efficiently, each node v in G will be as-
sociated with two sequences: an interval sequence and an an-
chor node sequence:
1) [v

0α , v
0β), ..., [v

jα , v
jβ) (j ≤ k - 1)

where each [v
iα , v

iβ) is an interval generated by labeling Ti;

2) (vx0 , vy0), ..., (v
jx , v

jy),

where each v
ix is a pointer to an anchor node of the first kind

(a node appearing in Gi+1) while each v
iy a pointer to an an-

chor node of the second kind (also, a node in Gi+1).
Fig. 8(a) helps for illustration.

 In this figure, a dashed arrow marked with * stands for a
pointer to an anchor node of the first kind while a dashed ar-
row marked with ** for a pointer to an anchor node of the

a

b

c

k

d

r
h

e

f g

i j

<a, ->

<d, ->

<-, c>

<-, k>

<d, d>

<f, e> <g, g>

<e, -> <h, ->

<e, e>
<-, -> <-, ->

Fig. 7. Non-tree labels

** **

**

*

*

*

… G0

u

[αu
0, βu

0)

v

[αv
0, βv

0)

w

[αw
0, βw

0)

z

[αz
0, βz

0)

G1

u

[αu
1, βu

1)

v

[αv
1, βv

1)

w

[αw
1, βw

1)

z

[αz
1, βz

1)

G2 Gk

…

(a)

g

[7, 8)

[6, 8)

[5, 6)

[4, 6)

[3, 6)

[2, 8)

[1, 8)

c

k

f

a
[0, 8)

h

e

d

(b)

Fig. 8. Illustration for anchor nodes and a spanning tree

second kind. For each node appearing in Gi, an interval and a
pair of anchor pointers will be created. So, if node v appears
in G0 = G, G1, ..., Gj for some j ≤ k, it will be associated with
two sequence of length j, as described above.
Example 3 Denote by G0 and G1 the graph shown in Fig. 3
and the critical graph shown in Fig. 5(a), respectively. Fig.
8(b) shows a possible spanning tree T1 of G1, and the corre-
sponding tree labels.
 With respect to T1, we do not have any anti-subsuming
subset (see Fig. 9(a)). Thus, we have no non-trivial critical
nodes. The critical graph G2 is shown in Fig. 9(b), containing
only one edge (c, k). Tackling this edge as a chain (as shown
in Fig. 9(c)), we generate a reachability matrix as shown in
Fig. 9(d). The non-tree labels of the nodes in G1 are shown in
Fig. 10(a). The interval sequence and the anchor node
sequence for each node of G are shown in Fig. 10(b).

5.2 Evaluation of reachability queries

 Now we discuss how to use the interval sequences and
anchor node sequences to check reachability. First, we notice
that the anchor node sequences imply a graph, called a core
graph of G and denoted Gcore, in which there exists an edge
(u, v) iff there is an entry <x, y> in the anchor node sequence
associated with u such that x = v, or y = v. The edge is labeled
with {i, *} or {i, **}, depending on whether x = v, or y = v,
where i indicates that <x, y> is the ith entry in the anchor node
sequence. In Fig. 11, we show the core graph corresponding
to the anchor node sequences shown in Fig. 10(b).

 In the graph, edge (r, e) labeled with {1, *} represents
that e is an anchor node (of the first kind) of r, which appears
in G1 while edge (a, c) labeled with {2, **} represents that c
is an anchor node (of the second kind) of a, appearing in G2.

An edge with multiple labels represents several edges with
different labels. For example, the edge (e, e) (represented as a
loop) labeled with {1, *}, and {1, **} stands for two edges
with each going from e to e, but labeled differently.
 Remark that each node v in Gcore is associated with an
interval sequence [v

0α , v
0β), ..., [v

xα , v
xβ) for some x ≥ 0. In

order to check whether v is an ancestor of u, we will search
two paths in Gcore, starting from v and u, respectively. The
path starting from v, denoted P1, contains only the edges
labeled with (i, *) while the path starting from u, denoted P2,
contains only the edges labeled with (i, **). Each time we
reach two nodes v’ and u’ through two edges labeled
respectively with (i, *) and (i, **), we will check whether
[v

i
′α , v

i
′β) subsumes [u

i
′α , u

i
′β). If it is the case, v is an

ancestor of u. Otherwise, we traverse along P1 and P2,
reaching v” and u’’ through two edges labeled respectively
with (i + 1, *) and (i + 1, **) and checking [v

i
′′

+1α , v
i

′′
+1β)

against [u
i

′′
+1α , u

i
′′

+1β). We continue this process. After j steps
for some j, we will meet two nodes v’’’ and u’’’ such that v’’’
does not have an out-going edge labeled with (j + 1, *) or u’’’
does not have an out-going edge labeled with (j + 1, **). If
[v

j
′′′α , v

j
′′′β) subsumes [u

j
′′′α , u

j
′′′β), v is an ancestor of u.

Otherwise, we will check whether Mcore (v’’’, w) ≤ z, where
index(u’’’) = (w, z).
Example 4 Consider the graph shown in Fig. 3 once again.
To check whether g is an ancestor of k, we will explore two
paths in the graph shown in Fig. 11, starting from g and c, re-
spectively. First, we check [g

0α , g
0β) = [8, 9) against [k

0α ,
k
0β) = [3, 4) and find that [8, 9) does not subsume [3, 4) (see

Fig. 10(b)). Then, we go from g along an edge labeled with
(1, *) to g itself; and from k along an edge labeled with (1, **)
to k itself (see Fig. 11). Now, we check [g

1α , g
1β) = [6, 8)

against [k
1α , k

1β) = [5, 6). Since [6, 8) does not subsume [5,
6), we will continue to explore the two paths along next two
edges labeled with (2, *) and (2, **), respectively, reaching
two nodes c and k (see Fig. 11). Note that index(k) = (1, 2)
(see Fig. 9(d)). Since (c, 1) = 1 < 2, g is an ancestor of k.
Proposition 4 Let G be a DAG, and G0 = G, G1, ..., Gk be a
series of graph deduction as described above. Let u and v be
two nodes in G. u is reachable from v through a path in G iff
there exist two paths in Gcore:
 v0 = v → v1 → ... → vj (0 ≤ j ≤ k)
 u0 = u → u1 → ... → uj
such that each (vi-1, vi) is labeled with (i, *), each (ui-1, ui) is
labeled with (i, **), and one of the following two conditions
is satisfied:
1. j < k, and uj is reachable from vj through a path in Tj; or
2. j = k, and uj is reachable from vj through a path in Gk.
Proof. if-part. We prove the if-part by induction on k.
Basis step. When k = 0, 1, the proof is trivial.
Induction hypothesis. Assume that when k = l the if-part
holds. We consider the case when k = l + 1. If j ≤ l, in terms

Vstart = {c}
Vend = {k}
anti-subsuming
subsets: Φ

(a) (b)

Fig. 9. Anti-subsuming subsets, and reachability matrix

c k
c

k

(c)
c

k

1

1

2

(1, 1)

(1, 2)

Index(v)

(d)

g

<c, ->

<c, ->

<-, k>

<-, ->

<-, ->

<c, ->

<c, ->

c

k

f

a <c, ->

h

e

d

(a)

a

b

c

d

e

f

g

h

i

j

k

r

[0, 12)[0, 8) <a, -><c, ->

[1, 5) <d, ->

[2, 4)[7, 8) <-, c><c, ->

[4, 5)[4, 6) <d, d><-, ->

[6, 9)[2, 8] <e, e><c, ->

[7, 8)[3, 6) <f, e><-, ->

[8, 9)[6, 8) <g, g><c, ->

[9, 12)[1, 8) <h, -><c, ->

[[10, 11) <-, ->

[11, 12) <-, ->

[3, 4)[5, 6) <-, k><-, k>

[5, 9) <e, ->

Fig. 10. Non-tree labels and sequences associated with nodes

a {1, *} c {1, **}
{2, *}

g
{1, *}
{1, **}

e {1, *}
{1, **}

h
{1, *}

f
{1, *}

d {1, *}
{1, **}

b

k {1, *}
{2, **}

r

{2, *}

{2, *}

{2, *}

{1, **}

{1, *}

{2, *}

Fig. 11. A core graph

of the induction hypothesis, the if-part holds. Assume that j =
l + 1. Since ul+1 is reachable from vl+1 through a path in Gl+1,
ul must be reachable from vl in Gl by Lemma 1 and 2. (Note
that vl+1 is an anchor node of the first kind of vl and ul+1 is an
anchor node of the second kind of ul.) In terms of the
induction hypothesis, u is reachable from v.
Only-if-part. If u0 = u is reachable from v0 = v, there will be a
path in T0 from v0 to u0 or u1 is reachable from v1 in G1.
Similarly, u1 is reachable from v1 in G1, there will be a path in
T1 from v1 to u1, or u2 is reachable from v2 in G2. Repeating
this argument, we will get the proof.
 The above proposition shows that to check whether u is
reachable from v, we need to search two paths in Gcore and at
each step to examine whether u

iα ∈ [v
iα , v

iβ). If i = k, we
have to check whether Mcore(vj, x) ≤ y, where index(uj) = (x,
y). Clearly, it needs O(k) time. The space complexity is easy
to analyze. Since for each appearance of a node v in Gi an in-
terval for v is created, the space overhead is bounded by

O(�
−

=

1

0

k

j
in + bknk), where ni is the size of Gi and bknk is the size

of Mcore. According to [8, 9], the decomposition of Gk into a
minimum set of node-disjoint paths needs O(2

kn + bknk kb)

time. So, the total labeling time is O(e0 +�
−

=

1

0

k

j
in + 2

kn +

bknk kb).

6 Conclusion
 In this paper, a new method is proposed to compress
transitive closures to support reachability queries. Its main
idea behind it is to find a series of graph deductions G0(V0,
E0) (= G), G1(V1, E1), ..., Gk(Vk, Ek) with ni > ni+1 (ni = |Vi|, i =
0, ..., k - 1), and associate each node v with an interval
sequence [v

0α , v
0β), ..., [v

jα , v
jβ) (j ≤ k - 1) with each [v

iα ,
v
iβ) used to check reachability in Gi. In addition, a subgraph

Gcore (called the core graph of G) and a small matrix Mcore

(called the core matrix of G) are constructed, based on which
a reachability query can be answered in O(k) time. But the
space for storing a compressed transitive closure is only k
times larger than the original graph. For different applications,
k can be set to different constants.

7 References
[1] R. Agrawal, A. Borgida and H.V. Jagadish, “Efficient

management of transitive relationships in large data and
knowledge bases,” Proc. of the 1989 ACM SIGMOD
Intl. Conf. on Management of Data, Oregon, 1989, pp.
253-262.

[2] A.V. Aho, J.E., Hopcroft and J.D. Ullman, “On finding
lowset common ancestors in trees,” SIAM J. Comput.
5(1) (1976) 115-132.

[3] M.A. Bender and M. Farach-Colton, “The LCA Problem
Revisited,” in: Proc. LATIN 2000, pp. 88-94.

[4] J. Cheng, J.X. Yu, X. Lin, H. Wang, and P.S. Yu, Fast
computation of reachability labeling for large graphs, in
Proc. EDBT, Munich, Germany, May 26-31, 2006.

[5] N.H. Cohen, “Type-extension tests can be performed in
constant time,” ACM Transactions on Programming
Languages and Systems, 13:626-629, 1991.

[6] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick,
Reachability and distance queries via 2-hop labels,
SIAM J. Comput, vol. 32, No. 5, pp. 1338-1355, 2003.

[7] M. Carey et al., “An Incremental Join Attachment for
Starburst,” in: Proc. 16th VLDB Conf., Brisbane, Aus-
tralia, 1990, pp. 662 - 673.

[8] Y. Chen and Y.B. Chen, An Efficient Algorithm for An-
swering Graph Reachability Queries, in Proc. 24th Int.
Conf. on Data Engineering (ICDE 2008), IEEE, April
2008, pp. 892-901.

[9] Y. Chen, General Spanning Trees and Reachability
Query Evaluation, in Proc: 2nd Canaidan Conference
on Computer Science and Software Engineering
(C3S2E’09), ACM, Montreal, Canada, May 19-21, 2009,
pp. 243-252.

[10] R. Diestel, Graph Theory (3rd ed.), Springer Verlag,
Berlin, 2005.

[11] D. Harel and R.E. Tarjan, “Fast algorithms for finding
nearest common ancestors,” SIAM J. Comput. 13:338-
355, 1984.

[12] R.L. Haskin and R.A. Lorie, “On Extending the Func-
tions of a Relational Database System,” Proc. ACM
SIGMOD Conf., Orlando, Fla., 1982, pp. 207-212.

[13] H.V. Jagadish, “A Compression Technique to Material-
ize Transitive Closure,” ACM Trans. Database Systems,
Vol. 15, No. 4, 1990, pp. 558 - 598.

[14] D.E. Knuth, The Art of Computer Programming, Vol.1,
Addison-Wesley, Reading, 1969.

[15] H.A. Kuno and E.A. Rundensteiner, “Incremental
Maintenance of Materialized Object-Oriented Views in
MultiView: Strategies and Performance Evaluation,”
IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 10. No. 5, 1998, pp. 768-792.

[16] W.C. Lee and D.L Lee, “Path Dictionary: A New Ac-
cess Method for Query Processing in Object-Oriented
Databases,” IEEE Transactions on Knowledge and
Data Engineering, vol. 10. No. 3, 1998, pp. 371-388.

[17] I. Munro. Efficient determination of the transitive clo-
sure of directed graphs. Information Processing Letters,
vol. 1 (2), pp. 56-58, 1971.

 [18] R. Tarjan: Depth-first Search and Linear Graph Algo-
rithms, SIAM J. Compt. Vol. 1. No. 2. June 1972, pp.
146 -140.

 [19] H. Wang, H. He, J. Yang, P.S. Yu, and J. X. Yu, Dual
Labeling: Answering Graph Reachability Queries in
Constant time, in Proc. of Int. Conf. on Data
Engineering, Atlanta, USA, April -8 2006.

