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Abstract  In this paper, we consider two kinds of unordered tree
matchings for evaluating tree pattern queries in XML databases.
For the first kind of unordered tree matching, we propose a new
algorithm, which runs in O(|D||Q|) time, where Q is a tree pattern
and D is a largest data stream associated with a node of Q. It can
also be adapted to an indexing environment with XB-trees being
used to speed up disk access. Experiments have been conducted,
showing that the new algorithm is promising. For the second of
tree matching, the so-called strict unordered tree matching, we
show that the problm is NP-complete by a reduction from the sat-
isfiability problem.
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I. INTRODUCTION
In XML [33, 34], data are represented as a tree; associated

with each node of the tree is an element name tag from a finite
alphabet ∑. The children of a node are ordered from left to
right, and represent the content (i.e., list of subelements) of that
element.

To abstract from existing query languages for XML (e.g.
XPath [15], XQuery [34], XML-QL [14], and Quilt [6, 7]), we
express queries as tree patterns, where nodes are labeled with
symbols from ∑ ∪ {*} (* is a wildcard, matching any node
name) and string values, and edges are parent-child or ances-
tor-descendant relationships. As an example, consider the que-
ry tree shown in Fig. 1. 

This query asks for any node of name b (node 3) that is a
child of some node of name a (node 1). In addition, the node of
name b (node 3) is the parent of some nodes of name c and e
(node 6 and 7, respectively), and the node of name e itself is an
ancestor of some node of name d (node 8). The node of name b
(node 2) should also be the ancestor of a node of name f (node
5). The query corresponds to the following XPath expression:

a[b[c and .//f]]/b[c and e//d]. 
In this figure, there are two kinds of edges: child edges (/-

edges for short) for parent-child relationships, and descendant
edges (//-edges for short) for ancestor-descendant relationships.

A /-edge from node v to node u is denoted by v → u in the text,
and represented by a single arc; u is called a /-child of v. A //-
edge is denoted v ⇒ u in the text, and represented by a double
arc; u is called a //-child of v.

In any DAG (directed acyclic graph), a node u is said to be
a descendant of a node v if there exists a path (sequence of edg-
es) from v to u. In the case of tree patterns, this path could con-
sist of any sequence of /-edges and/or //-edges. We also use
label(v) to represent the symbol (∈ ∑ ∪ {*}) or the string asso-
ciated with v. Based on these concepts, the tree embedding can
be defined as follows.
Definition 1. An embedding of a tree pattern Q into an XML
document T is a mapping f: Q → T, from the nodes of Q to the
nodes of T, which satisfies the following conditions:
(i) Preserve node label: For each u ∈ Q, label(u) = label(f(u)).
(ii) Preserve parent-child/ancestor-descendant relationships: If

u → v in Q, then f(v) is a child of f(u) in T; if u ⇒ v in Q,
then f(v) is a descendant of f(u) in T.
If there exists a mapping from Q into T, we say, Q can be im-

bedded into T, or say, T contains Q.
This definition allows a path to match a tree as illustrated in Fig.
2.  

It even allows to map several nodes with the same tag name
in a query to the same node in a database. In fact, it is a kind of
unordered tree matching, by which the order of siblings is not
significant. Almost all the existing strategies for evaluating tree
pattern queries are designed according to this definition [5, 9,
10, 11, 12, 14, 22, 24, 26, 27, 28, 29, 34, 35]. Such kind of tree
matchings can be solved in polynomial time.
However, if we require that each query node in Q maps to a dif-
ferent document node in T and no siblings map to those nodes
which are related by ancestor/descendant or parent/child rela-
tionships, the problem becomes very difficult. We refer to it as
strict unordered tree matching.

In this paper, we first present a new algorithm for evaluating
tree pattern queries according to Definition 1, which runs in
O(|D|⋅|Q|) time and O(|D|⋅|Q|) space, and can  adapted to an in-
dexing environment with XB-trees being used, where D is a
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a

b b
c f c e

d

1

2 3
4 5 6 7

8

node 3 is the output node.

a a

b b

c
c

Q: T:

Fig. 2. A tree matches a path

d

c



largest data stream associated with a node q of Q. Then, we
show that the strict unordered tree matching is NP-complete.

The remainder of the paper is organized as follows. In Sec-
tion 2, we restate a tree encoding [36], which facilitates the rec-
ognition of different relationships among the nodes of a tree. In
Section 3, we discuss our algorithm for the unordered tree
matching according to Definition 1. In Section 4, we show the
NP-completeness of the strict unordered tree matching. Section
6 is devoted to the implementation and experiments. Finally, a
short conclusion is set forth in Section 6.

II. TREE ENCODING
In [36], an interesting tree encoding method was discussed,

which can be used to identify different relationships among the
nodes of a tree.

Let T be a document tree. We associate each node v in T with
a quadruple (DocId, LeftPos, RightPos, LevelNum), denoted as
α(v), where DocId is the document identifier; LeftPos and
RightPos are generated by counting word numbers from the be-
ginning of the document until the start and end of v, respective-
ly; and LevelNum is the nesting depth of v in the document. (See
Fig. 3 for illustration.) By using such a data structure, the struc-
tural relationship between the nodes in an XML database can be
simply determined [36]:
(i) ancestor-descendant: a node v1 associated with (d1, l1, r1,

ln1) is an ancestor of another node v2 with (d2, l2, r2, ln2) iff
d1 = d2, l1 < l2, and r1 > r2.

(ii)parent-child: a node v1 associated with (d1, l1, r1, ln1) is the
parent of another node v2 with (d2, l2, r2, ln2) iff d1 = d2, l1
< l2, r1 > r2, and ln2 = ln1 + 1.

(iii)from left to right: a node v1 associated with (d1, l1, r1, ln1)
is to the left of another node v2 with (d2, l2, r2, ln2) iff d1 =
d2, r1 < l2. 

In Fig. 3, v2 is an ancestor of v6 and we have v2.LeftPos = 2
< v6.LeftPos = 6 and v2.RightPos = 9 > v6.RightPos = 6. In the
same way, we can verify all the other relationships of the nodes
in the tree. In addition, for each leaf node v, we set v.LeftPos =
v.RightPos for simplicity, which still work without downgrad-
ing the ability of this mechanism.

In the rest of the paper, if for two quadruples α1 = (d1, l1, r1,
ln1) and α2 = (d2, l2, r2, ln2), we have d1 = d2, l1 < l2, and r1 >
r2, we say that α2 is subsumed by α1. For convenience, a qua-
druple is considered to be subsumed by itself. If no confusion is
caused, we will use v and α(v) interchangeably.

We can also assign LeftPos and RightPos values to the que-
ry nodes in Q for the same purpose as above.
Finally we use T[v] to represent a subtree rooted at v in T.

III. MAIN ALGORITHM
In this section, we discuss our algorithm according to Defi-

nition 1.
As with TwigStack [5], each node q in a tree pattern (or say,

a query tree) Q is associated with a data stream B(q), which con-
tains the positional representations (quadruples) of the database
nodes v that match q (i.e., label(v) = label(q)). All the quadru-
ples in a data stream are sorted by their (DocID, LeftPos) val-
ues. For example, in Fig. 4, we show a query tree containing 5
nodes and 4 edges and each node is associated with a list of
matching nodes of the document tree shown in Fig. 3, sorted ac-
cording to their (DocID, LeftPos) values. For simplicity, we use
the node names in a list, instead of the node’s quadruples. 

Therefore, if each time we choose a node with the least Left-
Pos from data streams, T is in fact traversed in preorder (top-
down). However, our algorithm needs to visit the tree nodes in
postorder (bottom-up). For this purpose, we maintain a global
stack S to make a data stream transformation as described in Al-
gorithm stream-transformation( ) shown in Fig. 5. In S, each
entry is a pair (q, v) with q ∈ Q and v ∈ T.

In the algorithm, the stack S is used to keep all the nodes on
a document path until we meet a node v that is not a descendant
of S.top (see line 3). Then, we pop up all those nodes that are
not v’s ancestor, and push v into S (see lines 4 - 5). The output
of the algorithm is a set of data streams L(qi)’s with each being
sorted by (DocID, RightPos). But we notice that the popped
nodes themselves are in postorder (see line 3). So we can handle
the nodes in this order without explicitly generating L(qi)’s.
However, in the following discussion, we assume that all L(qi)’s
are completely generated for ease of explanation. We also note
that the data streams associated with different nodes in Q may
be the same. So we use q to represent the set of such query
nodes and denote by L(q) the data stream shared by them. For
example, in Q shown in Fig. 4, L({q2, q5}) = {v4, v2, v8}. With-
out loss of generality, assume that the query nodes in q are sort-
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the query nodes with the same tag will
be associated with the same data stream.

Algorithm stream-transformation(B(qi)’s)
input: all data streams B(qi)’s, each sorted by LeftPos.
output: new data streams L(qi)’s, each sorted by RightPos.
begin

repeat until each B(qi) becomes empty
{identify qi such that the first element v of B(qi) is of

while S is not empty and S.top is not v’s ancestor do
{x ← S.pop(); Let x = (qj, u);
put u at the end of L(qi); }

S.push(qi, v);
}

end

the minimal LeftPos value; remove v from B(qi);

1.
2.

3.
4.
5.
6.
7.

Fig. 5. Algorithm for stream transformation



ed by their RightPos values.
We will also use L(Q) = {L(q1), ..., L(ql)} to represent all the

data streams with respect to Q, where each qi (i = 1, ..., l) is a
set of sorted query nodes that share a common data stream.

We first observe that iterating through L(q1), ..., L(ql) corre-
sponds to a navigation of T in postorder. However, in this pro-
cess, any node v in T, which does not match any q ∈ Q (i.e.,
label(v) ≠ label(q)), is not accessed. So only a subtree T’ of T is
navigated. If we are able to construct T’ explicitly in this pro-
cess, we will get a tree structure with each node v associated
with a query node stream S(v), as illustrated in Fig. 6. For each
q ∈ S(v), we have label(v) = label(q). 

If we check, before a q is inserted into the corresponding
S(v), whether Q[q] (the subtree rooted at q) can be embedded
into T’[v], we get in fact an algorithm for tree pattern matching.
The challenge is how to conduct such a checking efficiently.

For this purpose, we associate each q in Q with a variable,
denoted χ(q). During the process, χ(q) will be dynamically as-
signed a series of values a0, a1, ..., am for some m in sequence,
where a0 = φ and ai’s (i = 1, ..., m) are different nodes of T’. Ini-
tially, χ(q) is set to a0 = φ. χ(q) will be changed from ai-1 to ai
= v (i = 1, ..., m) when the following conditions are satisfied.
i) v is the node currently encountered. 
ii) q appears in S(u) for some child node u of v.
iii) q is a //-child, or

q is a /-child, and u is a /-child with label(u) = label(q).
Then, each time before we insert q into S(v), we will do the

following checking:
1. Let q1, ..., qk be the child nodes of q.
2. If for each qi (i = 1, ..., k), χ(qi) is equal to v and label(v) =

label(q), insert q into S(v).
Since T’ is constructed in a bottom-up way, the above

checking guarantees that for any q ∈ S(v), T’[v] contains Q[q].
In terms of the above discussion, we give our algorithm for

evaluating tree pattern queries. The algorithm mainly consists
of a main procedure and a subprocedure. The task of the main
procedure is to construct T’ while the subprocedure is invoked
to check tree embedding. In the main procedure, each node that
is created for a quadruple v from a L(q) is associated with two
links, denoted respectively left-sibling(v) and parent(v), to
mainly the tree structure of T’ as follows: 
1. Identify a data stream L(q) with the first element being of the

minimal RightPos value. Choose the first element v of L(q).
Remove v from L(q).

2. Generate a node for v.
3. If v is not the first node, we do the following:

Let v’ be the node created just before v. If v’ is not a child (de-
scendant) of v, create a link from v to v’, called a left-sibling

link and denoted as left-sibling(v) = v’.
If v’ is a child (descendant) of v, we will first create a link
from v’ to v, called a parent link and denoted as parent(v’) =
v. Then, we will go along the left-sibling chain starting from
v’ until we meet a node v’’ which is not a child (descendant)
of v. For each encountered node u except v’’, set parent(u) ←
v. Finally, set left-sibling(v) ← v’’.

Fig. 7 is a pictorial illustration of this process. 
In Fig. 7(a), we show the navigation along a left-sibling chain
starting from v’ when we find that v’ is a child (descendant) of
v. This process stops whenever we meet v’’, a node that is not a
child (descendant) of v. Fig. 8(b) shows that the left-sibling link
of v is set to v’’, which is previously pointed to by the left-sib-
ling link of v’s left-most child.

In Fig. 8, we give the main algorithm, by which a quadruple is
removed in turn from the data streams L(q)’s and a node v for it
is generated and inserted into T’. 
In addition, two data structures are used:

Droot - a subset of document nodes v such that Q can be em-
bedded in T[v].

Doutput - a subset of document nodes v such that Q[qoutput]
can be embedded in T[v], where qoutput is the output node
of Q.

In these two data structures, all nodes are decreasingly sorted
by their LeftPos values.
The algorithm is designed for queries containing /-edges, //-
edges, *, and branches. During the process, another algorithm
subsumption-check(v, q) may be invoked to check whether any
q ∈ q can be inserted into S(v), where q is a subset of query
nodes such that L(q) contains v. Let v1, v2 be two children of a
node v. Let S1 = S(v1) and S2 = S(v2).  merge(S1, S2) puts S1 and
S2 together with any duplicate being removed. Since both S1
and S2 are sorted by RightPos values, merge(S1, S2) works in a
way like the sort-merge join and needs only O(max{|S1|, |S2|})
time. We define merge(S1, ..., Sk-1, Sk) to be merge(merge(S1, ...,
Sk-1), Sk).
The output of tree-matching( ) is Droot and Doutput. Based on
them, we can find all the answers by generating a subtree in a
way similar to the construction of T’. 
Algorithm tree-matching( ) does almost the same work as Al-
gorithm matching-tree-construction( ).The main difference is
lines 14 - 18 and lines 24 - 28. In lines 14 - 18, we set χ values
for some q’s. Each of them appears in a S(v’), where v’ is a child
node of v, satisfying the conditions i) - iii) given above. In lines
24 - 28, we use the merging operation to construct S(v). In
Function subsumption-check( ), we check whether any q in q
can be inserted into S by examining the ancestor-descendant/
parent-child relationships (see line 4). For each q that can be in-
serted into QS, we will further check whether it is the root of Q
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or the output node of Q, and insert it into Droot or Doutput, re-
spectively (see lines 6 - 8). In the Appendix, we prove the cor-
rectness of tree-matching( ).

The algorithm handles wildcards in the same way as any
non-wildcard nodes. But a wildcard matches any tag name.
Therefore, L(*) should contain all the nodes in T. However, as
with twigStack [5], we establish an XB-tree over B(q)’s and take
an element from it as it is needed. Recall that the input of our
algorithm is in fact B(q)’s which are transformed to L(q)’s  by
using a global stack (see Fig. 5).
Example 2 Applying Algorithm tree-matching to the data
streams shown in Fig. 4, we will find that the document tree
shown in Fig. 3 contains the query tree shown in Fig. 4. We

trace the computation process as shown in Fig. 9. 
In the first three steps, we will generate part of the matching

subtree as shown in Fig. 9(a). Associated with v8 is a query
node stream: QS(v8) = {q5}. Although q2 also matches v8, it
cannot survive the subsumption check (see line 4 in subsump-
tion-check( )). So it does not appear in QS(v8). In addition, we
have QS(v5) = QS(v6) = {q3, q4}. It is because both q3 and q4
are leaf nodes and can always satisfy the subsumption check-
ing. In a next step, we will meet the parent v4 (appearing in
L({q2, q5}) of v5 and v6. So we are able to get χ(q3) = v4 and
χ(q4) = v4 (see Fig. 9(b)). In terms of these two values, we know
that q2 should be inserted into QS(v4). q5 is a leaf node and also
inserted into QS(v4). In addition, QS(v5) and QS(v6) should also
be merged into it. In the fifth step, we meet v3. QS(v3) = {q3,
q4} (see Fig. 9(c)). In the sixth step, we meet v2 (in L({q2, q5})).
It is the parent of v3 and v4. According to QS(v3) = {q3, q4} and
QS(v4) = {q2, q5}, as well as the fact that both q5 and v4 are /-
child nodes and label(q5) = label(v4) = B, we will set χ(q3) =
χ(q4) = χ(q2) = χ(q5) = v2 (see Fig. 9(d)). Thus, we have QS(v2)
= {q2, q5}. Finally, in step 7, according to QS(v2) = {q2, q5} and
QS(v8) = {q5}, we will set χ(q2) = v1 and χ(q5) = v1 (see Fig.
9(e)), leading to the insertion of q1 into QS(v1). 

In Example 2, we see that if we just want to record only
those parts of T, which contain the whole Q or the subtree root-
ed at the output node, a QS(v) can be removed once v’s parent
is encountered. However, if we maintain them, we are able to
tell all the possible containment, i.e., which parts of T contain
which parts of Q.

In the following, we prove the correctness of this algorithm.
First, we prove a simple lemma.
Lemma 1 Let v1, v2, and v3 be three nodes in a tree with
v3.RightPos > v2.RightPos > v1.RightPos. If v1 is a descendant
of v3. Then, v2 must also be a descendant of v3.
Proof. We consider two cases: i) v2 is to the right of v1, and ii)
v2 is an ancestor of v1. In case (i), we have v1.LeftPos < v2.Left-
Pos. So we have v3.LeftPos < v1.LeftPos < v2.LeftPos. This
shows that v2 is a descendant of v3. In case (ii), v1, v2, and v3 are
on the same path. Since v2.LeftPos > v3.LeftPos, v2 must be a

Algorithm tree-matching(L(Q))
input: all data streams L(Q).
output: a matching subtree T’ of T, Droot and Doutput.
begin

repeat until each L(q) in L(Q) becomes empty 
{identify q such that the first node v of L(q) is of the minimal

if v is the first node created then
{S(v) ← subsumption-check(v, q);}  
else
{let v’ be the quadruple chosen just before v, for which a

if v’ is not a child (descendant) of v then
{left-sibling(v) ← v’;
S(v) ← subsumption-check(v, q); }

else
{v’’ ← v’; w ← v’;
while v’’ is a child (descendant) of v do
{parent(v’’) ← v; (*generate a parent link. Also, indicate 
whether v’’ is a /-child or a //-child.*)
for each q in QS(v’’) do {
if ((q is a //-child) or 

(q is a /-child and v’’ is a /-child and
label(q) = label(v’’)))

then χ(q) ← v;}
w ← v’’; v’’ ← left-sibling(v’’);

RightPos value; remove v from L(q); generate node v; 

node is constructed;

1.
2.

3.
4.
5.
6.

7.
8.
9.
10.
11.
12.
13.

14.
15.
16.
17.
18.
19.

remove left-sibling(w);
}
left-sibling(v) ← v’’;
}
S ← subsumption-check(v, q);
let v1, ..., vj be the child nodes of v;
S’ ← merge(S(v1), ..., S(vj));
remove S(v1), ..., S(vj);
S(v) ← merge(S, S’);
}}

end

Function subsumption-check(v, q)

S ← Φ;
for each q in q do {
let q1, ..., qj be the child nodes of q.
if for each /-child qi χ(qi) = v and for each //-child qi

{S ← S ∪ {q};
if q is the root of Q then
Droot  ← Droot  ∪ {v};
if q is the output node then Doutput  ← Doutput  ∪ {v};}}
return S;

end

(*v satisfies the node name test at each q in q.*)  

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

χ(qi) is subsumed by v then 

1.
2.
3.
4.

6.
7.
8.
9.

5.

begin

Fig. 8. Algorithm tree-matching 
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descendant of v3. 
We illustrate Lemma 1 by Fig. 10, which is helpful for un-

derstanding the proof of Proposition 1 given below.

Proposition 1 Let Q be a twig pattern containing only /-edges,
//-edges and branches. Let v be a node in the matching subtree
T’ with respect to Q created by Algorithm tree-matching( ). Let
q be a node in Q. Then, q appears in QS(v) if and only if T’[v]
contains Q[q]. 
Proof. If-part. A query node q is inserted into QS(v) by execut-
ing Function subsumption-check( ), which shows that for any q
inserted into QS(v) we must have T’[v] containing Q[q] for the
following reason:
(1) label(v) = label(q).
(2) For each //-child q’ of q there exists a child v’ of v such that

T[v’] contains Q[q’]. (See line 15 in tree-matching( ).)
(3) For each /-child q’’ of q there exists a /-child v’’ of v such

that T[v’’] contains Q[q’’] and label(v’’) = label(q’’). (See
lines 16 - 17 in tree-matching( ).)
In addition, a query node q in QS(v) may come from a QS

of some child node of v. Obviously, we have T’[v] containing
Q[q].
Only-if-part. The proof of this part is tedious. In the following,
we give only a proof for the simple case that Q contains no /-
edges, which is done by induction of the height h of the nodes
in T’.
Basis. When h = 0, for the leaf nodes of T’, the proposition triv-
ially holds.
Induction step. Assume that the proposition holds for all the
nodes at height h ≤ k. Consider the nodes v at height h = k + 1.
Assume that there exists a q in Q such that T’[v] contains Q[q]
but q does not appear in QS(v). Then, there must be a child node
qi of q such that (i) χ(qi) = φ, or (ii) χ(qi) is not subsumed by v
when q is checked against v. Obviously, case (i) is not possible
since T’[v] contains Q[q] and qi must be contained in a subtree
rooted at a node v’ which is a child (descendant) of v. So χ(qi)
will be changed to a value not equal to φ in terms of the
induction hypothesis. Now we show that case (ii) is not possi-
ble, either. First, we note that during the whole process, χ(qi)
may be changed several times since it may appear in more than
one QS’s. Assume that there exist a sequence of nodes v1, ..., vk
for some k ≥ 1 with v1.RightPos < v2.RightPos < ... < vk.Right-
Pos such that qi appears in QS(v1), ..., QS(vk). In terms of the
induction hypothesis, v’ = vj for some j ∈ {1, ..., k}. Let l be the
largest integer ≤ k such that vl.LeftPos > v.LeftPos. Then, for
each vp (j ≤ p ≤ l), we have

v’.RightPos ≤ vl.RightPos < v.RightPos.
In terms of Lemma 1, each vp (j ≤ p ≤ l) is subsumed by v.

When we check q against v, the actual value of χ(qi) is the node
name for some vp’s parent, which is also subsumed by v (in
terms of Lemma 1), contradicting (ii). The above explanation

shows that case (ii) is impossible. This completes the proof of
the proposition.  

Lemma 1 helps to clarify the only-if part of the above proof.
In fact, it reveals an important property of the tree encoding,
which enables us to save both space and time. That is, it is not
necessary for us to keep all the values of χ(qi), but only one to
check the ancestor-descendant/parent-child relationship. Due to
this property, the path join [5], as well as the result enumeration
[12], can be completely avoided. More importantly, the theoret-
ical time complexity is reduced by one order of magnitude.

The time complexity of the algorithm can be divided into
three parts:
1. The first part is the time spent on accessing L(Q). Since each

element in a L(Q) is visited only once, this part of cost is
bounded by O(|D|⋅|Q|).

2. The second part is the time used for constructing QS(vj)’s.
For each node vj in the matching subtree, we need O( )

time to do the task, where is the outdegree of , which
matches vj. (See line 2 and 3 in Function subsumption-check(
) for explanation.) So this part of cost is bounded by

O( ) ≤ O( ) = O(|D|⋅|Q|).

3. The third part is the time for establishing χ values, which is
the same as the second part since for each q in a QS(v) its χ
value is assigned only once.

Therefore, the total time is O(|D|⋅|Q|).
The space overhead of the algorithm is easy to analyze. Besides
the data streams, each node in the matching subtree needs a par-
ent link and a right-sibling link to facilitate the subtree recon-
struction, and an QS to calculate χ values. So the extra space
requirement is bounded by O(|D|⋅|Q| + |D| + |Q|) = O(|D|⋅|Q|).

VI. ABOUT STRICT UNORDERED TREE MATCHING
Definition 2 A strict embedding of a tree pattern Q into an
XML document T is a mapping f: Q → T, from the nodes of Q
to the nodes of T, which satisfies the following conditions:
(i) same as (i) in Definition 1.
(ii) same as (ii) in Definition 1.
(iii)For any two nodes v1 ∈ Q and v2 ∈ Q, if v1 and v2 are not

related by an ancestor-descendant relationship, then f(v1)
and f(v2) in T are not related by an ancestor-descendant re-
lationship. 
This is a much more difficult problem than the tree match-

ing discussed in the previous section. 
To facilitate the algorithm description, we will use some 

concepts from the hypergraph theory [1].
Definition 3 Let U = {u1, …, un} be a finite set of nodes. A
hypergraph on U is a family H = {E1, …, El} of subsets of U
such that
(1) Ei ≠ ∅ (i = 1, 2, …, l)

(2) = U. 

v3

v1 v2

v3

v1

v2

v2 is to the right of v1; or
appears as an ancestor of v1 but,
as a descendant of v3.

Fig. 10. Illustration for Lemma 1
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A simple hypergraph (or Sperner family) is a hypergraph H =
{E1, …, El} such that 
(3) Ei ⊂ Ej ⇒ i = j.

As for a graph H, the order of H, denoted by n(H), is the
number of nodes. The number of edges will be denoted by
m(H) and the rank(H) is defined to be r(H) = .  It can

be proved that m(H) ≤   [1].

Let A ⊂  U be a subset. We call the family
HA = {Ei ∩ A | 1 ≤ i ≤ l, Ei ∩ A ≠ ∅}

the sub-hypergraph induced by A.
Definition 4 Let H = {E1, …, El} be a hypergraph on U and H’
= {F1, …, Fl’} be another hypergraph on V. The product of H
and H’, denoted as H × H’, is a hypergraph, whose nodes are
the elements of the Cartesian product U × V, and whose edges
are the sets Ei × Fj with 1 ≤ i ≤ l and 1 ≤ j ≤ l’. Obviously, n(H
× H’) = n(H)n(H’) and m(H × H’) = m(H)m(H’). However, if U

= V, we have n(H × H’) = n(H) and m(H × H’) ≤ . 

As with the ordered tree embedding, we will maintain two
matrices Q(P, T) and S(P, T) to control the computation.
1. In Q(P, T), an entry qij is 1 if the subtree rooted at j in T

includes the subtree rooted at i in P. Otherwise, it is 0.
2. In S(P, T), each entry sij is defined as follows. Let i1, i2,

…, ik be the child nodes of i. sij is a hypergraph Hi = {E1,
…, El}over {i1, i2, …, ik} such that T[j], the subtree rooted
at j, includes each Eg (g = 1, …, l}, that is, for each Eg, the
subtree rooted at j includes all the subtrees rooted at the
nodes in Eg. But T[j] cannot include Ei  ∪ Ej  for any i, j
∈{1, …, l }.

Algorithm unordered-embedding(T, P)
Input: tree T (with nodes 1, ..., n) and tree P (with nodes 1, ...,
m)
Output: Q(P, T), which shows the tree embedding.
begin
1. for v := 1, ..., n do
2. {for u := 1, ..., m do
3. {if quv = 0 then
4. {let v1, …, vh be the child nodes of v;
5. H := × ×… × ;

6. let u1, …, uk be the child nodes of u;
7. if {u1, …, uk} ∈ H then set quv to 1;
8. else suv := HA;
9. }
10 }
11. let u1, …, ul be nodes such that P[u1], …, P[ul] are

included in T[v];
12. for each ancestor v’ of v, := 1 for i = 1, …, l;

13. construct hypergraph H = {{u1}, …, {ul}};
14. for u := 1, ..., m do

15. {let A be the set of u’s child nodes;
16. suv:= HA;
17. }
20.}
End
The execution of line 5 will dominate the running time of the
algorithm. Let k be the largest out-degree of any node in P.

Then, the size of each suv  is bounded by  < 2k. (is

asymptotic to (2/π)1/22kk-1/2 [44]). Especially, the size of any
product hypergraph of the form suv × suv’  is bounded by 2k

(and so is  suv × suv’ × suv’’, …, and so on.) So the time com-
plexity of the algorithm is on the order of O(|T|⋅|P|⋅2k).

V. EXPERIMENTS
In this section, we report the test results. We conducted our

experiments on a DELL desktop PC equipped with Pentium(R)
4 CPU 2.80GHz, 0.99GB RAM and 20GB hard disk. The code
was compiled using Microsoft Visual C++ compiler version
6.0, running standalone.
- Tested methods

In the experiments, we have tested four methods:
- TwigStack (TS for short) [5],
- Twig2Stack (T2S for short) [12],
- Twig-List (the method discussed in [15], TL for short),
- One-Phase Holistic (the method discussed in [42]; OPH for

short),
- Tree-matching (the method dscussed in Section 3; TM for

short),
and compare their execution times, as well as the runtime space
usage. The theoretical computational complexities of these
methods are summarized in Table 1.

- Data
The data sets used for the tests are TreeBank data set [30],

DBLP data set [30] and a synthetic XMARK data set [35]. The
TreeBank data set is a real data set with a narrow and deeply re-
cursive structure that includes multiple recursive elements. The
DBLP data set is another real data set with high similarity in
structure. It is in fact a wide and shallow document. The XMark
(with factor = 1) is a well-known benchmark data set. The im-
portant parameters of these data sets are summarized in Table 2.

maxj Ej

n
n 2⁄ 

 

n
n 2⁄ 

 

suv1
suv2

suvh

quiv′

k
k 2⁄ 

 

query time
TwigStack
Twig2Stack

OPH

O(|D||Q|)
O(|D|⋅|Q|2 +

O(|D|⋅|Q|2)

methods runtime space usage
O(|D||Q|)
O(|D|⋅|Q|)

O(|D|⋅|Q|)

Table 1. Time and space complexities

Data size
Number of nodes
Max/Avg. depth

|subTwigResults|)

TreeBank
82 (MB)
2437k
36/7.9

DBLP
127 (MB)
3332k
6/2.9

XMark
113 (MB)
1666k
12/5.5

Table 2. Data sets for experimental evaluation

TM O(|D|⋅|Q|) O(|D|⋅|Q|)
TL O(|D|⋅|Q|2) O(|D|⋅|Q|)



- Queries
As we know, XPath allows for the formulation of straight-

line queries as well as, in terms of XPath predicates, twigs that
actually contain branches. XPath further allows the specifica-
tion of value-based predicates. To study the performance im-
pact of such characteristics, we have tested 10 queries against
DBLP database, which are divided into two groups. In the first
group all the 5 queries are with a constant while in the second
group (another 5 queries) no parameter is specified. Over
XMARK database, we have also tested 10 queries, divided into
2 groups with each containing 5 queries. In the first group, each
query contains a constant. In the second group, for each query
no constant is specified. All the queries are shown in Table 3 -
Table 6.

- Test results
Now we demonstrate the execution times of all the four

strategies when they are applied to the above queries. 
In Fig. 11(a), we show the test results of the first group. From
these we can see that our algorithm outperforms all the other
strategies. It is because this algorithm works only in one scan
of the data streams and neither the path join nor the result enu-
meration is involved. More importantly, for each element from
an XB-tree, our algorithm only checks QSs for the child nodes
of current query node. But Twig2Stack needs to check all the

stacks associated with all the query nodes. Both OPH and TL
have the same problems Twig2Stack, but work a little bit better
than Twig2Stack. OPH does no result enumeration is involved
while TL does less checkings. TwigStack has the worst perfor-
mance.    

Fig. 11(b) shows the test results of the second group. The
execution time of all the strategies are much worse than Group
1 since the queries are all of quite low selectivity and thus
almost all the data set has to be downloaded into main mem-
ory. In this case, I/O dominates the cost. Again, our algorithm
has the best performance. Especially, when the size of queries
becomes larger, this algorithm is 3 - 4 times better than
Twig2Stack, TL and OPH. First, the time for constructing a
matching subtree is much less than that for constructing the
hierarchical stacks. Secondly, the space used by our algorithm
is much smaller than any of the three methods. TwigStack
shows an exponential-time behavior since for each path in a
query a great many matching paths will be produced and the
cost of join operations increases exponentially. 

In Fig. 12(a) and (b), the test results over the XMARK
database are demonstrated. From these, we can see that our
algorithm still has the best performance for this data set.

In Fig. 13, we compare the runtime memory usage of all
the four tested approaches for the second group of queries.

By the memory usage, we mean the intermediate data
structures, not including data stream (concretely, path stacks

Query
Q1
Q2
Q3

Q4

Q5

XPath Expression
//inproceedings [author]//year [text() = ‘2004’]
//inproceedings [author and title]//year [text() = ‘2004’]
//inproceedings [author and title and .//pages]//year

//inproceedings [author and title and .//pages and .//url]

//articles [author and title and .//volume and .//pages and 

[text() = ‘2004’]

//year [text() = 2004’]

//url]//year [text() = ‘2004’]

Table 3: Group I - DBLP queries

Query
Q6
Q7
Q8

Q9

Q10

XPath Expression
//inproceedings[author/* and ./*]/year
//inproceedings[author/* and title and ./*]/year
//inproceedings[author/* and title and .//pages and ./*]/year
//inproceeding[author/* and title and .//pages and .//url and

//articles[author/* and title and .//volume and .//pages and
./*]/year

.//pages and .//url and ./*]/year

Table 4: Group II - DBLP queries

Query
Q11

Q12

Q13

Q14

Q15

XPath Expression
/site//open_auction[.//seller/person]//date

/site//open_auction[.//seller/person and .//bidder]//date

/site//open_auction[.//seller/person and /./bidder/increase]

/site//open_auction[.//seller/person and .//bidder/increase 

/site//open_auction[.//seller/person and .//bidder/increase 

//date [text() = ‘10/23/2006’]

 and .//initial]//date [text() = ‘10/23/2006’]

and //initial and .//description]//date [text() = ‘10/23/2006’]

Table 5: Group III - XMark queries

[text() = ‘10/23/2006’]

[text() = ‘10/23/2006’]

Query
Q16

Q17

Q18

Q19

Q20

XPath Expression
/site//open_auction[.//seller/person/* and ./*]/date

/site//open_auction[.//seller/person/* and .//bidder and ./*]

/site//open_auction[.//seller/person/* and .//bidder/increase]

/site//open_auction[.//seller/person/* and .//bidder/increase

/site//open_auction[.//seller/person/* and .//bidder/increase 

/date

 and .//initial and ./*]/date

 and .//initial and .//description and ./*]/date

Table 6: Group IV - XMark queries
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for TwigStack; hierarchical stacks for Twig2Stack, TL and
OPH; and QSs for ours.) 

VI. CONCLUSION
In this paper, a new algorithms is presented to evaluate twig

pattern queries based on unordered tree matching. The main
idea is a process for tree reconstruction from data streams, dur-
ing which each node v that matches a query node will be insert-
ed into a tree structure and associated with a query node stream
QS(v) such that for each node q in QS(v) T[v] embeds Q[q]. Es-
pecially, by using an important property of the tree encoding,
this process can be done very efficiently, which enables us to re-
duce the time complexity of the existing methods (such as
Twig2Stack [12], Twig-List [15], and One-Phase Holistic [42])
by one order of magnitude. Our experiments demonstrate that
the new algorithm is both effective and efficient for the evalua-
tion of twig pattern queries.
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