
Document Tree Reconstruction and Fast Twig Pattern 
Matching

Yangjun Chen

Dept. Applied Computer Science, University of Winnipeg

515 Portage Ave., Winnipeg, Manitoba, Canada R3B 2E9
y.chen@uwinnipeg.ca
ABSTRACT
In this article, we discuss an efficient algorithm for tree mapping
problem in XML databases. Given a target tree T and a pattern tree
Q, the algorithm can find all the embeddings of Q in T in O(|D||Q|)
time, where D is a largest data stream associated with a node of Q.
Furthermore, the algorithm can be easily adapted to an indexing en-
vironment with XB-trees being used.

Key words: Tree mapping, twig pattern, XML databases, query
evaluation, tree encoding

1. INTRODUCTION
In XML [31, 32], data are represented as a tree; associated with
each node of the tree is an element name tag from a finite alphabet
∑. The children of a node are ordered from left to right, and repre-
sent the content (i.e., list of subelements) of that element. 
To abstract from existing query languages for XML (e.g. XPath
[14], XQuery [32], XML-QL [13], and Quilt [5, 6]), we express
queries as twig (small tree) patterns, where nodes are labeled with
symbols from ∑ ∪ {*} (* is a wildcard, matching any node name)
and string values, and edges are parent-child or ancestor-descen-
dant relationships. As an example, consider the query tree shown in
Fig. 1. 

This query asks for any node of name b (node 3) that is a child of
some node of name a (node 1). In addition, the node of name b
(node 3) is the parent of some nodes of name c and e (node 6 and 7,
respectively), and the node of name e itself is an ancestor of some
node of name d (node 8). The node of name b (node 2) should also
be the ancestor of a node of name f (node 5). The query corresponds
to the following XPath expression:

a[b[c and .//f]]/b[c and e//d]. 
In this figure, there are two kinds of edges: child edges (/-edges for
short) for parent-child relationships, and descendant edges (//-edges
for short) for ancestor-descendant relationships. A /-edge from
node v to node u is denoted by v → u in the text, and represented by
a single arc; u is called a /-child of v. A //-edge is denoted v ⇒ u in
the text, and represented by a double arc; u is called a //-child of v.
In any DAG (directed acyclic graph), a node u is said to be a de-
scendant of a node v if there exists a path (sequence of edges) from
v to u. In the case of a twig pattern, this path could consist of any
sequence of /-edges and/or //-edges. We also use label(v) to repre-
sent the symbol (∈ ∑ ∪ {*}) or the string associated with v. Based

Fig. 1. A query tree

a

b b

c f c e

d

1

2 3

4 5 6 7

8

node 3 is the output node.
on these concepts, the tree embedding can be defined as follows.
Definition 1. An embedding of a twig pattern Q into an XML doc-
ument T is a mapping f: Q → T, from the nodes of Q to the nodes of
T, which satisfies the following conditions:
(i) Preserve node label: For each u ∈ Q, label(u) = label(f(u)).
(ii) Preserve parent-child/ancestor-descendant relationships: If u

→ v in Q, then f(v) is a child of f(u) in T; if u ⇒ v in Q, then f(v)
is a descendant of f(u) in T.

If there exists a mapping from Q into T, we say, Q can be imbedded
into T, or say, T contains Q.
Notice that an embedding could map several nodes of the
query (of the same type) to the same node of the database. It
also allows a tree mapped to a path. This definition is quite
different from the tree matching defined in [16].
There is much research on how to find such a mapping effi-
ciently and all the proposed methods can be categorized into
two groups. By the first group [1, 9, 11, 14, 19, 22, 28, 29, 32,
33, 34], a tree pattern is typically decomposed into a set of bi-
nary relationships between pairs of nodes, such as parent-
child and ancestor-descendant relations. Then, an index
structure is used to find all the matching pairs that are joined
together to form the final result. By the second group [4, 7, 8,
10, 18, 20], a query pattern is decomposed into a set of paths.
The final result is constructed by joining all the matching
paths together. For all these methods, the join operations in-
volved require exponential time in the worst case. For exam-
ple, if we decompose a twig pattern into paths to find all the
matching paths from a database, we need O(pλ) time to join
them together, where p is the largest length of a matching
path and λ is the number of all such paths. 
In this paper, we proposed a new algorithm with no join op-
erations involved. The algorithm runs in O(|T|⋅Qleaf) time and
O(Tleaf⋅Qleaf) space, where Tleaf and Qleaf represent the num-
bers of the leaf nodes in T and in Q, respectively.
In this paper, we present an new algorithm, tree-matching( ), for
evaluating twig pattern queries and adapt it into an environment
with the following advantages:
- tree-matching( ) is able to handle twig patterns containing /-edg-

es, //-edges, *, and branches.
- tree-matching( ) runs in O(|D|⋅|Q|) time and O(|D|⋅|Q|) space,

where D is a largest data stream associated with a node of Q.
- tree-matching( ) generates neither matching paths nor hierarchi-

cal stacks [11]. Therefore, the costly path joins [2, 4], or join-like
operations (such as the result enumeration used in [11]), are un-
necessary.



In fact, the path join used in [4] leads to an exponential time com-
plexity for queries containg both /-edges and //-edges (as shown in
[11]) while the result enumberation used in [11] can be completely
avoided by our method. 
The remainder of the paper is organized as follows. In Section 2, we
review the related work. In Section 3, we restate the tree encoding
[34], which facilitates the recognition of different relationships
among the nodes of a tree. In Section 4, we discuss our algorithm,
which is adapted to an index environment in Section 5. Section 6 is
devoted to the implementation and experiments. Finally, a short
conclusion is set forth in Section 7.

2. TREE ENCODING
In [34], an interesting tree encoding method was discussed, which
can be used to identify different relationships among the nodes of a
tree.
Let T be a document tree. We associate each node v in T with a qua-
druple (DocId, LeftPos, RightPos, LevelNum), denoted as α(v),
where DocId is the document identifier; LeftPos and RightPos are
generated by counting word numbers from the beginning of the
document until the start and end of the element, respectively; and
LevelNum is the nesting depth of the element in the document. (See
Fig. 3 for illustration.) By using such a data structure, the structural
relationship between the nodes in an XML database can be simply
determined [34]:
(i) ancestor-descendant: a node v1 associated with (d1, l1, r1, ln1)

is an ancestor of another node v2 with (d2, l2, r2, ln2) iff d1 = d2,
l1 < l2, and r1 > r2.

(ii) parent-child: a node v1 associated with (d1, l1, r1, ln1) is the par-
ent of another node v2 with (d2, l2, r2, ln2) iff d1 = d2, l1 < l2, r1
> r2, and ln2 = ln1 + 1.

(iii)from left to right: a node v1 associated with (d1, l1, r1, ln1) is to
the left of another node v2 with (d2, l2, r2, ln2) iff d1 = d2, r1 < l2. 

In Fig. 3, v2 is an ancestor of v6 and we have v2.LeftPos = 2 <
v6.LeftPos = 6 and v2.RightPos = 9 > v6.RightPos = 6. In the same
way, we can verify all the other relationships of the nodes in the
tree. In addition, for each leaf node v, we set v.LeftPos = v.RightPos
for simplicity, which still work without downgrading the ability of
this mechanism.
In the rest of the paper, if for two quadruples α1 = (d1, l1, r1, ln1)
and α2 = (d2, l2, r2, ln2), we have d1 = d2, l1 < l2, and r1 > r2, we say
that α2 is subsumed by α1. For convenience, a quadruple is consid-
ered to be subsumed by itself. If no confusion is caused, we will use
v and α(v) interchangeably.
We can also assign LeftPos and RightPos values to the query nodes
in Q for the same purpose as above.
Finally we use T[v] to represent a subtree rooted at v in T.

3. MAIN ALGORITHM
In this section, we discuss our algorithm according to Definition 1.
The main idea of this algorithm is the so-called subtree reconstruc-
tion, by which a tree structure is established according to a given set
of quadruples (called a data stream in [4]). Therefore, we will first
discuss an algorithm for this task in 3.1. Then, in 3.2, we give our

(1, 1, 11, 1)

(1, 2, 9, 2)

(1, 3, 3, 3) (1, 4, 8, 3)

(1, 5, 5, 4)

(1, 10, 10, 2)

v1

v2 v8

v3 v4

v5

A

B B

C

C

B

T:

v6C v7D (1, 7, 7, 4)
(1, 6, 6, 4)

Fig. 3. Illustration for tree encoding
algorithm to check twig patterns that contains /-edges, //-edges, *
and branches.

3.1 Tree reconstruction
As with TwigStack [4], each node q in a twig pattern (or say, a query

tree) Q is associated with a data stream B(q), which contains the po-
sitional representations (quadruples) of the database nodes v that
match q (i.e., label(v) = label(q)). All the quadruples in a data
stream are sorted by their (DocID, LeftPos) values. For example, in
Fig. 4, we show a query tree containing 5 nodes and 4 edges and
each node is associated with a list of matching nodes of the docu-
ment tree shown in Fig. 3, sorted according to their (DocID, Left-
Pos) values. For simplicity, we use the node names in a list, instead
of the node’s quadruples. 

Note that iterating through the stream nodes in sorted order of thier
LeftPos values corresponds to access of document nodes in preor-
der. However, our algorithm needs to visit them in postorder (i.e., in
sorted order of their RightPos values). For this reason, we maintain
a global stack ST to make a transformation of data streams using the
following algorithm. In ST, each entry is a pair (q, v) with q ∈ Q and
v ∈ T (v is represented by its quadruple.)
Algorithm stream-transformation(B(qi)’s)

input: all data streams B(qi)’s, each sorted by LeftPos.

output: new data streams L(qi)’s, each sorted by RightPos.

begin
1. repeat until each B(qi) becomes empty

2. {identify qi such that the first element v of B(qi) is of the mini-

mal LeftPos value; remove v from B(qi);

3. while ST is not empty and ST.top is not v’s ancestor do
4. { x ← ST.pop(); Let x = (qj, u);

5. put u at the end of L(qi); }

7. ST.push(qi, v);

8. }
end
In the above algorithm, ST is used to keep all the nodes on a path
until we meet a node v that is not a descendant of ST.top. Then, we
pop up all those nodes that are not v’s ancestor; put them at the end
of the corresponding L(qi)’s (see lines 3 - 4); and push v into ST (see

line 7.) The output of the algorithm is a set of data streams L(qi)’s

with each being sorted by RightPos values. However, we remark
that the popped nodes are in postorder. So we can directly handle the
nodes in this order without explicitly generating L(qi)’s. But for ease

of explanation, we assume that all L(qi)’s are completely generated

in the following discussion. We also note that the data streams asso-
ciated with different nodes in Q may be the same. So we use q to
represent the set of such query nodes and denote by L(q) (B(q)) the
data stream shared by them. Without loss of generality, assume that
the query nodes in q are sorted by their RightPos values. 
We will also use L(Q) = {L(q1), ..., L(ql)} to represent all the data

streams with respect to Q, where each qi (i = 1, ..., l) is a set of sorted

{v1}

{v2, v4, v8}

q1

q2 q5

q3 q4

A

B B

C C

Q:

Fig. 4. Illustration for L(qi)’s
{v3, v5, v6}

the query nodes with the same tag
will be associated with the same data
stream:

B(q2) = B(q5) = {v2, v4, v8}. 



query nodes that share a common data stream. 
First, we discuss how to reconstruct a treeFirst, we discuss how to
reconstruct a tree structure from data streams, based on the concept
of matching subtrees, defined below. 
Let T be a tree and v be a node in T with parent node u. Denote by
delete(T, v) the tree obtained from T by removing node v. The chil-
dren of v become children of u. (See Fig. 5.)

Definition 2. (matching subtrees) A matching subtree T’ of T with
respect to a twig pattern Q is a tree obtained by a series of deleting
operations to remove any node in T, which does not match any node
in Q. 
For example, the tree shown in Fig. 6(a) is a matching subtree of the
document tree shown in Fig. 3 with respect to the query tree shown
in Fig. 6(b).

Given L(Q), what we want is to construct a matching subtree from
them to facilitate the checking of twig pattern matchings.
The algorithm given below handles the case when the streams con-
tain nodes from a single XML document. When the streams contain
nodes from multiple documents, the algorithm is easily extended to
test equality of DocId before manipulating the nodes in the streams.
We will execute an iterative process to access the nodes in L(Q) one
by one: 
1. Identify a data stream L(q) with the first element being of the

minimal RightPos value. Choose the first element v of L(q). Re-
move v from L(q).

2. Generate a node for v;
3. If v is not the first node created, let v’ be the node chosen just be-

fore v. Then, the following will be performed.
(i) If v’ is not a child (descendant) of v, create a link from v to v’,

called a left-sibling link and denoted as left-sibling(v) = v’.
(ii) If v’ is a child (descendant) of v, we will first create a link

from v’ to v, called a parent link and denoted as parent(v’) =
v. Then, we will go along the left-sibling chain starting from
v’ until we meet a node v’’ which is not a child (descendant)
of v. For each encountered node u except v’’, set parent(u) ←
v. Set left-sibling(v) ← v’’.

Fig. 7 is a pictorial illustration of this process. 

In Fig. 7(a), we show the navigation along a left-sibling chain start-
ing from v’ when we find that v’ is a child (descendant) of v. This
process stops whenever we meet v’’, a node that is not a child (de-
scendant) of v. Fig. 7(b) shows that the left-sibling link of v is set to
v’’, which is previously pointed to by the left-sibling link of v’s left-
most child.
Below is a formal description of the algorithm, which needs only
O(|D|⋅|Q|) time. We elaborate this process since it can be extended
to an efficient algorithm for evaluating unordered twig pattern que-
ries.

v1

v2 v4

B

C C v5C v6D

T: delete(T, v3)v1

v2 v3

v4

B

C

C

B

v5C v6D

Fig. 5. The effect of removing v3 from T  

v1

v3 v5

A

C C

a matching

v6C v7 D

q1

q2 q3

A

C D

Q:

Fig. 6. A matching tree and a query tree

(a) (b)
subtree tree:

Fig. 7. Illustration for the construction of a matching subtree

v

v’
v’v’’ ...

v’’ is not a
child of v.

link to the left sibling

v

v’v’’ ...

(a) (b)

v’
Algorithm matching-tree-construction(L(Q))
input: all data streams L(Q).
output: a matching subtree T’.
begin
1. repeat until each L(q) in L(Q) become empty
2. {identify q such that the first element v of L(q) is of the minimal

RightPos value; remove v from L(q);
3. generate node v; 
4. if v is not the first node created then
5. { let v’ be the node generated just before v;
6. if v’ is not a child (descendant) of v then
7. {left-sibling(v) ← v’;}(*generate a left-sibling link.*)
8. else
9. { v’’ ← v’; w ← v’;  (*v’’ and w are two temporary

 variables.*)
10. while v’’ is a child (descendant) of v do
11. { parent(v’’) ← v; (*generate a parent link. Also,

indicate whether v’’ is a /-child or a //-child.*)
12. w ← v’’; v’’ ← left-sibling(v’’);
13. }
14. left-sibling(v) ← v’’;
15. }
16. }
end
In the above algorithm, for each chosen v from a L(q), a node is cre-
ated. At the same time, a left-sibling link of v is established, pointing
to the node v’ that is generated before v, if v’ is not a child (descen-
dant) of v (see line 7). Otherwise, we go into a while-loop to travel
along the left-sibling chain starting from v’ until we meet a node v’’
which is not a child (descendant) of v. During the process, a parent
link is generated for each node encountered except v’’. (See lines 9
- 13.) Finally, the left-sibling link of v is set to be v’’ (see line 14).
Example 1. Consider the twig pattern shown in Fig. 4 once again,
in which we have three different data streams: L(q) = {v1}, L(q’) =
{v4, v2, v8}, L(q’’) = {v3, v5, v6}, where  q = {q1}, q’ = {q2, q5}, q’’
= {q3, q4}. Applying the above algorithm to the data streams, we
generate a series of data structures as shown in Fig. 8. 

In step 1 (see Fig. 8), v3 is checked since it has the least RightPos;
and a node for it is created. In Step 2, we meet v5. Since it is not a
descendant of v3, we establish a left-sibling link from v5 to v3. In
step 3, we generate node v6 and a left-sibling link from v6 to v5. In
step 4, we generate part of the matching tree, in which two edges
from v4 respectively to v5 and v6 are created. Special attention
should be paid to Step 4. In this step, not only two edges are con-
structed, but a left-sibling link from v4 to v3 is also created. It is this

v3 Cv3

v with the least RightPos:

C
v5

Cv3

left-sibling link from v5 to v3 

Cv6C
v5

left-sibling link

Cv3 B
v4

Fig. 8. Sample trace

C
v6

C

v5

Cv3

left-sibling links 

q = {q1}, q’ = {q2, q5}, q’’ = {q3, q4}
data streams: L(q) = {v1}, L(q’) = {v4, v2, v8}, L(q’’) = {v3, v5, v6} 

generated data structure:

step 1:

v5step 2:

v6step 3:

v4step 4:



kind of left-sibling links that enables us to reconstruct a matching
subtree in an efficient way.
The subsequence computation is shown in Fig. 9.

Proposition 1. Let T be a document tree. Let Q be a twig pattern.
Let L(Q) = {L(q1), ..., L(ql)} be all the data streams with respect to
Q and T, where each qi (1 ≤ i ≤ l) is a subset of sorted query nodes
of Q, which share the same data stream. Algorithm matching-tree-
construction(L(Q)) generates the matching subtree T’ of T with re-
spect to Q correctly. 
Proof. Denote L = |L(q1)| + ... + |L(ql)|. We prove the proposition by
induction on L.
Basis. When L = 1, the proposition trivially holds.
Induction hypothesis. Assume that when L = k, the proposition
holds.
Induction step. We consider the case when L= k + 1. Assume that
all the quadruples in L(Q) are {u1, ..., uk, uk+1} with RightPos(u1) <
RightPos(u2) < ... < RightPos(uk) < RightPos(uk+1). The algorithm
will first generate a tree structure Tk for {u1, ..., uk}. In terms of the
induction hypothesis, Tk is correctly created. It can be a tree or a for-
est. If it is a forest, all the roots of the subtrees in Tk are connected
through left-sibling links. When we meet vk+1, we consider two
cases:

i) vk+1 is an ancestor of vk,
ii) vk+1 is to the right of vk.

In case (i), the algorithm will generate an edge (vk+1, vk), and then
travel along a left-sibling chain starting from vk until we meet a
node v which is not a descendant of vk+1. For each node v’ encoun-
tered, except v, an edge (vk+1, v’) will be generated. Therefore, Tk+1
is correctly constructed. In case (ii), the algorithm will generate a
left-sibling link from vk+1 to vk. It is obviously correct since in this
case vk+1 cannot be an ancestor of any other node. This completes

the proof.
The time complexity of this process is easy to analyze. First, we no-
tice that each quadruple in all the data streams is accessed only
once. Secondly, for each node in T’, all its child nodes will be vis-
ited along a left-sibling chain for a second time. So we get the total
time

O(|D|⋅|Q|) +  = O(|D|⋅|Q|) + O(|T’|) = O(|D|⋅|Q|),

where di represents the outdegree of node vi in T’. 
During the process, for each encountered quadruple, a node v will
be generated. Associated with this node have we at most two links
(a left-sibling link and a parent link). So the used extra space is
bounded by O(|T’|).

3.2 Twig pattern matching 
In fact, the algorithm discussed in 4.1 hints an efficient way for twig
pattern matching.
We first observe that during the reconstruction of a matching sub-
tree T’, we can also associate each node v in T’ with a query node
stream QS(v). That is, each time we choose a v with the largest Left-

Cv6C
v5

C
v3

B
v4

Cv6C
v5

C
v3

B
v4

Bv2

C
v6C

v5

C
v3

B
v4

B
v2

B
v8

C
v6C

v5

C
v3

B
v4

B
v2

Bv8

Av1

Fig. 9. Sample trace

⇒ ⇒⇒

di

i
∑

Pos value from a data stream L(q), we will insert all the query nodes
in q into QS(v). For example, in the first step shown in Fig. 9, the
query node stream for v8 can be determined as shown in Fig. 10(a). 

In this way, we can create a matching subtree as illustrated in Fig.
10(b), in which each node in T’ is associated with a sorted query
node stream. If we check, before a q is inserted into the correspond-
ing QS(v), whether Q[q] (the subtree rooted at q) can be imbedded
into T’[v], we get in fact an algorithm for twig pattern matching. The
challenge is how to conduct such a checking efficiently.
For this purpose, we associate each q in Q with a variable, denoted
χ(q). During the process, χ(q) will be dynamically assigned a series
of values a0, a1, ..., am for some m in sequence, where a0 = φ and
ai’s (i = 1, ..., m) are different nodes of T’. Initially, χ(q) is set to a0
= φ. χ(q) will be changed from ai-1 to ai = v (i = 1, ..., m) when the
following conditions are satisfied.
i) v is the node currently encountered. 
ii) q appears in QS(u) for some child node u of v.
iii) q is a //-child, or

q is a /-child, and u is a /-child with label(u) = label(q).
Then, each time before we insert q into QS(v), we will do the fol-
lowing checking:
1. Let q1, ..., qk be the child nodes of q.

2. If for each qi (i = 1, ..., k), χ(qi) is equal to v and label(v) = la-
bel(q), insert q into QS(v).

Since the matching subtree is constructed in a bottom-up way, the
above checking guarantees that for any q ∈ QS(v), T’[v] contains
Q[q].
Let v1, ..., vj be the children of v in T’. All the QS(vi)’s (i = 1, ..., j)
should also be added into QS(v). This process can be elaborated as
follows.

Let QS(vi) = { , ..., } (i = 1, ..., j). Then, we have .LeftPos

< ... < .LeftPos. (Recall that all the query nodes inserted into

QS(vi) come from a same q, in which all the elements are sorted by
their LeftPos values.) Each time we insert a q into QS(vi), we can
check whether it is subsumed by the query node q’ which has just
been inserted before. If it the case, q will not be inserted since the
embedding of Q[q’] in T[vi] implies the embedding of Q[q] in T[vi].
(Note that LeftPos(q’) < LeftPos(q), q cannot be an ancestor of q’.)
Thus, QS(vi) contains only those query nodes which are not on the

same path. Therefore, we must also have .RightPos < ... <

.RightPos. So the query nodes in QS(vi) are increasingly sorted

by both LeftPos and RightPos values. Obviously, |QS(vi)| ≤ leafQ.
We can store QS(vi) as a linked list. Let QS1 and QS2 be two sorted
lists with |QS1| ≤ leafQ and |QS2| ≤ leafQ. The union of QS1 and QS2
(QS1 ∪ QS2) can be performed by scanning both QS1 and QS2 from
left to right and inserting the query node of QS2 into QS1 one by one.
During this process, any query node in QS1, which is subsumed by
some query node in QS2 will be removed; and any query node in
QS2, which is subsumed by some query in QS1, will not be inserted
into QS1. The result is stored in QS1. From this, we can see that the

B
v8

Fig. 10. Illustration for generating QS’s

{q2, q5}

{q1}

{q2, q5}

{q3, q4} {q2, q5}

{q3, q4}

{q2, q5}

v1

v2 v8

v3 v4

v5

A

B B

C

C

B

T’:

v6 C {q3, q4}

(a) (b)

qi1
qil

qi1

qil

qi1

qil



resulting linked list is still sorted and its size is bounded by leafQ.
We denote this process as merge(QS1, QS2) and define merge(QS1,
..., QSj-1, QSj) to be merge(merge(QS1, ...QSj-1), QSj). 

In the following, we present our first algorithm A1-1(L(Q)) for que-
ries containing only /-edges, //-edges, and branches. During the pro-
cess, another algorithm subsumption-check(v, q) may be invoked to
check whether any q ∈ q can be inserted into QS(v), where q is a
subset of query nodes such that L(q) contains v.
The algorithm A1-1(L(Q)) is similar to Algorithm matching-tree-
construction( ), by which a quadruple is removed in turn from the
data stream and a node v for it is generated and inserted into the
matching subtree. 

In addition, two data structures are used:

Droot - a subset of document nodes v such that Q can be embed-
ded in T[v].

Doutput - a subset of document nodes v such that Q[qoutput] can
be embedded in T[v], where qoutput is the output node of Q.

In these two data structures, all nodes are decreasingly sorted by
their LeftPos values.
Algorithm A1-1(L(Q))
input: all data streams L(Q).
output: a matching subtree T’ of T, Droot and Doutput.
begin
1. repeat until each L(q) in L(Q) becomes empty { 
2. identify q such that the first node v of L(q) is of the minimal

RightPos value; remove v from L(q); generate node v; 
3. if v is the first node created then
4. {QS(v) ← subsumption-check(v, q);}  
5. else
6. { let v’ be the quadruple chosen just before v, for which a node

is constructed;
7. if v’ is not a child (descendant) of v then
8. { left-sibling(v) ← v’;
9. QS(v) ← subsumption-check(v, q);}
10. else
11. { v’’ ← v’; w ← v’; (*v’’ and w are two temporary units.*)
12. while v’’ is a child (descendant) of v do
13. { parent(v’’) ← v; (*generate a parent link. Also, indicate 

whether v’’ is a /-child or a //-child.*)
14. for each q in QS(v’’) do {
15. if ((q is a //-child) or 
16. (q is a /-child and v’’ is a /-child and
17. label(q) = label(v’’)))
18. then χ(q) ← v;}
19. w ← v’’; v’’ ← left-sibling(v’’);
20. remove left-sibling(w);
21. }
22. left-sibling(v) ← v’’;
23. }
24. q ← subsumption-check(v, q);
25. let v1, ..., vj be the child nodes of v;
26. q’ ← merge(QS(v1), ..., QS(vj));
27. remove QS(v1), ..., QS(vj);
28. QS(v) ← merge(q, q’);
29. }}
end
Function subsumption-check(v, q) (*v satisfies the node name test   
1. QS ← Φ; at each q in q.*)
2. for each q in q do {
3. let q1, ..., qj be the child nodes of q.
4. if for each /-child qi χ(qi) = v and for each //-child qi χ(qi) is 

subsumed by v then
5. {QS ← QS ∪ {q};
6. if q is the root of Q then
7. Droot  ← Droot  ∪ {v};
8. if q is the output node then Doutput  ← Doutput  ∪ {v};}}
9. return QS;
end
The output of A1-1( ) is Droot and Doutput. Based on them, we can
generate another subtree T’’ of T (like a matching subtree), which
contains only those nodes v such that T[v] contains Q[r] with la-
bel(v) = label(r) or contains Q[o] with label(v) = label(o), where r
and o represent the root and the output node of Q, respectively. We
call a node an r-node if T[v] contains Q[r] with label(v) = label(r),
or an o-node if T[v] contains Q[o] with label(v) = label(o). Search
T’’. Any node v, which is an o-node and also a child of some r-node,
should be an answer if o is not a /-child of r. Otherwise, an o-node
has to be a /-child of some r-node to be answer. 
Algorithm A1-1( ) does almost the same work as Algorithm match-
ing-tree-construction( ).The main difference is lines 14 - 18 and
lines 24 - 28. In lines 14 - 18, we set χ values for some q’s. Each of
them appears in a QS(v’), where v’ is a child node of v, satisfying the
conditions i) - iii) given above. In lines 24 - 28, we use the merging
operation to construct QS(v).
In Function subsumption-check( ), we check whether any q in q can
be inserted into QS by examining the ancestor-descendant/parent-
child relationships (see line 4). For each q that can be inserted into
QS, we will further check whether it is the root of Q or the output
node of Q, and insert it into Droot or Doutput, respectively (see lines
6 - 8).
Example 2. Applying Algorithm A1-1 to the data streams shown in
Fig. 4, we will find that the document tree shown in Fig. 3 contains
the query tree shown in Fig. 4. We trace the computation process as
shown in Fig. 11. 

In the first three steps, we will generate part of the matching subtree
as shown in Fig. 11(a). Associated with v8 is a query node stream:
QS(v8) = {q5}. Although q2 also matches v8, it cannot survive the
subsumption check (see line 4 in subsumption-check( )). So it does
not appear in QS(v8). In addition, we have QS(v5) = QS(v6) = {q3,
q4}. It is because both q3 and q4 are leaf nodes and can always sat-
isfy the subsumption checking. In a next step, we will meet the par-
ent v4 (appearing in L({q2, q5}) of v5 and v6. So we are able to get
χ(q3) = v4 and χ(q4) = v4 (see Fig. 11(b)). In terms of these two val-
ues, we know that q2 should be inserted into QS(v4). q5 is a leaf node
and also inserted into QS(v4). In addition, QS(v5) and QS(v6) should
also be merged into it. In the fifth step, we meet v3. QS(v3) = {q3,
q4} (see Fig. 11(c)). In the sixth step, we meet v2 (in L({q2, q5})). It

B
v8

C
v6

C
v5 (a)

{q5}{q3, q4}{q3, q4}

B
v8

C
v6

C
v5

B
v4

C
v3

B
v8

C
v6

C
v4

B
v4

C
v3

B
v8

C
v6

C
v4

B
v4

B
v2

(c)

Cv6Cv5

C
v3

Bv4

Bv2 B v8

A
v1

(d)

Fig. 11. Sample trace

χ(q3) = v4

χ(q4) = v4

{q2, q5}

{q5}

{q3, q4} {q2, q5}

{q5}

χ(q3) = v4

χ(q4) = v4

{q2, q5}
χ(q3) = v2

χ(q4) = v2

χ(q2) = v2

χ(q5) = v2

{q5}

(b)

(e)

{q1} χ(q3) = v2

χ(q4) = v2

χ(q2) = v1

χ(q5) = v1



is the parent of v3 and v4. According to QS(v3) = {q3, q4} and
QS(v4) = {q2, q5}, as well as the fact that both q5 and v4 are /-child
nodes and label(q5) = label(v4) = B, we will set χ(q3) = χ(q4) =
χ(q2) = χ(q5) = v2 (see Fig. 11(d)). Thus, we have QS(v2) = {q2, q5}.
Finally, in step 7, according to QS(v2) = {q2, q5} and QS(v8) = {q5},
we will set χ(q2) = v1 and χ(q5) = v1 (see Fig. 11(e)), leading to the

insertion of q1 into QS(v1). 

In Example 2, we see that if we just want to record only those parts
of T, which contain the whole Q or the subtree rooted at the output
node, a QS(v) can be removed once v’s parent is encountered. How-
ever, if we maintain them, we are able to tell all the possible con-
tainment, i.e., which parts of T contain which parts of Q.
In the following, we prove the correctness of this algorithm. First,
we prove a simple lemma.
Lemma 1. Let v1, v2, and v3 be three nodes in a tree with v3.LeftPos
< v2.LeftPos < v1.LeftPos. If v1 is a descendant of v3. Then, v2 must
also be a descendant of v3.

Proof. We consider two cases: i) v2 is to the left of v1, and ii) v2 is
an ancestor of v1. In case (i), we have v1.RightPos > v2.RightPos.
So we have v3.RightPos > v1.RightPos > v2.RightPos. This shows
that v2 is a descendant of v3. In case (ii), v1, v2, and v3 are on the
same path. Since v2.LeftPos > v3.LeftPos, v2 must be a descendant

of v3. 

We illustrate Lemma 1 by Fig. 12, which is helpful for understand-
ing the proof of Proposition 2 given below.

Proposition 2. Let Q be a twig pattern containing only /-edges, //-
edges and branches. Let v be a node in the matching subtree T’ with
respect to Q created by Algorithm A1-1. Let q be a node in Q. Then,
q appears in QS(v) if and only if T’[v] contains Q[q]. 

Proof. If-part. A query node q is inserted into QS(v) by executing
Function subsumption-check( ), which shows that for any q inserted
into QS(v) we must have T’[v] containing Q[q] for the following
reason:
(1) label(v) = label(q).
(2) For each //-child q’ of q there exists a child v’ of v such that

T[v’] contains Q[q’]. (See line 15 in A1-1( ).)
(3) For each /-child q’’ of q there exists a /-child v’’ of v such that

T[v’’] contains Q[q’’] and label(v’’) = label(q’’). (See lines 16
- 17 in A1-1( ).)

In addition, a query node q in QS(v) may come from a QS of some
child node of v. Obviously, we have T’[v] containing Q[q].
Only-if-part. The proof of this part is tedious. In the following, we
give only a proof for the simple case that Q contains no /-edges,
which is done by induction of the height h of the nodes in T’.
Basis. When h = 0, for the leaf nodes of T’, the proposition trivially
holds.
Induction step. Assume that the proposition holds for all the nodes
at height h ≤ k. Consider the nodes v at height h = k + 1. Assume that
there exists a q in Q such that T’[v] contains Q[q] but q does not ap-
pear in QS(v). Then, there must be a child node qi of q such that (i)
χ(qi) = φ, or (ii) χ(qi) is not subsumed by v when q is checked
against v. Obviously, case (i) is not possible since T’[v] contains

v3

v2 v1

v3

v1

v2

v2 is to the right of v1; or
appears as an ancestor of v1 but,
as a descendant of v3.

Fig. 12. A matching subtree with QS’s
Q[q] and qi must be contained in a subtree rooted at a node v’ which
is a child (descendant) of v. So χ(qi) will be changed to a value not
equal to φ in terms of the induction hypothesis. Now we show that
case (ii) is not possible, either. First, we note that during the whole
process, χ(qi) may be changed several times since it may appear in
more than one QS’s. Assume that there exist a sequence of nodes v1,
..., vk for some k ≥ 1 with v1.LeftPos > v2.LeftPos >... > vk.LeftPos
such that qi appears in QS(v1), ..., QS(vk). In terms of the induction
hypothesis, v’ = vj for some j ∈ {1, ..., k}. Let l be the largest integer
≤ k such that vl.LeftPos > v.LeftPos. Then, for each vp (j ≤ p ≤ l), we
have

v’.LeftPos ≥ vl.LeftPos > v.LeftPos.

In terms of Lemma 1, each vp (j ≤ p ≤ l) is subsumed by v. When we
check q against v, the actual value of χ(qi) is the node name for some
vp’s parent, which is also subsumed by v (in terms of Lemma 1),
contradicting (ii). The above explanation shows that case (ii) is im-
possible. This completes the proof of the proposition.  

Lemma 1 helps to clarify the only-if part of the above proof. In fact,
it reveals an important property of the tree encoding, which enables
us to save both space and time. That is, it is not necessary for us to
keep all the values of χ(qi), but only one to check the ancestor-de-
scendant/parent-child relationship. Due to this property, the path
join [4], as well as the result enumeration [11], can be completely
avoided.
The time complexity of the algorithm can be divided into three
parts:
1. The first part is the time spent on accessing L(Q). Since each el-

ement in a L(Q) is visited only once, this part of cost is bounded
by O(|D|⋅|Q|).

2. The second part is the time used for constructing QS(vj)’s. For

each node vj in the matching subtree, we need O( ) time to

do the task, where is the outdegree of , which matches vj.

(See line 2 and 3 in Function subsumption-check( ) for explana-
tion.) So this part of cost is bounded by

O( ) ≤ O( ) = O(|D|⋅|Q|).

3. The third part is the time for establishing χ values, which is the
same as the second part since for each q in a QS(v) its χ value is
assigned only once.

Therefore, the total time is O(|D|⋅|Q|).
The space overhead of the algorithm is easy to analyze. Besides the
data streams, each node in the matching subtree needs a parent link
and a right-sibling link to facilitate the subtree reconstruction, and
an QS to calculate χ values. So the extra space requirement is
bounded by O(|D|⋅|Q| + |D| + |Q|) = O(|D|⋅|Q|). 
However, if we record only those parts of T’, which contain the
whole Q or the subtree rooted at the output node, the runtime mem-
ory usage must be much less than O(|D|⋅|Q|) for the following two
reasons:
(i) The QS data structure for a node is removed once its parent

node is created. So the space overhead is bounded by
O(|D|⋅leafQ)

(ii) During the whole process, the elements in the data streams are
removed one by one. 

Of course, if we want to record all those parts of T’, which contain
one or more parts of Q, we need O(|D|⋅|Q|) space to store all the re-

cji

i
∑

cji
qji

cji

i
∑

j
∑ D ck

k

Q

∑⋅



sults.

In the above discussion, we handle wildcards in the same way as
any non-wildcard nodes. But a wildcard matches any tag name.
Therefore, L(*) should contain all the nodes in T. However, as we
can see in the next section, by using the XB-tree [], L(*) contains a
much smaller set of nodes in T. In fact, during the whole process,
each entry in an XB-tree is accessed only once along the nodes’ pos-
torder numbers. That is, for each node in Q, no matter whether it is
a wildcard or not, we only check it against the nodes currently en-
countered. Thus, with the help of XB-trees, * can be handled in the
same as a non-wildcard, causing no extra time complexity.

4. CONCLUSION
In this paper, two new algorithms A1 and A2 are discussed, accord-
ing to two different definitions of tree embedding. By the first def-
inition, we consider only the ancestor-descendant relationship
among the nodes in a tree structure. By the second definition, not
only the ancestor-descendant relationship but also the order of sib-
lings are taken into account. Almost all the existing strategies are
designed according to the first definition. We provide the second
definition as an option in the case that the user wants to do so. Both
A1 and A2 have the best worst-case time complexities. Especially,
we show that for the twig pattern matching problem, neither the join
nor the result enumeration (a join-like operation) is necessary. Our
experiments demonstrate that our methods are both effective and
efficient for the evaluation of twig pattern queries.

REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu, Data on the web:

from relations to semistructured data and XML, Morgan
Kaufmann Publisher, Los Altos, CA 94022, USA, 1999.

[2] A. Aghili, H. Li, D. Agrawal, and A.E. Abbadi, TWIX: Twig
structure and content matching of selective queries using bi-
nary labeling, in: INFOSCALE, 2006.

[3] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D.
Srivastava, and Y. Wu, Structural Joins: A primitive for effi-
cient XML query pattern matching, in Proc. of IEEE Int.
Conf. on Data Engineering, 2002.

[4] N. Bruno, N. Koudas, and D. Srivastava, Holistic Twig Joins:
Optimal XML Pattern Matching, in Proc. SIGMOD Int.
Conf. on Management of Data, Madison, Wisconsin, June
2002, pp. 310-321.

[5] D. D. Chamberlin, J.Clark, D. Florescu and M. Stefanescu.
"XQuery1.0: An XML Query Language," http://
www.w3.org/TR/query-datamodel/.

[6] D. D. Chamberlin, J. Robie and D. Florescu. “Quilt: An XML
Query Language for Heterogeneous Data Sources,” WebDB
2000.

[7] T. Chen, J. Lu, and T.W. Ling, On Boosting Holism in XML
Twig Pattern Matching, in: Proc. SIGMOD, 2005, pp. 455-
466.

[8] B. Choi, M. Mahoui, and D. Wood, On the optimality of ho-
listic algorithms for twig queries, in: Proc. DEXA, 2003, pp.
235-244.

[9] C. Chung, J. Min, and K. Shim, APEX: An adaptive path in-
dex for XML data, ACM SIGMOD, June 2002.

[10] Y. Chen, S.B. Davison, Y. Zheng, An Efficient XPath Query
Processor for XML Streams, in Proc. ICDE, Atlanta, USA,
April 3-8, 2006.

[11] S. Chen, H-G. Li, J. Tatemura, W-P. Hsiung, D. Agrawa, and
K.S. Canda, Twig2Stack: Bottom-up Processing of General-
ized-Tree-Pattern Queries over XML Documents, in Proc.
VLDB, Seoul, Korea, Sept. 2006, pp. 283-294.
[12] B.F. Cooper, N. Sample, M. Franklin, A.B. Hialtason, and M.

Shadmon, A fast index for semistructured data, in: Proc.
VLDB, Sept. 2001, pp. 341-350.

[13] A. Dutch, M. Fernandez, D. Florescu, A. Levy, D.Suciu, A
Query Language for XML, in: Proc. 8th World Wide Web
Conf., May 1999, pp. 77-91.

[14] D. Florescu and D. Kossman, Storing and Querying XML
data using an RDMBS, IEEE Data Engineering Bulletin,
22(3):27-34, 1999.

[15] G. Gou and R. Chirkova, Efficient Algorithms for Evaluating
XPath over Streams, in: Proc. SIGMOD, June 12-14, 2007.

[16] R. Goldman and J. Widom, DataGuide: Enable query formu-
lation and optimization in semistructured databases, in: Proc.
VLDB, Aug. 1997, pp. 436-445.

[17] G. Gottlob, C. Koch, and R. Pichler, Efficient Algorithms for
Processing XPath Queries, ACM Transaction on Database
Systems, Vol. 30, No. 2, June 2005, pp. 444-491.

[18] C.M. Hoffmann and M.J. O’Donnell, Pattern matching in
trees, J. ACM, 29(1):68-95, 1982.

[19] C. Koch, Efficient Processing of Expressive Node-Selecting
Queries on XML Data in Secondary Storage: A Tree Autom-
ata-based Approach, in: Proc. VLDB, Sept. 2003.

[20] J. Lu, T.W. Ling, C.Y. Chan, and T. Chan, From Region En-
coding to Extended Dewey: on Efficient Processing of XML
Twig Pattern Matching, in: Proc. VLDB, pp. 193 - 204, 2005.

[21] J. McHugh, J. Widom, Query optimization for XML, in Proc.
of VLDB, 1999.

[22] C. Seo, S. Lee, and H. Kim, An Efficient Index Technique
for XML Documents Using RDBMS, Information and Soft-
ware Technology 45(2003) 11-22, Elsevier Science B.V.

[23] G. Miklau and D. Suciu, Containment and Equivalence of a
Fragment of XPath, J. ACM, 51(1):2-45, 2004.

[24] Q. Li and B. Moon, Indexing and Querying XML data for
regular path expressions, in: Proc. VLDB, Sept. 2001, pp.
361-370.

[25] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. Dew-
itt, and J.F. Naughton, Relational databases for querying
XML documents: Limitations and opportunities, in Proc. of
VLDB, 1999.

[26] U. of Washington, The Tukwila System, available from http:/
/data.cs.washington.edu/integration/tukwila/.

[27] U. of Wisconsin, The Niagara System, available from http://
www.cs.wisc.edu/niagara/.

[28] U of Washington XML Repository, available from http://
www.cs.washington.edu/research/xmldatasets.

[29] H. Wang, S. Park, W. Fan, and P.S. Yu, ViST: A Dynamic In-
dex Method for Querying XML Data by Tree Structures, SIG-
MOD Int. Conf. on Management of Data, San Diego, CA.,
June 2003.

[30] H. Wang and X. Meng, On the Sequencing of Tree Structures
for XML Indexing, in Proc. Conf. Data Engineering, Tokyo,
Japan, April, 2005, pp. 372-385.

[31] World Wide Web Consortium. XML Path Language (XPath),
W3C Recommendation, 2007. See http://www.w3.org/TR/
xpath20.

[32] World Wide Web Consortium. XQuery 1.0: An XML Query
Language, W3C Recommendation, Version 1.0, Jan. 2007.
See http://www.w3.org/TR/xquery.

[33] XMARK: The XML-benchmark project, http://monet-
db.cwi.nl/xml, 2002.

[34] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman, on
Supporting containment queries in relational database man-
agement systems, in Proc. of ACM SIGMOD, 2001.


