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Abstract - An XML tree pattern query, represented as a 
labeled tree, is essentially a complex selection predicate on 
both structure and content of an XML. Tree pattern matching 
has been identified as a core operation in querying XML data. 
We distinguish between two kinds of tree pattern matchings: 
ordered and unordered tree matching. By the unordered tree 
matching, only ancestor-descendant and parent-child 
relationships are considered. By the ordered tree matching, 
the order of siblings is also taken into account. While dif-
ferent fast algorithms for unordered tree matching are 
available, no efficient algorithm for ordered tree matching for 
XML data exists. In this paper, we discuss a new algorithm 
for processing ordered tree pattern queries, whose time 
complexity is polynomial. In addition, the algorithm can be 
adapted to an indexing environment with XB-trees being used. 
Experiments have been conducted, which shows that the new 
algorithm is promising. 

Keywords: XML data stream, tree pattern queries, ordered 
tree matching 

 

1 Introduction 
  In XML [43, 44], data is represented as a tree; associated 
with each node of the tree is an element name from a finite 
alphabet �. The children of a node are ordered from left to 
right, and represent the content (i.e., list of subelements) of 
that element.  
 Accordingly, in most of the XML query languages (e.g. 
XPath [43], XQuery [44], XML-QL [15], and Quilt [6, 7]), 
queries are typically expressed by tree patterns (for example, 
path expressions expressed in XPath, path expressions in the 
for and let clauses in XQuery.) In such tree patterns, nodes are 
labeled with symbols from � ∪ {*} (* is a wildcard, 
matching any node name) and string values, and edges are 
parent-child or ancestor-descendant relationships. As an ex-
ample, consider the query tree shown in Fig. 1(a), which asks 
for any node of name b (node 3) that is a child of some node 
of name a (node 1). In addition, the node of name b (node 3) 
is the parent of some nodes of name c and e (node 6 and 7, 
respectively), and the node of name e itself is an ancestor of 
some node of name d (node 8). The node of name b (node 2) 
should also be the ancestor of a node of name f (node 5). The 
query corresponds to the following XPath expression: 
  a[b[c and .//f]]/b[c and e//d]. 

 Fig. 1(a), there are two kinds of edges: child edges (/-
edges for short) for parent-child relationships, and descendant 
edges (//-edges for short) for ancestor-descendant 
relationships. A /-edge from node v to node u is denoted by v 
→ u in the text, and represented by a single arc; u is called a /-
child of v. A //-edge is denoted by v � u in the text, and 
represented by a double arc; u is called a //-child of v. 

 
 In any DAG (directed acyclic graph), a node u is said to 
be a descendant of a node v if there exists a path (sequence of 
edges) from v to u. In the case of a tree pattern, this path 
could consist of any sequence of /-edges and/or //-edges. We 
also use label(v) to represent the symbol (∈ � ∪ {*}) or the 
string associated with v. Based on these concepts, the tree 
embedding can be defined as follows. 
Definition 1 An embedding of a tree pattern Q into an XML 
document T is a mapping f: Q → T, from the nodes of Q to the 
nodes of T, which satisfies the following conditions: 
(i) Preserve node label: For each u ∈ Q, label(u) = 

label(f(u)) (or say, u matches f(u)). 
(ii) Preserve parent-child/ancestor-descendant relationship: 

If u → v in Q, then f(v) is a child of f(u) in T; if u � v in 
Q, then f(v) is a descendant of f(u) in T.   

If there exists a mapping from Q into T, we say, Q can be 
imbedded into T, or say, T contains Q. 
Almost all the existing strategies for evaluating twig join 
patterns are designed according to this definition [4, 8, 10, 11, 
12, 14, 24, 26, 28, 29, 30, 31, 36, 37, 46]. 
This definition allows a path to match a tree as illustrated in 
Fig. 1(b).   
 It is because by Definition 1 the left-to-right 
relationships between siblings are not taken into account. We 
call such a problem an unordered tree pattern matching. 
 We may consider another problem, called an ordered 
tree pattern matching, defined below. 
Definition 2 An embedding of a tree pattern Q into an XML 
document T is a mapping f: Q → T, from the nodes of Q to the 
nodes of T, which satisfies the following conditions: 
(i) same as (i) in Definition 1. 
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Fig. 1. A query tree and a tree matching a path 



(ii) same as (ii) in Definition 1. 
(iii) Preserve left-to-right order: For any two nodes v1 ∈ Q 

and v2 ∈ Q, if v1 is to the left of v2, then f(v1) is to the left 
of f(v2) in T.  

 In general, a node u1 is said to be to the left of another 
node u2 in a tree T if they are not related by the ancestor-
descendant relationship and u2 follows u1 when we traverse T 
in preorder. 
 This kind of tree mappings is useful in practice. For 
example, an XML data model was proposed by Catherine and 
Bird [5] for representing interlinear text for linguistic 
applications, used to demonstrate various linguistic principles 
in different languages. For the purpose of linguistic analysis, 
it is essential to preserve the linear order between the words in 
a text [5]. In addition to interlinear text, the syntactic structure 
of textual data should be considered, which breaks a sentence 
into syntactic units such as noun clauses, verb phrases, 
adjectives, and so on. These are used by the language Tree-
Bank [31] to provide a hierarchical representation of 
sentences. Therefore, by the evaluation of a tree pattern query 
against the TreeBank, the order between siblings should be 
considered [31, 34]. 
 The remainder of the paper is organized as follows. In 
Section 2, we review the concept of XML data streams. In 
Section 3, we discuss our algorithm and analyze its 
computational complexities. The paper concludes in  Section 
4. 

2 XML data stream 
 In a XML database, we can always store a document as a 
data stream by using an interesting tree encoding [46], which 
can be used to identify different relationships between the 
nodes of a tree. 
 Let T be a document tree. We associate each node v in T 
with a quadruple (d, l, r, ln), denoted as α(v), where d = 
DocId, l = LeftPos, r = RightPos, and ln = LevelNum, defined 
to be the nesting depth of the element in the document. (See 
Fig. 2 for illustration.) By using such a data structure, the 
structural relationships between the nodes in an XML 
database can be simply determined [46]: 
(i) ancestor-descendant: a node v1 associated with (d1, l1, r1, 

ln1) is an ancestor of another node v2 with (d2, l2, r2, ln2) 
iff d1 = d2, l1 < l2, and r1 > r2. 

(ii) parent-child: a node v1 associated with (d1, l1, r1, ln1) is 
the parent of another node v2 with (d2, l2, r2, ln2) iff d1 = 
d2, l1 < l2, r1 > r2, and ln2 = ln1 + 1. 

(iii) left-to-right order: a node v1 associated with (d1, l1, r1, 
ln1) is to the left of another node v2 with (d2, l2, r2, ln2) 
iff d1 = d2, r1 < l2. 

 In Fig. 4, v2 is an ancestor of v6 and we have v2.LeftPos = 
2 < v6.LeftPos = 6 and v2.RightPos = 9 > v6.RightPos = 6. In 
the same way, we can verify all the other relationships of the 
nodes in the tree. In addition, for each leaf node v, we set 
v.LeftPos = v.RightPos for simplicity, which still work 
without downgrading the ability of this mechanism. In the rest 
of the paper, if for two quadruples α1 = (d1, l1, r1, ln1) and α2 

= (d2, l2, r2, ln2), we have d1 = d2, l1 ≤ l2, and r1 ≥ r2, we say 
that α2 is subsumed by α1. For convenience, a quadruple is 
considered to be subsumed by itself (i.e., a node is considered 
to be an ancestor of itself). In this way, we can store an XML 
document as a stream of quadruples sorted by LeftPos or 
RightPos values. 

 
 If no confusion is caused, we will used v and α(v) 
interchangeably. As with DeweyIDs [21], we can also leave 
gaps in the numbering space between consecutive labels to 
support dynamical changes of documents. 

3 Algorithm 
 In this section, we discuss our strategy for the ordered 
tree pattern matching. First, we discuss the main algorithm in 
3.1. Then, in 3.2, we show the correctness of our algorithm 
and analyze its computational complexities. In 3.3, we 
describe how to adapt it to an indexing environment, as well 
as how the wildcard and output node can be handled.  

3.1 Algorithm description 

 Our algorithm works bottom-up. Therefore, we need to 
sort XML streams by (DocID, RightPos) values. Each time a 
query Q is submitted to the system, we will associate each 
query node q with a data stream L(q) such that for each v ∈ 
L(q) label(v) = label(q), as illustrated in Fig. 3, in which each 
query node is attached with a list of matching nodes of the 
document tree shown in Fig. 2. 

 
 In the figure, for simplicity, we use the node names in a 
data stream, instead of the nodes’ quadruples. In addition, 
DocIDs are not displayed. We remark that the data streams 
associated with different nodes in Q may be the same. So we 
use q to represent the set of such query nodes and denote by 
L(q) the data stream shared by them. Without loss of 
generality, assume that the query nodes in q are sorted by 
their RightPos values. We will also use L(Q) = {L(q1), ..., 
L(ql)} to represent all the data streams with respect to Q, 
where each qi (i = 1, ..., l) is a set of sorted query nodes that 
share a common data stream. 
 In order to facilitate the checking of tree embedding, 
some more data structures are established for query nodes. 
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1. First, we will number the nodes of Q in postorder (see 
the boldfaced numbers in Fig. 4(a) for illustration). So 
the nodes in Q will be referenced by their postorder 
numbers. 

2. For each node q of Q, a link from it to the left-most leaf 
node in Q[q], denoted by δ(q), is established. (See Fig. 
4(b)). For a leaf node q’, δ(q’) = q’. Additionally, we set 
a virtual node for Q, numbered 0, which is considered to 
be to the left of any node in Q. 

 
3. Let q’ be a leaf node in Q. We denote by δ-1(q’) a set of 

nodes x such that for each q ∈ x δ(q) = q’. 
4. Each time we create a node v in T’, we associate it with 

an array Av of length |Q|, indexed from 0 to |Q| - 1. In Av, 
each entry is a query node or φ, defined below: 
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Here, Q[x] represents a subtree of Q rooted at x. 
See Fig. 5 for illustration. 

 
 In Fig. 5, q’ represents a closest leaf node to the right of 
q (i.e., the least leaf node larger than q) such that there exists 
at least one x ∈ δ-1(q’) with T[v] embedding Q[x]. Each xi 
represents such a node in δ-1(q’). But we make Av[q] point to 
the largest one since the embedding of a tree in T[v] implies 
the embedding of any of its subtrees in T[v]. At the same time, 
the left-to-right order is also recorded. 
Such entries can be produced as below. 
(i) If we find Q[x] can be embedded in T[v], we will set Av 

Av[q1], ..., Av[qk] to x, where each ql (0 ≤ l ≤ k) is a query 
node to the left of x, to record the fact that x is the 
closest node to the right of ql such that T[v] embeds 
Q[x]. 

(ii) If some time later we find another node x’, which is to 
the right of x, such that Q[x’] can be embedded in T[v], 
we will set Av[p1], ..., Av[ps] to x’, where each pl (1 ≤ l ≤ 
s) is to the left of x’ but to the right of qk.  

(iii) If x’ is an ancestor of x, we will find all those entries 
pointing to a descendant of x’ on the left-most path in 
Q[x’]. Replace these entries with x’. 

(iv) For all the other nodes v’ such that T[v’] embeds Q[x], 
we will set values for the entries in Av’ in the same way 
as (i), (ii), and (iii). 

 As an example, consider node v4 in T shown in Fig. 2. 
After it is checked against node 1 (q3) of Q in Fig. 4, we will 
set 

4vA [0] to 1 since node 1 (q3) of Q is the closest node to the 

right of node 0 (the virtual node of Q) such that T[v4] embeds 
Q[q3]. (See Fig. 6(a)). At a later time point, we find that T[v4] 
also embeds Q[q2], we will change [0] to 3 (see Fig. 6(b)). It 
is because node 1 (q3) is a descendant of node 3 (q2) on the 
left-most path in Q[q2]. In the subsequent computation, we 
will find that T[v4] can embed Q[q5]. In order to record this 
fact,  will be further modified as shown in Fig. 6(c) since 
node 4 (q5) is the closest node right of node 1 (q3), 2 (q4), and 
3 (q2) such that T[v4] embeds Q[q5].  

 
 Based on Av’s, the ordered tree embedding can be 
checked as follows: 
• Let q in Q and v in T be the nodes encountered. 
• Let v1, ..., vk be the child nodes of v. Let q1, ..., ql be the 

child nodes of q. We first check 
1vA  starting from

1vA [l], 

where l = δ(q) - 1. We begin the searching from δ(q) - 1 
because it is the closest node to the left of the first child of 
q. Let 

1vA [l] = q’. If q’ is not an ancestor of q1, we will 

check 
2vA [l] in a next step. This process continues until 

one of the following conditions is satisfied: 
 (i) All

ivA ’s have been checked, or 

 (ii) There exists vj such that [l] is an ancestor of q. 
If all

ivA ’s are checked (case (i)), it shows that Q[q1] cannot be 

embedded in any subtree rooted at a child node of v. So T[v] 
cannot embed Q[v].  
If it is case (ii), we know that T[vj] embeds Q[q1]. If q1 is a //-
child, or both q1 and vj are /-children, we will continue to 
check [q1]. (Otherwise, we will continue to check 

2vA [l].) 

 In terms of the above discussion, we give our algorithm 
for evaluating ordered tree pattern queries. It mainly consists 
of two processes: (1) scanning the data streams associated 
with the query nodes in such an order that each time the 
quadruple with the least RightPos is accessed; (2) checking 
tree embedding. 
 In the first process, for each encountered quadruple v 
from a L(q), a node is created, which will be associated with 
two links, denoted respectively left-sibling(v) and parent(v), 
to reconstruct T (or a subtree of T, which contains only those 
nodes matching a query node) as follows:  
1. Identify a data stream L(q) with the first element being of 

the minimal RightPos value. Choose the first element v of 
L(q). Remove v from L(q). 

2. Generate a node for v. 
3. If v is not the first node, we do the following: 
 Let v’ be the node chosen just before v. If v’ is not a child 

(descendant) of v, create a link from v to v’, called a left-
sibling link and denoted as left-sibling(v) = v’. 

 If v’ is a child (descendant) of v, we will first create a link 
from v’ to v, called a parent link and denoted as parent(v’) 

A v4 : [1, φ, φ, φ, φ] [3, φ, φ, φ, φ] [3, 4, 4, 4, φ] 

Fig. 6. Changes in array Av 
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= v. Then, we will go along the left-sibling chain starting 
from v’ until we meet a node v’’ which is not a child (de-
scendant) of v. For each encountered node u except v’’, set 
parent(u) ← v. Finally, set left-sibling(v) ← v’’. 

 In the second process, we check, for each v from a L(q), 
whether T[v] embeds Q[q] for each q in q. For this purpose, in 
addition to δ(q), Av, another two data structures are used: 
Sv - a list of query nodes q such that T[v] embeds Q[q]. 
τ(v) - a postorder number for a query node associated with 

node v in T’ such that T’[v] is the subtree currently 
found to embed Q[τ(v)]. The initial value for each τ(v) is 
0. 

 In the following algorithm, we only show the second 
process for ease explanation. But the first process can easily 
be integrated. 
Algorithm tree-embedding(L(Q)) 
Input: all data streams L(Q). 
Output: Sv’s, which show the tree embedding. 
begin 
1. repeat until each L(q) in L(Q) become empty 
2. {identify q such that the first element v of L(q) is of the 

minimal RightPos value; remove v from L(q); 
3.  generate node v; Av ← φ; Sv ← φ; 
4.  let v1, ..., vk be the children of v. 
5. for each q ∈ q do {   (*nodes in q are sorted.*) 
6.  let q1, ..., ql be the children of q;  
7.  if l = 0 then j ← 0 
8.  else { p ← δ(q) - 1; 
9.      i ← 1; j ← 1; p’ ← 

ivA [p]; 

10.     while i ≤ k and p’ ≠ φ and p’ < q do 
11. {if (p’ is an ancestor of qj and ((q, qj) is a //-
edge,  
 or both (q, qj) and (v, vi) are /-edges)) 
12.   then { p’ ← 

1+ivA [p’]; i ← i + 1; j ← j + 1;} 

13.        else {p’ ← 
1+ivA [p]; i ← i + 1;} 

14.      } 
15.  } 
16.  if l = j then 
17.  {  Sv ← Sv ∪{q}; 
18.    if q is to the right of τ(v) 
19.    then { a ← τ(v); 
20.       for b = a to q - 1 do 
21.       {if b is to the left of q then Av[b] ← q;} 
22.       } 
23. else {replace with q all those entries pointing to a 

descendant of q on the left-most path in Q[q] in Av; 
} 

24.    τ(v) ← q;  } 
25.    for i = 1 to k do {Av ← merge(Av, ivA );}    

26.     remove 
1vA , ..., 

kvA ; 

27.  } 
end 
 In the above algorithm, the nodes in T are created one 
by one. But for each node v generated for an element from a 

L(q), Av is created and each entry is initialized to φ. Then, for 
each q ∈ q, we will check whether T[v] embeds Q[q]. This is 
done by executing lines 7 - 15, in which two index variables: i 
and j are used to scan the children of v and q, respectively. 
The searching begins from [p], where p = δ(q) - 1 (see line 8). 
In each iteration of the while-loop (see lines 10 - 14), we 
check vi against qj by examining whether the following two 
conditions are satisfied: 
i) 

ivA [p] is an ancestor of qj, and  

ii) (q, qj) is a //-edge, or both (q, qj) and (v, vi) are /-edges. 
 If both the conditions hold, T[vi] embeds Q[qj]. We will 
continue to check T[vi+1] against Q[qj+1]. Special attention 
should be paid to the statement: p’ ← 

1+ivA [p’] (line 12), by 

which we get a query node q’ that is the closest to the right of 
qj, such that T[vi+1] embeds Q[q’]. We also notice that if T[vi] 
cannot embed Q[qj], we will check vi+1 against qj by doing p’ 
← 

1+ivA [p] (see line 13).   

 This process continues until one of the following 
conditions is met: (1) i > k, (2)  p’ = φ, or (3)  p’ ≥ q. 
(1) or (2) implies an unsuccessful checking. If (3) holds, we 
must have l = j (see line 16), showing that each Q[qj’] (1 ≤ j’ 
≤ l) is embedded by a T[vi] (1 ≤ i ≤ k) in the left-to-right 
order.   
Lines 18 - 23 are used to set the entries in Av. 
Finally, we need to merge each 

ivA into Av (line 25) since the 

embedding of a subtree in T[vi] implies the embedding of that 
subtree in T[v]. 
Handling φ as a negative integer (e.g., -1) that represents a 
descendant of any node, we define merge(Av, ivA ) as below:  
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 Obviously, if Av[j] and 
ivA [j] are on the same path, 

merge(Av[j], ivA [j]) should be set to be max{Av[j], ivA [j]}. 

However, if Av[j] and 
ivA [j] are on different paths, 

merge(Av[j], ivA [j]) is set to be min{Av[j], ivA [j]}. It is 

because in Av each entry Av[j] is the closest node j’ to the right 
of j such that T[v] contains Q[j’]. 
 In line 26, we remove

1vA , ..., 
kvA since they will not be 

used any more. 
Example 2 As an example, consider Q shown in Fig. 3 and T 
in Fig. 3 once again. The nodes in Q are postorder numbered, 
i.e., q1 = 5, q2 = 3, q3 = 1, q4 = 2, and q5 = 4. When we apply 
the above algorithm to them, each node v (except v7) in T will 
be associated with an array Av as shown in Fig. 6. 
 In Step 1, v3 is checked against q’’ = {2}. Node 2 is a 
leaf node. So, we have T[v3] embedding Q[2] and 

3vA will be 

established as shown in Fig. 6(a). We notice that 
3vA [0] = 

3vA [1] = 2. It is because node 2 is the closest node to the right 

of node 0 (virtual node) and node 1 (q3) such that T[v3] 
embeds Q[2].  



 In Setp 2, v5 is checked against q’ = {1, 3, 4}. Node 1 is 
a leaf and so T[v5] embeds Q[1], which sets

5vA as shown in 

Fig. 6(b). T[v5] is not able to contain Q[3], but Q[4]. Thus,
5vA  

is changed to [1, 4, 4, 4, φ]. 
 In Setp 3, v6 is checked against q’’ = {2}. Node 2 is a 
leaf and T[v6] embeds Q[2].

6vA is the same as . See Fig. 6(c). 

 In Setp 4, v4 is checked against q’ = {1, 3, 4}. Since 
T[v4] embeds Q[1],

4vA is first set to [1, φ, φ, φ, φ] (see Fig. 

6(d)). When v4 is checked against node 3, their children will 
be examined. The children of v4 are v5 and v6; and the children 
of node 3 are nodes 1 and 2. First,

5vA [0] is checked. It is 1, 

showing that T[v5] embeds Q[1]. Next,
6vA [1] is checked, it is 

equal to 2, showing that T[v6] embeds Q[2]. Therefore, T[v4] 
is able to embed Q[3] and

4vA is changed to [3, φ, φ, φ, φ]. 

(Note that node 1 is a child of node 3 and also on the left-
most path in Q[3].) By checking v4 against node 4, 

4vA becomes [3, 4, 4, 4, φ]. By merge(
4vA ,

5vA ),
4vA is not 

changed. But by merge(
4vA ,

6vA ),
4vA is further changed to [3, 

2, 4, 4, φ]. 

 
 The same analysis applies to Step 5 and 6, by which  
and  are constructed as shown in Fig. 6(e) and (f), 
respectively. 
 In Step 7, v1 is checked against q = {5}. We will first 
check their children. The children of v1 are v2 and v8; and the 
children of node 5 are nodes 3 and 4. Since

2vA [0] = 3, 

showing that T[v2] contains Q[3]. However, since the edge (5, 
3) (i.e., (q1, q2)) in Q is a /-edge, we have to check whether v2 
in T is a /-child of v1. It is the case. So we will continue to 
check

8vA [3]. It is equal to 4, demonstrating that T[v8] embeds 

Q[4]. Thus,
1vA is set to [5, φ, φ, φ, φ]. See Fig. 6(g). By 

merge(
1vA ,

2vA ),
1vA is changed to [5, 2, 4, 4, φ]. By 

merge(
1vA ,

8vA ),
1vA remains unchanged. 

3.2  Corectness and time complexities 
In this subsection, we prove the correctness of the algorithm 
and analyze its computational complexities. 
Proposition 2 Algorithm tree-matching( ) computes the 
values in Av’s correctly. 
Proof. We prove the proposition by induction on the heights 
of nodes in T’. We use h(v) to represent the height of node v.  
Basic step. It is clear that any node v with h(v) = 0 is a leaf 
node. Then, each entry in Av corresponds to a leaf node q in Q 
with label(v) = label(q). Since all those leaf nodes in Q are 
checked in the order of increasing RightPos values, the entries 
in Av must be correctly established. 

Induction step. Assume that for any node v with h(v) ≤ l, the 
proposition holds. We will check any node v with h(v) = l + 1. 
 Let v1, ..., vk be the children of v. Then, for each vi (i = 1, 
..., k), we have h(vi) ≤ l. In terms of the induction hypothesis, 
each

ivA is correctly constructed. Let q1, ..., ql be the children 

of q. In the main while-loop, we will access a sequence: 
  

1vA [p1], ..., kvA [pk] 

with p1 ≤ p2 ≤ ... ≤ pk. If there exists a subsequence: 
1ip , 

...,
lip satisfying the following conditions: 

i) 
jip  is an ancestor of qj, and 

ii) (q, qj) is a //-edge, or  both (q, qj) and (v, ) are /-edges, 
T[v] embeds Q[q]. If q is to the right of τ(v), then in Av, all the 
entries to the right of τ(v) but to the left of q will be set to be 
q. If q is an ancestor, all those entries pointing to a descendant 
of q and appearing on the left-most path in Q[q] are replaced 
with q. The merging operation is obviously correct since the 
embedding of a subtree in T[vi] implies that T[v] also contains 
that subtree. This completes the proof.  
 Now we analyze the time complexity of the algorithm. 
The whole cost can be divided into four parts. 
 The first part consists of checking v of T’ against q of Q. 
Since in each 

ivA , where vi is a child of v, only one entry is 

checked, this part of cost is bounded by 
     O( �

∈Tv
vd ) = O(|T|), 

where dv represents the outdegree of v. 
 The second part is the cost for filling  in the case that q 
is to the right of τ(v). For each v ∈ T, the cost is bounded by 
O(|Q|). So this part of cost is in the order of O(|T|⋅|Q|). 
 The third part is the cost for filling  in the case that q is 
an ancestor of τ(v). This part of checking can be slightly 
improved as follows. In Av, each entry is set to be a pointer to 
a place storing a postorder number, instead of the number 
itself, as illustrated in Fig. 7. 

 
 In Fig. 7, 

4vA is stored as an array of pointers. Especially, 

the postorder numbers in Av a  can be organized as a tree in a 
way similar to the reconstruction of T from data streams. 
Therefore, to modify all the entries pointing to a descendant 
of q on the left-most path in Q[q], we need only to search for 
the place containing the corresponding postorder number. 
This can be done by traversing along a left-link chain as 
discussed in 3.1. For a node v ∈ T checked against q, the cost 
of this process is bounded by O(|q|). 
 The forth part of cost is for the merging operation. It can 
simply be estimated by 
   O( = O(|T|⋅|Q|). 

A v3 : 
A v5 : 
A v6 : 
A v4 : 
A v2 : 
A v8 : 
A v1 : 

[2, 2, φ, φ, φ] 
[1, φ, φ, φ, φ] 
[2, 2, φ, φ, φ] 
[1, φ, φ, φ, φ] 
[1, φ, φ, φ, φ] 
[1, 4, 4, 4, φ] 
[5, φ, φ, φ, φ] 

[1, 4, 4, 4, φ] 

[3, φ, φ, φ, φ] 
[3, 2, φ, φ, φ] 

[5, 2, 4, 4, φ] 

[3, 4, 4, 4, φ] 
[3, 2, 4, 4, φ] 

[3, 2, 4, 4, φ] 

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 
(g) 

Fig. 6. A sample trace 

A v4 : [3, 2, 4, 4, φ] 

3 q2 4 q5 

2 q4 
left link 

Fig. 7. Structure of Av 



 In terms of the above analysis, we have the following 
proposition. 
Proposition 3 The time complexity of Algorithm tree-
embedding( ) is bounded by O(|T’|⋅|Q| + O(|D|⋅|Q|).   
 The space overhead of Algorithm tree-embedding( ) is 
in the order of O(leafT⋅|Q|), where leafT is the number of the 
leaf nodes of T. It is because after a v is checked all the arrays 
associate with its children are removed. So at any time point 
during the execution, at most leafT nodes in T are associated 
with a array (see line 26 in Algorithm tree-embedding( ).) 

3.3  About index, *, and output nodes 
 In the previous subsections, the main algorithm has been 
described in detail. However, three issues yet remain to be 
addressed. That is, the indexing, wildcards (*) as well as the 
output node in Q should be handled carefully. 

- Index 
 The index mechanism used in our implementation is a 
modified XB-tree [4]. As with TwigStack [4], an XB-tree is 
established over a data stream sorted by LeftPos values. 
However, we can use the following algorithm to make a 
transformation of data streams, in which a global stack ST is 
maintained to control the process. In ST, each entry is a pair 
(qi, v) with qi ∈ Q and v ∈ T (v is represented by its 
quadruple.) 
Algorithm stream-transformation(B(qi)’s) 
input: all data streams B(qi)’s, each sorted by LeftPos. 
output: new data streams L(qi)’s, each sorted by RightPos. 
begin 
1. repeat until each B(qi) becomes empty 
2. {identify qi such that the first element v of B(qi) is of the 

minimal LeftPos value; remove v from B(qi); 
3.  while ST is not empty and ST.top is not v’s ancestor do 
4.  { x ← ST.pop(); Let x = (qj, u); 
5.   put u at the end of L(qi);   } 
6.  ST.push(qi, v); 
7. } 
end 

In the above algorithm, ST is used to keep all the nodes on a 
path until we meet a node v that is not a descendant of ST.top. 
Then, we pop up all those nodes that are not v’s ancestor; put 
them at the end of the corresponding L(qi)’s (see lines 3 - 5); 
and push v into ST (see line 6.) The output of the algorithm is 
a set of data streams L(qi)’s with each being sorted by 
RightPos values. However, we remark that the popped nodes 
are in postorder. So we can directly handle the nodes in this 
order without explicitly generating L(qi)’s.  
In Fig. 8(b), we demonstrate a XB-tree built on a B(q) shown 
in Fig. 8(a). 
Each entry in a page (a node) P of an XB-tree consists of a 
bounding segment [LeftPos, RightPos] and a pointer to its 
child page, which contains entries with bounding segments 

completely included in [LeftPos, RightPos]. The bounding 
segments may partially overlap, but their LeftPos positions 
are in increasing order. Besides, each page has two extra data 
fields: P.parent and P.parentIndex. P.parent is a pointer to 
the parent of P, and P.parentIndex is a number i to indicate 
that the ith pointer in P.parent points to P. For instance, in the 
XB-tree shown in Fig. 8(b), P3.parentIndex = 2 since the 
second pointer in P1 (the parent of P3) points to P3. 

 
In our implementation, some modifications have been made. 
First, for a set of nodes q = {q1, ..., ql}, we establish only one 
XB-tree, where q1, ..., ql have the same label. But for each qj 
∈ q (j = 1, ..., l), we maintain a pair (P, i), denoted , to 
indicate that the ith entry in the page P (in the XB-tree) is 
currently accessed for qj. Thus, each  (j = 1, ..., l) corresponds 
to a different searching of the same XB-tree as if we have a 
separate copy of that XB-tree over B(qj). We use advance() 
and drilldown() to navigate the corresponding XB-tree. 
Concretely, advance() advances i. If i is the last entry in P,  is 
replaced with (P.parent, P.parentIndex). By drilldown(), we 
replace (P, i) with (P’, 0) if P is not a leaf page, where P’ is 
the child page pointed to by the pointer of the ith entry in P 
[4].  
The second modification consists in a different navigation 
strategy of XB-trees. By Twigstack [4], each time to 
determine a q in Q, for which an entry from B(q) is taken, the 
following three conditions are satisfied: 
i) For q, there exists an entry vq in B(q) such that it has a 

descendant  in each of the streams B(qi) (where qi is a 
child of q.) 

ii) Each  recursively satisfies (i). 
iii) LeftPos(vq) is minimum. 
But for the ordered tree matching, (i) is changed: 
- For q, there exists an entry vq in B(q) such that it has a 

descendant  in each of the streams B(qi). If q has a right 
sibling q’, then there exists an entry vq’ in B(q’), which is 
to the right of vq.   

In this way, not only the ancestor-descendant relationship, 
but also the left-to-right order is utilized to skip over entries in 
an XB-tree, which substantially reduces the number of disk 
access. 

- Wildcards 
 Using XB-trees, * is handled in the same way as non-
wildcard nodes. In fact, for each q in Q, no matter whether it 
is a wildcard or not, we will be looking for only one element 
in the corresponding XB-tree each time. More importantly, 
using the above drilldown and advance operators [4], any 
entry in an XB-tree (corresponding to a query node) is 
accessed only once. 

(1, 1, 9, 1) 
(1, 2, 7, 2) 
(1, 3, 3, 3) 
(1, 4, 6, 3) 
(1, 5, 5, 4) 
(1, 8, 8, 2) 

(a) 

 1, 9 3, 6 5, 8 

 1, 9 2, 7  3, 3 4, 6  5, 5 8, 8 

p.parent  

p.parentIndex 

(b) 

Fig. 8. A quadruple sequence and the XB-=tree over it 



- Output node 
 As for the output node of Q, we should notice that the 
set Sv generated for each node v in T’ does not serve as the 
answer to Q although for each q ∈ Sv we have T’[v] embeds 
Q[q]. For this reason, we need to slightly modify the 
algorithm to create two extra data structures Lr and Lo as 
below. 
 Each time we insert a q into an Sv (see line 17 in 
Algorithm tree-embedding( )), we will also add v to Lr if q is 
the root r of Q, or to Lo if q is the output node o.  
 Clearly, in these two data structures, all nodes are 
increasingly sorted by the RightPos values. Thus, using them, 
we can create another subtree T’’ of T (in a way similar to the 
generation of a matching subtree; see Algorithm matching-
tree-construction( )). It contains only those nodes v such that 
T’[v] embeds Q[r] with label(v) = label(r) or embeds Q[o] 
with label(v) = label(o). We call a node v an r-node if T’[v] 
contains Q[r] with label(v) = label(r), or an o-node if T’[v] 
embeds Q[o] with label(v) = label(o). Search T’’. Any node v, 
which is an o-node and also a child of some r-node, should be 
an answer if o is a descendant of r or a //-child of r. If o is a /-
child of r, an o-node is an answer only if it is a /-child of 
some r-node.  

4 Conclusion 
 In this paper, a new algorithms tree-embedding for 
processing ordered tree pattern queries is discussed. For the 
ordered tree pattern queries, not only the parent-child and 
ancestor-descendant relationships but also the order of 
siblings are taken into account. The time complexity of the 
algorithm is bounded by O(|T|⋅|Q|) and its space overhead is 
by O(leafT⋅|Q|), where Q stands for a tree pattern, T’ for a 
subtree of a document tree T containing the nodes that match 
at least one query node, and leafT represents the number of the 
leaf nodes of T’. Our experiments demonstrate that our 
method is both effective and efficient for the evaluation of 
ordered tree pattern queries. 
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