
POSTER ABSTRACT

A New Algorithm for Computing Transitive Closures
Yangjun Chen*

Dept. of Business Computing
University of Winnipeg, Manitoba, Canada R3B 2E9

ychen2@uwinnipeg.ca
ABSTRACT
In this paper, we propose a new algorithm for computing
transitive closures. It needs only O(e⋅b) time and O(n⋅b)
space, where n represents the number of the nodes of a DAG
(directed acyclic graph), e the numbers of the edges, and b
the DAG’s breadth.
Categories & Subject Decriptors: E.1. Data Structure

General Terms: Algorithms, Theory

Key Words: DAGs, Transitive Closure, Branching, Topo-
logical Order

1. INTRODUCTION
Let G = (V, E) be a directed graph (digraph for short). Digraph G*
= (V, E*) is the reflexive, transitive closure of G if (v, w) ∈ E* iff
there is a path from v to w in G. This problem exists in a variety of
applications, such as web and document databases, CAD/CAM,
CASE, office systems and software management, as well as in ob-
ject-oriented databases. In these kinds of systems, information is
organised as a graph to represent object/sub-object (e.g., in object-
oriented databases), design/sub-design (e.g., in CAD databases),
and reference relationships in the citation indexes of scientific lit-
erature. In this paper, we present a new algorithm for computing
efficiently the transitive closure of a digraph.
In this paper, we propose a new algorithm for this problem, which
has a better computational complexity than any existing method.

2. A TREE LABELING METHOD
In this section, we discuss how to label a tree to speed up the com-
putation of recursion in a relational environment.

Consider a tree T. By traversing T in preorder, each node v will ob-
tain a number (it can be integer or a real number) pre(v) to record
the order in which the nodes of the tree are visited. In a similar way,
by traversing T in postorder, each node v will get another number
post(v). These two numbers can be used to characterize the ances-
tor-descendant relationships as follows.
Proposition 1. Let v and v’ be two nodes of a tree T. Then, v’ is a
descendant of v iff pre(v’) > pre(v) and post(v’) < post(v).
Proof. See Exercise 2.3.2-20 in [1].
If v’ is a descendant of v, then we know that pre(v’) > pre(v) ac-
cording to the preorder search. Now we assume that post(v’) >
post(v). Then, according to the postorder search, either v’ is in
some subtree on the right side of v, or v is in the subtree rooted at
v’, which contradicts the fact that v’ is a descendant of v. Therefore,
* The author is supported by NSERC 239074-01 (242523) (Natural Sciences an

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04, March 14-17, 2004, Nicosia, Cyprus.
Copyright 2004 ACM 1-58113-812-1/03/04…$5.00.
post(v’) must be less than post(v). The following example helps for
illustration.
Example 1. See the pairs associated with the nodes of the graph
shown in Fig. 1(a). The first element of each pair is the preorder
number of the corresponding node and the second is its postorder
number. With such labels, the ancestor-descendant relationships
can be easily checked.
For instance, by checking the label associated with b against the la-
bel for f, we see that b is an ancestor of f in terms of Proposition 1.
Note that b’s label is (2, 4) and f’s label is (5, 2), and we have 2 <
5 and 4 > 2. We also see that since the pairs associated with g and
c do not satisfy the condition given in Proposition 1, g must not be
an ancestor of c and vice versa.

3. TRANSITIVE CLOSURE OF DAGS
Now we discuss how to recognize the ancestor-descendant rela-
tionships w.r.t. a general structure: a DAG or a graph containing cy-
cles.

What we want is to apply the technique discussed above to a DAG.
To this end, we establish a branching of the DAG as follows.

Definition 1. (branching [2]) A subgraph B = (V, E’) of a digraph
G = (V, E) is called a branching if it is cycle-free and dindegree(v) ≤
1 for every v ∈ V.

Clearly, if for only one node r, dindegree(r) = 0, and for all the rest
of the nodes, v, dindegree(v) = 1, then the branching is a directed tree
with root r. Normally, a branching is a set of directed trees. Now,
we assign every edge e a same cost (e.g., let cost c(e) = 1 for every
edge e). We will find a branching for which the sum of the edge
costs, , is maximum.

For example, the trees shown in Fig. 2(b) are a maximal branching
of the graph shown in Fig. 2(a) if each edge has a same cost.
Assume that the maximal branching for G = (V, E) is a set of trees
Ti with root ri (i = 1, ..., m). We introduce a virtual root r for the
branching and an edge r → ri for each Ti, obtaining a tree Gr, called
the representation of G. For instance, the tree shown in Fig. 2(c) is
the representation of the graph shown in Fig. 2(a). Using Tarjan’s
algorithm for finding optimum branchings [2], we can always find
a maximal branching for a directed graph in O(|E|) time if the cost
for every edge is equal to each other. Therefore, the representative
tree for a DAG can be constructed in linear time.
By traversing Gr in preorder, each node v will obtain a number
pre(v); and by traversing Gr in postorder, each node v will get an-
other number post(v). These two numbers can be used to recognize
the ancestor-descendant relationships of all Gr’s nodes as discussed
in Section 2.
In a Gr (for some G), a node v can be considered as a representation
of the subtree rooted at v, denoted Tsub(v); and the pair (pre, post)

a

b g h

c e

f

Fig. 1. Labeling a tree(3, 1)

(5, 2)

(4, 3)

(2, 4) (6, 5)
(7, 6)

(1, 7)

c e()
e E ′∈
∑

d Engineering Council of Canada).

associated with v can be considered as a pointer to v, and thus to
Tsub(v). (In practice, we can associate a pointer with such a pair to
point to the corresponding node in Gr.) In the following, what we
want is to construct a pair sequence: (pre1, post1), ..., (prek, postk)
for each node v in G, representing the union of the subtrees (in Gr)
rooted respectively at (prej, postj) (j = 1, ..., k), which contains all
the descendants of v. In this way, the space overhead for storing the
descendants of a node is dramatically reduced. Later we will shown
that a pair sequence contains at most O(b) pairs, where b is the
breadth of G. (The breadth of a digraph is defined to be the least
number of the disjoint paths that cover all the nodes of the graph.)

Example 2. The representative tree Gr of the DAG G shown in Fig.
2(a) can be labeled as shown in Fig. 3(a). Then, each of the gener-
ated pairs can be considered as a representation of some subtree in
Gr. For instance, pair (3, 3) represents the subtree rooted at c in Fig.
3(a).

If we can construct, for each node v, a pair sequence as shown in
Fig. 3(b), where it is stored as a linked list, the descendants of the
nodes can be represented in an economical way. Let L = (pre1,
post1), ..., (prek, postk) be a pair sequence and each (prei, posti) is a
pair labeling vi (i = 1, ..., k). Then, L corresponds to the union of the
subtrees Tsub(v1) , ..., and Tsub(vk). For example, the pair sequence
(4, 1)(5, 2)(6, 4)(8, 6) associated with d in Fig. 3(b) represents a
union of 4 subtrees: Tsub(e), Tsub(f), Tsub(g) and Tsub(d), which con-
tains all the descendants of d in G.
The question is how to construct such a pair sequence for each node
v so that it corresponds to a union of some subtrees in Gr, which
contains all the descendants of v in G.
First, we notice that by labeling Gr, each node in G = (V, E) will be
initially associated with a pair as illustrated in Fig. 4. That is, if a
node v is labeled with (pre, post) in Gr, it will be initially labeled
with the same pair (pre, post) in G.

To compute the pair sequence for each node, we sort the nodes of

a b

c d
g

a

c g

e

b

d
a

c g

e

b

d

fe
f

f

Fig. 2. A DAG and its branching
(a) (b) (c)

r

(1, 8)

(2, 5)

(3, 3)

(4, 1) (5, 2)

(7, 7)a

c g

e

b

d

f

(6, 4) (8, 6)

a

b

c

d

e

f

g

2, 5

4, 1 5, 2 6, 4

3, 3

7, 7

4, 1 5, 2 6, 4 8, 6

4, 1 5, 2 6, 4

4, 1

5, 2

Fig. 3. Tree labeling and illustration for transitive closure

(a)

(b)

Tsub(e) ∪ Tsub(f) ∪ Tsub(g) ∪ Tsub(b)
Tsub(a)

Tsub(c)
Tsub(e) ∪ Tsub(f) ∪ Tsub(g) ∪ Tsub(d)

Tsub(e)
Tsub(f)
Tsub(e) ∪ Tsub(f) ∪ Tsub(g)

representation

a b
c d

g

fe

Fig. 4. Graph labeling

(2, 5)
(7, 7)

(3, 3) (6, 4) (8, 6)

(4, 1) (5, 2)

Av:

 p1 p2 pg

viA :
 q1 q2 qh

Fig. 5. linked lists associated with nodes in G
G topologically, i.e., (vi, vj) ∈ Ε implies that vj appears before vi in
the sequence of the nodes. The pairs to be generated for a node v
are simply stored in a linked list Av. Initially, each Av contains only
one pair produced by labeling Gr.
We scan the topological sequence of the nodes from the beginning
to the end and at each step we do the following:

Let v be the node being considered. Let v1, ..., vk be the children
of v. Merge Av with each for the child node vl (l = 1, ..., k)
as follows. Assume Av = p1 → p2 → ... → pg and = q1 → q2
→ ... → qh, as shown in Fig. 5. Assume that both Av and are
increasingly ordered. (We say a pair p is larger than another pair
p’, denoted p > p’ if p.pre > p’.pre and p.post > p’.post.)

We step through both Av and from left to right. Let pi and qj be
the pairs encountered. We’ll make the following checkings.
(1) If pi.pre > qj.pre and pi.post > qj.post, insert qj into Av after pi-

1 and before pi and move to qj+1.
(2) If pi.pre > qj.pre and pi.post < qj.post, remove pi from Av and

move to pi+1. (*pi is subsumed by qj.*)
(3) If pi.pre < qj.pre and pi.post > qj.post, ignore qj and move to

qj+1. (*qj is subsumed by pi; but it should not be removed from
.*)

(4) If pi.pre < qj.pre and pi.post < qj.post, ignore pi and move to
pi+1.

(5) If pi = pj’ and qi = qj’, ignore both (pi, qi) and (pj’, qj’), and
move to (pi+1, qi+1) and (pj+1’, qj+1’), respectively.

(6) If pi = nil and qj ≠ nil, attach the rest of to the end of Av.
The following example helps for illustration.
Example 3. Assume that A1 = (7, 7)(11, 8) and A2 = (4, 3)(8, 5)(10,
11). Then, the result of merging A1 and A2 is (4, 3)(7, 7)(10, 11).
Fig. 6 shows the entire merging process.

In each step, the A1-pair pointed to by p and the A2-pair pointed to
by q are compared. In the first step, (7, 7) in A1 will be checked
against (4, 3) in A2 (see Fig. 6(a)). Since (4, 3) is smaller than (7,
7), it will be inserted into A1 before (7, 7) (see Fig. 6(b)). In the sec-
ond step, (7, 7) in A1 will be checked against (8, 5) in A2. Since (8,
5) is subsumed by (7, 7), we move to (10, 11) in A2 (see Fig. 6(c)).
In the third step, (7, 7) is smaller than (10, 11) and we move to (11,
8) in A1 (see Fig. 6(d)). In the fourth step, (11, 8) in A1 is checked
against (10, 11) in A2. Since (11, 8) is subsumed by (10, 11), it will
be removed from A1 and p becomes nil (see Fig. 6(e)). In this case,
(10, 11) will be attached to A1, forming the result A = (4, 3)(7,
7)(10, 11) (see Fig. 6(e)).

REFERENCES

[1] D.E. Knuth, The Art of Computer Programming, Vol.1, Ad-
dison-Wesley, Reading, 1969.

[2] J. Tarjan: Finding Optimum Branching, Networks, 7. 1977,
pp. 25 -35.

Avl
Avl

Avl

Avl

Avi

Avi

(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(10, 11)
(4, 3)(8, 5)(10, 11)

p = nil

q

A1:
A2:

A

(a) (b) (c)

(d) (e)
Fig. 6. An entire merging process

	POSTER ABSTRACT
	A New Algorithm for Computing Transitive Closures
	Yangjun Chen*

