
Abstract

Advanced database application areas, such as computer
aided design, office automation, digital libraries, data-min-
ing as well as hypertext and multimedia systems need to
handle complex data structures with set-valued attributes,
which can be represented as bit strings, called signatures. A
set of signatures can be stored in a file, called a signature
file. In this paper, we propose a new method to organize a
signature file into a tree structure, called a signature tree, to
speed up the signature file scanning and query evaluation. 
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ture trees, Information retrieval

1. Introduction

An important question in information retrieval is how to
create a database index which can be searched efficiently
for the data one seeks. Today, one or more of the following
techniques have been frequently used: full text searching,
B-trees [3], inversion [14, 24] and the signature file [11, 12,
17]. Full text searching imposes no space overhead, but re-
quires long response time. In contrast, B-trees, inversion
and the signature file work quickly, but need a large inter-
mediary representation structure (index), which provides
direct links to relevant data. In this paper, we concentrate on
the techniques of signature files and discuss a new approach
for organizing signature files.

The signature file method was originally introduced as a
text indexing methodology [11, 12]. Nowadays, however, it
is utilized in a wide range of applications, such as office fil-
ing [7], hypertext systems [13], relational and object-orient-
ed databases [6, 15, 18, 23], as well as data mining [1]. In
comparison with the other index structures, it has mainly
the following advantages:

- it can be used to efficiently evaluate set-oriented queries;

- it can handle insertion and update operations easily.

A typical query processing with the signature file is as fol-
lows: when a query is given, a query signature (a bit string)
is formed from the query values. Then each signature in the
signature file is examined over the query signature. If a sig-
nature in the file matches the query signature, the corre-
sponding data object becomes a candidate that may satisfy
the query. Such an object is called a drop. The next step of
the query processing is the false drop resolution. Each drop
is accessed and examined whether it actually satisfies the
query condition. Drops that fail the test are called false drops
while the qualified data objects are called actual drops.

Different approaches for constructing signature files have
been proposed, such as sequential signature files, bit-slice
files, S-trees, and its different variants. In this paper, we dis-
cuss a new mechanism to organize a signature file, called a
signature tree, which improves the searching of signatures in
a signature file by one order of magnitude or more.

The remainder of the paper is organized as follows. In Sec-
tion 2, we show what is a signature file and review the rele-
vant work. In Section 3, we discuss the signature trees and
balanced signature trees. Section 4 is devoted to the mainte-
nance of signature trees. In Section 5, we report the experi-
ment results. Finally, Section 6 is a short conclusion.

2. Signature files and signature file organiza-
tion

Intuitively, a signature file can be considered as a set of bit
strings, which are called signatures. Compared to the invert-
ed index, the signature file is more efficient in handling new
insertions and queries on parts of words; and especially suit-
able for set-oriented query evaluation. But the scheme intro-
duces information loss. More specifically, its output usually
involves a number of false drops, which may be identified
only by means of a full text scanning on every text block
short-listed in the output. Also, for each query processed, the
entire signature file needs to be searched [11, 12]. Conse-
quently, the signature file method involves high processing
and I/O cost. This problem is mitigated by partitioning the
signature file, by introducing auxiliary data structure, as well
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as by exploiting parallel computer architecture [8].

2.1 Signature files

Signature files are based on the inexact filter. They provide
a quick test, which discards many of the nonqualifying ele-
ments. But the qualifying elements definitely pass the test
although some elements which actually do not satisfy the
search requirement may also pass it accidentally, i.e., there
may exist “false hits” or “false drops” [11, 12]. In an object-
oriented database, for instance, an object is represented by a
set of attribute values. The signature of an attribute value is
a hash-coded bit string of length m with k bit set to “1”. As
an example, assume that we have an attribute value “profes-
sor”. Its signature can be constructed as follows. In terms of
[4], the letter triplets in a word (or an attribute value) are the
best choice for information carrying text segment in the con-
struction of the signature for that word. Then, we will de-
compose “professor” into a series of triplets: “pro,” “rof,”
“ofe,” “fes,” “ess,” and “sor.” Using a hash function hash,
we will map a triplet to an integer p indicating that the pth
bit in the string will be set to 1. For example, assume that we
have hash(pro) = 2, hash(rof) = 4, hash(ofe) = 8, and
hash(fes) = 9. Then, we will establish a bit string: 010 100
011 000 for “professor” as its word signature (see [10] for a
detailed discussion.) An object signature is formed by super-
imposing the signatures for all its attribute values. (By ‘su-
perimposing’, we mean a bit-wise OR operation.) Object
signatures of a class will be stored sequentially in a file,
called a signature file. Fig. 1 depicts the signature generation
and comparison process of an object having three attribute
values: “John”, “12345678”, and “professor”.  

When a query arrives, the object signatures are scanned and
many nonqualifying objects are discarded. The rest are ei-
ther checked (so that the “false drops” are discarded) or they
are returned to the user as they are. Concretely, a query spec-
ifying certain values to be searched for will be transformed
into a query signature sq in the same way as for attribute val-
ues. The query signature is then compared to every object
signature in the signature file. Three possible outcomes of

object: 
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Fig. 1. Signature generation and comparison
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the comparison are exemplified in Fig. 1: (1) the object
matches the query; that is, for every bit set in sq, the corre-
sponding bit in the object signature s is also set (i.e., s ∧ sq =
sq) and the object contains really the query word; (2) the ob-
ject doesn’t match the query (i.e., s ∧ sq ≠ sq); and (3) the sig-
nature comparison indicates a match but the object in fact
doesn’t match the search criteria (false drop). In order to
eliminate false drops, the object must be examined after the
object signature signifies a successful match.

In addition, we can see that the signature matching is a kind
of inexact matching. That is, sq matches a signature s if for
any bit set to 1 in sq, the corresponding bit in s is also set to
1. However, for any bit set to 0 in sq, it doesn’t matter wheth-
er the corresponding bit in s is set to 1 or 0.

The purpose of using a signature file is to screen out most of
the nonqualifying objects. A signature failing to match the
query signature guarantees that the corresponding object can
be ignored. Therefore, unnecessary object access is prevent-
ed. 

To determine the size of a signature file, we use the following
formula [4]:

m × ln2 = k × D,

where D is the average size of a block. (In a relational or an
object-oriented database, D can be considered to be the aver-
age number of attributes in a tuple or in an object.) 

In a signature file, a set of signatures is sequentially stored,
which is easy to implement and requires low storage space
and low update cost. However, when a query is given, a full
scan of the signature file is required. Therefore, it is generally
slow in retrieval. Fig. 2(a) is a quite simple signature file.

2.2 Bit-slice files

A signature file can be stored in a column-wise manner. That
is, the signatures in the file are vertically stored in a set of
files [15]. Concretely, if the length of the signatures is m, then
all the signatures will be stored in m files, in each of which
one bit per signature for all the signatures is stored as shown
in Fig. 2(b). 

With such a data structure, the signatures are checked slice-
by-slice (rather than signature-by-signature) to find matching

Fig. 2. Illustration of sequential and bit-slice signature files

1 0 1 0 1 0 0 1
0 1 1 0 0 0 1 1
0 0 1 0 1 1 0 1
1 1 1 0 1 0 0 0
0 0 1 1 1 0 0 1
1 1 1 0 0 0 1 0
0 1 0 1 0 0 1 1
0 1 0 1 0 1 1 0

o1
o2
o3
o4
o5
o6
o7
o8

signature file: OIDs:

(a)

1 0 1 0 1 0 0 1
0 1 1 0 0 0 1 1
0 0 1 0 1 1 0 1
1 1 1 0 1 0 0 0
0 0 1 1 1 0 0 1
1 1 1 0 0 0 1 0
0 1 0 1 0 0 1 1
0 1 0 1 0 1 1 0

o1
o2
o3
o4
o5
o6
o7
o8

8 bit-slice files: OIDs:

(b)



signatures. To demonstrate the retrieval process, consider a
query signature sq = 10110000. First, we check the first bit-
slice file shown in Fig. 2(b) and find that only three posi-
tions: 1st, 4th and 6th positions match the first bit in sq.
Then, we check the second bit-slice file. This time, however,
only those three positions in the second file will be checked.
Since the 2nd bit in sq is 0, no positions will be filtered. (Re-
call that the signature matching is an inexact matching. For
a bit set to 0 in sq, the corresponding bit in a signature in the
signature file can be 1 or 0.) Next, we check the third bit-
slice file against the 3rd bit in sq. Since all the three positions
in it are set to 1, the same positions in a next bit-slice file,
i.e., in the fourth bit-slice file will be checked against 4th bit
in sq. Since none of the three positions in the fourth bit-slice
file matches this bit in the query, the search stops and reports
a nil.

From this process, we can see that only part of the m bit-
slice files have to be scanned. Therefore, the search cost is
lower than that of a sequential file. However, update cost be-
comes larger. For example, an insertion of a new set signa-
ture requires about m disk accesses, one for each bit-slice
file.

2.3 S-trees

Similar to a B+-tree, an S-tree is a height balanced multiway
tree [9]. Each internal node corresponds to a page, which
contains a set of signatures and each leaf node contains a set
of entries of the form <s, oid>, where the object is accessed
by the oid and s is its signature. Let v be the father node of
v’. Then, there exists a signature in v, whose value is ob-
tained by superimposing all the signatures in v’. See Fig. 3
for illustration.  
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Fig. 3. Illustration for S-tree and node splitting
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To retrieve a query signature sq = 00110000, we search the S-
tree top-down. However, more than one paths may be visited.
For example, the first signature in the root v1 shown in Fig.
3(a) leads us to its child node v2 because the third and fourth
bits are set to 1. In v2, the second and third signatures match
sq. Then, we go to the leaf node v4 and v5. In v4, we find two
matching candidates {o4, o5}, and in v5, we have only one
{o7}.

The construction of an S-tree is an insertion-splitting process.
At the very beginning, the S-tree contains only an empty leaf
node and signatures in a file are inserted into it one by one.
When a leaf node v become full, it will be split into two nodes
and at the same time a parent node vparent will be generated if
it does not exist. In addition, two new signatures will be put
in vparent. Assume that the capacity of v is K (i.e., v can ac-
commodate K signatures.) Then, when we try to insert the (K
+ 1)th signature into v, it has to be split into two nodes vα and
vβ. To do this, we will pick a signature in v, which has the
heaviest signature weight (i.e., with the most 1s) in v. It is
called the α-seed and will be put in vα. Then, we select a sec-
ond signature, which has the maximum number of 1s in those
positions where α has 0. That is, the signature provides the
maximal weight increase to α. This signature is called the β-
seed and put in vβ. Any of the rest K - 1 signatures is assigned
to vα or vβ, depending on whether it is closer to vα or vβ. The
two new signatures (denoted sα and sβ) to be put into the par-
ent node are obtained by superimposing the signatures in vα
and vβ, respectively. See Fig. 3(b) for illustration. 

The advantage of this method is that the scanning of a whole
signature file is replaced by searching several paths in S-tree.
However, the space overhead is almost doubled. Further-
more, due to superimposing, the nodes near the root tend to
have heavy weights and thus have low selectivity. This is im-
proved by Tousidou et al [21, 22]. They elaborate the selec-
tion of the α-seed and the β-seed so that their distance is
increased. However, this kind of improvement is achieved at
cost of time, i.e., by checking more signatures, which makes
the insertion of a signature into a S-tree extremely inefficient.

In [22], two algorithms were discussed. One needs O(l2) time
to determine α-seed and β-seed, referred to as the quadratic
algorithm, where l is the number of the signatures in a node.
The other one needs O(l3) time, referred to as the cubic algo-
rithm.

In general, to increase the selectivity of a signature in an in-
ternal node, longer signatures should be used, or the page for
a node should not be fully populated. Both of them require
more space.

In the following, we discuss a quite different method, called
signature trees, by means of which all the drawbacks of S-
trees can be removed.



3. Signature trees

A signature tree works for a signature file is just like a trie
[16, 19] for a text. But in a signature tree, each path is a sig-
nature identifier which is not a continuous piece of bits,
quite different from a trie in which the bits (or characters)
labeling a path are consecutive. In fact, the signature identi-
fiers can be considered as a generalization of the concept of
position identifiers [2, 5] extended to handle inexact match-
ings. As mentioned above, by the inexact matching, we ask
for matches at the “1” bit positions of a query and indiffer-
ent at the “0” bit positions.

In comparison with the methods described in Section 2, the
signature tree has the following advantages:

(1)The slice checking in the bit-slice method is replaced
with a single bit checking and less time is needed for
both the insertion and deletion of signatures.

(2)The checking of signatures in an internal node of an S-
tree is changed to a binary tree searching and much less
space is needed for the tree structure.

3.1 Definition of signature trees

Consider a signature si of length m. We denote it as si =
si[1]si[2] ... si[m], where each si[j] ∈  {0, 1} (j = 1, ..., m). We
also use si(j1, ..., jh) to denote a sequence of pairs w.r.t. si:
(j1, si[j1])(j2, si[j2]) ... (jh, si[jh]), where 1 ≤ jk ≤ m for k ∈ {1,
..., h}. 

Definition 1 (signature identifier) Let S = s1.s2 ... .sn denote
a signature file. Consider si (1 ≤ i ≤ n). If there exists a se-
quence: j1, ..., jh such that for any k ≠ i (1 ≤ k ≤ n) we have
si(j1, ..., jh) ≠ sk(j1, ..., jh), then we say si(j1, ..., jh) identifies
the signature si or say si(j1, ..., jh) is an identifier of si w.r.t. S.

For example, in Fig. 4(a), s6(1, 7, 4, 5) = (1, 0)(7, 1)(4, 1)(5,
1) is an identifier of s6 since for any i ≠ 6 we have si(1, 7, 4,
5) ≠ s6(1, 7, 4, 5). (For instance, s1(1, 7, 4, 5) = (1, 0)(7, 0)(4,
0)(5, 0) ≠ s6(1, 7, 4, 5), s2(1, 7, 4, 5) = (1, 1)(7, 0)(4, 0)(5, 1)
≠ s6(1, 7, 4, 5), and so on. Similarly, s1(1, 7) = (1, 0)(7, 0) is
an identifier for s1 since any i ≠ 1 we have si(1, 7) ≠ s1(1, 7).)

In the following, we’ll see that in a signature tree each path
corresponds to a signature identifier.

Definition 2 (signature tree) A signature tree for a signature
file S = s1.s2 ... .sn, where si ≠ sj for i ≠ j and |sk| = m for k =
1, ..., n, is a binary tree T such that 

1. For each internal node of T, the left edge leaving it is always
labeled with 0 and the right edge is always labeled with 1.

2. T has n leaves labeled 1, 2, ..., n, used as pointers to n differ-
ent positions of s1, s2 ... and sn in S. Let v be a leaf node. De-
note p(v) the pointer to the corresponding signature. 

3. Each internal node v is associated with a number, denoted
sk(v), to tells which bit will be checked.

4. Let i1, ..., ih be the numbers associated with the nodes on a
path from the root to a leaf v labeled i (then, this leaf node is
a pointer to the ith signature in S, i.e., p(v) = i). Let p1, ..., ph
be the sequence of labels of edges on this path. Then, (j1, p1)
... (jh, ph) makes up a signature identifier for si, si(j1, ..., jh).

Example 1. In Fig. 4(b), we show a signature tree for the sig-
nature file shown in Fig. 4(a). In this signature tree, each
edge is labeled with 0 or 1 and each leaf node is a pointer to
a signature in the signature file. In addition, each internal
node v is marked with an integer sk(v) to tell which bit will
be checked. Consider the path going through the nodes
marked 1, 7 and 4. If this path is searched for locating some
signature s, then three bits of s: s[1], s[7] and s[4] will be
checked. If s[4] = 1, the search will go to the right child of the
node marked “4”. This child node is marked with 5 and then
the 5th bit of s: s[5] will be checked. Also, see the path con-
sisting of the dashed edges in Fig. 4(b), which corresponds to
the identifier of s6: s6(1, 7, 4, 5) = (1, 0)(7, 1)(4, 1)(5, 1). Sim-
ilarly, the identifier of s3 is s3(1, 4) = (1, 1)(4, 1) (see the path
consisting of thick edges).

In the following subsections, we discuss how to construct a
signature tree for a signature file and how a signature tree is
searched.

3.2 A simple way for constructing signature trees

Below we give an algorithm to construct a signature tree for
a signature file, which needs only O(N⋅min(m, logN)) time,
where N represents the number of the signatures in the signa-
ture file.

At the very beginning, the tree contains an initial node: a
node containing a pointer to the first signature.

Then, we take a next signature and insert it into the tree. Let
s be the next signature we wish to enter. We traverse the tree
from the root. Let v be the node encountered and assume that
v is an internal node with sk(v) = i. Then, s[i] will be checked.
If s[i] = 0, we go left. Otherwise, we go right. If v is a leaf
node, we compare s with the signature s0 pointed to by v. s
can not be the same as v since in S there is no signature which
is identical to anyone else. (If we have two identical signa-
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Fig. 4. A signature file and a signature tree



tures, one will be removed and the remaining one will be as-
sociated with two OIDs.) But several bits of s can be
determined, which agree with s0. Assume that the first k bits
of s agree with s0; but s differs from s0 in the (k + 1)th posi-
tion, where s has the digit b and s0 has 1 - b. We construct a
new node u with sk(u) = k + 1 and replace v with u. (Note
that v will not be removed. By “replace”, we mean that the
position of v in the tree is occupied by u and v becomes one
of u’s children.) If b = 1, we make v and the pointer to s be
the left and right child of u, respectively. If b = 0, we make
v the right child of u and the pointer to s the left child of u. 

The following is the formal description of the algorithm.

Algorithm sig-tree-generation(file)
begin

construct a root node r with sk(r) = 1; /*where r corre-
sponds to the first signature s1 in the signature file*/

for j = 2 to n do
call insert(sj);

end
Procedure insert(s)
begin

stack ← root;
while stack not empty do

1 {v ← pop(stack);
2 if v is not a leaf then 
3 {i ← sk(v);
4 if s[i] = 1 then

{let a be the right child of v; push(stack, a);}
5 else {let a be the left child of v; push(stack, a);}
6 }
7 else (*v is a leaf.*)
8 {compare s with the signature s0 pointed by p(v);
9 assume that the first k bit of s agree with s0; 
10 but s differs from s0 in the (k + 1)th position;
11 w ← v; replace v with a new node u with sk(u) = k + 1;
12 if s[k + 1] = 1 then

make s and w be respectively the right and left
children of u

13 else make w and s be the right and left children of u, 
respectively;}

14 }
end
In the procedure insert( ), stack is a stack structure used to
control the tree traversal.

In Fig. 5, we trace the above algorithm against the signature
file shown in Fig. 4(a). 

In the following, we prove the correctness of the Algorithm
sig-tree-generation( ). To this end, it should be specified
that each path from the root to a leaf node in a signature tree
corresponds to a signature identifier. We have the following
proposition.

Proposition 1. Let T be a signature tree for a signature file

S. Let P = v1.e1 ... vg-1.eg-1.vg be a path in T from the root to
a leaf node for some signature s in S, where vi (i = 1, ..., g) is
a node and ei (i = 1, ..., g - 1) is an edge from vi-1 to vi. Then,
we have p(vg) = s. Denote ji = sk(vi) (i = 1, ..., g - 1). Then,
s(j1,  j2, ..., jg-1) = (j1, b(e1)) ...(jg-1, b(eg-1)) makes up 

an identifier for s.

Proof. Let S = s1.s2 ... .sn be a signature file and T a signature
tree for it. Let P = v1e1 ... vg-1eg-1vg be a path from the root to
a leaf node for si in T. Assume that there exists another signa-
ture st such that st(j1, j2, ..., jg-1) = si(j1, j2, ..., jg-1), where ji =
sk(vi) (i = 1, ..., g - 1). Without loss of generality, assume that
t > i. Then, at the moment when st is inserted into T, two new
nodes v and v’ will be inserted as shown in Fig. 6(a) or (b).
(see lines 10 -15 of the procedure insert( ).) Here, v’ is a
pointer to st and v is associated with a number indicating the
position where p(vt) and p(v’) differ.

It shows that the path for si should be v1.e1 ... vg-1.e.ve’.vg or
v1.e1 ... vg-1.e.ve’’.vg, which contradicts the assumption.
Therefore, there is not any other signature st with st(j1, j2, ...,
jn-1) = (j1, b(e1)) ... (jn-1, b(en-1)). So si(j1, j2, ..., jn-1) is an
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identifier of si.

The analysis of the time complexity of the algorithm is rela-
tively simple. From the procedure insert( ), we see that there
is only one loop to insert all signatures of a signature file into
a tree. At each step within the loop, only one path is searched,
which needs at most O(min(m, logN)) time, where m is the
length of a signature and N represents the number of signa-
tures in a signature file. Thus, we have the following propo-
sition.

Proposition 2. The time complexity of the algorithm sig-
tree-generation is bounded by O(N⋅min(m, logN)).

Proof. See the above analysis.

3.3. Searching of signature trees

Now we discuss how to search a signature tree to model the
behavior of a signature file as a filter. Let sq be a query signa-
ture. The ith position of sq is denoted as sq(i). During the tra-
versal of a signature tree, the inexact matching is done as
follows:

(i) Let v be the node encountered and sq (i) be the position
to be checked. 

(ii) If sq (i) = 1, we move to the right child of v.

(iii) If sq (i) = 0, both the right and left child of v will be
explored.

In fact, this process just corresponds to the signature match-
ing criterion, i.e., for a bit position i in sq, if it is set to 1, the
corresponding bit position in s must be set to 1; if it is set to
0, the corresponding bit position in s can be 1 or 0.

To implement this kind of inexact matching, we search the
signature tree in a depth-first manner and maintain a stack
structure stackp to control the tree traversal.

Algorithm signature-tree-search

input: a query signature sq; 

output: a set of signatures which survive the checking;

1. R ← ∅ .

2. Push the root of the signature tree into stackp. 

3. If stackp is not empty, v ← pop(stackp); else return(R).

4. If v is not a leaf node, i ← sk(v);

If sq (i) = 0, push cr and cl into stackp; (where cr and cl
are v’s right and left child, respectively.) otherwise, push
only cr into stackp.

5. Compare sq with the signature pointed by p(v).

/*p(v) - pointer to the block signature*/

If sq matches, R ← R ∪ {p(v)}.

6. Go to (3).

The following example helps for illustrating the main idea of
the algorithm. 

Example 2. Consider the signature file and the signature tree

shown in Fig. 4 once again.  

Assume sq = 000 100 100 000. Then, only part of the signature
tree (marked with thick edges in Fig. 7) will be searched. On
reaching a leaf node, the signature pointed to by the leaf node
will be checked against sq. Obviously, this process is much
more efficient than a sequential searching since only 3 signa-
tures need to be checked while a signature file scanning will
check 8 signatures. For a balanced signature tree, the height
of the tree is bounded by O(log2N), where N is the number of
the leaf nodes. Then, the cost of searching a balanced signa-
ture tree will be O(λ⋅log2N) on the average, where λ repre-
sents the number of paths traversed, which is equal to the
number of signatures checked. Let t represent the number of
bits which are set in sq and checked during the search. Then,
λ = O(N/2t). It is because each bit set to 1 (in sq) which is
checked during the search will prevent half of a subtree from
being visited. Compared to the time complexity of the signa-
ture file scanning O(N), it is a major benefit. We will discuss
this issue in the next subsection in more detail.

3.4. Balanced signature trees

A signature tree can be quite skewed as shown in Fig. 8. 

But the tree shown in Fig. 9 is completely balanced for the
same signature file. However, the signature identifiers for the
signatures are different from those shown in Fig. 8(b). 

The problem is how to control the process in such a way that
the generated signature tree is almost balanced.

Fig. 7. Signature tree search
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In the following, we propose a weight-based method, which
needs more time than the method discussed above, but al-
ways returns a balanced tree.

- Weight-based method

A signature file S = s1.s2 ... .sn can be considered as a boolean
matrix. We use S[i] to represent the ith column of S. We cal-
culate the weight of each S[i], i.e., the number of 1s appearing
in S[i], denoted w(S[i]). This needs O(N⋅m) time. Then, we
choose an j such that |w(S[i]) - N| is minimum. Here, the tie
is resolved arbitrarily. Using this j, we divide S into two
groups g1 = { , , ..., } with each [j] = 0 (p = 1, ...,
k) and g2 = { , , ..., } with each [j] = 1 (q = k +
1, ..., N); and generate a tree as shown in Fig. 10(a). In a next
step, we consider each gi (i = 1, 2) as a single signature file
and perform the same operations as above, leading two trees
generated for g1 and g2, respectively. Replacing g1 and g2
with the corresponding trees, we get another tree as shown in
Fig. 10(b). We repeat this process until the leaf nodes of a
generated tree cannot be divided any more.

In Fig. 10(a), g1 = {s1, s3, s5, s6} and g2 = {s2, s4, s7, s8}; and
in In Fig. 10(b), g11 = {s3, s5}, g12 = {s6, s1}, g21 = {s8, s7},
and g22 = {s4, s2}.

Below is a formal description of the above process.

Algorithm balanced-tree-generation(file)

input: a signature file.

output: a signature tree.

begin

let S = file; N ← |S|;

if N > 1 then {

choose j such that |w(S[i]) - N| is minimum;

let g1 = { , , ..., } with each [j] = 0 (p = 1, ..., k);

let g2 = { , , ..., } with each [j] = 1 (q = k + 1, ..., N)
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Fig. 9. A balanced signature tree
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Fig. 10. Illustration of generation of balanced signature trees
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generate a tree containing a root r and two child nodes marked with
g1 and g2, respectively;

skip(r) ← j;

replace the node marked g1 with balanced-tree-generation(g1);

replace the node marked g2 with balanced-tree-generation(g2);}

else return;

end

By applying this algorithm to the signature file shown in Fig.
8(a), a balanced signature tree as shown in Fig. 9 will be cre-
ated. Since O(N⋅ m) time is needed to generate the nodes at
each level of the tree, the time complexity of the whole pro-
cess is on the order of O(N⋅m⋅ logN).

- Analysis of balanced signature trees

A signature tree is a binary tree generated by exploiting arbi-
trary bit difference. We claim that if a signature file involves
equal number of 1s and 0s, or say, if the probability of appear-
ances of 1s or 0s is 1/2, the signature tree over it is likely bal-
anced. In the following, we give a probabilistic analysis to
show that this property holds for most cases.

Let Tn be a family of signature trees built from n signatures.
Each signature is considered as a random bit string containing
0s and 1s. We assume that the probability of appearances of 0
and 1 in a string is equal to p and q = 1 - p, respectively. The
occurrence of these two values in a bit string is independent
of each other.

To study the average length of paths from the root to a leaf,
we check the external path length Ln - the sum of the lengths
of all paths from the root to all leaf nodes of a signature tree
in Tn. Note that in a signature tree, the n signatures are split
randomly into the left subtree and the right subtree of the root.
Let X denote the number of signatures in the left subtree.
Then, for X = k, we have the following recurrence:

where Lk and Ln-k represent the external path length in the left
and right subtrees of the root, respectively. Note that a signa-
ture tree is never degenerate (i.e., k = 0 or k = n). So one-way
branching on internal nodes never happens. The above formu-
la is a little bit different from the formula established for the
external path length of a binary tree [16]:

Bn = n + Bk + Bn-k, for all k = 0, 1, 2, ..., n,

where Bk represents the sum of the lengths of all paths from
the root to all leaf nodes of a binary tree having k leaf nodes.

According to [16], the expectation of Bn is

EB0 = EB1 = 0,

EBn = n + , n > 1.

Ln

n Lk Ln k–+ + , for k 0 n,≠

undefined, for k 0= k n=,



=

n
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  pkqn k– Bk Bn k–+( )

k 0=

n

∑



When p = q = 0.5, we have

EBn = .

For large n, the following holds:

EBn = nlog2n + n[ ] - L + 

where L = loge2, γ = 0.577... is the Euler constant, δ1(x) and
δ2(x) are two periodic functions with small amplitude and
mean zero (see [16] for a detailed discussion).

In a similar way to [16], we can obtain the following formu-
lae:

EL0 = EL1 = 0,

ELn = n(1 - pn - qn) + ,n > 1.

When p = q = 0.5, we have

ELn =  = EBn - n + δn,1,

where δn,1 represents the Kronecker delta function (see [20]),
which is 1 if n = 1, 0 otherwise.

From the above analysis, we can see that for large n we have
the following:

ELn = O(nlog2n).

This shows that the average value of the external path length
is asymptotically equal to log2n, which implies that a signa-
ture tree is normally balanced. In fact, in term of the algo-
rithm for generating signatures for words [10], the generation
of signatures is a random process. Therefore, in a large signa-
ture file, we expect that 0’s and 1’s are approximately equally
distributed and the corresponding signature tree is almost
balanced.

4. Signature tree maintenance
In this section, we address how to maintain a signature tree.
First, we discuss the case that a signature tree can entirely fit
in main memory in 4.1. Then, we discuss the case that a sig-
nature tree cannot entirely fit in main memory in 4.2.

4.1 Maintenance of internal signature trees

An internal signature tree refers to a tree that can fit entirely
in main memory. In this case, insertion and deletion of a sig-
nature into a tree can be done quite easily as discussed below.

When a signature s is added to a signature file, the corre-
sponding signature tree can be changed by simply running
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the procedure insert() with s as the input (see 3.2). 

When a signature is removed from the signature file, we need
to change the corresponding signature tree as follows:

(i) Let z, u, v, and w are the nodes as shown in Fig. 11(a)
and assume that v is a pointer to the signature to be re-
moved.

(ii) Remove u and v. Set the left pointer of z to w. (If u is
the right child of z, set the right pointer of z to w.)

The resulting signature tree is as shown in Fig. 11(b).

From the above analysis, we see that the maintenance of an
internal signature tree is an easy task. However, after several
insertions and deletions, a signature tree may become unbal-
anced. For this reason, we will maintain a variable to record
the difference between the lengths of the longest and the
shortest paths. If the value of the variable is above a given
threshold, the signature tree should be reconstructed by run-
ning balanced-tree-generation( ).

4.2 Maintenance of external signature trees

In a database, files are normally very large. Therefore, we
have to consider the situation where a signature tree cannot fit
entirely in main memory. We call such a tree an external sig-
nature tree (or an external structure for the signature tree). In
this case, a signature tree is stored in a series of pages orga-
nized into a tree structure as shown in Fig. 12, in which each
node corresponds to a page containing a binary tree.   

Formally, an external structure ET for a signature tree T is de-
fined as follows. (To avoid any confusion, we will, in the fol-
lowing, refer to the nodes in ET as the page nodes while the
nodes in T as the binary nodes or simply the nodes.)

1. Each internal page node n of ET is of the form: bn(rn, an1,

..., ), where bn represents a subtree of T, rn is its root

and an1, ...,  are its leaf nodes. Each internal node u

Fig. 11. Illustration for deleting a signature
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of bn is of the form: <v(u), l(u), r(u)>, where v(u), l(u)

and r(u) are the value, left link and right link of u, re-

spectively. Each leaf node  of bn is of the form:

<v( ), lp( ), rp( )>, where v( ) represents

the value of , and lp( ) and rp( ) are two point-

ers to two pages containing the left and right subtrees of

, respectively.

2. Let m is a child page node of n. Then, m is of the form:

bm(rm, am1, ..., ), where bm represents a binary tree,

rm is its root and am1, ...,  are its leaf nodes. If m is

an internal page node, am1, ...,  will have the same

structure as an1, ...,  described in (1). If m is a leaf

node, each  = p(s), the position of some signature s

in the signature file.

3. The size |b| of the binary tree b (the number of nodes in
b) within an internal page node of ET satisfies

|b| ≤ 2k,

where k is an integer.

4. The root page of ET contains at least a binary node and
the left and right links associated with it.

If 2k-1 ≤ |b| ≤ 2k holds for each node in ET, it is said to be bal-
anced; otherwise, it is unbalanced. However, according to the
analysis of 3.4, an external signature tree is normally bal-
anced, i.e., 2k-1 ≤ |b| ≤ 2k holds for almost every page node in
ET.

As with a B+-tree, insertion and deletion of page nodes begin
always from a leaf node. To maintain the tree balance, inter-
nal page nodes may split or merged during the process. In the
following, we discuss these issues in great detail.

- Insertion of binary nodes

Let s be a signature newly inserted into a signature file S. Ac-
cordingly, a node as will be inserted into the signature tree T
for S as a leaf node. In effect, it will be inserted into a leaf
page node m of the external structure ET of T. It can be done
by taking the binary tree within that page into main memory
and then inserting the node into the tree as discussed in 4.1.
If for the binary tree b in m we have |b| > 2k, the following
node-splitting will be conducted.

1. Let bm(rm, am1, ..., ) be the binary tree within m. Let
rm1 and rm2 are the left and right child node of rm, re-
spectively. Assume that bm1(rm1, am1, ..., ) (ij < im)
is the subtree rooted at rm1 and bm2(rm1, , ...,

) is rooted at rm2. We allocate a new page m’ and
put bm2(rm1, , ..., ) into m’. Afterwards, pro-
mote rm into the parent page node n of m and remove
bm2(rm1, , ..., ) from m.

2. If the size of the binary tree within n becomes larger than
2k, split n as above. The node-splitting repeats along the

anij

anij
anij

anij
anij

anij
anij

anij

anij

amim

amim

amim

anin

amij

amim

amij

amij 1+

amim

amij 1+
amim

amij 1+
amim

path bottom-up until no splitting is needed.

- Deletion of binary nodes

When a node is removed from a signature tree, it is always re-
moved from the leaf level as discussed in 4.1. Let a be a leaf
node to be removed from a signature tree T. In effect, it will
be removed from a leaf page node m of the external structure
ET for T. Let b be the binary tree within m. If the size of b be-
comes smaller than 2k-1, we may merge it with its left or right
sibling as follows.

1. Let m’ be the left (right) sibling of m. Let bm(rm, am1, ...,
) and bm’(rm’, am’1, ..., ) be two binary trees in

m and m’, respectively. If the size of bm’ is smaller than
2k-1, move bm’ into m and afterwards eliminate m’. Let n
be the parent page node of m and r is the parent node of
rm and rm’. Move r into m and afterwards remove r from
n.

2. If the size of the binary tree within n becomes smaller
than 2k-1, merge it with its left or right sibling if possible.
This process repeats along the path bottom-up until the
root of ET is reached or no merging operation can be
done.

Note that it is not possible to redistribute the binary trees of m
and any of its left and right siblings due to the properties of
signature trees, which may leave an external signature tree
unbalanced. According to the analysis of 3.4, however, it is
seldom. If it is the case, i.e., if the difference between the
lengths of the longest and the shortest paths is above a given
threshold, we will use balanced-tree-generation( ) to recon-
struct the whole signature tree.

5. Experiment results
We have implemented a test bed in C++, with our own buffer
management (with first-in-first-out replacement policy). The
computer was Intel Pentium III, running standalone. The ca-
pacity of the hard disk is 4.95 GB and the amount of the main
memory available is 46 MB.

We have tested four methods: SSF [11, 12], BSSF [15], S-
trees [9], improved S-trees (which uses the cubic algorithm to
find α-seed and β-seed) [22], and the signature trees dis-
cussed in this paper; and applied them to different signature
queries against the signature files of different sizes. All the
signatures are created randomly using a uniform distribution
for the positions that will be set to 1. The performance mea-
sure was considered to be the number of page accesses re-
quired to satisfy a query. For each query, an average of 20
measurements was taken.

The considered parameters and the tested values for each pa-
rameter are given in Table 1.

For SSF, S-trees and the signature tree method, an entry in a
signature file contains two fields: a signature and an object
identifier as shown in Fig. 13(a). A bit-slice file is stored as

amim
am ′ im ′



shown in Fig. 2(b).

In addition, an S-tree is stored as shown in Fig. 3(a) and a sig-
nature tree is stored as discussed in 4.2. Each entry in an in-
ternal node of an S-tree also contains two fields: a signature
and a pointer to a child page while the node structure for a
signature tree contains three fields: an integer to indicate
which bit of a query signature will be checked, and two point-
ers to the left and the right child of a node, respectively. (See
Fig. 13(b) for illustration.) 

Fig. 14 shows the test results for group I. The query signa-
tures are generated randomly with all those positions to be set
1 uniformly distributed. Each of the queries is evaluated by
different strategies. 

From Fig. 14, we can see that the signature tree structure out-
performs all the other three strategies. First, we discuss why
the signature tree is better than the S-tree. In this test, the size
of each page is 1 K. So each page can accommodate 10 sig-
nature (and the corresponding OIDs) and all the signatures
are stored in 5 × 1024 = 5120 pages. However, for the S-tree,
to increase the filter ability of the signatures in an internal
node, a page should not be fully populated since in this case,

number of signatures (×1024)
signature size/weight (in bits)
page size (in KB)

50
64/32
1

100
64/16
2

50
128/64
1

100
128/32
2

parameters
data groupI groupII groupIII groupIV

Tabel 1:

64 bits 32 bits

signature OID

Fig. 13. Illustration for storage structures
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70

signature tree

group I

a signature in an internal node will be with too many 1s, de-
grading the performance dramatically. We have tested differ-
ent population ratios from 30% to 80% of the page capacity
and report the average test results over 30%, 40%, 50%, 60%
and 70% of the page capacity since when each page is 80%
populated, the performance is much worse than when each
page is 70% populated. If each page is 70% populated, then
all the signatures need 7312 pages to store instead of 5120
pages. The number of the internal page nodes is about 824 and
the outdegree of an internal page node cannot be larger than
7. However, although the number of the internal nodes of the
signature tree is about (50 × 1024) = 25100, each node only
occupies 30 bits and each page can accommodate 32 nodes,
i.e., a subtree of height 5. Then, the number of the internal
page nodes is about 785. More importantly, the outdegree of
an internal page node can be up to 16. So the height of the sig-
nature tree should be lower than that of the S-tree. Another
reason why the signature tree outperforms the S-tree is that
each internal page node of the signature tree is a tree itself (a
non-linear structure) while each internal node of the S-tree is
a set of signatures (a linear structure). Normally, a non-linear
structure should be stronger as a filter than a linear structure.

Using the bit-slice file strategy, all the signatures are stored in
64 files with each containing 50 × 1024 bits. So the size of
each file is 50 pages. For evaluating a query sq, we will check
these files one by one. But for a bit set to 0 in sq, the corre-
sponding file needn’t be checked. In addition, the result of
checking a bit sq[i] against the ith file can be used to reduce
the number of the pages to be checked when examining the s[i
+ 1] against the (i + 1)th file. This is the main reason why the
bit-slice file is better than the S-tree in some cases, especially
when the query weight is low. However, as a filter, the bit-
slice file is not so efficient as the signature tree since each
time when checking a page for an internal node, the signature
tree can examine up to 5 bits, which may need more than one
page accesses by means of the bit slice file.

Fig. 15 shows the test results for group II. From this, we can
see that when the weight of signatures in a signature file is
low, the performance of the S-tree becomes better. It is be-
cause in this case the signatures in the internal nodes of a S-
tree will be less heavily populated. In contrast, the perfor-
mance of the bit-slice file degrades because the more 1s a bit-
slice file has, the more chance a bit in a next bit-slice file will
be checked. Also, the signature tree becomes worse because
in this case, we have much more 0s than 1s and the tree cannot
be well balanced. 

Fig. 16 and 17 show the test results for group III and IV, re-
spectively. In these two cases, since the signatures are much
longer, the number of the internal nodes of a S-tree are greatly
increased since each internal node needs more space for the
signatures stored, which are used as filters. However, the size
of an internal node of a signature tree is only one bit augment-
ed. So the number of page accesses is almost not changed.

1
2
---



The BSSF becomes worse because for longer signatures,
more bit-slice files need to be checked. .

In addition, the weight of a query signature (i.e., the percent-
age of 1-bits in a query signature) affects BSSF, the S-tree,
and signature trees greatly. Fig. 18 shows the number of page
access when the three methods are used to search a signature
file containing 50 ×  1024 signatures to locate query signa-
tures with different weights.

From this, we can see that as the weight of a query signature
increases, the searching time of both the signature tree meth-
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od and the S-tee reduces. It is because each bit set to 1 in the
query signature may cut off a subtree. For BSSF, however,
each bit set to 1 in the query signature entails more access to
bits in bit-slice files. The weight of a query signature has al-
most no impact on SSF.

6. Conclusion

In this paper, a new indexing technique has been proposed.
The main idea of this approach is to organize a signature file
into a balanced signature tree. In this way, the searching of a
signature file can be done in a binary searching manner. In ad-
dition, the maintenance of a signature tree is discussed and an
experimental test is demonstrated, which shows that using the
signature tree structure, the query evaluation can be sped-up
significantly.
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