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Abstract— In this paper, we discuss an efficient and effective 
index mechanism to do the string matching with k mismatches, 
by which we will find all the substrings in a target string s having 
at most k positions different from a pattern string r. The main 
idea is to transform s to a BWT-array as index, denoted as 
BWT(s), and search r against it. During the process, the 
precomputed mismatch information of r will be utilized to speed 
up the BWT(s)’s navigation. In this way, the time complexity can 
be reduced to O(kn�� + n + mlogm), where m = |r|, n = |s|, and n� is 
the number of leaf nodes of a tree structure, called a mismatching 
tree, produced during a search of BWT(s). Extensive experiments 
have been conducted, which show that our method for this 
problem is promising.

Key words: String matching; DNA sequences; tries; BWT-
transformation

I. INTRODUCTION

By the string matching with k mismatches, we mean a 
problem to find all the occurrences of a pattern string r in a 
target string s with each occurrence having up to k positions 
different between r and s. This problem is important for DNA 
databases to support the biological research, where we need to 
locate all the appearances of a read (a short DNA sequence) in 
a genome (a very long NDA sequence) for disease diagnosis 
or some other purposes. Due to polymorphisms or mutations 
among individuals or even sequencing errors, the read may 
disagree in some positions at any of its occurrences in the 
genome. 

As an example, consider a target s = ccacacagaagcc, and a 
pattern r = aaaaacaaac. Assume that k = 4. Let us see whether 
there is an occurrence of r with k mismatches that starts at the 
third position in s. 

 
At only four locations s and r have different characters, 

implying an occurrence of r starting at the third position of s. 
Note that the case k = 0 is the extensively studied string 

matching problem. 
This topic has received much attention in the research 

community and many efficient algorithms have been proposed, 
such as [2, 14, 21, 29, 34, 43]. Among them, [21] and [29] are 
two on-line algorithms (using no indexes) with the worst-case 
time complexities bounded by O(kn + mlogm), where n = |s|

and m = |r|. By these two methods, the mismatch information
among substrings of r is used to speed up the working process. 
The methods discussed in [2] and [43] are also on-line 
strategies, but with a slightly better time complexity 
O(n k logk) by utilizing the periodicity within r. Only the 
algorithms discussed in [14, 34] are index-based. By the 
method discussed in [14], a (compressed) suffix tree over s is 
created. Then, a brute-force tree searching is conducted to find 
all the possible string matchings with k mismatches. Its time 
complexity is bounded by O(m + n + (clogn)k/k!), where c is a 
very large constant. For DNA databases, this time complexity 
can be much worse than O(nk) since n tends to be very large 
and k is often set to be larger than 10. By the method 
discussed in [34], s is transformed to a BWT-array (denoted 
BWT(s)) as an index [30]. In comparison with suffix trees, 
BWT(s) uses much less space [19]. However, the time 
complexity of [34] is bounded by O(mn� + n), where n� is the 
number of leaf nodes of a tree (forest) produced during the 
search of BWT(s). Again, this time requirement can also be 
much worse than the best on-line algorithm for large patterns. 
Thus, simply indexing s is not always helpful for k 
mismatches. The reason for this is that in both the above 
index-based methods neither mismatch information nor 
periodicity within r is employed, leading to a lot of
redundancy, which shadows the benefits brought by indexes. 
However, to use such information efficiently and effectively 
in an indexing environment is very challenging since in this 
case s will no longer be scanned character by character and 
the auxiliary information extracted from r cannot be simply 
integrated into an index searching process.

In this paper, we address this issue, and propose a new 
method for the k-mismatch problem, based on a BWT-
transformation, but with the mismatching information within r
being effectively utilized. 

Specifically, two techniques are introduced, which will be 
combined with a BWT-array scanning: 
� An efficient method to calculate the mismatches between 

r[i .. m] and r[j .. m] (i, j � {1, …, m}, i � j), where r[i .. m]
represents a substring of r starting from position i and 
ending at position m. The mismatches between them is 
stored in an array R such that if R[p] = q then we have r[i
+ q - 1] � r[j + q - 1] and it is their pth mismatch. 

a a a a a c a a a c

c c a c a c a g a a g c c
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� A new tree (forest) structure D to store the mismatches 
between r and different segments of s. In D, each node v
stores an integer i, indicating that there are some positions 
i1, i2, …, il in s such that s[iq + i - 1] � r[i] (q = 1, …, l). If v
is at the pth level of D, it also shows that it is the pth
mismatch between each s[iq .. iq + i - 1] and r.
By using these two techniques, the time complexity can be 

reduced to O(kn� + n). Our experiment shows that n� n.
The remainder of the paper is organized as follows. In 

Section II, we review the related work. In Section III, we 
briefly describe how a BWT-transformation can be used to 
speed up string matches. In Section IV, we discuss our 
algorithm to find all the occurrences of r in s, but up to k
mismatches. Section V is devoted to the test results. Finally, 
we conclude with a short summary and a brief discussion on 
the future work in Section VI. 

II. RELATED WORK

The string matching problem has always been one of the 
main focuses in computer science. A huge number of 
algorithms have been proposed. Roughly speaking, all of them 
can be divided into two categories: exact matching and 
inexact matching. By the former, all the occurrences of a 
pattern string r in a target string s will be searched. By the 
latter, a best alignment between r and s (i.e., a correspondence 
with the highest score) is searched in terms of a given distance 
function or a score matrix M, which is established to indicate 
the relevance between different characters.  

- Exact matching
The first interesting algorithm for this problem is the 

famous Knuth-Morris-Pratt’s algorithm [26], which scans 
both r and s from left to right and uses an auxiliary next-table
(for r) containing the so-called shift information (or say, 
failure function values) to indicate how far to shift the pattern 
from right to left when the current character in r fails to match 
the current character in s. Its time complexity is bounded by 
O(m + n). The Boyer-Moore’s approach [9] works a little bit 
better than the Knuth-Morris-Pratt’s. In addition to the next-
table, a skip-table (also for r) is kept. For a large alphabet and 
small pattern, the expected number of character comparisons 
is about n/m, and is O(m + n) in the worst case. Although 
these two algorithms have never been used in practice [42], 
they sparked a series of subsequent research on this problem, 
and improved by different researchers in different ways, such 
as the algorithms discussed in [1, 31]. However, the worst-
case time complexity remains unchanged. In addition, the idea 
of the ‘shift information’ has also been adopted by Aho and 
Corasick [1] for the multiple-string matching, by which s is 
searched for an occurrence of any one of a set of x patterns: 

{r1, r2, …, rx}. Their algorithm needs only O( |r|
x

i
i�

�1
+ n) time. 

In situations where a fixed string s is to be searched 
repeatedly, it is worthwhile constructing an index over s, such 
as suffix trees [41, 51], suffix arrays [39], and more recently 
the BWT-transformation [10, 12, 13, 19, 35, 46]. A suffix tree 
is in fact a trie structure [25] over all the suffixes of s; and by 
using the Weiner’s algorithm it can be built in O(n) time [41]. 

However, in comparison with the BWT-transformation, a 
suffix tree needs much more space. Especially, for DNA 
sequences the BWT-transformation works highly efficiently 
due to the small alphabet � of DNA strings. By the BWT, the 
smaller � is, the less space will be occupied by the 
corresponding indexes. According to a survey done by Li and 
Homer [36] on sequence alignment algorithms for next-
generation sequencing, the average space required for each 
character is 12 - 17 bytes for suffix trees while only 0.5 - 
2 bytes for the BWT. The experiments reported in [12] also 
confirm this distinction. For example, the file size of 
chromosome 1 of human is 270 Mb. But its suffix tree is of 26 
Gb in size while its BWT needs only 390 Mb – 1 Gb for 
different compression rates of auxiliary arrays, completely 
handleable on PC or laptop machines. 

By the hash-table-based algorithms [22, 24], short 
substrings called 'seeds' will be first extracted from a pattern r
and a signature (a bit string) for each of them will be created. 
The search of a target string s is similar to that of the Brute 
Force searching, but rather than directly comparing the pattern 
at successive positions in s, their respective signatures are 
compared. Then, stick each matching seed together to form a 
complete alignment. Its expected time is O(m + n), but in the 
worst case, which is extremely unlikely, it takes O(mn) time. 
The hash technique has also been extensively used in the 
DNA sequence research [23, 32, 33, 38, 45]. However, almost 
all experiments show that they are generally inferior to the 
suffix tree and the BWT index in both running time and space 
requirements. 

- Inexact matching
By the inexact matching, we will find, for a certain pattern 

r and an integer k, all the substrings s� of s such that d(s�, r) 	
k, where d is a distance function. In terms of different distance 
functions, we distinguish between two kinds of inexact 
matches: string matching with k mismatches and string 
matching with k errors. A third kind of inexact matching is 
that involving Don’t Care, or wild-card symbols which match 
any single symbol, including another Don’t Care.

k mismatches When the distance function is the Hamming 
distance, the problem is known as the string matching with k
mismatches [4]. By the Hamming distance, the number of 
differences between r and the corresponding substring s� is 
counted. There are a lot of algorithms proposed for this 
problem, such as [2, 4, 5, 21, 28, 29, 43, 48, 49]. They are all 
on-line algorithms. Except those discussed in [2, 21, 29, 43], 
all the other methods have the worst-case time complexity 
O(mn). The methods discussed in [21] and [29], however, 
require only O(kn + mlogm) time, by which the mismatch 
arrays for r are precomputed and exploited to speed up the 
search of s. The methods discussed in [2, 43] work slightly 
better, by which the periodicity within r is utilized. Their time 
complexity is bounded by O(n k logk). The algorithm 
discussed in [34] is index-based, by which s is transformed to 
a BWT-array, used as an index. Its time complexity is 
bounded by O(mn� + n), where n� is the number of leaf nodes 
of a tree produced during the search of  BWT(s). If m is large, 
it can be worse than all those on-line methods discussed in [2, 
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21, 29, 43]. Another index-based method is based on a brute-
force searching of suffix trees [14]. Its time complexity is 
bounded by O(m + n + (clogn)k/k!), where c is a very large 
constant. It can also be worse than an on-line algorithm when 
n is large and k is larger than a certain constant. 

k errors When the distance function is the Levenshtein 
distance, the problem is known as the string matching with k
errors [6]. By the Levenshtein distance, we have 

di,j = min{di-1,j + w(ri,
), di,j-1 + w(
, sj�), di-1,j-1 + w(ri, sj�)},  
where di,j represents the distance between r[1 .. i] and s�[1 .. j], 
ri (sj�) the ith character in r (jth character in s�), 
 an empty 
character, and w(ri, sj�) the cost to transform ri into sj�. 

Also, many algorithms have been proposed for this 
problem [6, 11, 18, 50]. They are all some kinds of variants of 
the dynamic programming paradigm [17] with the worst-case 
time complexity bounded by O(mn). However, by the 
algorithm discussed in [11], the expected time can reach O(kn).
don’t care As a different kind of inexact matching, the string 
matching with Don’t-Cares has been a third active research 
topic for decades, by which we may have wild-cards in r, in s,
or in both of them. A wild card matches any character. Due to 
this property, the ‘match’ relation is no longer transitive, 
which precludes straightforward adaption of the shift 
information used by Knuth-Morris-Pratt and Boyer-Moore.
Therefore, all the methods proposed to solve this problem 
seem not so skillful and in general need a quadratic time [44]. 
Using a suffix array as the index, however, the searching time 
can be reduced to O(logn) for some patterns, which contain 
only a sequence of consecutive Don’t Cares [40].

III. BWT-TRANSFORMATION

In this section, we give a brief description of the BWT 
transformation to provide a discussion background. 

A. BWT and String searching 
We use s to denote a string that we would like to transform. 

Assume that s terminates with a special character $, which 
does not appear elsewhere in s and is alphabetically prior to 
all other characters. In the case of DNA sequences, we have 
$ < a < c < g < t. As an example, consider s = acagaca$. We 
can rotate s consecutively to create eight different strings, and 
put them in a matrix as illustrated in Fig. 1(a). 

In Fig. 1(a), for ease of explanation, the position of a 
character in s is represented by its subscript. (That is, we 
rewrite s as a1c1a2g1a3c2a4$.) For example, a2 representing the 
second appearance of a in s; and c1 the first appearance of c in 
s. In the same way, we can check all the other appearances of 
different characters. 

Now we sort the rows of the matrix alphabetically, and get 
another matrix, as demonstrated in Fig. 1(b), which is called 
the Burrow-Wheeler Matrix [7, 15, 27] and denoted as 
BWM(s). Especially, the last column L of BWM(s), read from 
top to bottom, is called the BWT-transformation (or the BWT-
array) and denoted as BWT(s). So for s = acagaca$, we have 
BWT(s) = acg$caaa. The first column is referred to as F. 

When ranking the elements x in both F and L in such a 
way that if x is the ith appearance of a certain character it will 
be assigned i, the same element will get the same number in 
the two columns. For example, in F the rank of a4, denoted as 
rkF(a4), is 1 (showing that a4 is the first appearance of a in F).
Its rank in L, rkL(a4) is also 1. We can check all the other 
elements and find that this property, called the rank 
correspondence, holds for all the elements. That is, for any 
element e in s, we always have 

rkF(e) = rkL(e) (1) 
According to this property, a string searching can be very 
efficiently conducted. To see this, let us consider a pattern 
string r = aca and try to find all its occurrences in s =
acagaca$.  

First, we notice that we can store F as |�| + 1 intervals, 
such as F$ = F[1 .. 1], FA = F[2 .. 5], FC = F[6 .. 7], FG = F[8 .. 
8], and FT = � for the above example (see Fig. 1(c).) We can 
also represent a segment within an Fx with x � � as a pair � of 
the form <x, [, β]>, where  	 β are two ranks of x. Thus, we 
have FA = F[2 .. 5] = <a, [1, 4]>,  FC = F[6 .. 7] = <c, [1, 2]>, 
and FG = F[8 .. 8] = <g, [1, 1]>. In addition, we can use L� to 
represent a range in L corresponding to a pair �. For example, 
in Fig. 1(c), L<a, [1, 4]> = L[2 .. 5], L<c, [1, 2]> = L[6 .. 7]. L<a, [2, 3]>
= L[3 .. 4], and so on. 

We will also use a procedure search(z, �) to search L� to 
find the first and the last rank of z (denoted as � and β�,
respectively) within L�, and return <z, [�, β�]> as the result: 

Then, we work on the characters in r in the reverse order 
(referred to as a backward search). That is, we will search 
r (reverse of r) against BWT(s), as shown below. 
Step 1: Check r[3] = a in the pattern string r, and then figure 
out FA = F[2 .. 5] = <a, [1, 4]>. 
Step 2: Check r[2] = c.  Call search(c, L<a, [1, 4]>). It will search 
L<a, [1, 4]>= L[2 .. 5] to find a range bounded by the first and 
last rank of c. Concretely, we will find rkL(c2) = 1 and rkL(c1)
= 2. So, search(c, L<a, [1, 4]>) returns <c, [1, 2]>. It is F[6 .. 7]. 
Step 3: Check r[3] = a. Call search(a, L<c, [1, 2]>). Notice that 
L<c, [1, 2]> = L[6 .. 7]. So, search(a, L<c, [1, 2]>) returns <a, [2, 3]>. 

<z, [�, β�]>,
(2)

if z appears in L�;


, otherwise.
search(z, �) =

Fig. 1: Rotation of a string

$ a1 c1 a2 g1 a3 c2 a4

a1 c1 a2 g1 a3 c2 a4 $
c1 a2 g1 a3 c2 a4 $ a1

a2 g1 a3 c2 a4 $ a1 c1

g1 a3 c2 a4 $ a1 c1 a2

a3 c2 a4 $ a1 c1 a2 g1

c2 a4 $ a1 c1 a2 g1 a3

a4 $ a1 c1 a2 g1 a3 c2

$ a1 c1 a2 g1 a3 c2 a4

a4 $ a1 c1 a2 g1 a3 c2

c2 a4 $ a1 c1 a2 g1 a3

a3 c2 a4 $ a1 c1 a2 g1

g1 a3 c2 a4 $ a1 c1 a2

a2 g1 a3 c2 a4 $ a1 c1

c1 a2 g1 a3 c2 a4 $ a1

a1 c1 a2 g1 a3 c2 a4 $

(a) (c)(b)

$ a4

a4 c2

c2 a3

a3 g1

g1 a2

a2 c1

c1 a1

a1 $

F L
��
1

1

2

1

4

2

3

rkF

��
1

2

1

4

2

3

��

rkL
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It is F[3 .. 4]. Since now we have exhausted all the characters 
in r and F[3 .. 4] contains only two elements, two occurrences 
of r in s are found. They are a1 and a3 in s, respectively. 

The above working process can be represented as a 
sequence of three pairs: <a, [1, 4]>, <c, [1, 2]>, <a, [2, 3]>. In 
general, for r = c1 … cm, its search against BWT(s) can 
always be represented as a sequence: 

<x1, [1, �1]>, …, <xm, [m, �m]>, 
where <x1, [1, �1]> = ,

1xF  and <xi, [i, �i]> = 

search(xi, ,xi
L

1�� ��� ]β,[α 11 ii
) for 1 < i 	 m. We call such a 

sequence as a search sequence. Thus, the time used for this 

process is bounded by O( �
�

m

i
i

1
τ ), where �i is the time for an 

execution of search(xi, ,xi
L

1�� ��� ]β,[α 11 ii
). However, this time 

complexity can be reduced to O(m) by using the so-called 
rankAll method [29], by which |�| arrays each for a character x
� � are arranged such that Ax[k] (the kth entry in the array for 
x) is the number of appearances of x within L[1 .. k] (i.e, the 
number of x-characters appearing befor L[k + 1].) (See Fig. 
2(a) for illustration.) 

Now, instead of scanning a certain segment L[i .. j] (i 	 j)
to find a subrange for a certain x � �, we can simply look up 
the array for x to see whether Ax[i - 1] = Ax[j]. If it is the case, 
then x does not occur in L[i .. j]. Otherwise, [Ax[i - 1] + 1, Ax[j]]
should be the range to be found. 

For instance, to find the subrange for g within L[6 .. 7], we 
will first check whether Ag[6 - 1] = Ag[7]. Since Ag[6 - 1] = 
Ag[5] = Ag[7] = 1, we know that g does not appear in L[6 .. 7]. 
However, since Ac[2 - 1] ≠ Ac[5], we immediately get the 
subrange for c within L[2 .. 5]: [Ac[2 - 1] + 1, Ac[5]] = [1, 2]. 

We notice that the column for $ needn’t be stored since it 
will never be searched. We can also create rankAlls only for 
part of the elements to reduce the space overhead, but at cost 
of some more searches. See Fig. 2(b) for illustration.

B. Construction of BWT arrays
A BWT-array can be constructed in terms of a relationship 

to the suffix arrays [10, 19, 30, 46].
As mentioned above, a string s = a1a1 ... an is always 

ended with $ (i.e., ai � � for i = 1, …, n – 1, and an = $). Let 
s[i] = ai (i = 1, 2, …, n) be the ith character of s, s[i.. j] = ai ...
aj a substring and s[i .. n] a suffix of s. Suffix array H of s is a 

permutation of the integers 1, ..., n such that H[i] is the start 
position of the ith smallest suffix. The relationship between H
and the BWT-array L can be determined by the following 
formulas:

 
Since a suffix array can be generated in O(n) time [52], L

can then be created in a linear time. However, most algorithms 
for constructing suffix arrays require at least O(nlogn) bits of 
working space, which is prohibitively high and amounts to 12 
GB for the human genome. Recently, Hon et al [52] proposed 
a space-economical algorithm that uses n bits of working 
space and requires only < 1 GB memory at peak time for 
constructing L of the human genome. We use this for our 
purpose. 

IV. STRING MATCHING WITH K MISMATCHES

A. Basic working process
By the string matching with k mismatches, we allow up to 

k characters in a pattern r to match different characters in a 
target s. By using the BWT as an index, for finding all such 
string matches, a tree structure will be generated, in which 
each path corresponds to a search sequence discussed in the 
previous section. It is due to the possibility that a position in r
may be matched to different characters in s and we need to 
call search( ) multiple times to do this task, leading to a tree 
representation. 
Definition 1 (search tree) Let r be a pattern string and s be a 
target string. A search tree T (S-tree for short) is a tree 
structure to represent the search of r against BWT( s ) (which 
is equivalent to the search of r against BWT(s)). In T, each
node is a pair of the form <x, [, �]>), and there is an edge 
from v (= <x, [, �]>) to u (= <x�, [�, ��]>) if search(x, Lv) =
u. 

As an example, consider the case where r = tcaca, s =
acagaca and k = 2. To find all occurrences of r in s with up to 
two mismatches, a search tree T shown in Fig. 3 will be 
created. 

In Fig. 3, v0 is a virtual root, representing the whole L, and 
‘virtually’ corresponds to the virtual starting character r[0] =

Fig. 3: Search for string matching with 2 mismatches

<-, [1, 8]>

<a, [1, 4]>

<c, [1, 2]>

<a, [2, 3]>

<g, [1, 1]>

<g, [1, 1]>

<a, [4, 4]>

<c, [2, 2]>

<c, [1, 2]>

<a, [2, 3]>

<g, [1, 1]>

<g, [1, 1]>

<a, [4, 4]>

v0

v1 v2 v3

v4 v5
v6 v7

v8 v9
v10

v12 v13

P1 P2 P3 P4

<a, [4, 4]> <a, [3, 3]>v16 v17

r[2] = c

r[3] = a

r[4] = c

r[5] = a

r[1] = t

r:

<a, [4, 4>]v14

<c, [2, 2]>v18

<a, [3, 3]>

<$, [-, -]>

<c, [2, 2]>

v15

v19

v11

T:

L[i] = $,
(3)

if H[i] = 0;

L[i] = s[H[i] – 1], otherwise.

Fig. 2: Illustration for rankAlls

$ a4

a4 c2

c2 a3

a3 g1

g1 a2

a2 c1

c1 a1

a1 $

F L
��
0

1

0

1

1

1

��

$
1
1

2

1

4

1

3

1

Aa

0
1

2

1

2

2

2

1

Ac

0
0

1

1

1

1

1

1

Ag

0
0

0

0

0

0

0

0

At

4

1

Aa

2

1

Ac

1

1

Ag

0

0

At

0 0 0 0

i

2

1

0
��
2

6

3

8

5

7

��

j

(a) (b)

For each 4 
values in L, a 
rankAll value 
is stored. 
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‘-’. By exploring paths P1 = v1 � v4 � v8 � v12 � v16 and P2

= v1 � v5 � v9 � v13 � v16, we will find two occurrences of r
with 2 mismatches: s[1 .. 5] (= a1c1a2g1a3)  and s[3 .. 7] (=
a2g1a3c2a4) while by either P3 = v2 � v6 � v10 � v14 � v18 or 
P4 = v3 � v7 � v11 � v15 � v19 no string matching with at 
most 2 mismatches can be found. 

A node <x, [, �]> in such a tree is called a matching node
if it corresponds to a same character in r. Otherwise, it is 
called a mismatching node. For example, node v4 = <c, [1, 2]> 
is a matching node since it corresponds to r[2] = c while v1 =
<a, [1, 4]>  is a mismatching node since it corresponds to r[1] 
= t. 

For a path Pl, we can store all its mismatching positions in 
an array Bl of length k + 1 such that Bl[i] = j if Pl[j] ≠ r[j] and 
this is the ith mismatch between Pl and r, where Pl[j] is the jth 
character appearing on Pl. If the number of mismatches, k�,
say, between Pl and r is less than k + 1, then the default value 
� onwards, i.e.,

Bl[k� + 1] = Bl[k� + 2] = … = Bl[k + 1] = �.
We call Bl a mismatch array. For instance, in Fig. 3, for P1,

we have B1 = [1, 4, �], indicating that at position 1, we have 
the first mismatch P1[1] = a ≠ r[1] = t and at position 4 we 
have the second mismatch P1[4] = g ≠ r[4] = a. For the same 
reason, we have B2 = [1, 2, �], B3 = [1, 2, 3], and B4 = [1, 2, 3].

These data structures can be easily created by maintaining 
and manipulating a temporary array B of length k + 1 to 
record the mismatches between the current path P and r.
Initially, each entry of B is set to be � and an index variable i
pointing to the first entry of B. Each time a mismatch is met, 
its position is stored in B[i] and then i is increased by 1. Each 
time r is exhausted or B becomes full (i.e., each entry is set a 
value not equal to �),  we will store B as an Bl (and associate 
it with the leaf node of the corresponding Pl.) Then, 
‘backtrack’ to the lowest ancestor of the current node, which 
has at least a branch not yet explored, to search a new path. 
For instance, when we check v16, r is exhausted and the 
current value of B is [1, 4, �]. We will store B in B1 (the array 
associated with the leaf node v16 of P1) and ‘backtrack’ to v1 to 
explore a new path. At the same time, all those values in B,
which are set after v1, will be reset to �, i.e., B will be 
changed to [1, �, �].

Now we consider another path P3. The search along P3 will 
stop at v10 since when reaching it B becomes full (B = [1, 2, 
3]). Therefore, the search will not be continued, and v14, v18
will not be created. 

It is essentially a brute-force search to check all the 
possible occurrences of r in s. Denote by n� the number of leaf 
nodes in T. The time used by this process is bounded by 
O(mn�).

In fact, it is the main process discussed in [34]. The only 
difference is that in [34] a simple heuristics is used, which 
precomputes, for each position i in r, the number �(i) of 
consecutive, disjoint substrings in r[i .. m], which do not 
appear in s. For example, in Fig. 3, �(1) = 2 since in r[1 .. 5] = 
tcaca both r[1 .. 1] = t and r[2 .. 4] = cac do not occur in s =

acagaca. But �(3) = 0 since any substring in r[1 .. 3] = aca 
does appear in s. Assume that the number of mismatches 
between r[1 .. i – 1] and P[1 .. i – 1] (the current path) is l.
Then, if k – l < �(i), we can immediately stop exploring the 
subtree rooted at P[i – 1] as no satisfactory answers can be 
found by exploring it. 

The time required to establish such a heuristics is O(n) by 
using BWT(s) [33]. However, the theoretic time complexity of 
this method is still O(mn�). Even in practice, this heuristics is 
not quite helpful since �(i) delivers only the information 
related to r[i .. m] and the whole s, rather than the information
related to r[i .. m] and the relevant substrings of s, to which it 
will be compared. To see this, pay attention to part of the tree 
marked grey in Fig. 3. Since �(3) = 0, the search along P4 will 
be continued. But no answer can be found. The heuristics here 
is in fact useless since it is not about r[3 .. 5] and s[5 .. 7], 
which is to be checked in a next step. 

B. Mismatch information
Searching S-trees in an improvement over sanning strings, 

but it often happens that there are repetitive traversals of 
similar subtrees due to the multiple appearnces of a same pair.
However, such repeated appearance of pairs cannot be simply 
removed since they may be aligned to different positions in r.
For example, the first appearance of <c, [1, 2]> (v4 in Fig. 3)
is compared to r[2] while its second appearance (v2) is to r[1]. 
Hence, we cannot use the result computed for v4 (when <c, [1, 
2]> is first met) as the result for v2.

However, if we have stored the mismatch information R
between substrings of r, like r[2 .. 4] and r[1 .. 3], in some 
way, the mismatches along P3 can be derived from R and B1
(the mismatches recorded for P1), instead of simply exploring 
P3 again in a way done for P1. To do so, for each pair i, j � {1, 
…, m}, we need to maintain a data structure Rij containing the 
positions of the first k + 1 mismatches between r[i .. m – q + i]
and r[j .. m – q + j], where q = max{i, j}, such that if Rij[l] = x
(� �) then r[i + x - 1] � r[j + x - 1] or one of them does not 
exist, and it is the lth mismatch between them.

Clearly, this task requires O(km2) time and space. 
For this reason, we will precompute only part of R, instead 

of Rij for all i, j � {1, …, m}. Specifically, R12, …,  R1m for r
will be pre-constructed in a way as described in [29], giving 
the positions of the mismatches between the pattern and itself 
at various relative shifts. That is, each R1i (2 ≤ i ≤ m) contains 
the positions within r of the first 2k + 1 mismatches between 
the substring r[1 .. m – i] and r[i + 1 .. m], i.e., the overlapping 
portions of the two copies of pattern r for a relative shift of i.
Thus, if R1i[j] = x, then r[x] ≠ r[i + x - 1] or one of them does 
not exist, which is the jth mismatch between r[1 .. m – i] and 
r[i + 1 .. m]. (See Fig. 4(a) for illustration.)

In Fig. 4(b), we show a pattern r1 = tcacg and all the 
possible right-to-left shifts: r2 = r[2 .. 5] = cacg, r3 = r[3 .. 5] = 
acg, and so on. In Fig. 4(c), we give R12, …, R15 for r1. In an 
R1i, if the number of mismatches, k�, say, between r[1 .. m – i]
and r[i + 1 .. m] is less than 2k + 1, then the default value �
onwards, i.e.,

R1i[k� + 1] = R1i[k� + 2] = … = R1i[2k + 1] = �.
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We will also use �(R1i) to represent the number of all those 
entries in R1i, which are not �. Trivially, R11 = [�, …, �].

Using the algorithm of [29], R12, …, R1m can be 
constructed in O(mlogm) time, just before the process for the 
string matching gets started. In addition, we need to keep 2k +
1, rather than k + 1 mismatches in each R1i (i = 2, …, m), since 
for generating an R1j, up to 2k + 1 mismatches in some R1i
with i < j are needed to get an efficient algorithm (see [29] for 
detailed discussion.) 

Each time we meet a node u (compared to a certain r[j]), 
which is the same as an already encountered one v (compared 
to an r[i]), we need to derive dynamically the relevant 
mismatches, Rij, between r[i .. m – q + i] and r[j .. m – q + j]
from R1i and R1j, as well as r, to compute mismatch 
information for some new paths (to avoid exploring them by 
using search( ).) (A node <x, [, β]> is said to be the same as 
another node <x�, [�, β�]> if x = x�,  = � and β = β�.) For 
this purpose, we design a general algorithm to create Rij
efficiently.
� Let �, �1 and �2 be three strings. Let A1 and A2 be two 

arrays containing all the positions of mismatches between 
� and �1, and � and �2, respectively. 

� Create a new array A such that if A[i] = j (� �), then �1[j]
� �1[j], or one of them does not exists. It is the ith 
mismatch between them.

The algorithm works in a way similar to the sort-merge-
join, but with a substantial difference in handling a case when 
an entry in A1 is checked against an equal entry in A2. In the 
algorithm, two index variables p and q are used to scan A1 and 
A2, respectively. The result is stored in A. 
1. p := 1; q := 1; l := 1; 
2. If A2[q] < A1[p], then {A[l] := A2[q]; q  := q + 1; l := l + 1;} 
3. If A1[p] < A2[q], then {A[l] := A1[p]; p := p + 1; l := l + 1;} 
4. If A1[p] = A2[q], then {if �1[p] � �2[q], then {A[l] := q; l :=

l + 1;} p := p + 1; q := q + 1;} 
5. If p > |A1|, q > |A2|, or both A1[p] and A2[q] are �, stop (if 

A1 (or A2) has some remaining elements, which are not �,
first  append them to the rear of A, and then stop.)

6. Otherwise, go to (2). 
We denote this process as merge(A1, A2, �1, �2). As an 

example, let us consider the case where A1 = R12 = [1, 2, 3, 4, 
�], A1 = R13 = [1, 3, �, �, �], �1 = r[2 .. 4] = cacg and �1 =
r[3 .. 5] = acg, and demonstrate the first three steps of the 
execution of merge(A1, A2, �1, �2) in Fig. 5. The result is A =

[1, 2, 3, 4], showing the mismatches between these two 
substrings.

In step 1: p = 1, q = 1, l = 1. We compare A1[p] = A1[1] and 
A2[q] = A2[1]. Since A1[1] = A2[1] = 1, we will 
compare �1[1] and �2[1], and find that �1[1] = c �
�2 [1] = a. Thus, A[1] is set to be 1. p := p + 1 = 2, 
q := q + 1 = 2, l := l + 1 = 2.

In step 2: p = 2, q = 2, l = 2. we compare A1[2] and A2[2]. 
Since A1[2] = 2 < A2[2] = 3, A[2] is set to be 2. p := p
+ 1 = 3, q := 2, l := l + 1 = 3.

In step 3: p = 3, q = 2, l = 3. We compare A1[3] and A2[2], and 
find that A1[3] = A2[2] = 3. So, we need to compare 
�1[3] and �2[3]. Since �1[3] = c � �2 [3] = g, A[3] is 
set to be 3. p := p + 1 = 4, q := 3, l := l + 1 = 4.

In a next step, we have p = 4, q = 3, l = 4. We will compare 
A1[4] and A2[3]. Since A1[4] = 4 < A2[3] = �, we set A[4] to 4.

Obviously, the running time of this process is bounded by 
O(k).
Proposition 1 Let A be the result of merge(A1, A2, �1, �2)
with A1, A2, �1, �2 defined as above. Let k� be the number of 
mismatches between �1 and �2. Then, A[i] must be the 
position of the ith mismatch between �1 and �2, or �,
depending on whether i is 	 k�.
Proof. Consider �2[j]. Position j may satisfy either, neither, or 
both of the following conditions: 
i) j corresponds to the lth mismatch between � and �2 for 

some l, i.e., �[j] ≠ �2[j] and A2[l] = j.
ii) j corresponds to the fth mismatch between � and �1 for 

some f, i.e., �[j] ≠ �1[j] and A1[f] = j.
If (i) holds, but (ii) not, (2) in merge(A1, A2, �1, �2) will be 
executed. Since in this case, we have �[j] ≠ �2[j] and �[j] = 
�1[j], (2) is correct.

If (ii) holds, but (i) not, (3) will be executed. Since in this 
case, we have �[j] ≠ �1[j] and �[j] = �2[j], (3) is also correct.

If both (i) and (ii) hold, no conclusion concerning �1[j]
and �2[j] can be drawn and we need to compare them. In this 
case, (4) is executed. If neither (i) nor (ii) is satisfied, we must 
have �[j] = �2[j] and �[j] = �1[j]. So �2[j] = �1[j], i.e., we 
have a matching at j.

Fig. 4: Illustration for table R
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C. Main idea: mismatch information derivation
Now we are ready to present the main idea of our 

algorithm, which is similar to the generation of an S-tree 
described in Subsection A. However, each time we meet a 
node u (compared to a position in r, say, r[j]), which is the 
same as a previous one v (compared to a different position in r,
say, r[i]), we will not explore T[u] (the subtree rooted at u), 
but do the following operations to derive the relevant 
mismatching information: 

First, we will create Rij by executing merge(R1i, R1j, r[i .. m
– q + i], r[j .. m – q + j]), where q = max{i, j}. Then, we will 
created a set of mismatch arrays for all the sub-paths in T[u], 
which start at u and end at a leaf node, by doing two steps 
explained below.
� For each path Pi going through v, figure out a sub-array of 

Bl, denoted as i
lB , containing only those values in Bl,

which are larger than or equal to i. Moreover, each value in 
it will be decreased by i – 1. (For example, for B1 = [1, 4, 
�], we have 1

1B = [1, 4, �], 2
1B = [3, �], 3

1B = [2, �], 4
1B =

[1, �], and 5
1B = [�].)

� Create the mismatch arrays for all the paths going through 
u by executing merge( i

lB , Rij, Pl[i .. ml], r[j .. m]) for each 
Pl, where ml = |Pi|.

We denote this process as mi-creation(u, v, j, i).
As an example, consider v2 (in Fig. 3, labeled <c, [1, 2]> 

and compared to r[1] = t), which is the same as v4 (compared 
to r[2] = c). By executing mi-creation(v2, v4, 1, 2), the 
following operations will be performed, to avoid repeated 
access of the corresponding subtree (i.e., part of P3 shown in 
Fig. 6(a)): 
1. Create R21: 

R12 = [1, 2, 3, 4, �], R11 = [�, �, �, �, �],
R21 = merge(R12, R11, r[2 .. 5], r[1 .. 4]) = [1, 2, 3, 4].

2. Create part of mismatch information for P3:

B1 = [1, 4, �], 2
1B = [3, �]. P1[2 .. 5] = caga, r[1 .. 4]) = 

caca.

merge( 2
1B , R21, P1[2 .. 5], r[1 .. 4]) = [1, 2, 3, 4].

In general, we will distinguish between two cases: 
(i) i < j. This case can be illustrated in Fig. 6(b). In this case, 

the mismatch information for the new paths can be 
completely derived.  

(ii) i > j. This case can be illustrated in Fig. 6(c), in which 
only part of mismatch information for the new paths can 
be derived. Thus, after the execution of merge( ), we have 
to continue to extend the corresponding paths. 

Therefore, among different appearances of a certain node v,
we should always use the one compared to r[i] with i being 
the least to derive as much mismatch information as possible 
for the to be created paths. 

Finally, we notice that it is not necessary for us to consider 
the case i = j since the same node will never appear at the 

same level more than once. The following lemma is easy to 
prove. 
Lemma 1 In an S-tree T, if two nodes are with the same pair, 
then they must appear at two different levels. 

D. Algorithm Description
The main idea presented in the previous subsection can be 

dramatically improved. Instead of keeping a Bl for each Pl, we 
can maintain a general tree structure, called a mismatch tree,
to store the mismatch information for all the created paths. 
First, we define two simple concepts related to S-trees. 
Definition 2 (match path) A sub-path in an S-tree T is called a 
match path if each node on it is a matching node in T. 

Definition 3 (maximal match sub-path) A maximal match 
sub-path (MM-path for short) in an S-tree T is a match sub-
path such that the parent of its first node in T is a mismatching 
node and its last node is a leaf node or has only mismatching 
nodes as its children. 

For example, edge v4 � v8 in T shown in Fig. 3 is a MM-
path. Path v9 � v13 � v17 is another one. The node v16 alone is 
also a MM-path in T.

Based on the above concepts, we define another important 
concept, the so-called mismatch trees.
Definition 4 (mismatch trees) A mismatch tree D (M-tree for 
short) for a given S-tree T, is a tree, in which for each 
mismatching node <x, [, β]> (compared to r[i] for some i) in 
T we have a node of the form <x, i>, and for each MM-path a
node of the form <-, 0>. There is an edge from u to u�  if one 
of the following two conditions is satisfied: 
� u is of the form <x, i> corresponding to a pair <x, [, β]> 

(compared to r[i]), which is the parent of the first node of 
an MM-path (in T) represented by u�; or 

� u is of the form <-, 0> and u� corresponds to a 
mismatching node which is a child of a node on the MM-
path represented by u.
Without causing confusion, we will also call <-, 0> in D a

matching node, and <x, i> a mismatching node. 
For example, for T shown in Fig. 3, we have its M-tree 

shown in Fig. 7, in which u0 is a virtual root corresponding to 
the virtual root of the S-tree shown in Fig. 3. Its value is also 
set to be <-, 0> since it will be handled as a matching node. 
Then, each path in the M-tree corresponds to a Bl. For instance, 
path u0 � u1 � u4 � u8 � u12 corresponds to B1 = [1, 4, �]

Fig. 6: Illustration for derivation of mismatch information
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if all the matching nodes on the path are ignored. For the same 
reason, u0 � u1 � u5 � u19 corresponds to B2 = [1, 2, �].

In addition, we can store all the different nodes v (= <x, [,
�]>) in T in a hash table with each entry associated with a 
pointer to a node in the corresponding M-tree D, described as 
follows. 
� If v is a mismatching node compared to r[i] for some i �

{1, …, m}, a node u = <x, i> will be created in D and a 
pointer (associated with v, denoted as p(v)) to u will be 
generated. 

� If v is a matching node, a node u = <-, 0> will be created in 
D and p(v) to u will be generated. If the parent u� of u itself 
is <-, 0>, u will be merged into its parent. That is, v will be 
linked to u� while u itself will not be generated.  
For instance, when <a, [1, 4]> (v1 in T shown in Fig. 3) is 

created, it is compared to r[1] = t. Since a ≠ t, we have a 
mismatch and then u1 = <a, 1> in the M-tree D will be 
generated. At the same time, we will insert <a, [1, 4]> into the 
hash table and produce a pointer associated with it to u1 (see 
Fig. 8 for illustration). However, when <c, [1, 2]> (v4 in T
shown in Fig. 3) is created, it is compared to r[2] = c and we 
have a matching. For this, a node <-, 0> (u4 in Fig. 7) will be 
generated, and a link from <c, [1, 2]> to it will be established. 
But when <a, [2, 3]> (v8 in T shown in Fig. 3, compared to r[5] 
= a) is met, no node in D will be generated since it is a 
matching node (in T) and the parent (u4 in Fig. 7) of the node 
to be created for it is also <-, 0>. We will simply link it to its 
parent u4. 

In order to generate D, we will use a stack S to control the 
process, in which each entry is a quadruple (v, j, �, u), where
v – a node inserted into the hash table.
j – j is an integer to indicate that v is the jth node on a path in

T (counted from the root with the root as the 0th node).
� – the number of mismatches between the path and r[0 .. j]

(recall that r[0] = ‘-’).
u – the parent of a node in D to be created for v.
In this way, the parent/child link between u and the node to be 
created for v can be easily established, as described below.

Each time an entry e = (v, j, �, u) with v = <x, [, �]> is 
popped out from S, we will check whether x = r[j]. 
i) If x = r[j], we will generate a node u� = <x, j> and link it to 

u as a child.
ii) If x � r[j], we will check whether u is a node of the form <-,

0>. If it is not the case, generate a node u� = <-, 0>. 

Otherwise, set u� to be u.
iii) Using search( ) to find all the children of v: v1, …, vl. Then, 

push each (vi, j + 1, ��, u�) into S with �� being � or � + 1, 
depending on whether yi = r[j + 1], where vi = <yi, [i, �i]>.

Note that in this process it is not necessary to keep T, but 
insert all the nodes (of T) in the hash table as discussed above. 
Example 2 In this example, we run the above process on r =
tcaca and L = BWT( s ) shown in Fig. 1(c) with k = 2, and 
show its first 5 steps. The tree created is shown in Fig. 7. 
Step 1: Create the root, v0 = <-, [1, 8]>. Push (v0, 0, 0, 
) into 
S, where 
 is used to represent the parent of the root D. See 
Fig. 8(a).

Step 2: Pop out the top element (v0, 0, 0, 
) from S. Create the 
root u0 of D, which is set to be a child of 
. Push <v3, 1, 1, 
u0>, <v2, 1, 1, u0>, <v1, 1, 1, u0> into S, where v3, v2, and v1 are 
three children of v0. See Fig. 8(b).

Step 3: Pop out (v1, 1, 1, u0) from S. v1 = <a, [1. 4]>. Since 
r[1] = t � a, a mismatching node u1 = <a, 1> will be created 
and set to be a child of u0. Then, push (v4, 2, 1, u1) into S,
where v4 is the child of v1. See Fig. 8(c).
Step 4: Pop out (v4, 2, 1, u1) from S. v4 = <c, [1, 2]>. Since 
r[2] = c, we will check whether u1 is a matching node. It is the 
case. So, a matching node u4 = <-, 0> will be created and set 
to be a child of u1. Then, push (v8, 3, 1, u4) into S, where v8 is 
the child of v4. See Fig. 8(d).
Step 5: Pop out (v8, 3, 1, u4) from S. v8 = <a, [2, 3]>. r[3] = a.
However, no new node is created since u4 is a matching node. 
Push (v12, 4, 1, u4) into S, where v12 is the child of v8. See Fig. 
8(e). 

From the above sample trace, we can see that D can be
easily generated. In the following, we will discuss how to 
extend this process to a general algorithm for our task.

As with the basic process, each time a node v = <x, [, �]> 
(compared to r[j]) is encountered, which is the same as a 
previous one v� = <x�, [�, ��]> (compared to r[i]), we will not 
create a subtree in T in a way as for v�, but create a new node u
for v in D and then go along p(v�) (the link associated with v�)
to find the corresponding nodes u� in D and search D[u�] in the 
breadth-first manner to generate a subtree rooted at u in D by 
simulating the merge operation discussed in Subsection B. In 

Fig. 7: A mismatch tree
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other words, D[u] (to be created) corresponds to the mismatch 
arrays for all the paths going though v in T, which will not be
actually produced. See Fig. 9 for illustration. 

To this end, a queue data structure Q is used to do a 
breadth-first search of D[u�], and at the same time generate 
D[u]. In Q, each entry e is a pair (w, �) with w being a node in 
D[u�], and � an entry in Rij. Initially, put (u�, Rij[1]) into Q,
where u� = <x, i>. In the process, when e is dequeued from Q
(taken out from the front), we will make the following 
operations (simulating the steps in merge( )):
1. Let e = (w, Rij[l]). Assume that w = <z, f> and Rij[l] = val.

If <z, f> = <-, 0>, then create a copy of w added to D[u]. If 
w is not a leaf node, let w1, …, wh be the children of w and 
enqueue (w1, Rij[l]), …, (wh, Rij[l]) into Q (append at the 
end) in turn. If <z, f> � <-, 0>, do (2), (3), or (4).

2. If f < i + val - 1, add <z, f – i + j> to D[u]. If w is not a leaf 
node, enqueue (w1, Rij[l]), …, (wh, Rij[l]) into Q.

3. If f = i + val - 1, we will distinguish between two subcases: 
z ≠ r[j + val - 1] and z = r[j + val - 1]. If z ≠ r[j + val - 1], 
we have a mismatching and add a node <z, j + val - 1> to 
D[u]. If z = r[j + val - 1], create a node <-, 0> added to 
D[u]. (If its parent is <-, 0>, it should be merged into its 
parent.)  
If w is not a leaf node, enqueue <w1, Rij[l + 1]), …, < wh,
Rij[l + 1]) into Q.

4. If f > i + val - 1, we will scan Rij starting from Rij[l] until 
we meet Rij[l�] such that f 	 i + Rij[l�] - 1. For each Rij[g] (l
≤ g < l�), we create a new node <r[j + Rij[g] - 1], j + Rij[g] -
1> added to D[u]. Enqueue <w, Rij[l�]> into Q.
In the above description, we ignored the technical details 

on how D[u] is constructed for simplicity. However, in the 
presence of D[u�], it is easy to do such a task by manipulating 
links between nodes and their respetive parents. 

Denote the above process by node-creation(w, �, i, j, Rij).
We have the following proposition.
Proposition 2 node-creation(w, �, i, j, Rij) create nodes in D[u]
correctly.
Proof. The correctness of node-creation(w, �, i, j, Rij) can be 
derived from Proposition 1. 

Again, if i > j, D[u] needs to be extended, which can be 
done in a way similar to the extension of mismatch arrays as 
discussed in Subsection C. 

As an example, consider Fig. 3 and Fig. 7 once again. 
When we meet <g, [1, 1]> (v5 in T, compared to r[2]) for a 

second time, we will not generate T[v5] in Fig. 3, but D[u5] in 
Fig. 7. Comparing T and D, we can clearly see the efficiency 
of this improvement. In D, an MM-path in T is collapsed into a 
single node of the form <-, 0>.

The following is the formal description of the working 
process. 

ALGORITHM A(L, r, k) 
begin 
1. create root of T; push(S, (root, 0, 0, 
));
2. while S is not empty do {
3. (v, j, �, u) := pop(S); let v = <x, , �>;
4. if v is same as an existing v� (compared to r[i]) then{
5. q := max{i, j};
6. Rij := merge(R1i, R1j, r[i .. m – q + i], r[j .. m – q + j]);
7. enqueuer(Q, (p(v�), Rij[1]));
8. while Q is not empty do {
9. (w, �) := dequeuer(Q); node-creation(w, �, i, j, Rij);}}
10.else {
11. if x � r[j] then create u� = <x, j> and make it a child of u;
12. else if u is <-, 0> then u� := u 
13. else create u� = <-, 0> and make it a child of u;
14. p(v) := u�; (*associate with v a pointer to u�.*)
15. if j < |r| and � 	 k then {
16. for each y � � within Lv do {
17. w := search(y, Lv);
18. if w � 
 then {
19. if y = r[j + 1] then push(S, (w, j + 1, �, u�));
20. if y � r[j + 1] and � < k then {push(S, (w, j + 1, � + 1, u�));
21. }}}}
end  

If we ignore lines 3 – 9 in the above algorithm, it is almost 
a depth-first search of a tree. Each time an entry (v, j, �, u) is 
popped out from S (see line 4), it will be checked whether v is 
the same as a previous one v� (compared to r[i]). (See line 4.) 
If it is not the case, a node u� for v will be created in D (see 
lines 11 – 14). Then, all the children of v will be found by 
using the procedure search ( ) (see line 17) and pushed into S
(see lines 18, and 19.) Otherwise, we will first create Rij by 
executing merge(R1i, R1j, r[i .. m – q + i], r[j .. m – q + j]), 
where q = max{i, j}. (see lines  5 - 6.) Then, we create a
subtree in D by executing a series of node-creation operatons 
(see lines 8 – 9.)

Concerning the correctness of the algorithm, we have the 
following proposition. 

Proposition 3 Let L be a BWT-array for the reverse s of a 
target string s, and r a pattern. Algorithm A(L, r, k) will 
generate a mismatching tree D, in which each root-to-leaf 
path represents an occurrence of r in s having up to k 
positions different between r and s.
Proof. In the execution of A(L, r, k), two data structures will 
be generated: a hash table and a mismatching tree D, in 
which some subtrees in D are derived by using the 
mismatching information over r. Replacing each matching 
node in D with the corresponding maximum matching path 

Fig. 9: Illustration for generation of subtrees in T�

T: D: D[u] will 
be created 
in terms of
D[u�], Rij,
and r.v�

v

u�

u

T[v] will not be actually explored.

409409409395395395395395395407407407



and each mismatching node <x, i> with the corresponding
pair <x, [, β]> (compared to r[i]), we will get an S-tree, in 
which each path corresponds to a search sequence discussed 
in Section III. Thus, in D each root-to-leaf path represents an 
occurrence of r in s having up to k positions different between 
r and s. 

The time complexity of the algorithm mainly consists of 
three parts: the cost for generating the mismatching 
information over r which is bounded by O(mlogm); the cost 
for generating the M-tree and maintaining the hash table, 
which is bounded by O(kn�), where n� is the number of the M-
tree’s leaf nodes; and the cost for checking the characters in s
against the characters in r, which is bounded by O(n). So, the 
total running time is bounded by O(kn� + n + mlogm). 

V. EXPERIMENTS
In our experiments, we have tested altogether four 

different methods:

- BWT-based [34] (BWT for short),
- Amir’s method [2] (Amir for short),
- Cole’s method [14] (Cole for short),
- Algorithm A discussed in this paper (A( ) for short) 

By the BWT-based method, an S-tree will be created as 
described in Section IV, but with �(i) being used to cut off 
branches, where �(i) is the number of consecutive, disjoint 
substrings in r[i .. m] not appearing in s. By the Amir’s 
algorithm, a pattern r is divided into several periodic stretches 
separated by 2k aperiodic substrings, called breaks, as 
illustrated in Fig. 10. Then, for each break bi, located at a 
certain position i, find all those substrings sj (located at 
different positions j) in s such that bi = sj, and then mark each 
of them. After that, discard any position that is marked less 
than k times. In a next step, verify every surviving position in 
s.

By the Cole’s, a suffix tree for a target is constructed. (The 
code for constructing suffix trees is taken from the gsuffix
package: http:://gsuffix.Sourceforge.net/).

All the four methods are implemented in C++, compiled by 
GNU make utility with optimization of level 2. In addition, all 
of our experiments are performed on a 64-bit Ubuntu 
operating system, run on a single core of a 2.40GHz Intel 
Xeon E5-2630 processor with 32GB RAM.  

For the test, five reference genomes shown in Table 1 are 
used. They are all obtained from a biological project 
conducted in a laboratory at University of Manitoba [27]. In 
addition, all the simulating reads are taken from these five 
genomes, with varying lengths and amounts. It is done by 
using the wgsim program included in the SAMtools package 
[37] with a default model for single reads simulation.

Concretely, we take 5000 reads with length varying from 100 
bps to 300 bps. 
Table 1: Characteristics of genomes 

Genomes Genome sizes (bp) 

Rat (Rnor_6.0) 2,909,701,677

Zebra fish (GRCz10) 1,464,443,456

Rat chr1 (Rnor_6.0) 290,094,217 

C. elegans  (WBcel235) 103,022,290 

C. merlae  (ASM9120v1) 16,728,967 

To store BWT( s ), we use 2 bits to represent a character �
{a, c, g, t} and store 4 rankAll values (respectively in Aa, Ac,
Ag, and At) for every 4 elements (in L) with each taking 32 bits.  

In Fig. 11(a) and (b), we report the average time of testing 
the Rat (Rnor_6.0) for matching 100 reads of length 100 to 
300 bps. From this figure, we can see that Algorithm A( )
outperforms all the other three methods. But the Amir’s 
method is better than the other two methods. The BWT-based 
and the Cole’s method are comparable. However, for small k,
the Cole’s is a little bit better than the BWT-based method 
while for large k their performaces are reversed. 

To show why A( ) has the best running time, we show the
number n� of leaf nodes in the M-trees created by A( ) for 
some tests in Table 2, which demonstrates that n� can be much 
smaller than n. Thus, the time complexity O(kn�) of A( ) 
should be a significant improvement over O(n k logk) - the 
time complexity of Amir’s.
Table 2: Number of leaf nodes of S-trees

k/length-of-read 5/50 10/100 20/150 30/200

No. of leaf nodes 2K 0.7M 16.5M 102M

In this test (and also in the subsequent tests), the time for 
constructing BWT( s ) is not included as it is completely 
independent of r. Once it is created, it can be repeatedly used. 

In Fig. 11(b), we show the impact of read lengths. For this 
test, k is set to 25. It can be seen that only the BWT-based and 
the Cole’s are sensitive to the length of reads. For the BWT-

Fig. 11: Test results on varying values of k and read length
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based, more time is required to construct S-trees for longer 
reads while for the Cole’s longer paths in a suffix tree will be 
searched as the lengths of reads increase. For the other two 
methods: A( ) and the the Amir’s, the lengths of reads only 
impact the time for the read pre-processing, but it is 
completely overshadowed by the time spent on searching 
genomes. For the Amir’s, the time for recognizing breaks is 
linear in |r| [2] while for A( ) the time for generating the 
mismatch information is bounded by O(|r|log|r|). No 
significant difference between them can be measured. 

In Fig. 12(a) and (b), we report the test results of searching 
the Zebra fish (GRCz10). 

Again, similar to Fig. 11(a), the performance of Algorithm 
A( ) is best, and the Amir’s is still better than both the BWT-
based and the Cole’s.

In Table 3, we show the number n�. 

Table 3: Number of leaf nodes of S-trees

k/length-of-read 5/50 10/100 20/150 30/200

No. of leaf nodes 0.7K 0.30M 9.2M 89M

Fig. 12(b) shares the same features as Fig. 11(b). It also 
shows that only the BWT-based and the Cole’s are sensitive to 
the length of reads. 

In Fig. 13, 14, and 15, we show the tests on Rat chr1 
(Rnor_6.0), C. elegans (WBcel235), and C. merlae 
(ASM9120v1), respectively.

From these figures, the most important feature we can 
observe is that as the size of genomes becomes smaller, the
difference between the Amir’s and Cole’s diminishes. But the 
BWT-based and A( ) remain the worst and the best, 
respectively. Although A( ) is impacted by the number of leaf 
nodes of an S-tree, the impact factor is small in comparison 
with the size of the whole S-tree, which dominates the time 
complexity of the BWT-based method. Also, the big 
difference between A( ) and Amir’s shows that using M-trees 
the cost for creating mismatch information of r’s occurrences 
in s can be significantly reduced.

VI. CONCLUSION AND FUTURE WORK
In this paper, a new method to do the string matching with 

k mismatches is proposed. Its main idea is to transform the 
reverse s of target string s to BWT( s ) and use the mismatch 
information over a pattern string r to speed up the 
computation. Its time complexity is bounded by O(kn� + n + 
mlogm), where m = |r|, n = |s|, and n� is the number of leaf 
nodes of a tree structure produced during the search of a Fig. 13: Test results on varying values of k and read length
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Fig. 15: Test results on varying values of k and read length
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Fig. 14: Test results on varying values of k and read length
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BWT(s). Our experiments show that it ihas a better running 
time than any existing on-line and index-based algorithms.

As a future work, we will use the BWT to solve another 
important problem, the string matching with k errors. It seems 
to be more challenging than the k mismatches since the 
Levenshtein distance is more difficult to handle than the 
Hamming distance.
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