
An Efficient Algorithm for Solving the 2-MAXSAT
Problem
Yangjun Chen*

Abstract—By the MAXSAT problem, we are given a set V of
m variables and a collection C of n clauses over V . We will seek
a truth assignment to maximize the number of satisfied clauses.
This problem is NP-complete even for its restricted version, the
2-MAXSAT problem by which every clause contains at most
2 literals. In this paper, we discuss an efficient algorithm to
solve this problem. Its worst-case time complexity is bounded by
O(n2m4). This shows that the 2-MAXSAT problem can be solved
in polynomial time. Thus, the paper in fact provides a proof of
P = NP.

Index Terms—satisfiability problem, maximum satisfiability
problem, NP-hard, NP-complete, conjunctive normal form, dis-
junctive normal form.

I. INTRODUCTION

THE satisfiability problem is perhaps one of the most well-
studied problems that arise in many areas of discrete op-

timization, such as artificial intelligence, mathematical logic,
and combinatorial optimization, just to name a few. Given a
set V of Boolean (true/false) variables and a collection C of
clauses over V , or say, a logic formula in CNF (Conjunctive
Normal Form), the satisfiability problem is to determine if
there is a truth assignment that satisfies all clauses in C
[4]. The problem is NP-complete even when every clause in
C has at most three literals [7]. The maximum satisfiability
(MAXSAT) problem is an optimization version of satisfiabiltiy
that seeks a truth assignment to maximize the number of
satisfied clauses [10]. This problem is also NP-complete even
for its restricted version, the so-called 2-MAXSAT problem,
by which every clause in C has at most two literals [8]. Its
application can be seen in an extensive biliography [5], [8],
[13], [16]–[19], [21].

Over the past several decades, a lot of research on the
MAXSAT has been conducted. Almost all of them are the
approximation methods [1], [6], [10], [12], [20], [22], such
as (1-1/e)-approximation, 3/4-approximation [22], as well as
the method based on the integer linear programming [11].
The only algorithms for exact solution are discussed in [23],
[24]. The worst-case time complexity of [24] is bounded by
O(b2m), where b is the maximum number of the occurrences
of any variable in the clauses of C, while the worst-case time
complexity of [23] is bounded by max{O(2m), O*(1.2989n)}.
In both algorithms, the traditional branch-and-bound method

*Y. Chen is with the Department of Applied Computer Science, University
of Winnpeg, Manitoba, Canada, R3B 2E9.

The article is a modification and extension of a conference paper: Y.
Chen, The 2-MAXSAT Problem Can Be Solved in Polynomial Time, in Proc.
CSCI2022, IEEE, Dec. 14-16, 2022, Las Vegas, USA, pp. 473-480.

This work is supported by NSERC, Canada, 239074-01 (242523).

is used for solving the satisfiability problem, which will search
for a solution by letting a variable (or a literal) be 1 or 0.As
shown in [9], any algorithm based on branch-and-bound runs
in O*(cm) time with c ≥ 2.

In this paper, we discuss a polynomial time algorithm to
solve the 2-MAXSAT problem. Its worst-case time complexity
is bounded by O(n2m4), where n and m are the numbers of
clauses and the number of variables in C, respectively. Thus,
our algorithm is in fact a proof of P = NP.

The main idea behind our algorithm can be summarized as
follows.

1) Given a collection C of n clauses over a set of variables
V with each containing at most 2 literals. Construct a
formula D over another set of variables U , but in DNF
(Disjunctive Normal Form), containing 2n conjunctions
with each of them having at most 2 literals such that there
is a truth assignment for V that satisfies at least n* ≤ n
clauses in C if and only if there is a truth assignment for
U that satisfies at least n* conjunctions in D.

2) For each Di in D (i ∈ {1, ..., 2n}), construct a graph,
called a p*-graph to represent all those truth assignments
σ of variables such that under σ Di evaluates to true.

3) Organize the p*-graphs for all Di’s into a trie-like graph
G. Searching G bottom up, we can find a maximum
subset of satisfied conjunctions in polynomial time.

The organization of the rest of this paper is as follow. First,
in Section 2, we restate the definition of the 2-MAXSAT prob-
lem and show how to reduce it to a problem that seeks a truth
assignment to maximize the number of satisfied conjunctions
in a formula in DNF. Then, we discuss a basic algorithm
in Section 3. Next, in Section 4, how to improve the basic
algorithm is discussed. Section V is devoted to the analysis
of the time complexity of the improved algorithm. Finally, a
short conclusion is set forth in Section 5.

II. 2-MAXSAT PROBLEM

We will deal solely with Boolean variables (that is, those
which are either true or false), which we will denote by c1,
c2, etc. A literal is defined as either a variable or the negation
of a variable (e.g., c7, ¬c11 are literals). A literal ¬ci is true if
the variable ci is false. A clause is defined as the OR of some
literals, written as (l1 ∨ l2 ∨ .... ∨ lk) for some k, where each
li (1 ≤ i ≤ k) is a literal, as illustrated in ¬c1 ∨ c11. We say
that a Boolean formula is in conjunctive normal form (CNF)
if it is presented as an AND of clauses: C1 ∧ ... ∧ Cn (n ≥
1). For example, (¬c1 ∨ c7 ∨ ¬c11) ∧ (c5 ∨ ¬c2 ∨ ¬c3) is in
CNF. In addition, a disjunctive normal form (DNF) is an OR



of conjunctions: D1 ∨ D2 ∨ ... ∨ Dm (m ≥ 1). For instance,
(c1 ∧ c2) ∨ (¬c1 ∧ c11) is in DNF.

Finally, the MAXSAT problem is to find an assignment
to the variables of a Boolean formula in CNF such that the
maximum number of clauses are set to true, or are satisfied.
Formally:

2-MAXSAT

• Instance: A finite set V of variables, a Boolean formula
C = C1 ∧ ... ∧ Cn in CNF over V such that each Ci has
0 < |Ci| ≤ 2 literals (i = 1, ..., n), and a positive integer
n* ≤ n.

• Question: Is there a truth assignment for V that satisfies
at least n* clauses?

In terms of [8], the 2-MAXSAT is NP-complete.
To find a truth assignment σ such that the number of clauses

set to true is maximized under σ, we can try all the possible
assignments, and count the satisfied clauses as discussed in
[18], by which bounds are set up to cut short branches. We may
also use a heuristic method to find an approximate solution to
the problem as described in [10].

In this paper, we propose a quite different method, by which
for C = C1 ∧ ... ∧ Cn, we will consider another formula D
in DNF constructed as follows.

Let Ci = ci1 ∨ ci2 be a clause in C, where ci1 and ci2
denote either variables in V or their negations. For Ci, define
a variable xi. and a pair of conjunctions: Di1, Di2, where

Di1 = ci1 ∧ xi,
Di2 = ci2 ∧ ¬xi.

Let D = D11 ∨ D12 ∨ D21 ∨ D22 ∨ ... ∨ Dn1 ∨ Dn2.
Then, given an instance of the 2-MAXSAT problem defined
over a variable set V and a collection C of n clauses, we can
construct a logic formula D in DNF over the set V ∪ X in
polynomial time, where X = {x1, ..., xn}. D has m = 2n
conjunctions.

Concerning the relationship of C and D, we have the
following proposition.

Proposition 1. Let C and D be a formula in CNF and a
formula in DNF defined above, respectively. No less than n*
clauses in C can be satisfied by a truth assignment for V if
and only if no less than n* conjunctions in D can be satisfied
by some truth assignment for V ∪ X .

Proof. Consider every pair of conjunctions in D: Di1 = ci1 ∧
xi and Di2 = ci2 ∧ ¬xi (i ∈ {1, ..., n}). Clearly, under any
truth assignment for the variables in V ∪ X , at most one of
Di1 and Di2 can be satisfied. If xi = true, we have Di1 = ci1
and Di2 = false. If xi = false, we have Di2 = ci2 and Di1 =
false.

"⇒" Suppose there exists a truth assignment σ for C that
satisfies p ≥ n* clauses in C. Without loss of generality,
assume that the p clauses are C1, C2, ..., Cp.

Then, similar to Theorem 1 of [13], we can find a truth
assignment σ̃ for D, satisfying the following condition:

For each Cj = cj1 ∨ cj2 (j = 1, ..., p), if cj1 is true and
cj2 is false under σ, (1) set both cj1 and xj to true for σ̃. If
cj1 is false and cj2 is true under σ, (2) set cj2 to true, but
xj to false for σ̃. If both cj1 and cj2 are true, do (1) or (2)
arbitrarily.

Obviously, we have at least n* conjunctions in D satisfied
under σ̃.

"⇐" We now suppose that a truth assignment σ̃ for D with
q ≥ n* conjunctions in D satisfied. Again, assume that those
q conjunctions are D1b1 , D2b2 , ..., Dqbq , where each bj (j =
1, ..., q) is 1 or 2.

Then, we can find a truth assignment σ for C, satisfying
the following condition:

For each Djbj (j = 1, ..., q), if bj = 1, set cj1 to true for
σ; if bj = 2, set cj2 to true for σ.

Clearly, under σ, we have at lease n* clauses in C satisfied.
The above discussion shows that the proposition holds.

Proposition 1 demonstrates that the 2-MAXSAT problem
can be transformed, in polynomial time, to a problem to find a
maximum number of conjunctions in a logic formula in DNF.

As an example, consider the following logic formula in
CNF:

C = C1 ∧ C2 ∧ C3

= (c1 ∨ c2) ∧ (c2 ∨ ¬c3) ∧ (c3 ∨ ¬c1)
(1)

Under the truth assignment σ = {c1 = 1, c2 = 1, c3 = 1},
C evaluates to true, i.e., Ci = 1 for i = 1, 2, 3. Thus, n* = 3.

For C, we will generate another formula D, but in DNF,
according to the above discussion:

D = D11 ∨D12 ∨D21 ∨D22 ∨D31 ∨D32

= (c1 ∧ c4) ∨ (c2 ∧ ¬c4)∨
(c2 ∧ c5) ∨ (¬c3 ∧ ¬c5)∨
(c3 ∧ c6) ∨ (¬c1 ∧ ¬c6).

(2)

According to Proposition 1, D should also have at least n*
= 3 conjunctions which evaluates to true under some truth
assignment. In the opposite, if D has at least 3 satisfied
conjunctions under a truth assignment, then C should have
at least three clauses satisfied by some truth assignment, too.
In fact, it can be seen that under the truth assignment σ̃ = {c1
= 1, c2 = 1, c3 = 1, c4 = 1, c5 = 1, c6 = 1}, D has three
satisfied conjunctions: D11, D21, and D31, from which the
three satisfied clauses in C can be immediately determined.

In the following, we will discuss a polynomial time algo-
rithm to find a maximum set of satisfied conjunctions in any
logic formula in DNF, not only restricted to the case that each
conjunction contains up to 2 conjuncts.

III. ALGORITHM DESCRIPTION

In this section, we discuss our algorithm. First, we present
the main idea in Section III-A. Then, in Section 3.2, a recursive
algorithm for solving the problem is described in great detail.
The running time of the algorithm will be analyzed in the next
section.



A. Main idea

To develop an efficient algorithm to find a truth assignment
that maximizes the number of satisfied conjunctions in formula
D = D1 ∨ ..., ∨ Dn, where each Di (i = 1, ..., n) is a
conjunction of variables c (∈ V ), we need to represent each Di

as a sequence of variables (referred to as a variable sequence).
For this purpose, we introduce a new notation:

(cj , *) = cj ∨ ¬cj = true,

which will be inserted into Di to represent any missing
variable cj ∈ Di (i.e., cj ∈ V , but not appearing in Di).
Obviously, the truth value of each Di remains unchanged.

In this way, the above D can be rewritten as a new formula
in DNF as follows:

D = D1 ∨D2 ∨D3 ∨D4 ∨D5 ∨D6

= (c1 ∧ (c2, ∗) ∧ (c3, ∗) ∧ c4 ∧ (c5, ∗) ∧ (c6, ∗))∨
((c1, ∗) ∧ c2 ∧ (c3, ∗) ∧ ¬c4 ∧ (c5, ∗) ∧ (c6, ∗))∨
((c1, ∗) ∧ c2 ∧ (c3, ∗) ∧ (c4, ∗) ∧ c5 ∧ (c6, ∗))∨
((c1, ∗) ∧ (c2, ∗) ∧ ¬c3 ∧ (c4, ∗) ∧ ¬c5 ∧ (c6, ∗))∨
((c1, ∗) ∧ (c2, ∗) ∧ c3 ∧ (c4, ∗) ∧ (c5, ∗) ∧ c6)∨
(¬c1 ∧ (c2, ∗) ∧ (c3, ∗) ∧ (c4, ∗) ∧ (c5, ∗) ∧ ¬c6)

(3)
Doing this enables us to represent each Di as a variable

sequence, but with all the negative literals being removed. It
is because if the variable in a negative literal is set to true, the
corresponding conjunction Di must be false, and our goal is to
establish a graph in which each node represents a variable and
each path p corresponds to a truth assignment satisfying Di (by
which any variable on p is set true while all those varibles not
on p are set false). Obviousely, in such a graph, any variable
appearing in a negative literal should not be involved since any
path through such a variable corresponds a truth assignment
not satisfying Di.

See Table I for illustration.
First, we pay attention to the variable sequence for D2 (the

second sequence in the second column of Table I), in which
the negative literal ¬c4 (in D2) is elimilated. In the same way,
you can check all the other variable sequences.

Now it is easy for us to compute the appearance frequencies
of different variables in the variable sequences, by which each
(c, *) is counted as a single appearance of c while any negative
literals are not considered, as illustrated in Table II, in which
we show the appearance frequencies of all the variables in the
above D.

According to the variable appearance frequencies, we will
impose a global ordering over all variables in D such that
the most frequent variables appear first, but with ties broken
arbitrarily. For instance, for the D shown above, we can
specify a global ordering like this: c2 → c3 → c1 → c4 →
c5 → c6. Here, c2 is most frequent and then appears first.
The other variables have the same frequency. So, we simply
impose a fixed order on them: c3 → c1 → c4 → c5 → c6.

Following this general ordering, each conjunction Di in D
can be represented as a sorted variable sequence as illustrated

in the third column of Table I, where the variables in a
sequence are ordered in terms of their appearance frequencies
such that more frequent variables appear before less frequent
ones. In addition, a start symbol # and an end symbol $
are used as sentinals for technical convenience. In fact, any
global ordering of variables works well (i.e., you can specify
any global ordering of variables), based on which a graph
representation of assignments can be established. However,
ordering variables according to their appearance frequencies
can greatly improve the efficiency when searching a graph
constructed over all the variable sequences for conjunctions
in D to find solusions since more variables from different
conjunctions can be merged together.

Later on, by a variable sequence, we always mean a sorted
variable sequence. Also, we will use Di and the variable se-
quence for Di interchangeably without causing any confusion.

In addition, for our algorithm, we need to introduce a graph
structure to represent all the truth assignments for each Di (i =
1, ..., n) (called a p*-graph), under which Di evaluates to true.
In the following, however, we first define a simple concept of
p-graphs for ease of explanation.

Definition 1. (p-graph) Let α = d0d1 ... dkdk+1 be a variable
sequence representing a Di in D as described above (with d0
= #, dk+1 = $, and each di with i ∈ {1, ..., k} is a variable
or a a pair of the form (c, *), where c is a variable). A p-graph
over α is a directed graph, in which there is a node for each
dj (j = 0, ..., k + 1); and an edge for (dj , dj+1) for each j
∈ {0, 1, ..., k}. In addition, for each di with i ∈ {1, ..., k}, if
it is a pair of the form (c, *), an extra edge connecting dj−1

to dj+1 is added.

In Fig. 1(a), we show such a p-graph for D1 =
d0d1d2d3d4d5d6d7 = #.(c2, *).(c3, *).c1.c4.(c5, *).(c6, *).$.
Beside a main path going through all the variables in D1,
there are four off-path edges (edges not on the main path),
referred to as spans attached to the main path, corresponding
to (c2, *), (c3, *), (c5, *), and (c6, *), respectively. Each span
is represented by the subpath covered by it. For example, we
will use the subpath <v0, v1, v2> (subpath going three nodes:
v0, v1, v2) to stand for the span connecting v0 and v2; <v1,
v2, v3> for the span connecting v1 and v3; <v4, v5, v6> for
the span connecting v4 and v6, and <v5, v6, v7> for the span
connecting v6 and v7. By using spans, the meaning of ‘*’s (it
is either 0 or 1) is appropriately represented since along a span
we can bypass the corresponding variable (then its value is set
to 0) while along an edge on the main path we go through the
corresponding variable (then its value is set to 1).

In fact, what we want is to represent, in an efficient way,
all those truth assignments for each Di (i = 1, ..., n), under
which Di evaluates to true. However, p-graphs fail to do so
since when we go through from a node v to another node u
through a span, u must be selected. If u represents a (c, *) for
some variable name c, the meaning of this ‘*’ is not properly
rendered. It is because (c, *) indicates that c is optional, but
going through a span from v to (c, *) makes c always selected.
So, the notation (c, *), which is used to indicate that c is



TABLE I: Conjunctions represented as sorted variable sequences.
conjunction variable sequences sorted variable sequences
D1 c1.(c2, *).(c3, *).c4.(c5, ∗).(c6, *) #.(c2, *).(c3, *).c1.c4.(c5, ∗).(c6, *).$
D2 (c1, *).c2.c3.(c5, *).(c6, *) #.c2.c3.(c1, *).(c5, *).(c6, *).$
D3 (c1, *).c2.(c3, *).(c4, *).c5.(c6, *) #.c2.(c3, *).(c1, *).(c4, *).c5.(c6, *).$
D4 (c1, *).(c2, *).(c4, *).(c6, *) #.(c2, *).(c1, *).(c4, *).(c6, *).$
D5 (c1, *).(c2, *).c3.(c4, *).(c5, *).c6 #.(c2, *).c3.(c1, *).(c4, *).(c5, *).c6.$
D6 (c2, *).(c3, *).(c4, *).(c5, *) #.(c2, *).(c3, *).(c4, *).(c5, *).$

#

$ (a)

v0

v1

v2

v3

v4

v5

v6

c2

c3

c1

c4

c5

c6

v7

#

$ (b)

v0

v1

v2

v3

v4

v5

v6

c2

c3

c1

c4

c5

c6

v7

#

$ (b)

v0

v1

v2

v3

v4

v5

v6

c2

c3

c1

c4

c5

c6

v7

#

$

c2

c3

c1

c5

c6

#

$

(c)

c2

c3

c1

c5

c6

#

$

c2

c3

c1

c5

c6

#

$

(d)

c2

c3

c1

c5

c6

u4

u6

u0

u1

u2

u3

u5

u4

u6

u0

u1

u2

u3

u5

FIG. 1: Illustration for p-graphs and p∗-graphs.

TABLE II: Appearance frequencies of variables.
variables c1 c2 c3 c4 c5 c6

appearance frequencies 5/6 6/6 5/6 5/6 5/6 5/6

optional, is not correctly implemented.
For this reason, we introduce another concept, p*-graphs,

described as below.
Let s1 = <v1, ..., vk> and s2 = <u1, ..., ul> be two spans

attached onto a same path. We say, s1 and s2 are overlapped,
if u1 = vj for some j ∈ {1, ..., k - 1}, or if v1 = uj′ for some
j′ ∈ {1, ..., l - 1}. For example, in Fig. 1(a), <v0, v1, v2>
and <v1, v2, v3> are overlapped. <v4 v5, v6> and <v5, v6,
v7> are also overlapped.

Here, we notice that if we had one more span, <v3, v4,
v5>, for example, it would be connected to <v1, v2, v3>,
but not overlapped with <v1, v2, v3>. Being aware of this
difference is important since the overlapped spans imply the
consecutive ‘*’s, just like <v1, v1, v2> and <v1, v2, v3>,
which correspond to two consecutive ‘*’s: (c2, *) and (c3,
*). Therefore, the overlapped spans exhibit some kind of
transitivity. That is, if s1 and s2 are two overlapped spans,
the s1 ∪ s2 must be a new, but bigger span. Applying
this operation to all the spans over a p-path, we will get a
’transitive closure’ of overlapped spans.

Let S be the set of all spans over the main path p for a
certain conjunction. The transive closure of S, denoted as S*,
is another set of spans S* = {s1, s2, ..., sl} for sime l, which
contains the whole S and is with each si satisfying one of the
following two conditions:

1. si ∈ S, or
2. There exist j, k ( ̸= i) such that sj and sk are overlapped

and si = sj ∪ sk.
Based on the above discussion, we give the following

definition.
Definition 2. (p*-graph) Let P be a p-graph. Let p be its main
path and S be the set of all spans over p. Denote by S* the
‘transitive closure’ of S. Then, the p*-graph with respect to
P is the union of p and S*, denoted as P* = p ∪ S*.

In Fig. 1(b), we show the p*-graph with respect to the p-
graph shown in Fig. 1(a).

As another example, consider D2 = #.c2.c3.(c1, *).(c5,
*).(c6, *).$. Its p-graph is shown in Fig. 1(c) and its p*-graph
in Fig. 1(d), in which we notice that we have span <u2, u3, u4,
u5> (representing two consecutive ‘*’s) due to two overlapped
spans: <u2, u3, u4> and <u3, u4, u5>. Further, we have span
<u2, u3, u4, u5, u6> (representing three consecutive ‘*’s) due
to <u2, u3, u4, u5> and <u4, u5, u6>. In the same way, we
can check all the other spans in Fig. 1(d).

The purpose of the p*-graph for a certain conjunction Di

is to represent all the truth assignments, under each of which
Di evaluates to true. Specifically, in P* each root-to-leaf path
p corresponds to a truth assignment, by which each variable
on p is set to true while any other variables are set false.

Concerning p*-graphs, we have the following lemma.

Lemma 1. Let P* be a p*-graph for a conjunction Di

(represented as a variable sequence) in D. Then, any path
from # to $ in P* represents a truth assignment, under which
Di evaluate to true.



Proof. (1) Corresponding to any truth assignment σ, under
which Di evaluates to true, there is definitely a path from # to
$ in p*-path. First, we note that under such a truth assignment
each variable in a positive literal must be set to 1, but with
some ‘*’s set to 1 or 0. Especially, we may have more than
one consecutive ‘*’s that are set 0, which are represented by a
span that is the union of the corresponding overlapped spans.
Therefore, for σ we must have a path representing it.

(2) Each path from # to $ represents a truth assignment,
under which Di evaluates to true. To see this, we observe
that each path consists of several edges on the main path and
several spans. Especially, any such path must go through every
variable in a positive literal since for each of them there is no
span covering it. But each span stands for a ‘*’ or more than
one successive ‘*’s.

For example, in Fig. 1(b), the path: v0 → v3 → v4 → v5
→ v7 represents a truth assignment: {c1 = 1, c2 = 0, c3 = 0,
c4 = 1, c5 = 1, c6 = 0}, under which D1 evaluates to true. In
Fig. 1(d), the path: u0 → u1 → u2 → u6 represents another
truth assignment: {c1 = 0, c2 = 1, c3 = 1, c4 = 0, c5 = 0, c6
= 0}, under which D2 evaluates to true. We can examine all
the paths in these two graphs and find that Lemma 1 always
holds for them.

B. Algorithm

To find a truth assignment to maximize the number of
satisfied D′

js in D, we will first construct a trie-like structure
G over D, and then search G bottom-up to find answers.

Let P1*, P2*, ..., Pn* be all the p*-graphs constructed for
all Dj’s in D, respectively. Let pj and Sj* (j = 1, ..., n) be
the main path of Pj* and the transitive closure over its spans,
respectively. We will construct G in two steps.

In the first step, we will establish a trie [3], [15], denoted
as T = trie(R) over R = {p1, ..., pn} as follows.

If |R| = 0, trie(R) is, of course, empty. For |R| = 1, trie(R)
is a single node. If |R| > 1, R is split into r (possibly empty)
subsets R1, R2, . . . , Rr so that each Ri (i = 1, . . . , r) contains
all those sequences with the same first variable name. The
tries: trie(R1), trie(R2), . . . , trie(Rr) are constructed in the
same way except that at the kth step, the splitting of sets is
based on the kth variable name (along the global ordering of
variables). They are then connected from their respective roots
to a single node to create trie(R).

In Fig. 2, we show the trie constructed for the variable
sequences given in the third column of Table I. In such a
trie, special attention should be paid to all the leaf nodes each
labeled with $, representing a conjunction (or a subset of con-
junctions), which can be satisfied under the truth assignment
represented by the corresponding main path. For example, the
subset {D1, D3, D5} associated with v7 is satisfiable under
the truth assignment represented by the path from v0 to v7.
Such a path is also called a tree path.

The main advantage of tries is to cluster common parts
of variable sequences together to avoid possible repeated
checking. Then, if variable sequences are sorted according to

their appearance frequencies, more variables will be clustered.
More importantly, this idea can also be applied to the vari-
able subsequences (as will be seen later), over which some
dynamical tries can be recursively constructed, leading to a
polynomial-time algorithm for solving the problem.

Each node v in the trie stands for a variable c, referred
to as the label of v and denodeted as l(v) = c; and each
edge e is referred to as a tree edge, labeled with a set of
integers representing all the variable sequences going through
e, denoted as s(e). For example, s(v0, v1) = {1, 2, 3, 4, 5, 6}.
It is because all the variable sequences given in Table I need
to pass through this edge to reach their respective leaf nodes.
In the same way, you can check all the other labels associated
with tree edges.

In regard to the tree paths, we have the following lemma.

Lemma 2. Let T be a trie created over all the variable
sequences in D. Let p = v0

s1−→ v1 ... sk−→ vk be a root-to-leaf
path in T . Let D′ be the subset of conjunctions associated
with vk. Then, R = s1 ∩ ... ∩ sk ∩ D′ is satisfiable by the
truth assignment represented by p.

Finally, we will associate each node v in the trie T with
a pair of numbers (pre, post) to speed up recognizing ances-
tor/descendant relationships of nodes in T , where pre is the
order number of v when searching T in preorder and post is
the order number of v when searching T in postorder.

#

$

D1

D4

v0 (1, 18)

(2, 17)

(3, 12)

v6

v7

v1

v2

v3

v4

v15

v16

v17

c2

c3

c1

c4

c4

c6

$

D6

v11

v12

v13

c4

c5

$

v5
c5

c6

D3 D5

v9

v10
$

v8
c5

c6

D2

v14

c1

(4, 8)

(5, 4)

(6, 3)

(7, 2)

(8, 1)

(9, 7)

(10, 6)

(11, 5)

(12, 11)

(13, 10)

(14, 9)

(15, 16)

(16, 15)

(17, 14)

(18, 13)

1,2,3,4,5,6

1,2,3,4,5,6

6

6

6

4

4

42

2

1,2,3,5

2
1,3,5

1,3,5

1,3,5

1,3,5

FIG. 2: A trie and tree encoding.

These two numbers can be used to characterize the ances-
tor/descendant relationships in T as follows.

- Let v and v′ be two nodes in T . Then, v′ is a descendant
of v iff pre(v′) > pre(v) and post(v′) < post(v).



For the proof of this property of any tree, see Exercise 2.3.2-
20 in [14].

For instance, by checking the label associated with v2
against the label for v9 in Fig. 2, we see that v2 is an ancestor
of v9 in terms of this property. Specifically, v2’s label is (3,
12) and v9’s label is (10, 6), and we have 3 < 10 and 12 >
6. We also see that since the pairs associated with v14 and v6
do not satisfy the property, v14 must not be an ancestor of v6
and vice versa.

In the second step, we will add all Si* (i = 1, ..., n) to
the trie T to construct a trie-like graph G, as illustrated in
Fig. 3. This trie-like graph is constructed for all the variable
sequences given in Table I, in which each span is associated
with a set of numbers used to indicate what variable sequences
the span belongs to. For example, the span <v0, v1, v2> (in
Fig. 3) is associated with three numbers: 1, 5, 6, indicating
that the span belongs to 3 conjunctions: D1, D5, and D6. In
Fig. 3, however, the labels for all tree edges are not shown
for a clear illustration.

In addition, each p*-graph itself is considered to be a
simple trie-like graph.

Concerning the paths in a trie-like graph, we have a lemma
similar to Lemma 2.

Lemma 3. Let G be a trie-like graph created over all the
variable sequences in D. Let p = v0

s1−→ v1 ... sk−→ vk be a
root-to-leaf path in G, where some edges can be spans. Let
D′ be the subset of conjunctions associated with vk. Then, R
= s1 ∩ ... ∩ sk ∩ D′ is satisfiable by the truth assignment
represented by p.

From Fig. 3, we can see that although the number of truth
assignments for D is exponential, they can be represented by a
graph with polynomial numbers of nodes and edges. In fact, in
a single p*-graph, the number of edges is bounded by O(m2).
Thus, a trie-like graph over n p*-graphs has at most O(nm2)
edges.

In a next step, we will search G bottom-up level by level
to seek all the possible largest subsets of conjunctions which
can be satisfied by a certain truth assignment.

First of all, we call each node in T with more than one child
a branching node. For instance, node v3 with two children v4
and v8 in G shown in Fig. 3 is a branching node. For the same
reason, v2 and v1 are another two branching nodes. Note that
v0 is not a branching node since it has only one child in T
(although it has more than one child in G.)

Around the branching node, we have two very important
concepts defined below.
Definition 3. (reachable subsets through spans) Let v be a
branching node. Let u be a node on the tree path (in T )
from root to v (not including v itself). A reachable subset
of u through spans are all those nodes with a same label c
in different subgraphs in G[v] (subgraph of G rooted at v)
and reachable from u through a span, denoted as RSv,us [c],
where s is a set containing all the labels associated with the
corresponding spans.

For RSv,u
s [c], node u is also called its anchor node while

any node in RSv,u
s [c] is called a reachable node of u.

For instance, for node v2 in Fig. 3, which is on the tree
path from root to v3 (a branching node), we have two RSs
with respect to v3:

- RSv3,v2
{2,5}[c5] = {v5, v8},

- RSv3,v2
{2,5}[c6] = {v6, v9}.

We have RSv3,v2
{2,5}[c5] due to two spans v2

5−→ v5 and v2
2−→

v8 going out of v2, respectively reaching v5 and v8 on two
different p*-graphs in G[v3] with l(v5) = l(v8) = ‘c5’. We have
RSv3,v2

{2,5}[c6] due to another two spans going out of v2: v2
5−→

v6 and v2
2−→ v9 with l(v6) = l(v9) = ‘c6’.

Hence, v2 is not only the anchor node of {v5, v8}, but also
the anchor node of {v6, v9}.

In general, we are interested only in those RSs with |RS| ≥
2 since any RS with |RS| = 1 only leads us to a leaf node
in T , and no larger subsets of conjunctions can be found. In
fact, going through a span with the corresponding |RS| = 1, we
cannot get any new answers. So, in the subsequent discussion,
by an RS, we mean an RS with |RS| ≥ 2.

The definition of this concept for a branching node v itself
is a little bit different from any other node on the tree path
(from root to v). Specifically, each of its RSs is defined to be
a subset of nodes reachable from a span or from a tree edge.
So, for v3 we have:

- RSv3,v3
{2,5}[c5] = {v5, v8},

- RSv3,v3
{2,5}[c6] = {v6, v9},

respectively due to span v3
5−→ v5 and tree edge v3 → v8

going out of v3 with l(v6) = l(v8) = ‘c5’; and two spans v3
5−→ v6 and v3

2−→ v9 going out of v3 with l(v6) = l(v8) = ‘c6’.
Here, we notice that the label for the tree edge v3 → v8 is 2
since this tree edge belongs to D2 (see Fig. 2).

Concerning RSs, we have the following lemma, which is
important for the construction of trie-like subgraphs.

Lemma 4. Let v be a branching node in G. Let u be
an ancestor of u′ on the tree path from root to v. If both
RSv,u

s [c] and RSv,u′

s [c] exist for a certain label c, then we
have RSv,u

s [c] ⊆ RSv,u′

s [c].

Proof. Let P* = p ∪ S* be a p*-graph merged into G. Assume
that in P* we have a span from a node u to some other node
w. Then, for any descedant u′ of u on the subpath from the
child of u to the grandparent of w, we must have a span from
u′ to w due to the transitivity of spans. Assume that l(w) =
c. We can immediately see that RSv,u

s [c] ⊆ RSv,u′

s [c].

If RSv,u
s [c] ⊂ RSv,u′

s [c], we say, RSv,u′

s [c] is larger than
RSv,u

s [c].

Based on the concept of reachable subsets through spans,
we are able to define another more important concept, upper
boundaries, given below.



#

$

D1

D4

v0

v6

v7

v1

v2

v3

v4

v15

v16

v17

c2

c3

c1

c4

c4

c6

$

D6

v11

v12

v13

c4

c5

$

v5

c5

c6

D3 D5

v9

v10
$

v8
c5

c6

D2

v14

c1

1,5,6
1

2

1,3

1

1,5

1,3

2

2

2

2

2

3,5

3

4

4

4

4

4

4

4

4

4
5

5

5

5

6

6

6

6

6

6

6

6

4

6

FIG. 3: A trie-like graph G.

Definition 4. (upper boundaries) Let v be a branching node.
Let v1, v2, ..., vk be all the nodes on the path from root to v.
An upper boundary (denoted as upBounds) with respect to v
is a largest subset of nodes {u1, u2, ..., uf} (f > 1) with the
following properties satisfied:

1) Each ug (1 ≤ g ≤ f ) appears in some RSv,vis [c] (1 ≤ i
≤ k), where c is a label and |RSv,vis [c]| > 1.

2) For any two nodes ug , ug′ (g ̸= g′), they are not related
by the ancestor/descendant relationship.

Fig. 4 gives an intuitive illustration of this concept.

upBound

FIG. 4: Illustration for upBounds.

As a concrete example, consider v5 and v8 in Fig. 3.
They make up an upBound with respect to v3 (a branching
node), based on which we will construct a trie-like graph over
two subgraphs, rooted at v5 and v8, respectively. This can be
done in a way similar to the construction of G over all the
initial p*-graphs (which then hints a recursive process to do

the task). Here, we remark that v4 is not included since it is
not invlved in any RS with respect to v3 with |RS| ≥ 2. In
fact, the truth assignment with v4 being set to true satisfies
only the conjunctions associated with leaf node v10. This has
already been determined when the initial trie is built up in the
first step.

Mainly, the following operations will be carried out when
encountering a branching node v.

• Calculate all RSs with respect v.
• Calculate the upBound in terms of RSs.
• Make a recursive call of the algorithm on a subgraph

which is constructed over all the p*-subgraphs each
rooted at a node on the corresponding upBound.

See the following example for illustration.

Example 1. When checking the branching node v3 in the
bottom-up search process, we will calculate all the reachable
subsets through spans with respect to v3 as described above:
RSv3,v2

{2,5}[c5] = {v5, v8}, RSv3,v2

{2,5}[c6] = {v6, v9}, RSv3,v3
{2,5}[c5]

= {v5, v8}, and RSv3,v3
{2,5}[c6] = {v6, v9}. In terms of these

reachable subsets through spans, we will get the corresponding
upBound {v5, v8}. Node v4 (above the upBound) will not be
involved in the recursive execution of the algorithm.

Concretely, when we make a recursive call of the algorithm,
applied to two subgraphs: G1 - rooted at v5, and G2 - rooted
at v8 (see Fig. 5(a)), we will first construct a trie-like graph
as shown in Fig. 5(b). It is in fact a single path, where v5−8

stands for the merging of v5 and v8, v6−9 for the merging of
v6 and v9, and v7−10 for the merging of v7 and v10.

In addition, for technical convenience, we will add the



$

(a)

v5

v6

c5

c6

(c)

v7

D5D3D1

$

v8

v9

c5

c6

v10

D2

1,3 2

G2G1

1,2,3

$

c5

c6

v2
c3

2,5

(b)

1,2,3

$

c5

c6

D5D2 D3D1 D2 D5

v5-8 v5-8

v6-9 v6-9

v7-10 v7-10

FIG. 5: Illustration for construction of trie-like subgraphs.

corresponding branching node (v3) to the trie as a virtual root,
and a new edge v3

2,5−−→ v5−8 as a virtual edge. See Fig. 5(c).
Here, the virtual root, as well as the virtual edge, is added to
keep the connection of the trie-like subgraph to the tree path
from the root to this branching node in T , which will greatly
facilitate the trace of truth assignments for the corresponding
satisfied conjunctions. Particularly, the label of a virtual edge
v → u is set to be the label for the largest RSv,w

s , where
w is an anchor node of u. If there are more than one largest
RSs, choose any one of them. For example, the label for the
virtual edge shown in Fig. 5(c) is set to be {2, 5}. This is the
label for RSv3,v2{2,5}[c5] (one of the two relevant RSs: RSv3,v2{2,5}[c5]

and RSv3,v3{2,5}[c5]. Both of them are of the same size.) In this
way, the trace of the truth assignment for a subset of satisfied
conjunctions can be very easily performed.

Now, searching the path from v7−10 to v5−8 in Fig.
5(c) bottom-up, going through the virtual node v3 to find
the corresponding anchor node v2, and then searching the
path from v2 to v0 in T (see Fig. 3), we will figure out a path:

v0 → v1 → v2
2,5−−→ v5−8 → v6−9 → v7−10,

representing a truth assignment {c1 = 0, c2 = 1, c3 = 1, c4 =
0, c5 = 1, c6 = 1}, satisfying {D2, D5}. Here, we notice that
the subset associated with the unique leaf node of the path is
{D2, D5}, instead of {D1, D2, D3, D5}. It is because the
label associated with the virtual edge v2 → v5−8 is {2, 5}
(which represent two spans: v2

5−→ v5, v2
2−→ v8 covering the

branching node v3), by which D1 and D3 are filtered out from
{D1, D2, D3, D5}.

We remember that when generating the trie T over the
main paths of the p*-graphs created for the variable sequences
shown in Table I, we have already found a (largest) subset of
conjunctions {D1, D3, D5}, which can be satisfied by a truth
assignment represented by the corresponding main path. This
is larger than {D2, D5}. Therefore, {D2, D5} should not be
kept around and this part of computation is in fact useless.
To avoid this kind of futile work, we can simply perform
a pre-checking: if the number of p*-subgraphs, over which

the recursive call of the algorithm will be invoked, is smaller
than the size of a satisfiable subset of conjunctions already
obtained, the recursive call of the algorithm should not be
conducted.

In terms of the above discussion, we come up with a
recursive algorithm shown below, in which a data structure
R is used to accommodate the result, represented as a set of
triplets of the form:

<α, β, γ>,
where α stands for a subset of conjunctions, β for a truth
assignment satisfying the conjunctions in α, and γ is the size
of α. Initially, R = ∅.

Algorithm 1: 2-MAXSAT(C)
Input : a logic formula C in CNF with each clause

in C containing at most two literals.
Output: a largest subset of clauses satisfying a certain

truth assignment.
1 transform C to another formula D in DNF;
2 let D = D1 ∨ ... ∨ Dn;
3 for i = 1 to n do
4 construct a p*-graph P ∗

i for Di;

5 construct a trie-like graph G over P ∗
1 , ..., P ∗

n ;
6 R := SEARCH(G);
7 return the result calculated in terms of R;

The input of 2-MAXSAT( ) is a formula C in CNF. First, we
transform it to another formula D in DNF (see line 1). Then,
for each Di in D, we will create its p*-graph P ∗

i (see lines
4). Next, we will contruct a trie-like graph G over all P ∗

i ’s
(see line 5). In the last step, we call SEARCH(G) to produce
the result (see line 6).

The input of SEARCH( ) is a trie-like subgraph G. First, we
will check whether G is a single p*-graph. If it is the case, we
must have found a largest subset of conjunctions associated
with the leaf node, satisfiable by a certain truth assignment
(see lines 1 - 4).



Algorithm 2: SEARCH(G)
Input : a trie-like subgraphs G.
Output: a largest subset of conjunctions satisfying a

certain truth assignment.
1 if G is a single p*-graph then
2 R′ := subset associated with the leaf node;
3 R := merge(R, R′);
4 return R;

5 for each leaf node v in G do
6 let R′ be the subset associated with v;
7 R := merge(R, R′);

8 let v1, v2, ..., vk be all branching nodes in postorder;
9 for i = 1 to k do

10 let P be the tree path from root to vi;
11 for each u on P do
12 calculate RSs of u with respect to v

13 create the corresponding upBound L;
14 construct a trie-like graph D over the subgraphs

each rooted at a node on L;
15 D′ := {v} ∪ D;
16 R′ := SEARCH(D′);
17 R := merge(R, R′);

18 return R;

Otherwise, we will search G bottom up to find all the
branching nodes in G. But before that, each subset of con-
junctions associated with a leaf node will be first merged into
R (see line 5 - 7).

For each branching node v encountered, we will check all
the nodes u on the tree path from root to v and compute
their RSs (see lines 8 - 12), based on which we then compute
the corresponding upBound with respect to v (see line 13).
According to the upBound L, a trie-like graph D will be
created over a set of subgraphs each rooted at a node on L
(see line 14). Then, v will be added to D as its root (see
line 15). Here, we notice that D′ = {v} ∪ D is a simplified
representation of an operation, by which we add not only
v, but also the corresponding virtual edges to D. Next, a
recursive call of the algorithm is made over D′ (see linee
16). Finally, the result of the recursive call of the algorithm
will be merged into the global answer (see line 17).

Here, the merge operation used in line 3, 7, 17 is defined
as below.

Let R = {r1, ..., rt} for some t ≥ 0 with each ri = <αi,
βi, γi>. We have γ1 = γ2 = ... = γt. Let R′ = {r′1, ..., r′s} for
some s ≥ 0 with each r′i = <α′

i, β
′
i, γ

′
i>. We have γ′

1 = γ′
2 =

... = γ′
s. By merge(R, R′), we will do the following checks.

• If γ1 < γ′
1, R := R′.

• If γ1 > γ′
1, R remains unchanged.

• If γ1 = γ′
1, R := R ∪ R′.

For simplicity, the heuristic discussed above is not incorpo-

rated into the algorithm. But it can be easily extended with
this operation included.

Besides, to find a truth assignment satisfying a subset of
conjunctions, we need to trace a path which may contain sev-
eral spans, each corresponding to a recursive call of SEARCH(
).

We will represent a recursive call by a pair <v, L>, where v
is a branching node in G, and L is the upBound with respect
to v, over which a recursive call of RESEARCH( ) is invoked.

Then, a chain of recursive calls can be described as below:
<v1, L1> → <v2, L2> → ... → <vk, Lk>,

where v1 is a branching node in G0 = G, vi (i = 2, ..., k)
is a branching node in Gi−1, the trie-like subgraph created by
executing <v1−1, Li−1>, and Li is the upBound with respect
to vi in Gi−1.

Denote by wk a leaf node in Gk. Assume that D′ is the
subset of conjunctions associated with wk. We will trace a
path consisting of the following subpaths and spans, satisfying
a largest subset of D′.

- pi: treepaths from a child ui of vi to wi in Gi (i = k, ...,
1), where wi is the anchor node of ui+1 for i = k - 1, ...,
0;

- ei: spans connecting wi−1 and ui (i = k, ..., 1);
- p0: a treepath from the root of G to w0.

See Fig. 6 for illustration.
In Fig. 6, we show a chain of three recursivel calls:

<v1, L1> → <v2, L2> → <v3, L3>.
Here, we assume that v1 is a branching node in G. By

executing <v1, L1>, we will create G1. Further, assume that
v2 is a branching node in G1. Then, by executing <v2, L2>, we
will generate G2. Next, assume that v3 is a branching node
in G2. We will create G3 by executing <v3, L3>. We also
assume that w3 is a leaf node in G3, associated with a subset
D′ of conjunctions.

Then, the path shown in Fig. 6 consists of three treepaths
from ui to wi for i = 1, 2, 3, and three spans from wi to ui+1

for i = 0, 1, 2, and a tree path from the root of G to w0.
This path represents a truth assignment satisfying s ∩ D′,

where s is the intersection of all the edge labels on p. (s can
be changed to the intersection of all the labels associated with
the virtual edges on p since the intersection of all the tree edge
labels is equal to or contains D′, as indicated by Lemma 3).

Example 2. When applying SEARCH( ) to the p*-graphs
shown in Fig. 3, we will encounter three branching nodes:
v3, v2, and v1.

• Intially, when creating T , each subset of conjunctions as-
sociated with a leaf node v is satisfiable by a certain truth
assignment represented by the corresponding main path
(from root to v). Especially, {D1, D2, D5} associated
with v10 (see Fig. 2) is a largest subset of conjunctions,
which can be satisfied by a certain truth assignment: c1
= 1, c2 = 1, c3 = 1, c4 = 1, c5 = 1, c6 = 1.

• Checking v3. As shown in Example 1, by this checking,
we will find a subset of conjunction {D2, D5} satisfied



G1

w3

G2

G3

v1

v3

u3

w2

u2

u1

w1

FIG. 6: Illustration for tracing truth assignments for satisfied conjunctions.

by a truth assignment {c1 = 0, c2 = 1, c3 = 1, c4 = 0,
c5 = 1, c6 = 1}, smaller than {D1, D2, D5}. Thus, this
result will not be kept around.

• Checking v2. When we encounter this branching node, we
will make a second recursive call of SEARCH( ) applied
to a trie-like subgraph constructed over two subgraphs in
G[v2] (respectively rooted at v3 and v11), as shown in
Fig. 7.

D1

v6

v7

v2

v4

c3

c4

$

D6

v11

v12

v13

c4

c5

$

v5

c5

c6

D3 D5

v9

v10

$

v8
c5

c6

D2

1

1,5

1,3

2

6

v3

c1

2

upBound with respect
to v2

FIG. 7: Two subgraphs in G[v2] and an upBound.

First, with respect to v2, we will calculate all the relevant
reachable subsets through spans for all the nodes on
the tree path from root to v2 in G. Altogether we have
five reachable subsets through spans. Among them,
associated with v1 (on the tree path from root to v2 in

Fig. 3), we have

- RSv2,v1
{3,6}[c4] = {v4, v11},

due to the following two spans (see Fig. 3):

- {v1
3−→ v4, v1

6−→ v11}.

Associated with v2 (the branching node itself) have we
the following four reachable subsets through spans:

- RSv2,v2
{3,5,6}[c4] = {v4, v11},

- RSv2,v2
{2,5,6}[c5] = {v5, v8, v12},

- RSv2,v2
{2,5}[c6] = {v6, v9},

- RSv2,v2
{2,6}[$] = {v10, v13},

respectively due to four groups of spans shown below
(see Fig. 3):

- {v2
3,5−−→ v4, v2

6−→ v11},
- {v2

5−→ v5, v2
2−→ v8, v2

6−→ v12},
- {v2

5−→ v6, v2
2−→ v9},

- {v2
2−→ v10, v2

6−→ v13}.

Then, in terms of these reachable subsets through spans,
we can recognize the corresponding upper boundary {v4, v8,
v11} (which is illustrated as a thick line in Fig. 7). Next, we



will determine over what subgraphs a trie-like graph should
be constructed, over which the algorithm will be recursively
executed.

In Fig. 8, we show the trie-like graph built over the three p*-
subgraphs (rooted respectively at v4, v8, v11 on the upBound
shown in Fig. 7), in which v4−11 stands for the merging of v4
and v11, and v5−12 for the merging of v5 and v12. Again, the
branching node v2 is involved as the virtual root of this trie-
like subgraph. The virtual edge v2

3,5,6−−−→ v4−11 is labeled with
{3, 5, 6} since it stands for a span (from v2 to v4) labeled
with {3, 5}, and a tree edge (from v2 to v11) labeled with
{6} in Fig. 3. The virtual edge v2

2−→ v8 is labeled with {2}
since it represents a span (from v2 to v8) labeled with {2}. In
addition, all the spans going out of v2 in the original graph
are kept around (see Fig. 3).

v6

v7

v4-11
-c4

$

D6

v13

$

v5-12

c5

c6

D3 D5

v9

v10
$

v8
c5

c6

D2

1,5

1,3

2

6

v2

c3

3,5,6 5,65 22 2

upBound with respect to

 

v2

upBound with respect to v5-12D1

1

FIG. 8: A trie-like graph.

By the corresponding recursive call of SEARCH( ), this
graph will be constructed and then searched bottom up,
by which we will encounter the first branching nodes:
v5−12. Then, a next recursive call of the algorithm will be
conducted, generating an upBound {v7, v13}, as shown in
Fig. 9(a). Similar to the above discussion, we will construct
the corresponding trie-like subgraph, which is just a single
merged node v7−13 as shown in Fig. 9(b). Adding the
corresponding virtual root v5−12, and virtual edge v5−12
1,3,6−−−→ v7−13 (representing a span v5−12

1,3−−→ v7 and a tree
edge v5−12

6−→ v13), we will get a path as shown in Fig. 9(c),
by which we will find a largest subset of conjunctions {D3,
D6}, satifiable by a certain truth assignment: c1 = 0, c2 = 1,
c3 = 1, c4 = 1, c5 = 1, c1 = 0. This truth assignment can be
figured by tracing the corresponding path:

v0 → v1 → v2
3,5,6−−−→ v4−11 → v5−12

1,3,6−−−→ v7−13.

Special attention should be paid to the leaf node of the path
shown in Fig. 9(c). It is associated with {D3, D6}, instead of
{D1, D3, D5, D6}. It is because the intersection of all the
labels associated with the virtual edges is {3, 5, 6} ∩ {1, 3,
6} = {3, 6} and D1, D5 should be removed.

Continuing the search of the graph shown in Fig. 8, we
will encounter its second branching node v2 , by which

D6

v13

c5

v7 $

D3 D5

$

1,3,6

upBound
v7-13 $

D6

v7-13 $

D3 D6

(a) (b) (c)

D1 D3 D5D1

FIG. 9: Illustration for construction of a trie-like subgraph.

another set of RSs will be created:

- RSv2,v1{3,6} = {v4−11}

(due to the span v1
3,6−−→ v4−11, which corresponds to two

spans in Fig. 3: v1
3−→ v4 and v1

6−→ v11),

- RSv2,v2{2,5,6}[c5] = {v5−12, v8}

(due to the span v2
5,6−−→ v5−12 and the tree edge v2

2−→ v8
in Fig. 8),

- RSv2v2{2,5}[c6] = {v6, v9}
(due to the spans v2

5−→ v6 and v2
2−→ v9 in Fig. 8).

Since |RSv2,v1
{3,6}| = 1, it will not be further considered in the

subsequent computation.
However, in terms of RSv2,v2

{2,5,6}[c5] and RSv2,v2{2,5}[c6], we will
construct an upBound {v5−12, v8} (see Fig. 8), and create a
trie-like graph as shown in Fig. 10(a). Add the virtual node
and the vitual edge as shown in Fig. 10(b), where the label
associated with the virtual edge is set to be the same as
for RSv2,v2

{2,5,6}[c5]. The only branching node in this graph is
v5−12−8. With respect to v5−12−8, v2 has two RSs in terms
of two spans respectively to two nodes (v6−9 and v7−10) in
this subgraph (see Fig. 10(c). Also see Fig. 8 to know how
these two spans are created):

- RSv5−12−8,v2

{2,5} [c6] = {v6−9}

(due to the span v2
2,5−−→ v6−9 in Fig. 10(c)),

- RSv5−12−8,v2

{2} [$] = {v7−10}
(due to the span v2

2−→ v7−10 in Fig. 10(c)).

Both of these RSs are of size 1. Therefore, they will simply
be ignored.

For v5−12−8 itself, we have the following RS:

- RSv5−12−8,v5−12−8

{1,2,3,6} [$] = {v7−10, v13}.

According to this RS, we will construct the corresponding
trie-like graph, as shown in Fig. 10(d), in which the virtual
node is v5−12−8 and the label of the virtual edge is {1, 2, 3,



c6

c5

v6-9

v5-12-8

2,5,6

D6

v7-10

$

c3

v2

$

1,2,3

(b) (c)

v13
c6

c5

v6-9

v5-12-8

2,5,6

D6

v7-10

$

c3

v2

$

v13

2,5

2

c6

c5

v6-9

v5-12-8

D6

v7-10

$

$

D3 D5

1,2,3

(a)

v13

D2

1,2,3

D1 D3 D5D2D1 D3 D5D2D1

v7-10-13

$

D3 D5D2D1

(d)

D6

c5

v5-12-8

1,2,3,6

FIG. 10: Illustration for recursive execution of algorithm.

6}. By tracing the corresponding path:

v0 → v1 → v2
2,5,6−−−→ v5−12−8

1,2,3,6−−−−→ v7−10−13.

we will get a truth assignment: c1 = 0, c2 = 1, c3 = 1, c4 =
0, c5 = 1, c6 = 0, satisfying a subset {D2, D6}. It is because
{2, 5, 6} ∩ {1, 2, 3, 6} = {2, 6} and D1, D3 D5 are filtered
out from the subset associated with the leaf node in Fig, 10(d).

After we have returned back reversely along the chain of the
recursive calls described above, we will continually explore G
and encounter the last branching node v1 in G (see Fig. 3),
which will be handled in a way similar to v3 and v2.

Concerning the correctness of Algorithm 2, we have the
following proposition.

Proposition 2. Let G be a trie-like graph established over a
logic formula in DNF. Applying SEARCH( ) to G, we will get
a maximum subset of conjunctions satisfying a certain truth
assignment.

Proof. To prove the proposition, we first show that any subset
of conjunctions found by the algorithm must be satisfied by a
same truth assignment. This can be observed by the definition
of RSs and the corresponding upBounds.

We then need to show that any subset of conjunctions
satisfiable by a certain truth assignment can be found by the
algorithm. For this purpose, consider a subset of conjunctions
D′ = {D1, ..., Dr} (r > 1) which can be satisfied by a
truth assignment represented by a path P . We will prove by
induction on the number ns of spans on P that our algorithm
is able to find P .

Basic step. When ns = 0, P must be a tree path in T and
the claim holds. When ns = 1, the unique span on P must
cover a branching node w of Case 1 in G. Let u s−→ v be such
a span. Denote by P ′ the tree path from root to u in T . Then,
by a recursive call of SEARCH( ) over the trie-like subgraph
constructed with respect to w we can find a sub-path P ′′; and
P must be equal to the concantenation of P ′, the span u

s−→

v, and P ′′.
Induction step. Assume that when ns = k, the algorithm can

find P .
Now, assume that P contains k + 1 spans s1, s2, ..., sk,

sk+1. They must corresponds to a chain of k + 1 nested
recursive calls of SEARCH( ). Denote by Gi the trie-like
subgraph created by the (i - 1)th recursive call, where G0

= G. Let u
s−→ v be the first span on P . Denote by P ′ the

sub-path from the root of T to u, and by P ′′ the sub-path
of P from v to the last node of P . Denote by Dj\P ′ the
conjunction obtained by removing variables on P ′ from Dj

(j = 1, ..., r). Let D′′ = { D1\P ′, ..., Dr\P ′}. Then, the
truth assignment represented by P ′′ satisfies D′′. According
to the induction hypothesis, P ′′ can be found by executing
SEARCH( ). Therefore, P can also be found by SEARCH( ).
To see this, observe the first recursive call of SEARCH( ) made
when we encounter the first branching node in G′, by which
we will find P ′′ satisfying D′′. Then, the concantenation of P ′

and P ′′ definitely satisfies D′. This completes the proof.

C. Further improvement

The algorithm discussed in the previous subsection can be
greatly improved in two ways. First, we can remove a lot
of useless recursive calls of SEARCH( ) by imposing some
extra controls. Secondly, any repeated recursive call can also
be effectively avoided by checking same trie-like subgraphs
repeatedly encountered.

- Reducing recursive calls
Consider Fig. 11(a). In this figure, we assume that w and

w′ are two branching nodes in G. Then, with respect to w and
w′, their ancestor u will have two identical RSs:

RSw,u
s [C] = RSw

′,u
s [C] = {v1, v2}.

Thus, during the execution of SEARCH( ), the same trie-
like subgraph will be created two times: one is for RSw,u

s [C]
and another is for RSw

′,u
s [C], but with the same result to be

produced.
However, if we create RSs only for those nodes appearing

on part of a tree path, i.e., the segment between the current



(b)

C

(a)

C

w

w'

u

v1

v2

C

C

w

w'

u

v1

v2

C

v3

FIG. 11: Illustration for redundancy.

branching node and the lowest ancestor branching node in
T , this kind of redudancy can be avoided with possible lose
of some answers. But the correctness of the algorithm is not
affected since one of the maximum satisfiable subsets of con-
junctions can always be found. See Fig. 11(b) for illustration.
For this figure, the RS of u with respect to w is different
from the RS with respect to w′. However, when checking w,
RSw,u

s [C] will not be computed since u is beyond the segment
between w and w′. Therefore, the corresponding result will
not be generated. However, RSw

′,u
s [C] must cover RSw,u

s [C],
implying a larger (or same-sized) subset of conjunctions which
can be satisfied by a certain truth assignment.

- Avoiding repeated recursive calls

Now we consider Fig. 11(b) once again. Denote by G1 the
trie-like graph made over the subtrees respectively rooted at v1
and v2, and by G2 the trie-like graph made over the subtrees
respectively rooted at v1, v2, and v3. It is possible that G1

and G2 contain some common branching nodes. Therefore,
repeated recursive calls on the same trie-like subgraphs can be
possibly conducted. To avoid this kind of redundancy, we can
examine, by each recursive call, whether the input subgraph
has been checked before. If it is the case, the corresponding
recursive call should be simply suppressed. This obviously
does not impact the correctness of the algorithm since a
recursive call on a same subgraph will find only the same
satisfiable subset of conjunctions (but with possible different
assignments of variables since the trie-like subgraph may be
reached through different spans). For this purpose, we will
maintain a hash array with each entry used to store the result
obtained by a recursive call on a certain trie-like subgraph.
Specifically, for each recursive call <v, L> (this notation was
first introduced before Example 2 to describe the chains of
recursive calls), we will store the result in the address hash(L).
Thus, to examine whether an input subgraph has been checked
before, we need only a constant time.

IV. TIME COMPLEXITY ANALYSIS

The total running time of the algorithm consists of three
parts.

The first part τ1 is the time for computing the frenquencies
of variable appearances in D. Since in this process each
variable in a Di is accessed only once, τ1 = O(nm).

The second part τ2 is the time for constructing a trie-like
graph G for D. This part of time can be further partitioned
into three portions.

• τ21: The time for sorting variable sequences for Di’s. It
is obviously bounded by O(nmlog2 m).

• τ22: The time for constructing p*-graphs for each Di (i
= 1, ..., n). Since for each variable sequence a transitive
closure over its spans should be first created and needs
O(m2) time, this part of cost is bounded by O(nm2).

• τ23: The time for merging all p*-graphs to form a trie-like
graph G. This part is also bounded by O(nm2).

The third part τ3 is the time for searching G to find a
maximum subset of conjunctions satisfied by a certain truth
assignment. It is a recursive procedure.

First, we notice that in all the generated trie-like subgraphs,
the number of all the branching nodes is bounded by O(nm)
since any new branching node created during the execution of
a recursive call must be the merge of more than one different
nodes. But each branching node may be involved in at most
O(m) recursive calls (see the analysis given below) and for
each recursive call at most O(nm2) time can be required to
create the corresponding trie-like subgraph. Thus, the worst-
case time complexity of the algorithm is bounded by O(n2m4).

However, we need to make clear that each branching node
can be involved at most in O(m) recursive calls. For this, we
have the following analysis.

Consider a trie-like graph G shown in Fig. 12(a), in which
w is a branching node. With respect to w, we will have the
following three RSs:



- RSw,u
s′ [C] = {v1, v2},

- RSw,u
s′′ [D] = {v3, v5, v6},

- RSw,u
s′′′ [E] = {v4, v7, v8, v9},

where s′, s′′ and s′′′ are three label sets for the three RSs,
respectively.

According to these RSs, we will construct a trie-like sub-
graph G′ as shown in Fig. 12(b) and a recursive call of
SEARCH( ) will be carried out. It is the first recursive call,
in which w is involved. During this recursive execution of
SEARCH( ), w will then be involved in a second recursive
call, but on a smaller trie-like subgraph G′′, whose height is
one level lower than G′ (see Fig. 12(c)). During the second
recursive call, w will be involved in a third recursive call. For
this time, the height of the corresponding trie-like subgraph is
further reduced as demonstrated in Fig. 12(d).

Together with the method discussed in the previous section
to avoid repeated recursive calls on of a same trie-like sub-
graph, the above analysis shows that any branching node can
be involved in at most m recursive calls of SEARCH( ). In
general, we have the following proposition.

Proposition 3. Let G be a trie-like graph and w be a
branching node of Cae 1 in the corresponding layered graph.
Then, w can be involved in at most m recursive calls of
SEARCH( ) (Algorithm 3) in the whole working process.

Proof. Let {v1, v2, ..., vk} (k ≥ 2) be a largest group of nodes
appearing on the upBound L with respect to w satisfying the
following three properties:

• Each vi (i = 1. ..., k) has no ancestor appearing on L.
• l(v1) = l(v2) = ... = l(vk).
• There is not any other node u with l(u) = l(v1), which is

a descendant of any node on L.
Then, in the trie-like subgraph G′ constructed for L, all the

nodes in this group will be merged into a single node. The
same claim applys to any other largest group of nodes on L
satisfying the above three properties. Thus, in a next recursive
call of SEARCH( ) involving w, the trie-like subgraph G′′ to
be constructed must be at least one level lower than G′ since
when constructing a trie-like subgraph any RS with |RS| = 1
will not be considered. Because the height of G is bounded by
m and any trie-like subgraph is constructed only once (using
the method discussed in the previous section to avoid multiple
recursive calls on a same trie-like subgraph), the proposition
holds.

Proposition 4. Let G be a trie-like graph over a formula
in DNF containing n conjunctions with m variables. The time
complexity of Algorithm SEARCH(G) is bounded by O(n2m4).

Proof. From Proposition 3, we can see that in the whole
working process at most O(nm) × m trie-like subgraphs can
be generated. Thus, at most O(nm) × m recursive calls can be

carried out since any repeated recursive call on a same trie-like
subgraph can be simply and effectively avoided. Therefore, the
time complexity of SEARCH(G) is bounded by O(nm) × m
× O(nm2) = O(n2m4).

V. CONCLUSIONS

In this paper, we have presented a new method to solve
the 2-MAXSAT problem. The worst-case time complexity of
the algorithm is bounded by O(n2m4), where n and m are
respectively the numbers of clauses and variables of a logic
formula C (over a set V of variables) in CNF with each
clause containing at most 2 literals. The main idea behind
this is to construct a different formula D (over a set U of
variables) in DNF, according to C, with the property that for
a given integer n* ≤ n C has at least n* clauses satisfied
by a truth assignment for V if and only if D has least n*
conjunctions satisfied by a truth assignment for U . To find
a truth assignment that maximizes the number of satisfied
conjunctions in D, a graph structure, called p*-graph, is
introduced to represent each conjunction in D. In this way,
all the conjunctions in D can be represented as a trie-like
graph G. Searching G bottom up in a recursive way, we can
find the answer efficiently.

REFERENCES

[1] J. Argelich, et. al., MinSAT versus MaxSAT for Optimization Problems,
International Conference on Principles and Practice of Constraint Pro-
gramming, 2013, pp. 133-142.

[2] Y. Chen, The 2-MAXSAT Problem Can Be Solved in Polynomial Time, in
Proc. CSCI2022, IEEE, Dec. 14-16, 2022, Las Vegas, USA, pp. 473-480.

[3] R.H. Connelly and F.L. Morris, A generalization of the trie data structure.
Mathematical Structures in Computer Science. 5 (3). Syracuse University:
381–418. doi:10.1017/S0960129500000803. S2CID 18747244. (1993).

[4] S. A. Cook, The complexity of theorem-proving procedures, in: Proc. of
the 3rd Annual ACM Symposium on the Theory of Computing, 1971,
pp. 151-158.

[5] Y. Djenouri, Z. Habbas, D. Djenouri, Data Mining-Based Decomposition
for Solving the MAXSAT Problem: Toward a New Approach, IEEE
Intelligent Systems, Vol. No. 4, 2017, pp. 48-58.

[6] C. Dumitrescu, An algorithm for MAX2SAT, International Journal of
Scientific and Research Publications, Volume 6, Issue 12, December 2016.

[7] Y. Even, A. Itai, and A. Shamir, On the complexity of timetable and
multicommodity flow problems, SIAM J. Comput., 5 (1976), pp. 691-703.

[8] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-
complete graph problems, Theoret. Comput. Sci., (1976), pp. 237-267.

[9] R. Impagliazzo and R. Paturi, On the complexity of k-sat. J. Comput.,
Syst. Sci., 62(2):367–375, 2001.

[10] M.S. Johnson, Approximation Algorithm for Combinatorial Problems,
J. Computer System Sci., 9(1974), pp. 256-278.

[11] E. Kemppainen, Imcomplete Maxsat Solving by Linear Programming
Relaxation and Rounding, Master thesis, University of Helsinki, 2020.

[12] M. Krentel, The Complexity of Optimization Problems, J. Computer
and System Sci., 36(1988), pp. 490-509.

[13] R. Kohli, R. Krishnamurti, and P. Mirchandani, The Minimum Satisfia-
bility Problem, SIAM J. Discrete Math., Vol. 7, No. 2, June 1994, pp.
275-283.

[14] D.E. Knuth, The Art of Computer Programming, Vol.1, Addison-Wesley,
Reading, 1969.

[15] D.E. Knuth, The Art of Computer Programming, Vol.3, Addison-Wesley,
Reading, 1975.

[16] A. Kügel, Natural Max-SAT Encoding of Min-SAT, in: Proc. of the
Learning and Intelligence Optimization Conf., LION 6, Paris, France,
2012.



(b)

C

(a)

C

w

u

v1 v2
D

v3

D D
v5 v6

E

v7

E E
v8 v9

E

v4

C
v1-2

D
v3

D
v5-6

E

v7

E
v8-9

E

v4

w

D
v5-6-3

E
v8-9-7

E

v4

w

E

v8-9-7-4

w

(d)(c)

G: G':

G'': G''':

FIG. 12: Illustration for recursive construction of trie-like subgraphs.

[17] C.M. Li, Z. Zhu, F. Manya and L. Simon, Exact MINSAT Solving, in:
Proc. of 13th Intl. Conf. Theory and Application of Satisfiability Testing,
Edinburgh, UK, 2010, PP. 363-368.

[18] C.M. Li, Z. Zhu, F. Manya and L. Simon, Optimizing with minimum
satisfiability, Artificial Intelligence, 190 (2012) 32-44.

[19] A. Richard, A graph-theoretic definition of a sociometric clique, J.
Mathematical Sociology, 3(1), 1974, pp. 113-126.

[20] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[21] Y. Shang, Resilient consensus in multi-agent systems with state con-

straints, Automatica, Vol. 122, Dec., 2001, 109288.
[22] V. Vazirani, Approximaton Algorithms, Springer Verlag, 2001.
[23] M. Xiao, An Exact MaxSAT Algorithm: Further Observations and

Further Improvements, Proc. of the Thirty-First International Joint
Conference on Artificial Intelligence (IJCAI-22).

[24] H. Zhang, H. Shen, and F. Manyà, Exact Algorithms for MAX-SAT,
Electronic Notes in Theoretical Computer Science 86(1):190-203, May
2003.


