
Web and Document Databases: an Effective Way to Explore the Internet

Yangjun Chen
Dept. Applied computer Science

University of Winnipeg, Winnipeg, Manitoba, Canada, R3B 2E9

Abstract—In this paper, we discuss the architecture of a
system, the so-called Web and Document Databases (WDDBS
for short), designed to explore the Internet effectively and
efficiently. Abstractly, a WDDBS can be defined as a triple <����,
����, ����>, where (1) ���� stands for a local document database to
store XML documents, (2) ���� for a subsystem responsible for
remote query evaluation, including resolution of semantic
conflicts among heterogeneous databases, and (3) ���� for a Web
crawler which should be able to find information sources
related to the local database in some way. Then, each
information source can be organized into a WDDB distributed
over the Internet, which may be connected to others through
URLs. A query submitted to a WDDBS will first be evaluated
against the local document database, and then possibly
switched over to some remote document databases if necessary,
which is controlled by the ‘knowledge’ on how local WDDBSs
are connected. In this way, the load of traffic over the Internet
can effectively be decreased, but the information explored is
more relevant.

Keywords: XML document; Web; tree pattern queries;
semantic conflict resolution; hash tabels, signature trees.

I. INTRODUCTION
With the expansion of the Web, more and more

comprehensive information repositories can be now visited
easily through network. A growing and challenging problem
is how to quickly find information of interest to an
individual in either a home or work setting. While
navigating the Web, one may get lost in the maze of hyper-
links. A great deal of work has been done to mitigate this
problem to some extent, including search engines such as
Yahoo, AltaVista and Google, different web query languages
such as W3QL [20], semistructured data management
systems [1, 19] and document databases [18]. Our goal is to
bring together all such mechanisms under one umbrella to
guide the access of information resources distributed all
over the world.

Abstractly, a WDDBS can be defined as a triple <�, �,
�>, where � stands for a local document database to store
XML documents, � for a subsystem responsible for remote
query evaluation, including resolution of semantic conflicts
among heterogeneous databases, and � for a Web crawler
which should be able to find information sources related to
some data items in the local database. Then, each
information source can be organized into a WDDBS which
may be connected to others through URLs. In an applied
scenario, consider a local database containing all the hotel
information (�) in a city. Then, a query against it may get,

for example, hotel prices, hotel living condition, etc. But a
user may also want to know about auto rental, sightseeing
and different cuisine flavors in that city, which may be
distributed in different databases. In this case, one has to
switch over to those databases and submit new queries,
respectively. However, if some URL links to remote
databases (�) are available and the relationships between
them and the relevant local data items are specified, the
system can manage to access those remote databases
automatically. In addition, to obtain the URLs related to a
piece of local data, a Web crawler (�) is desired to explore
the Internet to find information resources of interest. The
other task of it would be to extract relevant information from
the data obtained by issuing remote queries.

In Fig. 1, we give the architecture of WDDBS, showing
how its main subcomponents are connected.

II. LOCAL DATABASES

The most important subcomponent of a WDDBS is the
local XML database. It mainly contains three parts:
document storage and maintenance, query evaluation, and
integrity constrains, which are described below in detail.

A. Document storage and maintenance
There are different ways to store XML documents. A

simple method is to decompose an XML document into
elements and attributes and store them in four relations with
the following structures:

DocRoot(docID, rootElmentID),
SubElement(parentID, childID, position),
ElementAttribute(elementID, name, value),
ElementValue(elementID, value)
However, it supports neither any efficient algorithm for

evaluating tree pattern queries, nor any effective index
mechanism. The reason for this is that the parent-child, as
well as ancestor-descendant relationships cannot be
efficiently manipulated. Although using the indexes over
paths individual elements can be quickly located, it needs
costly path joins to check tree matchings.

Another way is to store XML documents as data streams
by using a kind of tree encoding, which can be used to

interface

Document management

Document
storage,

maintenance

Query
evaluation

Remote query
evaluation

Web
crawler

Web

Fig. 1. WDDBS architecture

identify different relationships between the nodes of a tree.
Let T be a document tree. We associate each node v in T

with a quadruple (d, l, r, ln), denoted as α(v), where d =
DocId, l = LeftPos, r = RightPos, and ln = LevelNum,
defined to be the nesting depth of the element in the
document. (See Fig. 2 for illustration.) By using such a data
structure, the structural relationships between the nodes in
an XML database can be simply determined [22]:
(i) ancestor-descendant: a node v1 associated with (d1, l1, r1,

ln1) is an ancestor of another node v2 with (d2, l2, r2, ln2)
iff d1 = d2, l1 < l2, and r1 > r2.

(ii) parent-child: a node v1 associated with (d1, l1, r1, ln1) is
the parent of another node v2 with (d2, l2, r2, ln2) iff d1 =
d2, l1 < l2, r1 > r2, and ln2 = ln1 + 1.

(iii) left-to-right order: a node v1 associated with (d1, l1, r1,
ln1) is to the left of another node v2 with (d2, l2, r2, ln2) iff
d1 = d2, r1 < l2.
In Fig. 2, v2 is an ancestor of v6 and we have v2.LeftPos =

2 < v6.LeftPos = 6 and v2.RightPos = 9 > v6.RightPos = 6. In
the same way, we can verify all the other relationships of
the nodes in the tree. In addition, for each leaf node v, we
set v.LeftPos = v.RightPos for simplicity, which still work
without downgrading the ability of this mechanism. In the
rest of the paper, if for two quadruples α1 = (d1, l1, r1, ln1)
and α2 = (d2, l2, r2, ln2), we have d1 = d2, l1 ≤ l2, and r1 ≥ r2,
we say that α2 is subsumed by α1. For convenience, a
quadruple is considered to be subsumed by itself (i.e., a
node is considered to be an ancestor of itself). In this way,
we can store an XML document as several streams of
quadruples with each associated with a different tag name
and sorted by LeftPos or RightPos values.

If no confusion is caused, we will used v and α(v)

interchangeably. Also, as with DeweyIDs, we can leave gaps
in the numbering space between consecutive labels to
support dynamical changes of documents.

B. Query evaluation
In order to enquire an XML database, we use a language

such as XQuery, XML-QL, or Quilt.
Analogous to SQL select-from-where expressions,

XQuery provides an FLWR structure to specify queries, as
illustrated in the following example:
let $p := doc(“publication.xml”), $q := $p//AuthorBook
for $s in $q[.//Author/@name = ‘D. Knuth’]//Book/Title
where $q//Book/Title[@year = ‘1973’]
return $s.

Special attention should be paid to the for-clause in it,
which is an XPath to represent, together with the where-
clause, a searching condition. Such an searching condition

typically specify patterns of selection predicates on multiple
elements that have some tree-structured relationships. For
instance, the searching condition in the above FLWR
expression can be represents as a tree structure shown in
Fig. 3.

Therefore, to answer a query, we need to find all

occurrences of a tree pattern in a database. It is the so-called
tree matching problem, for which different strategies for tree
matching have been developed.

Tree matching
From the above discussion, we can see that to evaluate

an XQuery query we need to do a tree matching. Formally, a
tree matching is defined as follows.
Definition 1 An embedding of a tree pattern Q into an XML
document T is a mapping f: Q → T, from the nodes of Q to
the nodes of T, which satisfies the following conditions:
(i) Preserve node label: For each u ∈ Q, label(u) =

label(f(u)) (or say, u matches f(u)).
(ii) Preserve parent-child/ancestor-descendant relationship:

If u → v in Q, then f(v) is a child of f(u) in T; if u � v in
Q, then f(v) is a descendant of f(u) in T.

If there exists a mapping from Q into T, we say, Q can be
imbedded into T, or say, T contains Q.

Almost all the existing strategies for evaluating tree
patterns queries are designed according to this definition [2,
3, 5, 7, 13, 14, 15, 18], which can roughly be divided into
two categories. One is based on path indexes, and the other
is based on the XB-tree structure. For example, the methods
discussed in [18] are typically path-index-based, by which a
document is decomposed into a set of binary relationships
between pairs of nodes, such as parent-child and ancestor-
descendant relations, or into a set of paths. The sizes of
intermediate relations tend to be very large, even when the
input and final result sizes are much more manageable. To
make the matter worse, path joins are needed, which
requires exponential cpu time in the worst case.

The methods discussed in [2, 3, 4, 5] are all based on the
XB-tree structure, which run in polynomial time and needs
only a space linear in the size of documents.

Definition 1 allows a path to match a tree as illustrated
in Fig. 3(b). It is because by Definition 1 the left-to-right
relationships between siblings are not taken into account.
We call such a problem an unordered tree pattern matching.

We may consider another problem, called an ordered
tree pattern matching, defined below.
Definition 2 An embedding of a tree pattern Q into an XML
document T is a mapping f: Q → T, from the nodes of Q to
the nodes of T, which satisfies the following conditions:
(i) same as (i) in Definition 1.
(ii) same as (ii) in Definition 1.

b c

a

AuthorBook

Author Book

name year Title

Output node a

b

c

Q: T:

(a) (b)
Fig. 3. A query tree and a tree matching a path

1973 D. Knuth

Fig. 2. Illustration for tree encoding and data
streams

(1, 1, 11, 1)
A: (1, 1, 11, 1)

B: (1, 2, 9, 2)
(1, 4, 8, 3), (1, 10, 10, 2)

(1, 10, 10, 2) B v8

A v1

(1, 7, 7, 4)

C: (1, 3, 3, 3)
(1, 5, 5, 4), (1, 6, 6, 4)

D: (1, 7, 7, 4) (1, 6, 6, 4)

Data streams: T:

(1, 5, 5, 4)

(1, 3, 3, 3)

B v2

v3 C B v4

D v7 v5 C

(1, 4, 8, 3)

(1, 2, 9, 2)

v6 C

(iii) Preserve left-to-right order: For any two nodes v1 ∈ Q
and v2 ∈ Q, if v1 is to the left of v2, then f(v1) is to the
left of f(v2) in T.

In general, a node u1 is said to be to the left of another
node u2 in a tree T if they are not related by the ancestor-
descendant relationship and u2 follows u1 when we traverse
T in preorder.

This kind of tree mappings is useful in practice. For
example, an XML data model was proposed by Catherine
and Bird [6] for representing interlinear text for linguistic
applications, used to demonstrate various linguistic
principles in different languages. For the purpose of
linguistic analysis, it is essential to preserve the linear order
between the words in a text [6]. In addition to interlinear
text, the syntactic structure of textual data should be
considered, which breaks a sentence into syntactic units
such as noun clauses, verb phrases, adjectives, and so on.
These are used by the language TreeBank to provide a
hierarchical representation of sentences. Therefore, by the
evaluation of a tree pattern query against the TreeBank, the
order between siblings should be considered.

The method discussed in [4] needs only polynomial time
for this problem and uses the XB-tree as its indexing
structure. (The method described in [16] is also for the
ordered tree matching, using a trie as the indexing structure.
But its time complexity is exponential in the size of query
nodes.)

In the following, we discuss an enhanced version of
XB-trees with an extra ability to cut off irrelevant
documents by using the so-call signatures technique.

XB-tree – an efficient index structure
An XB-tree [2, 4] over an XML data stream is just a

modification of the well-known B+-tree indexing structure,
as illustrated in Fig. 4(a), which is an XB-tree built over the
data stream shown in Fig. 4(b).

Each entry in a page (a node) P of an XB-tree consists of
a bounding segment [LeftPos, RightPos] and a pointer to its
child page, which contains entries with bounding segments
completely included in [LeftPos, RightPos]. The bounding
segments may partially overlap, but their LeftPos positions
are in increasing order. Besides, each page has two extra
data fields: P.parent and P.parentIndex. P.parent is a
pointer to the parent of P, and P.parentIndex is a number i
to indicate that the ith pointer in P.parent points to P. For
instance, in the XB-tree shown in Fig. 4(b), P3.parentIndex
= 2 since the second pointer in P1 (the parent of P3) points to
P3.

By a method which uses XB-trees as indexes, each node
q in a query Q will be associated with a data stream,
denoted B(q), such that for each v ∈ B(q) label(q) = label(v).
Over such a data stream, an XB-tree may be constructed.
We notice that in a Q we may have more than one query
nodes q1, ..., qk with the same label. So they will share the
same data stream and then the same XB-tree. For each qj (j
= 1, ..., k), we maintain a pair (P, i), denoted

Jqβ , to indicate
that the ith entry in the page P is currently accessed for qj.
Thus, each (j = 1, ..., k) corresponds to a different searching
of the same XB-tree as if we have a separate copy of that
XB-tree over B(qj).

In [2], two operations are defined to navigate an XB-
tree, which change the value of βq.
1. advance(βq) (going up from a page to its parent): If

βq = (P, i) does not point to the last entry of P, i ← i + 1.
Otherwise, βq ← (P.parent, P.parentIndex + 1).

2. drilldown(βq) (going down from a page to one of its chil-
dren): If βq = (P, i) and P is not a leaf page, βq ← (P’, 1),
where P’ is the ith child page of P.
Initially, for each q, βq points to (rootPage, 0), the first

entry in the root page. We finish a traversal of the XB-tree
for q when βq = (rootPage, last), where last points to the
last entry in the root page, and we advance it (in this case,
we set βq to φ, showing that the XB-tree over B(q) is
exhausted.) As with TwigStackXB [2], the entries in B(q)’s
will be taken from the corresponding XB-tree; and many
entries can possibly be skipped Each time we determine a q
(∈ Q), for which an entry from B(q) is taken, the following
three conditions are satisfied:
i) For q, there exists an entry vq in B(q) such that it has a

descendant in each of the streams B(qi) (where qi is a
child of q.)

ii) Each recursively satisfies (i).
iii) LeftPos(vq) is minimum.

To determine which XB-tree will be accessed in a next
step, we use the function getNext() given in [2], in which
the following functions are used.
isLeaf(q) - returns true if q is a leaf of Q; otherwise, false.
isRoot(q) - returns true if q is the root of Q; otherwise, false.
currL(βq) - returns the LeftPos of the entry pointed to by βq.
currR(βq) - returns the RightPos of the entry pointed to by
βq.
isPlainValue(βq) - returns true if βq is pointing to a leaf
node in the corresponding XB-tree.
end(Q) - if for each leaf node q of Q βq = φ (i.e., B(q) is ex-
hausted), then returns true; otherwise, false.
Function getNext(q) (*Initially, q is the root of Q.*)
begin
1. if (isLeaf(q)) then return q;
2. for each child qi of q do
3. {ri ← getNext(qi);
4. if (ri ≠ qi ∨ ¬isPlainValue(βq)) then return q;}
5. qmin ← q’ such that currL(βq’) = mini{currL(

iqβ)};

6. qmax ← q’’ such that currL(βq’’) = maxi{currL(
iqβ)};

7. while (currR(βq) < currL(
minqβ) do advance(βq);

(1, 1, 9, 1)
(1, 2, 7, 2)
(1, 3, 3, 3)
(1, 4, 6, 3)
(1, 5, 5, 4)
(1, 8, 8, 2)

(a)

 1, 9 3, 6 5, 8

1, 9 2, 7 3, 3 4, 6 5, 5 8, 8

p.parent

p.parentIndex

(b)

Fig. 4. A quadruple sequence and the XB-tree over it

8. if (currL(βq) < currL(
maxqβ) then return q;

9. else return qmin; }
end

The goal of the above function is to figure out a query
node to determine what entry from data streams will be
checked in a next step, which has to satisfy the above condi-
tions (i) - (iii). Lines 7 - 9 are used to find a query node sat-
isfying condition (i) (see Fig. 5 for illustration of line 7.)
The recursive call performed in line 3 shows that condition
(ii) is met. Since each XB-tree is navigated top-down and
the entries in each node is scanned from left to right,
condition (iii) must be always satisfied.

However, an XB-tree possesses no filtering mechanism

to discard irrelevant documents as early as possible, which
greatly delays response time. To address this problem, we
will integrate the so-called signature file technique [8] into
it to cut off irrelevant data. Intuitively, a signature for a key
word is a hash-coded bit string of length m with k bits set to
1 (k < m). Then, a signature for a single document can be
created by superimposing together the signatures for all the
key words appearing in it. (By ‘superimposing’ we mean a
bitwise OR operation.) When a query arrives, a query
signature can be generated by applying the same hash
function, and used to discard irrelevant documents
according to the following rules: (i) the document signature
s matches the query signature sq; that is, for every bit set in
sq , the corresponding bit in the document signature s is also
set (i.e., s � sq = sq) and the document really contains the
query words; (ii) the document does not match the query
(i.e., s � sq ≠ sq) and therefore can be discarded � and (iii)
the signature comparison indicates a match but the
document in fact does not match the search criteria (referred
to as a false drop); so the document itself needs to be
checked.

Fig. 6 depicts the signature generation and comparison
process of a document containing three key words: “John”,
“12345678”, and “professor”.

Fig. 6 depicts generation of a document signature and
comparison process of an object having three attribute
values: “John”, “12345678”, and “professor”.

In order to equip an XB-tree with the ability of filtering

irrelevant documents, we will associate each entry in a non-

leaf node of the XB-tree with a signature as illustrated in
Fig. 7.

We assume that the XB-tree shown in Fig. 7 is built over
a data stream for tag name ‘name’. Then, each entry in a
leaf node is associated with an author name, for which a
signature can be created using a hash function.
Superimposing all the signatures in a leaf node, we will
generate a signature for the corresponding entry in its parent
node. In the same way, we can superimposing all the
signatures in the parent to create a new signature and put in
a higher-level node, and so on.

Thus, when searching an XB-tree, we can also use
signatures to skip many nodes and discard irrelevant
documents.

C. Integrity constraints
As in a relational database, integrity constrains can be

specified in an XML database to keep data consistence. In
addition, it can also be utilized to speed up query evaluation.
For example, consider a query ‘find the title and author of
books that have a publisher’. If we have specified a
constraint such as ‘every book has a publisher’. Then, the
query can be simplified to ‘find the title and author of
books.’ In our research, four kinds of constraints are
recognized: (i) co-occurrance: types A and B always occur
together as children of another type, denoted by A ↓ B. (ii)
subtype: every document node of type A is also of type B,
denoted by A ≤ B. For example, in a document, there may
exist some nodes labeled with the type “technician” while
some other nodes with the type “employee”. Obviously, we
have “technician” ≤ “employee”. (iii) required child: every
document node of type A has a child of type B, denoted by A
→ B. (vi) required descendant: every document node of
type A has a descendant of type B, denoted by A � B.

The goal of our research on the integrity constraints is to
use them to simplify queries, and cut off searching space as
well.

D. Some other important issues
In this section, we discuss some other important issues,

such as IDREF/ID links and XPaths with complicated
predicates.

IDREF/ID links
In an XML document, we can associate a set of

attributes with an element. Especially, we can assign an
identifier to it as an attribute value (referred to as an ID
attribute), which can be referenced by another element by
using this identifier as one of its attribute values (referred to
as an IDREF attribute). In this sense, an XML document is

Fig. 7. Integration of signatures into XB-trees

 1, 9 3, 6 5, 8
 (110 100 101 101) (… …) (… …)

1, 9 2, 7 3, 3 4, 6 5, 5 8, 8

D. Knuth
(110 000 100 101)

D. Angela
(110 100 101 101)

T:

βq

qmin β

q
qmin

Q: If currR(βq) < currL(),
we have to advance βq.
It is because in the subtree
rooted at the entry pointed
to by βq, we cannot find any
node v such that T[v] covers
Q[q].

qmin β

Fig. 5. Illustration for advance(βq)

 document: John … 12345678 … professor …

Query signature:
010 000 100 110
011 000 100 100
110 100 100 000

queries:
John
Paul
11223344

key word:
 John 010 000 100 110
 12345678 100 010 010 100
 Professor ∨ 010 100 011 000
document
signature (DS): 110 110 111 110

Fig. 6. Document signature generation and comparison

matching results:
match with DS
not match with DS
false drop

considered to be a sparse directed graph: a tree plus some
IDREF/ID links. Thus, in some cases, the tree matching
method cannot be used to evaluate a query efficiently. To
know this clearly, let’s have a look at the following XPath
expression:
/AuthorBook[.//Author/name = ‘D. Knuth’ ∧
.//Author/@AuthorID = .//Book/@authorOf]/ Book/Title,

where @AuthorID refers to the ID attribute of element
Author while @authorOf the IDREF attribute of element
Book. This query asks for all the books authored by D.
Knuth. However, it cannot be represented by a tree, but by a
graph as shown in Fig. 8.

Therefore, the evaluation of such kind of queries is a

process to check subgraph isomorphism, which is in general
NP-hard. But a document graph is a special kind of graphs;
a tree plus IDREF/ID links. So we can first do a tree
matching and then check links, which needs only
polynomial time. For instance, the above XPath expression
can be rewritten as follows:
(/AuthorBook[.//Author/name = ‘D. Knuth’ ∧
.//Author/@AuthorID = x]/ Book[.//Book/@authorOf =
y]/Title) ∧ (x = y).

In the above expression, the first part can be represented
as a tree. Thus, it can be evaluated by using any strategy for
this task. Then, for each answer obtained, we will check the
values respectively for x and y to see whether they are equal.

General XPath expressions)
In a general XPath expression, predicates (such as ‘name

= D. Knuth’) can be connected by both ∧ and ∨. One can
even use a negated predicate (such as ‘¬(name = D.
Knuth)’) in an expression. Our initial idea is to decompose
an expression into several sub-expressions such that each of
them only contains ∧. Then, each of them will separately be
evaluated. Unifying their results, we will get the final
answer. For example, an expression given below

Book[Title = ‘XML’]//Author[name = ‘Jane’ ∨
name = ‘Doe’]

can be transformed into two sub-expressions:
Book[Title = ‘XML’]//Author[name = ‘Jane’],
Book[Title = ‘XML’]//Author[name = ‘Doe’].

III. REMOTE QUERY EVALUATION
In order to access remote databases when necessary, we

maintain a matrix M with each entry M(i, j) being a
structure: <descriptor; urla, urlb> to record how the
databases DBi and DBj are connected, where urla and urlb
are the URL addresses of DBi and DBj, respectively. If DBi
and DBj are homogeneous, descriptor is simply a label (or a

word) to indicate their relationship. For example, the
descriptor for DBhotel and DBauto-rental can be tourism.
However, if DBi and DBj are heterogeneous, descriptor will
be a complex structure which provides a way to resolve the
semantic conflict between DBi and DBj. Concretely, it is a
structure containing three parts: ontology for DBi, ontology
for DBj, and a mapping between the two ontologies.

In general, an ontology can be represented as a graph, in
which each node represents a concept or a relation, and an
edge from node v to node u represents one of four
relationships: v is a subclass of u, v is a subproperty of u, v
is the domain of u, and v is the range of u. Such an ontology
can be stored as an XML document following RDF/XML
syntax, where RDF (Resource Description Framework) is a
general-purpose language, developed by the W3C for
representing information in the Web [17, 21].

The mapping between two ontologies can be established
by using the so-called Description Logics (DL) [9],
designed for representing knowledge and reasoning about it.
Besides elementary descriptions for atomic concepts, atomic
roles (properties or relationships), universal concept (�) and
bottom concept (⊥), DL also provides four mapping
assertions: equivalence, overlapping, disjoint, and
subsumption (a concept C1 is subsumed by another concept
C2 if the instances described by C2 can be described by C1
but the inverse is not true).

A WDDBS will provide all the above described
functionalities. In addition, we will extend DL with a new
mapping relation: derivation to indicate a concept in an
ontology can be derived from some concepts in another
ontology. For example, we may specify a mapping as shown
below:

 Ontology1(father, brother) → Ontology2(uncle).
Such kind of mappings enables us to accommodate more

heterogeneity [10].

IV. WEB CRAWLER

As in any web search engine, WDDBS uses a web
crawler to explore the internet to find web pages of interests
or relevant document databases distributed all over the
world. Theoretically, a crawler can be a single machine that
is started with a set S, containing the URL’s of one or more
web pages to crawl. There is a repository R of pages with
the URL’s that have already been crawled. Initially, R is
empty. In order to check whether a new page has already
been in R at each step, a search engine typically maintains a
hash table H containing all the hash-coded signatures for all
the pages stored in R. Each time a page is found, the hash-
coded signature for it will be created and checked whether it
is in H. We will change this process by maintaining a
signature tree [8] for all the pages in R, instead of a hash
table. In this way, we will replace a hash table searching
with a signature tree searching, which should be a much
more efficient process.

As an example, consider a set H of signatures shown in
Fig. 9(a). We can store it as a tree structure as shown in Fig.
9(b). Such a tree has the following properties [8]:

authorOf

AuthorBook

Author Book

name Title

Output node

Fig. 8. A query graph

D. Knuth

i) Each node is labeled with a number 1 ≤ i ≤ l, where l is
the length of a signature in the hash table.

ii) Each left edge going out of a node is labeled with 0.
Each right edge 1.

iii) Each path from the root to a leaf node corresponds to the
identifier of a signature sk in H, which is represented by
a pair sequence: (i1, sk[i1]) … (ih, sk[ih]) such that the jth
node on the path is labeled with ij and the jth edge
labeled with sk[ij], where sk[i] is the ith bit of sk. There
exists no p (≠ k) such that (i1, sp[i1]) … (ih, sp[ih]) = (i1,
sk[i1]) … (ih, sk[ih]).

Due to the address collision, the time for searching a

hash table may be very long. But searching a signature tree
needs only O(l) time.

Another important issue concerning the web crawler is
the page ranking. The current mechanism used in a search
engine is based on the concept of ‘page importance’, which
is calculated by counting the incoming links to a page.
Concretely, the following recursive equation (established
according to the theory of Markov Chain) will be used to
estimate page importance [12]:

 P = (1 - β)NP + βJ,
where N is a k × k transition matrix with N(i, j) = 1/r if

page j has a link to page i, and there are a total r ≥ 1 pages
that j links to; otherwise, N(i, j) = 0. P is a vector of k
fraction numbers with each representing a page-importance
to be determined. J is also a vector but with initial values set
by the system to escape spider traps, each of which is a set
of pages without outgoing links, and β is the probability that
a spider trap appears.

The problem of the above method consists in the big size
of N. So we need to store N in a compact way. For example,
we can store N as a graph with each edge associated with an
entry in N, and relax the exact solution to the equation to an
approximate one by simulating random walk processes [11].

V. CONCLUSION
In this paper, the architecture of WDDBS is discussed,

which is designed to facilitate the internet navigation. The
system mainly contains three parts: local XML document
management, remote query evaluation, and web crawling. In
the local document system, a set of XML documents is
stored and maintained, including query evaluation, indexing,
and specification of integrity constraints. In the subsystem
for remote query evaluation, a set of ontologies for different
connected document databases, as well as their mappings, is
maintained to resolve semantic conflicts. Finally, the web

crawler is used to explore the internet to find information of
interest, or all those document databases connected to the
local one in some way.

REFERENCES
[1] A. Bonifati, and S. Ceri, Comparative analysis of five XML query

languages, SIGMOD Record, 29(1), 2000, pp. 68-79.
[2] N. Bruno, N. Koudas, and D. Srivastava, Holistic Twig Joins:

Optimal XML Pattern Matching, in Proc. SIGMOD Int. Conf. on
Management of Data, Madison, Wisconsin, June 2002, pp. 310-321.

[3] S. Chen, H-G. Li, J. Tatemura, W-P. Hsiung, D. Agrawa, and K.S.
Canda, Twig2Stack: Bottom-up Processing of Generalized-Tree-
Pattern Queries over XML Documents, in Proc. VLDB, Seoul, Korea,
Sept. 2006, pp. 283-294.

[4] Y. Chen and Y.B. Chen, Tree Reconstruction and Bottom-up
Evaluation of Tree Pattern Queries, accepted by Int. Conf. on
Information Science and Applications (ICISA 2010), Seoul, Korea.

[5] Y. Chen, Bottom-up Evaluation of Twig Join Queries in XML
Document Databases, in Proc. 20th International Conf. on Database
and Expert Systems Application (DEXA’09), Springer Verlag, Linz,
Austria, August 31 - Sept. 4, 2009, pp. 356-363.

[6] B. Catherine and S. Bird, Towards a general model of Interlinear text,
in Proc. of EMELD Workshop, Lansing, MI, 2003.

[7] Y. Chen and Y.B. Chen, A New Tree Inclusion Algorithm,
Information Processing Letters 98(2006) 253-262, Elsevier Science
B.V.

[8] Y. Chen and Y.B. Chen, On the Signature Tree Construction and
Analysis, IEEE Transaction on Knowledge and Data Engineering,
Vol. 18, No. 9, Sept. 2006, pp. 573-596.

[9] F. Baader, I. Horrocks, U. Sattler, Description Logics as Ontology
Languages for Semantic Web, Lecture Notes in Artificial Intelligence,
Springer Verlag, 2003.

[10] Y. Chen, A Systematic Method for Query Evaluation in Distributed
Heterogeneous Relational Databases, Journal of Information Science
and Engineering, Vol. 16, No. 4, 2000, pp. 463-497.

[11] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós,
Towards Scaling Fully Personalized PageRank: Algorithms, Lower
Bounds, and Experiments, Internet Mathematics Vol. 2, No. 3: 333-
358.

[12] H. Garcia-Molina, J. Ullman, and J. Widdom, Database Systems: The
Complete Book, Prentice Hall, 2008.

[13] G. Gottlob, C. Koch, and K.U. Schulz, Conjunctive queries over
trees, ACM PODS’2004, pop. 189-200.

[14] G. Gou and R. Chirkova, Efficient Algorithms for Evaluating XPath
over Streams, in: Proc. SIGMOD, June 12-14, 2007.

[15] P. Ramanan, Holistic Join for Generalized Tree Patterns, Information
Systems 32 (2007) 1018-1036.

[16] P. Rao and B. Moon, Sequencing XML Data and Query Twigs for
Fast Pattern Matching, ACM Transaction on Database Systems, Vol.
31, No. 1, March 2006, pp. 299-345.

[17] RDF Semantics. http://www.w3.org/TR/ref-mt.
[18] C. Seo, S. Lee, and H. Kim, An Efficient Index Technique for XML

Documents Using RDBMS, Information and Software Technology
45(2003) 11-22, Elsevier Science B.V.

[19] K. Wang and H. Liu, Discovering structural association of
semistructured data, IEEE transaction on knowledge and data
engineering, Vol. 12, No. 3, May/June 2000, pp. 353-371.

[20] World Wide Web Consortium. XQuery 1.0: An XML Query
Language, W3C Recommendation, Version 1.0, Jan. 2007. See
http://www.w3.org/TR/xquery.

[21] Z. Wu et al., Implementing an Inference Engine for RDFS/OWL
Constructs and User-Defined Rules in Oracle. in Proc. 24th Int. Conf.
on Data Engineering (ICDE 2008), IEEE, April 2008, pp. 1239-1248.

[22] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman, on
Supporting containment queries in relational database management
systems, in Proc. of ACM SIGMOD, 2001.

S1:
S2:
S3:
S4:
S5:
S6:
S7:
S8:

011
111
111
011
011
011
011
111
S :

011
011
101
001
101
111
001
011
S :

000
001
010
101
110
110
111
111
S :

101
111
111
111
101
101
111
111
S :

1

7 4

4 7

8 5

1.

7. 5. 4. 6.

2. 8.

3.

(a) (b)

Fig. 9. A hash table and a signature tree

