
The
Cana
On the Query Evaluation in Document DBs

Yangjun Chen
Department of Applied Computer Science

University of Winnipeg
Winnipeg, Manitoba, Canada R3B 2E9

ychen2@uwinnipeg.ca

Abstract In this paper, we study the query evaluation in document data-
bases. First, we show that a query represented in an XML language can
be generally considered as a labeled tree, and the evaluation of such a
query is in fact a tree embedding problem. Then, we propose a strategy
to solve this problem, based on dynamic programming. For the ordered
tree embedding, the proposed algorithm needs only O(|T|⋅|P|) time and
O(|T|⋅|P|) space, where |T| and |P| stands for the numbers of the nodes in
the target tree T and the pattern tree P, respectively. This computational
complexity is better than any existing method on this issue. In addition,
how to adapt this method to the general tree embedding is also discussed.
1 Introduction
In XML, data is represented as a tree; associated with each node of the tree is an el-
ement type from a finite alphabet ∑. The children of a node are ordered from left to
right, and represent the content (i.e., list of subelements) of that element. XML que-
ries such as XPath, XQuery, XML-QL and Quilt use tree patterns to extract relevant
portions from the input database. A tree pattern query (or called a query tree) that
we consider in this paper, denoted by TPQ from now on, is defined as follows. The
nodes of a tree are labeled by element types from ∑ ∪ {*}, where * is a wild card,
matching any element type. The type for a node v is denoted τ(v). There are two
kinds of edges: child edges (c-edges) and descendant edges (d-edges). A c-edges
from node v to node u is denoted by v → u in the text, and represented by a single
arc; u is called a c-child of v. A d-edge is denoted v ⇒ u in the text, and represented
by a double arc; u is called a d-child of v.

In any DAG (directed acyclic graph), a node u is said to be a descendant of a node
v if there exists a path (sequence of edges) from v to u. In the case of a TPQ, this
path could consist of any sequence of c-edges and/or d-edges.

An embedding of a TPQ P into an XML document T is a mapping f: P → T, from
the nodes of P to the nodes of T, which satisfies the following conditions:

1. Preserve node type: For each v ∈ P, v and f(v) are of the same type.

2. Preserve c/d-child relationships: If v → u in P, then f(u) is a child of f(v) in T; if
v ⇒ u in P, then f(u) is a descendant of f(v) in T.

Any document T, in which P can be embedded, is said to contain P and considered
author is supported by NSERC 239074-01 (242523) (Natural Science and Engineering Council of
da).

to be an answer.

To handle all the possible XPath queries, we allow a node u in a TPQ P to be asso-
ciated with a set of predicates. We distinguish among three different kinds of pred-
icates: current node related predicates (called current-predicates), child node
related predicates (called c-predicates), and descendant related predicates (called
d-predicates). A current-predicate p is just a built-in predicate applied to the current
node; i.e., a node v in T, which matches u, must satisfy this predicate associated with
u. A c-predicate is a built-in predicate applied to the children of the current node.
That is, for each node v in T, which matches u, each of its children (or one of its chil-
dren) must satisfy this predicate. Similarly, a d-predicate must be satisfied by all the
descendants of the node (or one of its descendants), which matches u. Without loss
of generality, we assume that associated with u is a conjunctive-disjunctive normal
form: (p11 ∨ ... ∨) ∧ ... ∧ (pk1 ∨ ... ∨), where each pij is a predicate.

For example, the following XPath query:

chapter[section[//paragraph[text() contains ‘informatics’]/following-sib-
ling::*][position() = 3]]/*[self::section or self::chapter-notes]

can be represented by a tree shown in Fig. 1.

In the query tree shown in Fig. 1, each node is labeled with a type or *, and may or
may not be associated with a conjunctive-disjunctive normal form of predicates,
which are used to describe the conditions that the node (and/or its children) has to
satisfy, or the relationships of the node with some other nodes:

u0 - τ(u0) = chapter. It matches any node v in T if it is associated with type ‘chapter’.

u1 - τ(u1) = section; and associated with a current predicate position() = 3. It match-
es any node v in T if it is a third child of its parent and associated with type ‘sec-
tion’.

u2 - τ(u2) = *; and associated with a disjunction of current-predicates: τ(u2) = sec-
tion or τ(u2) = chapter-notes. It matches a node v in T if it is associated with
type ‘section’ or ‘chapter-notes’.

u3 - τ(u3) = paragraph; associated with a c-predicate: text() contains ‘informatics’.
It matches a node v in T if it is associated with type ‘paragraph’ and has a text
child that contains word ‘informatics’.

p1 i1
pkik

chapter u0

u1 * u2

paragraph u3 * u4
text() contains
‘informatics’

section

τ(u2) = section or

 τ(u2) = chapter-notes

following-sibling(u3)

Fig. 1. A sample TPQ

position() = 3

u4 - τ(u4) = *; associated with a current-predicate: following-sibling(v3), which in-
dicates that if u4 match a node in T, that node must directly follows any node
that matches u3, i.e., any node with type ‘paragraph’ and having a text child
node that contains word ‘informatics’.

Accordingly, the embedding f of a TPQ P into a document T is modified as follows.

1.For each v ∈ P, v and f(v) are of the same type; and f(v) satisfies all the current-
predicates associated with v.

2.If v → u in P, then f(u) is a child of f(v) in T; and f(u) satisfies all the c-predicates
associated with v. If v ⇒ u in P, then f(u) is a descendant of f(v) in T; and f(u) sat-
isfies all the d-predicates associated with v.

Recently, much research has been conducted on the evaluation of such XML que-
ries [1, 5, 6, 7, 8]. Here, we just mention some of them, which are very closely re-
lated to the work to be discussed. The first one is based on Inversion on elements

and words [8], which needs O(nm) time in the worst case where n and m are the num-
ber of the nodes in T and P, respectively. The second is based on Inversion on paths
and words [5], which improves the first one by introducing indexes on paths. The

time complexity of this method is still exponential and needs O((n⋅h)k) time in the
worst case, where h is the average height of a document tree and k is the number of
joins conducted. The main idea of the third method is to transform a tree embedding
into a string matching problem [6, 7]. The time complexity is O(n⋅m⋅h). This poly-
nomial time complexity is achieved by imposing an ordering on the siblings in a
query tree. That is, the method assumes that the order of sib-lings is significant. If
the query tree is ordered differently from the documents, a tree embedding may not
be found even though it exists. In this case, the query tree should be reordered and
evaluated once again. Another problem of [6] is that the results may be incorrect.
That is, a document tree that does not contain the query tree may be designated as
one of the answers due the ambiguity caused by identical sibling nodes. This prob-
lem is removed by the so-called forward prefix check-ing discussed in [7]. Doing

so, however, the theoretical time complexity is dra-matically degraded to O(n2⋅m⋅h).
The last one is to represent an XPath query as a parse tree and evaluate such a parse
tree bottom-up or top-down [1]. In [1], it is claimed that the bottom-up strategy

needs only O(n5⋅m2) time and O(n4⋅m2) space, so does its top-down algorithm. But
in another paper [2] of the same authors, the same problem is claimed to be NP-com-
plete. It seems to be controversial. In fact, the analysis made in [1] assumes that the
query tree is ordered while by the analy-sis conducted in [2] the query tree is con-
sidered to be unordered, leading to different analysis results.

In this paper, we present a new algorithm based on the ordered tree embedding. Its
time complexity is bounded by O(n⋅m).

2 A strategy based on Ordered-tree embedding
In this section, we mainly discuss a strategy for the query evaluation based on the

ordered tree embedding, by which the order between siblings is significant. The
query evaluation based on the unordered tree embedding is discussed in the next
section.

In general, a tree pattern query P can be considered as a labeled tree if we extend
the meaning of label matching by including the predicate checking. That is, to check
whether a node v in a document T matches a node u in P, we not only compare their
types, but also check whether all the predicates associated with u can be satisfied.
Such an abstraction enables us to focus on the hard part of the problem.

In the following, we first give the basic definitions over the ordered tree embedding
in 3.1. Then, we propose an algorithm for solving this problem in 3.2.

2.1Basic concepts

Technically, it is convenient to consider a slight generalization of trees, namely for-
ests. A forest is a finite ordered sequence of disjoint finite trees. A tree T consists
of a specially designated node root(T) called the root of the tree, and a forest <T1,
..., Tk>, where k ≥ 0. The trees T1, ..., Tk are the subtrees of the root of T or the
immediate subtrees of tree T, and k is the out-degree of the root of T. A tree with the
root t and the subtrees T1, ..., Tk is denoted by <t; T1, ..., Tk>. The roots of the trees
T1, ..., Tk are the children of t and siblings of each other. Also, we call T1, ..., Tk the
sibling trees of each other. In addition, T1, ..., Ti-1 are called the left sibling trees of
Ti, and Ti-1 the direct left sibling tree of Ti. The root is an ancestor of all the nodes
in its subtrees, and the nodes in the subtrees are descendants of the root. The set of
descendants of a node v (excluding v) is denoted by desc(v). A leaf is a node with
an empty set of descendants. The children of a node v is denoted by chidren(v).

Sometimes we treat a tree T as the forest <T>. We also denote the set of nodes in a
forest F by V(F). For example, if we speak of functions from a forest F to a forest
G, we mean functions mapping V(F) onto V(G). The size of a forest F, denoted by
|F|, is the number of the nodes in F. The restriction of a forest F to a node v with its
descendants is called a subtree of F rooted at v, denoted by F[v].

Let F = <T1, ..., Tk> be a forest. The preorder of a forest F is the order of the nodes
visited during a preorder traversal. A preorder traversal of a forest <T1, ..., Tk> is as
follows. Traverse the trees T1, ..., Tk in ascending order of the indices in preorder.
To traverse a tree in preorder, first visit the root and then traverse the forest of its
subtrees in preorder. The postorder is defined similarly, except that in a postorder
traversal the root is visited after traversing the forest of its subtrees in postorder.
We denote the preorder and postorder numbers of a node v by pre(v) and post(v),
respectively.

Using preorder and postorder numbers, the ancestorship can be checked as follows.

Lemma 1. Let v and u be nodes in a forest F. Then, v is an ancestor of u if and only
if pre(v) < pre(u) and post(u) < post(v).

Proof. See Exercise 2.3.2-2 in [4].

Similarly, we check the left-to-right ordering as follows.

Lemma 2. Let v and u be nodes in a forest F. Then, v appears on the left side of u if
and only if pre(v) < pre(u) and post(v) < post(u).

Proof. The proof is trivial.

Now we give the definition of ordered tree embeddings. In this definition, we sim-
ply use ‘label matching’ to refer to both type matching and predicate checking.

Definition 1. Let P and T be rooted labeled trees. We define an ordered embedding
(f, P, T) as an injective mapping f: V(P) → V(T) such that for all nodes v, u ∈ V(P),

i) label(v) = label(f(v)); (label preservation condition)
ii) if (v, u) is a c-edge, then f(v) is the parent of f(u); (child condition)
iii) if (v, u) is a d-edge, then f(v) is an ancestor of f(u); (ancestor condition)
iv) v is to the left of u iff f(v) is to the left of f(u). (Sibling condition)

As an example, we show an ordered tree embedding in Fig. 2.

In Fig. 2(a), the tree on the left can be embedded in the tree on the right because a
mapping as shown in Fig. 2(b) can be recognized, which satisfies all the conditions
specified in Definition 1. In addition, Fig. 2(b) shows a special kind of tree embed-
dings, which is very critic to the design of our algorithm and also quite useful to
explain the main idea of our design.
Definition 2. Let P and T be trees. A root-preserving embedding of P in T is an
embedding f of P in T such that f(root(P)) = root(T). If there is a root-preserving
embedding of P in T, we say that the root of T is an occurrence of P.

For example, the tree embedding shown in Fig. 4(b) is a root preserving embed-
ding. Obviously, restricting to root-preserving embedding does not lose generality.

Finally, we use Lemma 2 to define an ordering of the nodes of a forest F given by v
 v’ iff post(v) < post(v’) and pre(v) < pre(v’). Also, v v’ iff v v’ or v = v’.

The left relatives, lr(v), of a node v ∈ V(F) is the set of nodes that are to the left of v
(i.e., all those nodes that precede v both in preorder and postorder), and similarly
the right relatives, rr(v), is the set of nodes that are to the right of v (i.e., all those
nodes that follow v both in preorder and postorder).

Throughout the rest of the paper, we refer to the labeled trees simply as trees since
we do not discuss unlabeled trees at all.

a

b b
b

b

b

a

b

a
d

de
e b

b

(a) (b)

Fig. 2. An example of an ordered tree embeding

a

b b

2.2Algorithm description

The algorithm to be given is in fact a dynamic programming solution. During the
process, two m × n (m = |P|, n = |T|) matrices are maintained and computed to dis-
cover tree embeddings. They are described as follows.

1. The nodes in both P and T are numbered in postorder, and the nodes are then
referred to by their postorder numbers.

2. The first matrix is used to record subtree embeddings, in which each entry cij

(i ∈ {1, ..., m}, j ∈ {1, ..., n}) has value 0 or 1. If cij = 1, it indicates that there
is a root preserving embedding of the subtree rooted at the node indexed by i
(in P) in the subtree rooted at the node indexed by j (in T). Otherwise, cij = 0.
This matrix is denoted by c(P, T).

3. In the second matrix, each entry dij (i ∈ {1, ..., m}, j ∈ {0, ..., n - 1}) is defined
as follows:

dij = min({x ∈ rr(j) | cix = 1} ∪ {α}),
where α = n + 1. That is, dij contains the closest right relative x of node j such
that T[x] contains P[i], or n + 1, indicating that there exists no right relative x
of node j such that T[x] contains P[i]. This matrix is denoted by d(P, T).

In the above definitions of matrices, we should notice that the indexes of d(P, T) is
slightly different from those of c(P, T). That is, for d(P, T), j ∈ {0, ..., n - 1} (instead
of {1, ..., n}), and j = 0 is considered to be a virtual node to the left of any node in
T.
The matrix c(P, T) is established by running the following algorithm, called
ordered-tree-embedding while d(P, T) is employed to facilitate the computation.
Initially, cij = 0, and dij = 0 for all i and j. In addition, each node v in T is associated
with a quadruple (α(v), β(v), χ(v), δ(v)), where α(v) is v’s preorder number, β(v) is
v’s postorder number, χ(v) is v’s level number, and δ(v) = min(desc(v)). By the
level number of v, we mean the number of ancestors of v, excluding v itself. For
example, the root of T has the level number 0, its children have the level number 1,
and so on. Obviously, for two nodes v1 and v2, associated respectively with (α1, β1,
χ1, δ1) and (α2, β2, χ2, δ2), if χ2 = χ1 + 1, α1 < α2 and β1 > β2, we have v2 ∈ chil-

dren(v1).
In the following algorithm, we assume that for T there exists a virtual node with
postorder number 0, which is to the left to any node in T. This is a modified version
of the algorithm described in [3], adapted to handling of different kinds of edges
(c-edges and d-edges).

Algorithm ordered-tree-embedding(T, P)
Input: tree T (with nodes 0, 1, ..., n) and tree P (with nodes 1, ..., m)
Output: c(P, T), which shows the tree embedding.
begin
1. for u := 1, ..., m do
2. {for v := 0, ..., n - 1 do {duv := n + 1;}

3. l := 0;
4. for v := 1, ..., n do
5. {if label(u) = label(v) then
6. let u1, ..., uk be the children of u;

7. j := δ(v) - 1;
8. i := 1;
9. while i ≤ k and j < v do

10. {j := ;

11. if (u, ui) is a d-edge then

12. {if j ∈ desc(v) then i := i + 1;
13. else /*(u, ui) is a c-edge.*/

14. {if j ∈ children(v) and j is a c-child then i := i + 1;}
15. }
16. if j = k then
17. {cuv := 1;

18. while l ∈ lr(v) do {dul ; = v; l := l + 1;}

19. }
20. }
end

To know how the above algorithm works, we should first notice that both T and P
are postorder-numbered. Therefore, the algorithm proceeds in a bottom-up way
(see line 1 and 4). For any node u in P and any node v in T, if label(u) = label(v), the
children of u will be checked one by one against some nodes in desc(v). The chil-
dren of u is indexed by i (see line 6); and the nodes in desc(v) is indexed by j (see
line 10). Assume that the nodes in desc(v), which are checked during the execution
of the while-loop (see lines 9 - 15), are j1, ..., jh. Then, for each jg (1 ≤ g ≤ h), the
following conditions are satisfied (see line 10):
(i) δ(v) ≤ jg < v (i.e., jg ∈ desc(v)),

(ii) There exists ui such that jg = with j0 = δ(v) - 1.

Therefore, for any ja and jb ∈ {j1, ..., jh}, they must be on different paths according
to the definition of d(P, T). In addition, in the while-loop, if (u, ui) is a d-edge, the
algorithm checks whether j ∈ desc(v) (see line 12). If it is the case, ui has a match-
ing counterpart in desc(v) and i will be increased by 1. Thus, in a next step, the
algorithm will check the direct right sibling of ui against a node in the right rela-
tives of j. If (u, ui) is a c-edge, we will check whether j ∈ children(v) and j is c-
child (see line 14). If i = k (i.e., desc(v) contains all subtrees P[u1], ..., P[uk]), we
will have a root-preserving embedding of P[u] in T[v]. Therefore, cuv is set to 1
(see line 17). Also, for any node l in the left relatives of v, dul is set to v (see line
18). It is because v must be the closest right relative of any of such nodes in T such
that the subtree rooted at it (i.e, T[v]) root-preservingly contains P[u].

dui j,

dui jg 1–,

Example 1. As an example, consider the trees shown in Fig. 3. The nodes in them
are postorder numbered.

When we apply the algorithm to these two trees, c(P, T) and d(P, T) will be created
and changed in the way as illustrated in Fig. 4, in which each step corresponds to
an execution of the outmost for-loop.

In step 1, we show the values in c(P, T) and d(P, T) after node 1 in P is checked
against every node in T. Since node 1 in P matches node 2, 3 and 5 in T, c12, c13,
and c15 are all set to 1. Furthermore, d10 is set to 2 since the closest right relative of
node 0 in T, which matches node 1 in P, is node 2 in T. The same analysis applies to
d11. Since the closest right relative of node 2, 3, 4 in T, which matches node 1 in P,
is node 5 in T, d12, d13, and d14 are all set to 5. Finally, we notice that d14 is equal to
7, which indicates that there exists no right relative of node 5 that matches node 1
in P.
In step 2, the algorithm generates the matrix entries for node 2 in P, which is done
in the same way as for node 1 in P.
In step 3, node 3 in P will be checked against every node in T, but matches only
node 6 in T. Since it is an internal node (in fact, it is the root of P), its children will
be further checked. First, to check its first child, the algorithm will examine d10,
which is equal to 2, showing that node 2 in T is the closest right relative of node 0
that matches node 1 in P. In a next step, the algorithm will check the second child
of node 3 in P. To do this, d22 is checked. d22’s value is 5, showing that the closest
relative of node 2 in T, which matches node 2 in P, is node 5 in T. In addition, since
the edge (3, 2) in P is a c-edge, the algorithm will check whether node 5 in T is not
only a child of node 6, but also a c-child. Since it is the case, we have a root-pre-

a

b b
b

b

a
d

e b

Fig. 3. Labeled trees and postorder numbering

1 2

3

1

2

3
4 5

6P: T:

0

0
0

1

0
0

1

0
0

0

0
0

1

0
0

0

0
0

1

3
2

1 2 3 4 5 6

step 1:

Fig. 4. Sample trace

c(P, T): d(P, T):

2

0
0

2

0
0

5

0
0

5

0
0

5

0
0

7

0
0

1

3
2

0 1 2 3 4 5
0

0
0

1

0
1

1

0
1

0

0
0

1

0
1

0

0
0

1

3
2

1 2 3 4 5 6
2

0
2

2

0
2

5

0
5

5

0
5

5

0
5

7

0
7

1

3
2

0 1 2 3 4 5

0

0
0

1

0
1

1

0
1

0

0
0

1

0
1

0

1
0

1

3
2

1 2 3 4 5 6

step 3:

2

6
2

2

7
2

5

7
5

5

7
5

5

7
5

7

7
7

1

3
2

0 1 2 3 4 5

step 2:

c(P, T): d(P, T):

serving embedding of P[3] in T[6]. Finally, we notice that when the second child of
node 3 in P is checked, the algorithm begins the checking from d22 rather than d20.

In this way, a lot of useless checkings is avoided.
Proposition 1. Algorithm ordered-tree-embedding(T, P) computes the values in
c(P, T) and d(P, T) correctly.
Proof. The proposition can proved by by induction on the sum of the heights of T
and P.

Proposition 2. Algorithm ordered-tree-embedding(T, P) requires O(n⋅m) time and
space, where n = |T| and m = |P|.
Proof. During the execution of the outermost for-loop, l may increases from 0 to n.
Therefore, the time spent on the execution of line 18 in the whole process is
bounded by O(n). An execution of the while-loop from line 9 to 15 needs O(du)
time, where du represents the outdegree of node u in P. So the total time is bounded
by

O(n) + O() = O(n) + O()

= O(n) + O() = O(n⋅m).

Obviously, to maintain c(P, T) and d(P, T), we need O(n⋅m) space.

3 On the evaluation of general tree pattern queries
In this section, we briefly discuss how to use the algorithm for ordered tree embed-
ding to evaluate general tree pattern queries. For this, we need to consider the fol-
lowing problem:

The ordering of siblings in a pattern (query) tree may be different from that in a
target (document) tree.

In order to tackle this problem, we will change the sibling order in a query according
to DTD if it is available. If the corresponding DTD does not exist, we store the doc-
ument trees according to the lexicographical order of the names of the elements/at-
tributes. Whenever a query arrives, the query tree will be constructed according to
the same order. However, in the case that a branch has multiple identical child
nodes, the tree isomorphism problem cannot be avoided by enforcing sibling order.
For example, a query of the form: /X[Y/Z/B]/Y/A can be represented as a tree
shown in Fig. 5(a) or a tree shown in Fig. 5(b).

du

v 1=

n

∑
u 1=

m

∑ du

u 1=

m

∑
v 1=

n

∑

m

v 1=

n

∑

X
Y Y
Z
B

A
Y
A

X
Y
Z
B

(a) (b)

Fig. 5. Tree pattern queries

In this case, a sibling order cannot be specified lexicographically or by DTD sche-
ma. In order to find all matches, we have to check these two trees separately and uni-
fy their results.

4 Conclusion
In this paper, a new strategy for evaluating XPath queries is discussed. The main
idea of the strategy is to handle an XPath query as tree embedding problem, by
which the label matching includes both the type matching the predicate satisfaction.
A dynamic programming method is proposed to check the ordered tree embedding,
by the ordering of siblings is important. The algorithm needs only O(|T|⋅|P|) time
and O(|T|⋅|P|) space, where |T| and |P| stands for the numbers of the nodes in the tar-
get tree T and the pattern tree P, respectively. Finally, how to adapt this method to
the unordered tree embedding is briefly discussed.

References

[1] G. Gottlob, C. Koch, and R. Pichler, Efficient Algorithms for Processing
XPath Queries, ACM Transaction on Database Systems, Vol. 30, No. 2, June
2005, pp. 444-491.

[2] G. Gottlob, C. Koch, and K.U. Schulz, Conjunctive Queries over Trees, in
Proc. PODS 2004, June 2004, Paris, France, pp. 189-200.

[3] Pekka Kilpelainen and Heikki Mannila. Ordered and unordered tree inclu-
sion. SIAM Journal of Computing, 24:340-356, 1995.

[4] D.E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley,
Reading, MA, 1969.

[5] C. Seo, S. Lee, and H. Kim, An Efficient Index Technique for XML Docu-
ments Using RDBMS, Information and Software Technology 45(2003) 11-
22, Elsevier Science B.V.

[6] H. Wang, S. Park, W. Fan, and P.S. Yu, ViST: A Dynamic Index Method for
Querying XML Data by Tree Structures, SIGMOD Int. Conf. on Management
of Data, San Diego, CA., June 2003.

[7] H. Wang and X. Meng, On the Sequencing of Tree Structures for XML Index-
ing, in Proc. Conf. Data Engineering, Tokyo, Japan, April, 2005, pp. 372-385.

[8] C. Zhang, J. Naughton, D. DeWitt, Q. Luo and G. Lohman, “On Supporting
Containment Queries in Relational Database Management Systems, in Proc.
of ACM SIGMOD Intl. Conf. on Management of Data, California, USA, 2001

