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ABSTRACT
In this paper, a document algebra is proposed to support
both document transformation and pattern matching. Based
on the tree domain theory, the operational semantics for the
document transformation are defined. Then, by equating a
subtree structure from a DTD to an attribute from a relation
schema, a set of operations for treating document sets is de-
veloped, which is equipped with the pattern matching to
cope with the queries issued to a document database.
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1. Introduction

Until the mid-1980s, the relational algebra received a lot of
attention due to its simplicity, both for modeling and manip-
ulating data. Recently, however, we became aware of its in-
sufficiency when trying to model data applications beyond
the traditional business-oriented applications, such as office
automation, multimedia databases and text-oriented appli-
cations.

In this paper, we present a document algebra as a possible
successor of the relational model, aiming at the document
treatment. The proposed algebra is based on the tree domain
theory which has been extensively used to study the tree
logic [14], tree automaton [16] and tree periodicity [9].

We distinguish between two groups of operations: those for
document transformation and those for manipulating sets of
documents (by which the pattern matching is needed.) The
first group is to operate on single documents. A lot of exam-
ples are given to show how the operations can be utilized to
elegantly translate a document into another one and how an
(approximate) DTD can be derived from a set of existing
documents. The second group provides a series of opera-
tions analogous to the relational algebra. By abstractly
equating a subtree structure from a DTD (Document Type
Descriptor) to an attribute from a relation schema, we can
see that a document roughly corresponds to an extended
“tuple” (in which each value is associated with a node ad-
dress; see below.) This observation enables us to build a
bridge between the document algebra and the relational al-
gebra and accordingly, w.r.t. the treatment of the sets of
documents, the same operation set can be established for the
document algebra as for the relational model. These two
groups form the core of a query language wherein users can
succinctly and naturally formulate complex problems typi-
cally encountered in document databases.
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Recently, much research has been directed toward the data
models which recognize as the most fundamental character-
istic of data its hierarchical structure [3, 7, 10, 15]. In [10],
an algebra for transforming tree structures was developed, in
which several primitive operators are provided to change a
tree. But no attention was paid to operate among single trees
as well as tree sets. In [15], a so-called forest algebra is intro-
duced based on the tree automaton theory [16] to support
document transformation and pattern matching. But it is too
intricate to be governed. It is more interesting from a theoret-
ical perspective than from a practical viewpoint. In addition,
how to define a deterministic forest automaton for a given
DTD has never been clearly discussed. [7] is another inter-
esting suggestion; but the algebra provided is not purely de-
clarative, mixed with a predicate calculus. All the above
methods are grammar-based.

An entirely different approach tries to extend the relational
model and the object-oriented model to capture hierarchies
of structured documents with complex values. Probably, the
most notable example is by Christophides et al. [3]. They use
O2 as a basis and further introduce ordered tuples and
marked unions to represent hierarchies of SGML/XML doc-
uments. However, extension in such a way can not capture
the inherent hierarchical characteristic of documents, lead-
ing to cumbersome operations for manipulating data.

The rest part of the paper is organized as follows. In Section
2, we give the definition of the document tree according to
the tree domain theory. Then, in Section 3, we define a set of
operations for transforming document trees. In Section 4, a
short conclusion is set forth. 

2. DTD and Document trees
In this section, we introduce the concept of labeled trees
which can be used to represent documents exactly. 

Intuitively, a labeled tree can be considered as consisting of
two parts: a tree domain and a set of labels associated with
each element in the tree domain. The following is its formal
definition.

Definition 2.1 (tree) Let Σ = {1, ..., k} and let A be a finite
alphabet. A k-ary (labeled) tree over A is a mapping T: Σ* ∪
{ε} → A, where ε ∉ Σ and Σ* denotes the set of all finite-
length sequences of letters from Σ. The domain of T: dom(T)
is a finite and prefix-closed subset of Σ* plus {ε}. We say a
subset U of Σ* ∪ {ε} to be prefix-closed if

(i) ω ∈ U ∧ ω = uv →  u ∈ U (ω, u, v ∈ Σ *)
(ii) ωi ∈ U ∧  j ≤ i  → ωj ∈ U (ω ∈ Σ *, i, j ∈ U).  

The elements in dom(T) are called nodes (or node addresses)
nd Engineering Council of Canada).



and ε is always used to represent the root address of a tree.
We say that T is an unlabeled tree if the alphabet contains
only one element (i.e., all nodes have the same label.)

Example 2.1 Let Σ = {1, 2} and A = {a, b, c, d, e, f, g, h, i}.
Consider the mapping T: Σ* ∪ {ε} → A given by the equa-
tions shown in Fig.1(a), which corresponds to a labeled bi-
nary tree as shown in Fig. 1(b).  

This mapping is defined over the prefix-closed set: {1, 2, 12,
21, 22, 121, 122, 221} plus {ε}. For a label a in a tree, its cor-
responding nodes (or node addresses) are denoted by T -1(a).
We notice that T-1 is a multi-valued function since many
nodes may have the same label. 

Definition 2.2 (subtree) Given a tree T and a node address α
in dom(T), the subtree rooted at α, denoted Tsub(α), is a tree
such that dom(Tsub(α)) = {v1v2 ... vk | αv1v2 ... vk ∈ dom(T)
and Tsub(α)(v1v2 ... vk) = T(αv1v2 ... vk)}.

The empty tree, i.e., the tree mapping with domain ∅ , is de-
noted by Λ.
A terminal of a tree T is an element whose node address ω ∈
dom(T) such that no extension of ω is also in dom(T). The set
of all terminals of T is called the frontier of T, denoted by
fr(T).  

Now we consider an SGML/XML document. It can always
be represented as a labeled tree. As an example, consider a
possible DTD for letter documents shown in Fig.2. Its picto-
rial representation is as shown in Fig. 3.

The tree domain of this tree structure is a prefix-closed set:
{1, 2, 3, 4, 5, 11, 21, 31, 311, 3111, 312, 3121, 41, 51} plus
{ε}, labeled with the tag names: A = {letter, date, greeting,
closing, sig, para, text, emph}, and “#PCDATA” which is a
data type, more or less comparable to string. Such a tree is
called a DTD tree or a schema tree. Note that in the cases of
multiple appearance (as illustrated in Fig. 4(a)) and recursion
(as illustrated in Fig. 4(b)), the structure of a DTD can also
be represented as a tree as illustrated in Fig. 4(c) and 4(d), re-
spectively.

In terms of the above discussion, a DTD can always be rep-

T (ε)  =  a ,
T (1 2 )  =  d ,  
T (1 2 1 )  =  g ,  

T (1 )  =  b ,
T (2 1 )  =  e ,  
T (1 2 2 )  =  h ,  

T (2 )  =  c ,
T (2 2 )  =  f,  
T (2 2 1 )  =  i,  

Fig. 1. An exemplary tree
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1. < !D O C T Y PE lette r [
2. < !E L E M E N T lette r - - (da te , gree ting , bo d y, c lo sing , sig )>
3. < !A T T L IS T lette r 

filecod e          N U M B E R     # R E Q U IR E D
secre t            (y es | n o)         “n o”>

4 . <!E L E M E N T b od y  - - (p ara)+>
5 . <!E L E M E N T (d ate , g ree tin g, c lo sin g, sig ) - - ( #P C D A T A) > 

6 . <!E L E M E N T p ara - - (tex t | em p h )*>
7 . <!E L E M E N T em ph  - - (# PC D A T A )>

9 . <!E N T IT Y salu te        “D ear”>

8 .  < !A T T L IST em ph  
ita lic              (yes | n o )     “y es”>

]>

Fig. 2. A sample DTD
resented as a set of pairs with the following form: (α, t), (α,
t*), or (α , t+), where α is a node address and t is a tag name, a
symbol indicating the data type or a complex value (see be-
low); “*” and “+” are two connection indicators as defined for
regular expressions. 

A complex value is defined as consisting of three parts as fol-
lows:

<complex value> := <tag-name>[-<contain-model>][-<attribute-list>].

It is used to capture part of a DTD structure, which can not be
represented by the tree structure alone.   

For instance, the complex value for the node labeled with “let-
ter” is of the form: 

Obviously, such a value is too complicated to be represented
by the tree structure. Therefore, by the definition of the oper-
ations over trees, attention should be paid to the inner struc-
tutre of a label. That is, by any operation, we should specify
whether a simple value (tag-name or data type) or a complex
value is considered and in the latter case, it should be further
specified which parts of a complex value is taken into account.
To this end, we represent a label using a triple  <lt, lc(i), la(j)>,
where lt is for the tag-name, lc(i) refers to the ith element in

letter

d ate g reetin g b o d y c lo s in g s ig

pa ra +

em p h *

#P C D A T A # P C D A T A # P C D A T A # P C D A T A

# P C D A T A

tex t*

# P C D A T A

Fig. 3. Tree representation of the DTD shown in Fig. 2

Fig. 4. Transformation of DTD trees
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the contain-model and la(j) refers to the jth attribute of the at-
tribute-list. If the whole contain-model or the whole at-
tribute-list is considered, we simply use lc or la, respectively.

In the following, however, we use the label for both the sim-
ple and complex values for simplicity. If the distinction be-
tween them is necessary, we utilize lt, lc and la to reference
the different parts of a label as discussed above.

In addition, the connector “|” is ignored. That is, we regard
simply each sub-element appearing in the content model of
an element as a child, no matter whether they are connected
with “|” or not. In fact, this connector is only for the syntac-
tical description of a document and not related to the manip-
ulation of tree structures themselves.

Accordingly, a document conforming to a DTD can also be
represented as a set of pairs of the form: (α, t), where α has
the same meaning as above and t is a tag name (possibly with
the attribute value assignment) if α is the address of an inte-
rior node, or a value (a string, a picture, or something else,
which can be treated by software) if α  is a terminal node ad-
dress. We call a tree for a document the document tree.

In the following, we will define all basic operations on trees
(DTD trees or document trees) in Section 3.

3. Basic operations for DTD and document
transformation
In this section, eight operations for tree transformation are
defined based on the tree domain theory. They are tree-
union, tree-intersection, tree-symmetric-difference, tree-
concatenation, tree-substitution, node-insertion, node-dele-
tion, and label-renaming.

To specify these basic operations over trees, we need some
extra concepts.

Definition 3.1 (interval closed) Let Σ = {1, ..., k}. A subset
S of Σ* is interval closed if for any words v and vab ∈ S, we
have va ∈ S, where a, b ∈  Σ.

Definition 3.2 (bush) Let Σ = {1, ..., k} and let A be a finite
alphabet. A k-ary (labeled) bush over A is a partial mapping
B: Σ* → A whose domain dom(B) is a finite and interval
closed subset of Σ*.

Example 3.1 Let Σ = {1, 2} and A = {d, e, f, g, h, i}. The
mapping shown in Fig. 5(a) is a bush. Its pictorial represen-
tation is shown in Fig. 5(b). 

Definition 3.3 (compatible) Let T1 and T2 be two labeled
trees. We say that T1 and T2 are compatible if and only if they
coincide as functions on the intersection of their domains
(i.e., the nodes with the same addresses in T1 and T2 will
have the same labels.) In formula, if T(D) denotes the restric-
tion of T to D ⊆ dom(T), we write T1(dom(T1) ∩ dom(T2)) =
T2(dom(T1) ∩ dom(T2)).

Now we can define several operations among trees (DTD

T(12) = d, 
T(121 ) =  g, 

T(2 1) =  e, 
T(1 22) = h, 

T(22 ) =  f, 
T(22 1) =  i, 

Fig. 5. Illustration for bush
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trees or document trees).

- tree-union (⊕ )

Let T1 and T2 be two compatible trees. The union of them (T1
⊕  T2) is defined by

(i) dom(T1 ⊕  T2) = dom(T1) ∪ dom(T2);
(ii) ∀ x ∈ dom(T1 ⊕  T2),

(T1 ⊕  T2)(x) = 

This definition works well for the DTD trees. But for the doc-
ument trees, a little bit modification is needed due to the fact
that incompatible terminal nodes should be allowed to take the
union operation for the practical purpose. In this case, the dif-
ferent terminal nodes (in different document trees) with the
compatible parents will be put together to construct a bigger
piece of texts. To this end, we change the above definition as
follows:

(T1 ⊕  T2)(x) = 

By this definition, we notice that the label of a terminal of a
document tree is a value. Therefore, if for a terminal x ∈ fr(T1)
∩ fr(T2) its respective parents in T1 and T2 are compatible, the
label of x in T1 and the label of x in T2 are joined together. That
is, its corresponding new label is {T1(x)} ∪  {T2(x)}. For in-
stance, the union of two document trees D1 and D2 shown in
Fig. 6(a) is a new tree shown in Fig. 6(b).

- tree-intersection (• )

Let T1 and T2 be again two compatible trees. The intersection
of them (T1 •  T2) is a new tree such that

(i) dom(T1 •  T2) = dom(T1) ∩ dom(T2)

(ii) T1 •  T2 = T1(dom(T1) ∩ dom(T2))

= T2(dom(T1) ∩ dom(T2)).
For example, the intersection of trees D1 and D2 shown in Fig.
6(a) is the tree shown in Fig. 7.  

- tree-symmetric-difference (~)

T1 x( ) , if x dom T1( );∈

T2 x( ) , otherwise



T1 x( ) , if x dom T1( ) fr T1( ) or x fr T1( ) but x ′ s parent∈⁄∈

is not compat ible with any terminal ′ s parent in T2;

T2 x( ) , if x dom T2( ) fr T2( ) or x fr T2( ) but x ′ s parent∈⁄∈

is not compat ible with any terminal ′ s parent in T1;

T1 x( ){ } T2 x( ){ } , otherwise∪







Fig. 6. Illustration for tree-union 
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We can imagine that if we simply apply the normal set dif-
ference operation to the domains of two trees, we do not get
a tree but a bush. 

Let T1 and T2 be two compatible trees. We define the bush
T1 ~ T2 as follows.

(i) dom(T1 ~ T2) = dom(T1 ⊕  T2) / dom(T1 •  T2);
(ii) ∀ x ∈ dom(T1 ~ T2),

(T1 ~ T2)(x) = 
  

For instance, the symmetric difference of trees D1 and D2
shown in Fig. 6(a) is a set of document pieces shown in Fig.
8. 

We now define the concatenation between two trees. Intu-
itively, to concatenate two trees T1 and T2, we “attach” the
root of T2 to one of the elements of the border of T1. The bor-
der of a tree can be defined as follows.

Definition 3.4 (border) Given a tree T, the border of T is the
set B(T) = {wi | w ∈ dom(T), i ∈  Σ; but wi ∉ dom(T)}.

In general, as a result, we get more than one trees since the
border of a tree normally contains more than one elements.
Then, the concatenation between two trees will be a set of
trees containing as many trees as the elements in B(T). We
first define formally the concatenation of two trees at a given
element of the border. Then, the general concatenation oper-
ation can be defined.

Let T1 and T2 be two trees; and let B(T1) denote the border
of T1. The concatenation of T1 and T2 at α ∈ B(T1) is a tree
T1(α)T2 defined as 

(i) dom(T1(α)T2) = dom(T1) ∪  dom(T2);
(ii) ∀ x ∈ dom(T1(α)T2),
(T1(α)T2)(x) = 

- tree-concatenation ( ⋅ )
Let T1 and T2 be two trees; and let B(T1) denote the border
of T1. The concatenation of T1 and T2 is the set of trees:

T1 ⋅ T2 = {T1(α)T2 | α  ∈ B(T1)}.

As an example, consider the trees T1 and T2 shown in Fig. 9. 

T1 x( ) , if x dom T1( );∈

T2 x( ) , otherwise



Fig. 8. Illustration for tree-symmetric-difference
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Fig. 9. Two simple trees
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The concatenation T1 ⋅ T2 is a set of trees as shown in Fig. 10.  

- subtree-substitution ( / )
Given two trees T1 and T2 and a node address α in dom(T1),
the substitution of T2 for the subtree T1sub(α), denoted T1[α/
T2] , is the tree defined by

(i) dom(T1[α/T2]) = (dom(T1)/dom(T1sub(α))) ∪  {αw | w ∈
dom(T2)};

(ii) ∀ x ∈ dom(T1[α/T2]),

(T1[α/T2])(x) =

 

This operation can be illustrated as shown in Fig. 11. 

- node-insertion

Let T be a tree. Let α be a node-address in the tree and β be
one of α’s children. The insertion of a node labeled a as a child
of α but the parent of β, denoted T[α, β, a], can be defined as
follows.

Let A = dom(T)/dom(Tsub(β)) and B = {β1w | w ∈
dom(Tsub(β))}. Then we have 

(i) dom(T[α , β, a]) = A ∪  B ∪  {T-1(β)};
(ii) ∀ x ∈ dom(T[α, β, a]),

(T[α, β, a])(x) = 

See Fig. 12 for illustration. 

- node-deletion 

Let T be a tree and α  be a node address in the tree. The deletion
of α  from T, denoted T[~α] can be defined as follows. Let α

Fig. 10. Concatenation of two trees shown in Fig. 9
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Fig. 11. Illustration for tree-substitution
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Fig. 12. Illustration for node-insertion
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= wi, where w ∈ dom(T) and i is an integer. Let βj = wij (j =
1, 2, ..., k) be the node addresses of α’s children. Let od(w)
denote the outdegree of w. We first define three sets:

A = dom(T)/ ;

B =  {wju | u ∈ dom(Tsub(βj), j = i+1, , ..., i+k};

C =  {wju | u ∈ dom(Tsub(wl), l = i+1, ..., od(w), j = i+k,
..., i+od(w)}.

Then we have

(i) dom(T[~α]) = A ∪  B ∪  C;

(ii) ∀ x ∈ dom(T[~α]),
(T[~α])(x) =

Fig. 13 helps for illustration. 

- label-renaming

Two label-renaming operations are provided. The first is
used to replace the label of some node with a new one. The
second substitutes a new label for all appearances of some la-
bel in the tree.

Let T be a tree. Let α be a node address in the tree. The first
operation, denoted T[T(α) ← a] (where a is a label), can be
defined as follows:

(i) dom(T[T(α) ← a]) = dom(T);
(ii) ∀ x ∈ dom(T[T(α) ← a]),

(T[T(α) ← a])(x) =

 

The second operation is denoted T[b ← a], by which all the
appearances of b will be replaced with a. The following is its
definition.

(i) dom(T[b ← a]) = dom(T);
(ii) ∀ x ∈ dom(T[b ← a]),

(T[b ← a])(x) =

 

The following example demonstrates how the above opera-
tions can be utilized to perform a document (DTD) transfor-
mation.

Example 3.2 Consider the DTD given in Section 2 again.

dom Tsub wn( )( )
n i=

od w( )
∪

T x( ) , if x A;∈
T y( ) where y dom Tsub βj( )( ) x,∈ wiy for some j, if x B;∈=

T z( ) where z dom Tsub wl( )( ) x w l i–( )z for some l , if x C ;∈=,∈





Fig. 13. Illustration for node-deletion
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Suppose we want to extract only the information on the letter
texts and signatures. The corresponding DTD would then be
transformed into the following form: 

The transformation on the corresponding documents can be
accomplished by consecutively performing the following op-
erations:

for each a ∈  T -1(date) do
{T[a/Λ]}; (*replace, for example, the subtree

rooted at (1, date) with Λ*)
for each a ∈  T -1(greeting) do

{T[a/Λ]}; (*replace, for example, the subtree
rooted at (2, greeting) with Λ*)

for each a ∈  T -1(closing) do
{T[a)/Λ]}; (*replace, for example, the subtree

rooted at (4, closing) with Λ*)
for each a ∈  T -1(body) do

{T[~a]}; (*delete, for example, the node (3,
body)*)

Alternatively, we can write these operations in the following
form for short.

T[T -1(date)/Λ]; T[T -1(greeting)/Λ]; T[T -1(closing)/Λ]; T[~T -1(body)].

Hereafter, the concise representation like this will be em-
ployed without further declaration if no confusion arises. 

In addition, we notice that each element e ∈ dom(T) also rep-
resents a path from the root to some node with e as the ad-
dress. Let e = i1.i2. ... ij and a1, a2, ... aj be the labels appearing
on the path. Then a1.a2. ... aj is a label path. Similar to single
labels, we define T -1(a1.a2. ... aj) to be the elements in
dom(T), on which a1.a2. ... aj appears. This notation will be
used in the subsequent discussion.

Operations based on relaxed compatibility

In the above, we defined a set of operations based on a “strict”
compatibility. For the practice purpose, however, more re-
laxed compatibilities should be considered. To this end, we
define the concept of tree isomorphism.

Definition 3.5 (tree isomorphism) Let T1 and T2 be two trees.
T1 and T2 are said to be isomorphic, denoted if there
exists an one-to-one mapping from the nodes of T1 to the
nodes of T2 that preserves labels and tree structure. 

(The algorithm for the tree isomorphism is available and the
check to see whether two trees are isomorphic can always be
done in linear time [12, 13].)

This definition leads directly to the following result.

Proposition 3.1 If T1 and T2 are isomorphic, then we can al-
ways transform T2 into T1 by applying a series of label-renam-
ing operations on T2 or vice versa.

Fig. 14. A transformation of the DTD shown in Fig. 2
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Let T[b1 ← a1], T[b2 ← a2], ..., T[bn ← an] be a sequence of
label-renaming operations. We write T[B ← A] for it for
short, where B = {b1, b2, ..., bn} and A = {a1, a2, ..., an}.

Based on this concept, we define a relaxed compatibility as
follows.

Definition 3.6 (compatible up to isomorphism) Let T1 and T2
be two document trees. We say that T1 and T2 are compatible
up to isomorphism if and only if there exists some tree else
T such that  and T is compatible with T2. (Note that if
T1 and T2 are compatible, they are also compatible up to iso-
morphism.)

In terms of this notion, we redefine the first three basic oper-
ations discussed above.

- tree-unioniso (⊕ iso)

Let T1 and T2 be compatible upon isomorphism. Let T1[B ←
A] be the label-renaming sequence transforming T2 into a
tree compatible to T1. The union of them (T1 ⊕ iso T2) is de-
fined by

(i) dom(T1 ⊕  T2) = dom(T1) ∪ dom(T2);
(ii) ∀ x ∈ dom(T1 ⊕  T2),

(T1 ⊕  T2)(x) = 

In a similar way, we can define the corresponding “intersec-
tion” and “symmetric-difference”:

- tree-intersectioniso (• iso),

- tree-symmetric-differenceiso (~iso).

Now we turn to an interesting problem to derive a DTD from
a set of documents. We have this problem by organizing a set
of documents (got, for example, through the World-Wild
Web) into a database. We need such a DTD to govern the
document loading process, such as the schema establishment
for accommodating them, the index construction on some
document elements, etc.

Example 3.3 Consider a set of documents T1, T2, ..., Tn. We
construct a new document T:

T = T1⊕ isoT2⊕ iso ... ⊕ iso Tn.

In T, each terminal node is of the form: {c1, c2, ..., cn}, where
each ci is either an empty string or the label (value) of a ter-
minal node of Ti. By a simple analysis, the data type for ci (i
= 1, 2, ..., n) can be determined, say #PCDATA. Then, sub-
stitute #PCDATA for {c1, c2, ..., cn} in T. We can replace
each terminal node of T with the corresponding data type in
this way to obtain a new tree T’ which can be employed as
an approximate DTD for Ti (i = 1, 2, ..., n).

We conclude this section with another example involving re-
cursion.

Example 3.4 As is well known, the recursion is beyond the
expressiveness of the relational algebra [20]. The same is
also true for the document algebra. But we can develop a
similar way as the deductive database to handle this problem

T1 T≅

T1 x( ) , i f x dom T1( ) fr T1( ) or x fr T1( ) but x ′ s parent∈⁄∈

i s not compat ible with any terminal ′ s parent in T2

T2 B A←[ ] x( ), i f x dom T2( ) fr T2( ) or x fr T2( ) but x ′ s parent∈⁄∈

i s not compat ible with any terminal ′ s parent in T1

T1 x( ){ } T2 B A←[ ] x( ){ } , otherwise∪







[4]. Consider the DTD piece shown in Fig. 15(a), in which
each “segment” possesses a “title”, some “paragraphs” and
also “segements” recursively. 

We want to rename the lowest-level “segments” as “topics”.
For the DTD tree, it is very simple, which can be done as fol-
lows:

T[T(1) ← “seg-(title, para*, (seg | topic)*)”];
(*renaming*)

T(1.4)Tsub(T-1(doc.seg));
(*union of T and the subtree (rooted at “doc.seg”) 
at node address “1.4”.*)

T[T(1.4) ← “topic-(title, para*)”];
(*renaming*) 

T[~T-1(doc.seg.topic.seg)].
(*removing the node labeled with “seg” below 
the node labeled with “topic”*)

The resulting DTD is shown in Fig. 15(b).

However, for the documents conforming to this DTD, a more
complicated method has to be employed for the corresponding
transformation. We need a predicate Pterminal(x) to check
whether a node is a parent of some terminal node. In addition,
we regard Tsub(α) as a predicate to quantify subtrees. When
the subtree rooted at α exists, it evaluates to true. Otherwise,
it evaluates to false. We construct the following deductive
rule:

rule: Tsub(T -1(x.seg)) :− Tsub(T -1(x)), seg ∈ T(T -1(x)),

¬ Pterminal(T -1(x.seg)).

The rule means that if x is a label path leading to a subtree
(Tsub(T -1(x))), the root of the subtree is labeled with “seg”
(seg ∈ T(T -1(x))) and at the same time T -1(x.seg) is not a par-
ent of some terminal node (¬Pterminal(T -1(x.seg))), then
Tsub(T -1(x.seg)) evaluates to true. 

This rule is recursive. To finish the above task for the docu-
ment transformation, we execute the following procedure:

A := {doc.seg}; ∆ := ∅ ;
repeat

for each x ∈ A do 
{evaluate rule;

∆ := ∆ ∪ answers;}
if ∆ ≠ ∅  then

{A := ∆; ∆ := ∅ ;} (*note that the answers are a set 

of label paths; only the answers last

<!ELEMENT doc - - (seg*)>
<!ELEMENT seg   - - (title, para*, seg*)>

<!ELEMENT title - - (#PCDATA)>
<!ELEMENT para - - (#PCDATA)>

Fig. 15. DTD transformation

(a)

(b)

<!ELEMENT doc - - (seg*)>
<!ELEMENT - - (title, para*, (seg | topic)*)> 

<!ELEMENT title - - (#PCDATA)>
<!ELEMENT para - - (#PCDATA)>

<!ELEMENT topic - - (title, para*)>
seg



produced are kept.*)
until no more new answers
for each d ∈ A do

{
  T[T(d) ← topic]; (*renaming*)
}

In the above, all the operations for the transformation of
DTDs and single document trees were discussed. To manip-
ulate document sets, more operations should be established.
In fact, three operations analogous to the relational algebra
can be defined. They are projection, selection and join. Dif-
ferent from the relational algebra, some tree specific opera-
tors are involved such as tree matching and tree inclusion,
which are especially useful for web recognition [5, 18, 19].

Definition 1 Let SD be a set of documents conforming to a
certain DTD. The projection of SD onto a subset X of DTD
(recall that DTD is a set of pairs; see Section 2) such that
dom(X) is interval closed, written as πX(SD), is the document
pieces defined as follows

Ai = {Ti sub(αij) | Ti ∈  SD; ∃ d ∈ dom(X) such that αijd ∈  dom(DTD)},
πX(SD) = {Ai | i = 1, ..., n},

where n is the number of documents in SD.

Definition 2 (selection) The selection of a document set SD
under a formula F is the subset of SD, written as σF(SD), con-
sisting of all those documents T of SD such that each such
document satisfies F, i.e.,

σF(SD) = {T | T  ∈  SD and T satisfies F}.
Definition 3 (join) Let S1 and S2 be two document sets con-
forming to DTD1 and DTD2, respectively. Let A be a subtree
of DTD1and B a subtree of DTD2. The join of S1 and S2 on
A and B, written as S1[A ϕ B]S2, is the set consisting of every
triple of the form (n12, T1, T2) representing a new tree with
n12 being the root and T1 and T2 being n12’s left and right
subtrees, respectively, where T1 is in S1, T2 is in S2 such that
T1 ϕ T2 evaluates to true. n12 is a virtual node used as the root
of the new document containing T1 and T2, i.e.,

S1[A ϕ B]S2 = {(n12, T1, T2) | T1 in S1, T2 in S2 and T1 ϕ T2}.

4. Conclusion
In this paper, a document algebra is proposed. Based on the
tree domain theory, a group of operations for the tree trans-
formation is formally defined, which can be utilized to
change a DTD or a document structure and derive a DTD
from the existing documents. Another group of operations is
developed by equating a subtree structure from a DTD to an
attribute from a relation schema. This group can be used to
perform “projection”, “selection” and “join” as well as the
other set-oriented operations on document sets.
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