
On the Massive String Problem

1
Yangjun Chen,

2
Yujia Wu

Dept. Applied Computer Science

University of Winnipeg, Canada

email:
1
y.chen@uwinnipeg.ca,

2
wyj1128@yahoo.com

Abstract—In this paper, we discuss an efficient and effective

index mechanism to support the matching of massive pattern

strings in against a very long target string. It is very important to

the next generation sequencing in the biological research. The

main idea behind it is to construct an automaton over all the

pattern strings, and search the automaton against a BWT-array

L created for a target string s to locate all the occurrences of

every pattern in s once for all. Experiments have been conducted,

which show that our method for this problem is better than the

existing approaches.

Keywords—string matching; DNA sequences; automata; BWT-

transformation

I. INTRODUCTION

The recent development of next-generation sequencing has
changed the way we carry out the molecular biology and
genomic studies. It has allowed us to sequence a DNA
(Deoxyribonucleic acid) sequence at a significantly increased
base coverage, as well as at a much faster rate. This requires us
considering all the string patterns as a whole, rather than
separately check them one by one. Two kinds of string
matching need to be handled: exact matching and inexact
matching. By the exact matching, we will find all the
occurrences of a pattern string r in a target string s, but by the
inexact matching we allow each occurrence having up to k
positions different between r and s. The inexact matching is
important due to the polymorphisms or mutations among
individuals or even sequencing errors, the pattern may
disagree in some positions at an occurrence of r in the target s.

The string matching is always an interesting and important
research topic in the computer science and computer
engineering. In the past several decades, a bunch of efficient
strategies have been proposed to find all the occurrences of a
pattern in a target very fast, such as those discussed in [2, 3, 7,
8, 9, 11]. Roughly speaking, all these methods can be classified
as illustrated in Fig. 1.

From Fig. 1, we can see that for the exact matching problem
we distinguish between two kinds of strategies: the single-
pattern oriented strategy and the multi-pattern oriented method.

By the former, each time only one pattern string will be
mapped to the target string, and for this we have both the on-
line methods such as Knuth-Morris-Pratt [8], Boyer-Moore
[11], and Apostolico-Giancarlo [3], and the off-line (index-
based) methods like suffix trees [4], suffix arrays [14], and
BWT-transformation (Burrows-Wheeler Transformation) [6].
However, by the latter, we have only one, which is the
algorithm proposed by Aho and Corasick in 1975 [1], by
which an automaton is established over all the patterns and
search it against a target in one scan

For the inexact matching problem, we also have both the

on-line strategies, such as the methods discussed in [2, 7, 9],

and the index-based method such as the method proposed in

[12]. The methods of [7, 9] have the worst-case time

complexities bounded by O(kn + mlogm), where n = |s| and m

= |r|. By these two methods, the mismatch information among

substrings of r is used to speed up the working process. The

method discussed in [2] is with a slightly better time

complexity O(n k logk). By this method, the periodicity

within r is utilized. In [12], and target string s is transformed

to a BWT-array (denoted as BWT(s)) as an index [6]. In

comparison with suffix trees [4], BWT(s) uses much less space

[12]. However, its time complexity is bounded by O(mn + n),

where n is the number of leaf nodes of a tree produced during

the search of BWT(s). This time requirement can be much

worse than the best on-line algorithm for large patterns. The

reason for this is that by this method neither mismatch

information nor periodicity within r is employed.
In this paper, we address only the exact matching and

present a holistic string matching algorithm to handle million-
billion pattern strings. Our experiment shows that it can be
more than 40% faster than single-pattern oriented methods
when multi-million patterns are checked. The main idea
behind our method is:
1. Constructing an automaton A over all the pattern strings,

and check A against a BWT-array created as an index for a
target string. This enables us to avoid repeated search of
the same part of different patterns.

2. Change a single-character checking to a multiple-character
checking. (That is, each time a set of characters
respectively from more than one pattern will be checked
against a BWT-array in one scan, instead of checking them
separately one by one in multiple scans.)

In this way, high efficiency has been achieved.
The remainder of the paper is organized as follows. In

Section II, we briefly describe a string matching algorithm
based on the BWT-transformation. In Section III, we discuss

Figure 1. Classification of methods for string matching

exact matching

inexact matching

single-pattern
oriented

multi-pattern
oriented

on-line

index-based

suffix tree
suffix array
hash-based
BWT-array

on-line

on-line

 index-based

BWT-array

mailto:y.chen@uwinnipeg.ca

our basic algorithm in great detail. In Section IV, we improve
the basic method by using multiple-character checks. Section
V is devoted to the test results. Finally, a short conclusion is
set forth in Section VI.

II. BWT-TRANSFORMATION

In this section, we give a brief description of the BWT
transformation to provide a discussion background.

A. BWT Arrays

We use s to denote a string that we would like to transform.
Assume that s terminates with a special character $, which
does not appear elsewhere in s and is alphabetically prior to all
other characters. In the case of DNA sequences, we have $ < A
< C < G < T. As an example, consider s = acagaca$. We can
rotate s consecutively to create eight different strings as shown
in Figure 2(a).

By writing all these strings stacked vertically, we generate

an n n matrix, where n = |s| (see Fig. 2(a).) Here, special

attention should be paid to the first column, denoted as F, and

the last column, denoted as L. For them, the following

equation, called the LF mapping, can be immediately observed:

 F[i] = L[i]’s successor, (1)

where F[i] (L[i]) is the ith element of F (resp. L).

From this property, another property, the so-called rank

correspondence can be derived, by which we mean that for

each element, its ith

appearance (among all those elements

with the same character) in F corresponds to its ith appearance

in L, as demonstrated in Figure 1(b), in which the position of a

character (in s) is represented by its subscript. (That is, we

rewrite s as a1c1a2g1a3c2a4$.) For example, a2 (representing the

2nd

appearance of a in s) is in the second place among all the

a-characters in both F and L while c1 the first appearance in

both F and L among all the c-characters. In the same way, we

can check all the other appearances of different characters.

Now we sort the rows of the matrix alphabetically. We

will get another matrix, called the Burrow-Wheeler Matrix [6]

and denoted as BWM(s), as demonstrated in Fig. 2(c).

Especially, the last column of BWM(s), read from top to

bottom, is called the BWT-transformation (or the BWT-array)

and denoted as BWT(s). So for s = acagaca$, we have BWT(s)

= acg$caaa.

By the BWM matrix, the LF-mapping is obviously not

changed. Surprisingly, the rank correspondence also remains.

Even though the ranks of different appearances of a certain

character (in F or in L) may be different from before, their

rank correspondences are not changed as shown in Figure 3(a),

in which a2 now appears in both F and L as the fourth element

among all the a-characters, and c1 the second element among

all the c-characters.

Due to the LF-mapping and the rank correspondence, the
BWT-transformation can be used to do efficient string
matching, which will be discussed in the next subsection in
great detail. We need this part of knowledge to develop our
method.

B. String Search Using BWT

For the purpose of the string search, the character

clustering in F has to be used. Especially, for any DNA

sequence, the whole F can be divided into five or less

segments: $-segment, A-segment, C-segment, G-segment, and

T-segment, denoted as F$, FA, FC, FG, FT, respectively. In

addition, for each segment in F, we will rank all its elements

from top to bottom, as shown in Figure 3(a). $ is not ranked

since it appears only once.

From Fig. 3(a), we can see that the rank of a4, denoted as

rkF(a4), is 1 since it is the first element in FA. For the same

reason, we have rkF(a3) = 2, rkF(a1) = 3, rkF(a2) = 4, rkF(c2) =

1, rkF(c1) = 2, and rkF(g1) = 1.

It can also be seen that each segment for a certain

{$} in F can be effectively represented as a pair of the form:

<, [x, y]>, where x and y are the positions of the first and

last appearance of in F, respectively. So the whole F can be

effectively compacted and represented as a set of || + 1

triplets, as illustrated in Fig. 3(b).

Now, we consider j (the jth

appearance of in s.)

Assume that rkF(j) = i. Then, the position where j appears in

F can be easily determined:

 F[x + i - 1] = j. (2)

Besides, if we rank all the elements in L top-down in such a

way that an j is assigned i if it is the ith appearance among all

the appearances of in L. Then, we will have

 rkF(j) = rkL(j), (3)

where rkL(j) is the rank assigned to j in L.

This equation is due to the rank correspondence between F

and L. (See [6, 10] for a detailed discussion. Also see Fig. 3(a)

for ease of understanding.

With the ranks established, a string matching can be very

efficiently conducted by using the formulas (2) and (3). To see

Figure 3. LF-mapping and tank-correspondence

$ a4

a4 c2

c2 a3

a3 g1

g1 a2

a2 c1

c1 a1

a1 $

F L

(a) (b)

1

1

2

1

4

2

3

rkF

1

2

1

4

2

3

By ranking the

elements in F,

each element in
L is also ranked

with the same

number.

rkL

F$ = <$, [1, 1]>

Fa = <a, [2, 5]>

Fc = <c, [6, 7]>

Fg = <g, [8, 8]>

Figure 2. Rotation of a string

$ a c a g a c a

a c a g a c a $

c a g a c a $ a

a g a c a $ a c

g a c a $ a c a
 a c a $ a c a g
 c a $ a c a g a

a $ a c a g a c

$ a c a g a c a
 a $ a c a g a c

c a $ a c a g a

a c a $ a c a g

g a c a $ a c a

a g a c a $ a c

c a g a c a $ a

a c a g a c a $

(a) (c)

a

g

a

c

a

$

(b)

a

g

a

c

a

$

a1 $

c1 a1

c2 a3

a2 c1

$ a4

a3 g1

a4 c2

g1 a2

F L

F L

this, let us consider a pattern string p = aca and try to find all

its occurrences in s = acagaca$.

We work on the characters in p in the reverse order.

First, we check p[3] = a in the pattern string p, and then

figure out a segment in L, denoted as L, corresponding to Fa =

<a; 2, 5>. So L = L[2 .. 5], as illustrated in Fig. 4(a), where

we still use the non-compact F for explanation. In the second

step, we check p[2] = c, and then search within L to find the

first and last c in L. We will find rkL(c2) = 1 and rkL(c1) = 2.

By using (3), we will get rkF(c2) = 1 and rkF(c1) = 2. Then, by

using (2), we will figure out a sub-segment F in F: F[xc + 1 -

1 .. xc + 2 - 1] = F[6 + 1 - 1 .. 6 + 2 - 1] = F[6 .. 7]. (Note that

xc = 6. See Fig. 4(a) and Fig. 4(b).) In the third step, we check

p[1] = a, and find L = L[6 .. 7] corresponding to F = F[6 ..

7]. Repeating the above operation, we will find rkL(a3) = 2 and

rkL(a1) = 3. See Fig. 4(c). Since now we have exhausted all the

characters in p and F[xa + 2 – 1, xa + 3 – 1] = F[3, 4] contains

only two elements, two occurrences of p in s are found. They

are a1 and a3 in s, respectively.

In the following, we will use search(, Lz) to represent a

search of Lz to find the first and the last rank of (denoted

respectively as i and j) within Lz, and return <, [i, j]> as the

result, where z represents a subrange in Fβ for some character

β and Lz represents a segment within L corresponding to z.

C. Construction of BWT arrays

It is not necessary to construct a BWT-array by rotating s,
but by using a simple relationship between it and the
corresponding suffix array [14] for s, as described below.

Let s = a0a1 ... an−1, ended with $ (i.e., ai for i = 0, …, n
– 2, and an−1 = $). Let s[i] = ai (i = 0,1, …, n – 1) be the ith
character of s, s[i.. j] = ai ... aj a substring and s[i .. n − 1] a
suffix of s. Then, the suffix array J of s is a permutation of
integers 0, ..., n − 1 such that J[i] is the start position of the ith
smallest suffix. The relationship between J and the BWT-array
L can be determined by formula (5).

Once L is determined, F can be created immediately by

using formula (1).

III. MAIN ALGORITHM

In this section, we present our algorithm to search a bunch

of patterns against a target s. Its main idea is to organize all

the pattern strings into an automaton A and search A against L

to avoid any possible redundancy. First, we present the

concept of automata in Subsection A. Then, in Subsection B,

we discuss our basic algorithm for the task. We improve this

algorithm in Section V.

A. Automaton over Pattern Strings

Let s be a target string, a very long string
*
(for a DNA

database, = {A, T, C, G}). Let R = {r1, …, rm} be a set of

patterns with each rj being a short string
*
. The problem is

to find, for every rj’s (j = 1, …, m), all their occurrences in s.

A simple way to do this is to check each rj against s one by

one, for which different string searching methods can be used,

such as suffix trees, BW-transformation [6], and so on. Each

of them needs only a linear time (in the size of jr) to find

all occurrences of rj in s. However, in the case of very large m,

which is typical in the new genomic research, one-by-one

search of patterns against s is no more acceptable in practice

and some efforts should be spent on reducing the running time

caused by huge m.

Our general idea is to organize all rj’s into an automaton

structure A and search A against s with the BW-transformation

being used to check the string matching. For this purpose, we

will first attach $ to the end of each s (i = 1, …, n) and

construct BWT(s). Then, attach $ to the end of each rj (j =

1, …, m) to construct a prefix tree T = pt(R) over R as below.

If |R| = 0, pt(R) is, of course, empty. For |R| = 1, pt(R) is a

single node. If |R| > 1, R is split into || = k (possibly empty)

subsets R1, R2, …, Rk so that each Ri (i {1, …, k}) contains

all those strings with the same first character i {$}.

The prefix trees: pt(R1), pt(R2), …, pt(Rk) are constructed in

the same way except that at the lth step, the splitting of sets is

based on the lth characters in the sequences. They are then

connected from their respective roots to a single node to create

pt(R).

Example 1 As an example, consider a set of four patterns:

 r1: ACAGA

 r2: AG

 r3: ACAGC

 r4: CA

For these strings, a prefix tree T can be constructed as shown

by the solid lines in Fig. 5(a). In T, v0 is a virtual root while

any other node v corresponds to a real character, labelling the

edge e from v’s parent to v and denoted l(e). Therefore, all the

characters on a path from the root to a leaf spell a pattern. For

instance, the path from v0 to v8 corresponds to the third pattern

r3 = ACAGC$. Note that each leaf node v is labelled with $

and associated with a pattern identifier, denoted as (v).

<, [i, j]>,
(4)

a

g

a

c

a

$

if appears in Lz;

, otherwise.
search(, Lz) =

Figure 4. Sample trace

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $

F L

(a) (b)

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $

F L

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $

F L

To find

the first c

to find

the last c
to find

the first a

to find

the last a

(c)

rkL

rkL

rkL

(5)

a

g

a

c

a

$

L[i] = $, if J[i] = 0;

L[i] = s[J[i] – 1], otherwise.

In such a prefix tree, we define the label of a node v as the

concatenation of edge labels on the path from the root to v,

and denote it by P(v). Then, we define a failure function f(v) (v

 T\{v0}), which gives the node entered at a mismatch. That

is, f(v) is the node labeled by the longest proper suffix w of

P(v) such that w is a prefix of some pattern, as illustrated by

the dashed arrows in Fig. 5. For example, f(v3) = v12 is

represented by the dashed arrow from v3 to v12. We have this

since P(v12) = ‘CA’ is a suffix of P(v3).

Then, T {f(v) | v T\{v0}} makes up an automaton.

B. Integrating BWT Search with Automaton Search

It is easy to see that exploring a path in a prefix tree T over

a set of patterns R corresponds to scanning a pattern r R. If

we explore, at the same time, the array L = BWT(s)

established over a reversed target string s , we will find all the

occurrences of r (without $ involved) in s (which is equivalent

to searching r against BWT(s).) Then, a depth-first searching

of T against L will find all the occurrences of all patterns. In

this process, the failure function can be used to speed up the

computation as follows:

1. Each encountered node in T will be marked.

2. Let v be a node currently encountered in T. If f(v) = u is not

marked, we will search along a path bottom-up in T,

starting from u: u = u1 u2 … uk such that ui is a

child of ui-1 (i = 2, …, k) and uk is a direct child of the root

or a node associated with a range by the following step.

3. Let v = v1 v2 … vk be the corresponding path

starting from v. Let [xi, yi] be the range found for l(vi-1

vi). We will attach it to ui, denoted as g(ui).

The above process is denoted as rangeAttach(v, u). Its

purpose is to avoid any repeated work. Each time we explore

an edge u v in T, we will search a segment L within L to

find a subrange for = l(u v). If g(v) is available, we will

not search the whole L, but part of it as follows:

i) Let g(v) = [x, y]. Search L[x .. x – 1] to find the first

appearance x of , where L[x] is the first element of L. If

 cannot be found, x should be the beginning position of

the subrange to be found. Otherwise, it is x.

ii) Search L[y + 1 .. y] to find the last appearance y of ,

where L[y] is the last element y of L. If cannot be

found, y should be the ending position of the subrange to

be found. Otherwise, it is y.

This is the main benefit brought by the failure function. To

show its difference from search(), we denote the process as

searchI(, L, g(v)). See Fig. 6 for illustration.

According to the above discussion, we give the following

algorithm, which is in essence a depth-first search of T by

using a stack S to control the process. However, each entry in

S is a pair <v, [a, b]> with v being a node in T and a b, used

to indicate a sub-segment to be searched to find the first and

last appearances of l(u v) in it. For example, when

searching the tree shown by the solid lines in Fig. 5(a) against

the L array shown in Fig. 3(a), we will have an entry like <v1,

[1, 8]> in S to represent a sub-segment L[1 .. 8] to be searched

to find a subrange for l(v0 v1) = A. In addition, for

technical convenience, we use to represent the empty

character and set search(, L) = L for any sub-segment L

within L. We also assume that the character associated with

the edge from the root’s parent to the root is .

ALGORITHM patternSearch(A, LF)

begin

1. v root(A); ;

2. push(S, <v, [1, |s|]>);

3. while S is not empty do {

4. <v, [a, b]> pop(S); let u be the parent of u; l(u v);

5. if g(v) not available then [i, j] search(, [a, b]);
6. else [i, j] searchI(, [a, b], g(v));

7. let v1, …, vk be the children of v;

8. for l = k downto 1 do {

9. if vl is the parent of a leaf then {<(vl), , i, j>};

10. else{rangeAttach(vl, f(u)); push(S, <vi, [x + i - 1, x + j - 1]>); }

11. }

12. }

end

In the algorithm, we first push <root(A), [1, |s|]> into stack S

(lines 1 – 2), and set the result to be . Then, we go into the

main while-loop (lines 3 – 12), in which we will first pop out

the top element from S, stored as a pair <v, [a, b]> (line 4).

Then, we will search L[a .. b] to find the subrange for l(u v),

where u is the parent of v, by executing searchI() or search(),

depending on whether g(v) is available (see lines 5 – 6). Next,

for each child vl (l = 1, …, k for some k) of v, we will push <vl,

[x + i - 1, x + j - 1]> into stack S if vl is not the parent of a leaf

node, where [i, j] represents a subrange in F found by using

searchI() or search(). Otherwise, all the occurrences of (vl)

have been found, which are represented by , i, and j, i.e.,

Figure 6. Illustration for use of g()

y

x

g(v)

x

y

L
 x

y

F

g(w)

L

We need to search L[x .. x]
to the first appearance of .

Assume that w is a child of v.
To find the first appearance of
l(v w), we need to search
part of L, which is determined
by searching L.

Figure 5. A trie and the corresponding automaton

A

C

A

G

A

$

G

C

v0

v1

v2

v3

v4

v5

v6

C

A

r1

r3

r2

r4

$

$

$

v7

v8

v9

v10

v11

v12 v13

F[x + i - 1 .. x + j - 1], from which all those occurrences can

be easily determined.

IV. IMPROVEMENTS

In the algorithm discussed in the previous section, each

time only for a single character part of L is searched to

determine its sub-segment within it. However, we can manage

to search the segment for multiple characters in one scan, i.e.,

for all the characters labeling the different edges going out a

node. To this end, we need to make the following changes:

- The characters in will be represented as integers. For

example, we can use 1, 2, 3, 4, 5 to represent A, C, G, T,

$ in a DNA sequence.

- Each entry in stack S is still a pair <v, [a, b]>. But [a, b] is

now a sub-segment in L found for l(u v), where u is the

parent of v.

Let v1, …, vk be the children of v. What we want is to find all

the sub-segments in L for each l = l(v vl) (l = 1, …, k) in

one scan of L[a .. b]. For simplicity, however, only the process

to find the first appearances of l’s is explained. For this, the

following data structures will be used:

- Bv: a Boolean array of size || {$} associated with node v

in T, in which, for each i , Bv[i] = 1 if there exists a child

node vl of v such that l(v vl) = i; otherwise, Bv[i] = 0.

- ci: a variable associated with i to record the first

appearances of i during a search of L[a .. b].

By using the above data structures, the task to find the first

appearance of all l’s can be done as follows:

- Let g(vl) = [xl, yl] (l = 1, …, k). Denote x = max{x1, …, xk}.

(If for any vl g(vl) is not available, x is set to be b.)

- Search L[a .. x - 1] from the start to the end. For each

encountered entry L[j] (a j x - 1), we will check whether

Bv[L[j]] = 1. If it is the case, store j in cL[j] and change

Bv[L[j]] to 0.

See Fig. 7 for illustration.

The last appearances of all l’s can be found in a similar

way. In the algorithm below, these two procedures are referred

to as firstAp (v) and lastAp (v), respectively.

ALGORITHM pS(T, LF,)

begin

1. v root(T);

2. push(S, <v, [1, |s|]>);

3. while S is not empty do {

4. <v, a, b> pop(S); l(u v); c rkL(a); d rkL(b);

5. let v1, …, vk be all those children of v, which are labeled with $;

6. let u1, …, uj be all the rest children of v;

7. for each i {1, …, k} do { {<(vi), , c, d>};

8. let l(v ul) = l (l {1, …, j});

9. call firstAp(v) to find the ranks of the first appearances

of 1, …, j, respectively: r(u1), …, r(uj);

10. call lastAp(v) to find the ranks of the last appearances

of 1, …, j, respectively: r(u1), …, r(uj);

11. for l = j downto 1 do

12. { push(S, <ul, [
j

x + r(ul) - 1,
j

x + r(uj) - 1]>) };

13. }

end

The main difference of the above algorithm from

patternSearch() consists in the different ways to search L[a ..

b]. Here, to find the ranks of the first appearances of all the

labels of the children of v, firstAp(v) is called to scan part of L

only once (while in patternSearch() this has to be done once

for each different child.) See line 9. Similarly, to find the

ranks of the last appearances of these labels, another part of L

is also scanned only once by calling lastAp(v). See line 10. All

the other operations are almost the same as in pattern-

Search(). (For ease of understanding, the use of failure

functions is not included.)

V. EXPERIMENTS

In our experiments, we have tested altogether five different

methods:

- Burrows Wheeler Transformation (BWT for short),

- Suffix tree based (Suffix for short),

- Hash table based (Hash for short),

- Automaton-BWT (aBWT for short, discussed in this paper),

- Improved Automaton-BWT (iaBWT for short, discussed in

this paper).

Among them, the codes for the suffix tree based and hash

based methods are taken from the gsuffix package [4] while all

the other three algorithms are implemented by ourselves. All

of them are able to find all occurrences of every read (short

DNA sequence) in a genome. The codes are written in C++,

compiled by GNU make utility with optimization of level 2. In

addition, all of our experiments are performed on a 64-bit

Ubuntu operating system, run on a single core of a 2.40GHz

Intel Xeon E5-2630 processor with 32GB RAM.

For the tests, five reference genomes are used:

 Table 1: Characteristics of genomes

Genomes Genome sizes (bp)

Rat chr1 (Rnor_6.0) 290,094,217

C. merolae (ASM9120v1) 16,728,967

C. elegans (WBcel235) 103,022,290

Zebra fish (GRCz10) 1,464,443,456

Rat (Rnor_6.0) 2,909,701,677

Figure 7. Illustration for multi-character checking

L[a .. b]: A C A T T G … … …

1 2 1 4 4 3 … … …

g(vl)

g(vj)

… …

Bv[L[j]] = 1? If it is the case, the rank of j will be
stored in cL[j] and Bv[L[j]] will be changed to 0.

Only this part will be searched.

x y

All the pattern strings are created by simulating reads from

the five genomes shown in Table 1, with varying lengths and

amounts. It is done by using the wgsim program included in

the SAMtools package [13] with default model for single read

simulation.

In this experiment, we vary the amount n of reads with n =

5, 10, 15, … , 50 millions while the reads are 50 bps or 100

bps in length extracted randomly from Rat chr1 and C. merlae

genomes. In Fig. 8(a) and (b), we report the test results of

searching the Rat chr1 for matching reads of 50 and 100 bps,

respectively. From these two figures, it can be clearly seen

that the hash based method has the worst performance while

ours works best. For short reads (of length 50 bps) the suffix-

based is better than the BWT, but for long reads (of length 100

bps) they are comparable. The poor performance of the hash-

based is due to its inefficient brute-force searching of genomes

while for both the BWT and the suffix-based it is due to the

huge amount of reads and each time only one read is checked.

In the opposite, for both our methods aBWT and iaBWT, the

use of tries enables us to avoid repeated checking for similar

reads.

In these two figures, the time for constructing automata

over reads is not included. It is because in the biological

research an automaton can be used repeatedly against different

genomes, as well as often updated genomes. However, even

with the time for constructing tries involved, our methods are

still superior since the automaton can be established very fast

as demonstrated in Table 2, in which we show the times for

constructing automata over different amounts of read.

 Table 2: Time for trie construction over reads of length 100 bps

No. of reads 30M 35M 40M 45M 50M

Time forAuto. Con. 51.9s 65s 83s 97s 113s

The difference between tBWT and itBWT is due to the

different number of BWT array accesses as shown in Table 3.

By an access of a BWT array, we will scan a segment in the

array to find the first and last appearance of a certain character

from a read (by aBWT) or a set of characters from more than

one read (by iaBWT).

Table 3: No. of BWT array accesses

No. of reads 30M 35M 40M 45M 50M

tBWT 47856K 55531K 63120K 70631K 78062K

itBWT 19105K 22177K 25261K 28227K 31204K

VI. CONCLUSION

In this paper, a new method to search a large volume of

pattern strings against a single long target string has been

proposed, aiming at efficient next-generation sequencing in

DNA databases. The main idea is to combine the search of

automata constructed over the patterns and the search of the

BWT indexes over the target. By using the failure functions,

the sizes of sub-segments of a BWT array to be searched can

be dramatically decreased. In addition, the so-called multiple-

character checking has been introduced, which reduces the

multiple scanning of a BWT array to a single search of it.

Experiments have been conducted, which show that our

method improves the running time of the traditional methods

by an order of magnitude or more.

REFERENCES

[1] A.V. Aho and M.J. Corasick, “Efficient string matching: an aid to

bibliographic search,” Communication of the ACM, Vol. 23, No. 1, pp.
333 -340, June 1975.

[2] A. Amir, M. Lewenstein and E. Porat, “Faster algorithms for string
matching with k mismatches,” Journal of Algorithms, Vol. 50, No.

2, Feb.2004, pp. 257-275.

[3] A. Apostolico and R. Giancarlo, “The Boyer-Moore-Galil string
searching strategies revisited,” SIAM Journal on Computing, Vol. 15,

No. 1, pp. 98 – 105, Feb. 1986.

[4] S. Bauer, M.H. Schulz, P.N. Robinson, gsuffix: http:://gsuffix.
 Sourceforge.net/, retrieved: April 2016.

[5] R.S. Boyer and J.S. Moore, “A fast string searching algorithm,”

Communication of the ACM, Vol. 20, No. 10, pp. 762 -772, Oct. 1977.
[6] M. Burrows and D.J. Wheeler, “A block-sorting lossless data

compression algorithm,” http://citeseer.ist.psu.edu/viewdoc/summary?

doi=10.1.1.121.6177, 1994, retrieved: 2016.
[7] Z. Galil, “On improving the worst case running time of the Boyer-

Moore string searching algorithm,” Communication of the ACM, Vol.

22, No. 9, pp. 505 -508, 1977.
[8] D.E. Knuth, J.H. Morris, and V.R. Pratt, “Fast pattern matching in

strings,” SIAM Journal on Computing, Vol. 6, No. 2, pp. 323 – 350,

June 1977.
[9] G.M. Landau and U. Vishkin, “Efficient string matching with k

mismatches,” Theoretical Computer Science, Vol. 43, pp. 239 – 249,

1986.
[10] B. Langmead, “Introduction to the Burrows-Wheeler Transform,”

www.youtube.com/watch?v=4n7N Pk5lwbI, retrieved: April 2016.

[11] T. Lecroq, “A variation on the Boyer-Moore algorithm,” Theoretical
Computer Science, Vol. 92, No. 1, pp. 119 – 144, Jan. 1992.

[12] H. Li, et al., “Mapping short DNA sequencing reads and calling

variants using mapping quality scores,” Genome Res., 18, 1851–1858,
2008.

[13] H. Li, “wgsim: a small tool for simulating sequence reads from a

reference genome,” https://github.com/lh3/wgsim/, 2014.
[14] U. Manber and E.W. Myers, “Suffix arrays: a new method for on-line

string searches,” Proc. the 1st Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 319 – 327, SIAM, Philadelphia, PA, 1990.

[15] Y. Chen, D. Che and K. Aberer, “On the Efficient Evaluation of Relaxed

Queries in Biological Databases,” in Proc. 11th Int. Conf. on

Information and Knowledge Management, Virginia, U.S.A.: ACM, Nov.
2002, pp. 227 – 236.

Figure 8: Test results on very amount of reads

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

Suf f ix Hash BWT

aBWT iaBWT

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5 10 15 20 25 30 35 40 45 50

time (s)
time (s)

amount of reads (million)

(b) (a)

amount of reads (million)

http://citeseer.ist.psu.edu/viewdoc/summary?%20doi=10.1.1.121.6177
http://citeseer.ist.psu.edu/viewdoc/summary?%20doi=10.1.1.121.6177
http://www.youtube.com/
https://email.uwinnipeg.ca/owa/redir.aspx?SURL=PQRIrVkTR23TYE9yls6FNwsDyNKXyGLVAR_j9kDEf6OcUC2PIszSCGgAdAB0AHAAcwA6AC8ALwBnAGkAdABoAHUAYgAuAGMAbwBtAC8AbABoADMALwB3AGcAcwBpAG0ALwA.&URL=https%3a%2f%2fgithub.com%2flh3%2fwgsim%2f

