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ABSTRACT

The Drug—Target Interaction (DTI) prediction is a crucial task in drug discovery and drug
repositioning. It is challenging due to the limited number of known drug—target pairs. Predicting
missing drug-target relationships can help speed up the process of identifying unknown
interactions between chemical drugs and target proteins in pharmaceutical research. In this paper,
we propose a new framework named BG-0-k-WLNM for drug-target interaction prediction that
learns latent features from the drug-target interaction local network. We show that our approach is

able to learn sophisticated drug-target topological features and outperforms other similarity-based
methods in terms of AUROC.
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I. INTRODUCTION

The computational prediction of drug-target interactions (DTIs) significantly enhances drug
discovery, reducing the high costs and long timelines associated with traditional methods. In 2024,
the U.S. Food and Drug Administration (FDA) approved 50 new drugs [1]. As the clinical trials
are expensive and the experimental approaches for potential drug-target interactions remain
challenging, computational prediction methods are needed to address this issue. Computational
prediction of DTIs provides a scalable alternative, enabling the early filtering of candidate
interactions to prioritize for lab experiments, thus significantly reducing both financial and
temporal costs [2]. A rich spectrum of computational strategies has been explored. Ligand-based
methods [4] infer interactions from molecular similarity, whereas structure-based docking
techniques [5] [6] estimate binding affinity using three-dimensional protein-ligand configurations
[3]. Meanwhile, machine learning and deep learning models [7], [8] have gained prominence,
reframing DTI prediction as a link prediction or classification task. These approaches leverage
network topology, molecular representations, and sequence-based features to learn complex
interaction patterns from annotated data [9]. Despite these advances, many existing methods are
limited by reliance on handcrafted features, shallow heuristics, or abundant labeled data.
Similarity-based and kernel methods capture only local or first-order interactions, while deep
learning models may struggle to generalize when training data are scarce or incomplete [9], [10],
[11]. To address these limitations, we introduce BG-J-k-WLNM, a novel framework grounded in
bipartite graph modeling and local 6—k-dimensional Weisfeiler—Lehman neural machinery for DTI
prediction. Our method builds a semi-bipartite graph combining known drug—target interactions
with drug—drug and protein—protein similarity links. We generate positive samples from known



interactions and infer likely negative samples from unlabeled pairs. From each candidate drug—
target pair, we pool k-tuples and apply 6-k Weisfeiler—Lehman labeling to consistently order nodes,
a crucial step for preserving structural motifs across subgraphs. These ordered subgraphs are then
embedded and processed by deep neural networks to learn rich, nonlinear topological features.
Finally, prediction performance is evaluated via A UROC against both similarity-based heuristics
and graph-based baselines.

II. METHODS

A. Similarity indices
Similarity indices are heuristics used for link prediction, as shown in the Table. 1. They can be
categorized into: first-order, second-order, and higher-order heuristic methods, based on the
most distant node necessary for computing the heuristic [12]. Table. 2, shows the WL-based
methods for link prediction. The similarity indices used in this section, for the purpose of
comparison to our approach, are listed as follows:

l.

Common Neighbours (CN): This measure evaluates the likelihood of a connection
between two nodes x and y by counting how many direct neighbors they share.
Formally, it is defined as S5 =I""(x) N I'"(y), where I''(x) represents the set of nodes
within i-hop from x. A larger overlap in their 1-hop neighborhoods indicates a greater
chance of a link between x and y.

Adamic-Adar (44): This index estimates the similarity between two nodes x and y by
considering their shared neighbors, while giving less weight to neighbors that are very
common in the network. Specifically, each shared neighbor contributes inversely to the
logarithm of its degree, which reduces the influence of highly connected nodes [13].

Mathematically, the score is expressed as

1
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Jaccard: The Jaccard measure evaluates the likelihood that two nodes x and y share a
common feature by comparing the overlap of their neighborhoods relative to the union
of those neighborhoods [14]. In essence, it can be viewed as a normalized variant of the
Common Neighbors (CN) index, since it adjusts for the overall size of each node’s
neighbor set and accounts for their relative influence in the network. The formula is
given as
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Resource Allocation (RA): The RA index measures the similarity between two nodes x
and y by simulating the distribution of resources through their shared neighbors. In this
model, each common neighbor z of x and y receives one unit of resource from x and
then distributes it evenly among all of its neighbors[15]. The total amount of resource
that reaches y reflects the strength of the similarity between the two nodes. Formally,
the score is defined as
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5. Preferential Attachment (P4): This metric is grounded in the principle that nodes with
higher connectivity are more likely to form new links. In other words, the probability
of a link emerging between two nodes x and y depends directly on their degrees,
regardless of whether they share neighbors. Thus, nodes with many connections tend
to attract even more [16]. The PA score is computed as

SPA (x’y) = |rx| ' |Fy|

The CN, Jaccard, and P4 indices are categorized as first-order heuristics [15] because they only

rely on the immediate neighbors of the two nodes under consideration. However, in drug—target
interaction (DTI) networks, which are inherently bipartite, the neighbors of drug nodes are
exclusively proteins, and the neighbors of protein nodes are only drugs. As a result, drugs and
targets do not share common neighbors, making the values of CN and Jaccard equal to zero.
To address this, we apply modified versions of CN and Jaccard, defined as:
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These modifications turn CN and the Jaccard index into second-order heuristics. Unlike these,
PA only depends on the degree of the nodes x and y and, therefore, can be applied to a bipartite
graph.

6. Katz: The Katz measurement evaluates the similarity between two nodes by counting
all possible paths that connect them. To avoid overemphasizing long paths, each path
of length 1 is weighted by a damping factor B' , where f is a constant attenuation
parameter (0<p<I/ A,,,,). This ensures that shorter paths contribute more to the
similarity score, while longer paths are progressively down-weighted. Because it
considers paths of arbitrary length across the entire graph, Katz is classified as a high-
order heuristic. The formulation is:
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7. Random Walk (RW): This similarity index estimates the likelihood of a connection
between two nodes by simulating a stochastic process that moves through the network.
Starting from a given node, a walker randomly transitions to one of its neighbors at
each step, according to predefined probabilities. The probability that a walker starting
from node x eventually reaches node y serves as the similarity score between the two
nodes. Unlike local indices such as CN or Jaccard, RW exploits path information of
varying lengths, thereby capturing both local and global structural patterns within the
network [17].
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8. Weisfeiler—Lehman Neural Machine (WLNM): This is a framework for link prediction

that combines local subgraph extraction, Weisfeiler—Lehman (WL)-based graph
labeling, and neural networks. The goal is to automatically learn structural patterns that
indicate whether a link should exist, instead of relying on fixed heuristics. For each
candidate link, it extracts a fixed-size enclosing subgraph that captures its local
structure. The subgraph is then encoded into an adjacency matrix using a custom graph
labeling method called Classic-WL, which orders vertices based on their distance to
the link and their structural roles. The resulting matrices are fed into a neural network
to learn nonlinear patterns indicative of link existence [18].

. Bipartite-Graph-Weisfeiler—Lehman Neural Machine (BG-WLNM): This framework
predicts drug-target interactions using deep learning. It contains enclosing subgraphs
that are then encoded into adjacency matrices. A graph labeling algorithm, Pallete-WL,
is used to impose a consistent node ordering based on geometric proximity and
structural role within the graph [19].
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Table. 1 Popular Heuristic for link prediction
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Table. 2 Deep learning-based methods for link prediction

1. PREDICTION METHODOLOGY

A. DTI problem formulation

To capture the topological structure of drug-target relationships, we represent the
interaction network as a semi-bipartite graph defined as:
G=<D,TEFH>

Where D and T denote the sets of drug and target (protein) nodes, respectively. The set £
c D x T contains observed drug-target interactions, while ¥ € D xDand H ¢ T x T
represent similarities among drugs and targets, respectively. This structure facilitates the
integration of both inter-class interactions and intra-class similarities into a unified
framework. The parameter k defines the size of the node tuples used to explore the graph
structure. We predefine & = 2, meaning the algorithm operates over 2-tuples of nodes. This
choice is both intuitive and optimal for DTI prediction, as each 2-tuple directly corresponds
to a candidate drug-target pair, enabling the model to align naturally with the binary link
prediction task. Furthermore, the inclusion of drug-drug and target-target similarities
ensures that first-order neighborhoods provide sufficient biological context for each pair,
making 2-tuples expressive enough to capture relevant structural and relational patterns.
This configuration strikes a balance between model expressiveness and computational
feasibility, especially given the size and sparsity typical of real-world DTI graphs. While
higher-order settings (with & > 2) theoretically offer access to more complex interactions,
they introduce significant computational overhead with complexity scaling. Moreover, in
sparse interaction graphs, higher-order tuples are more prone to overfitting and may encode
redundant or noisy relationships. As a result, in this work, we utilize 2-tuples as the core
structural unit for neighborhood-based refinement algorithms. Formally, a 2-tuple is
defined as an ordered pair of nodes from the combined set of drugs and targets:

(vy, (1) E(D U T)?

This definition yields four possible categories of 2-tuples: (i) drug—drug (d;, d;), (ii) target—
target (¢;,t;), (iti) drug—target (d;, t;), and (iv) target-drug (¢;, d;). While drug—target tuples
constitute the primary candidates for interaction prediction, all 2-tuple types are preserved
to support the learning of high-order patterns through the incorporation of topological and
similarity-based context. Each 2-tuple is treated as a potential link in the graph and serves
as a unit of analysis for downstream refinement. Even if a specific tuple does not



correspond to aknown edge in E, F, or H, it may encode meaningful structural information
based on its neighborhood and is therefore retained in the learning process. This design
enables the algorithm to leverage both direct associations and the broader graph topology
in distinguishing interacting from non-interacting pairs.

. Data formatting:

A key challenge in training models on drug—target interaction (DTI) networks is the
scarcity of known interactions (positive samples). For most drug—target pairs, the
interaction status remains unknown, corresponding to missing edges in the network.
Therefore, most approaches often address this by selecting negative samples randomly
[22], [22], [23]from the unobserved pairs, but such random sampling can introduce noise
and distort the classifier’s decision boundary. A study by Liu et. al. [24] introduces a
strategy to identify reliable negative samples to overcome this challenge. The underlying
assumption is that a drug with little or no similarity to any of the known binders of a target
is unlikely to interact with that target, and the same holds in the reverse case. To construct
this set, we first generate a pool of candidate drug—target pairs, excluding all known
positives. Each candidate is represented as a triplet (d;, t;, S;;) where S;; denotes the
similarity-based score between the drug d; and target ¢;. This score is calculated in two
parts:

which aggregates the similarity of the target t; With all targets already interacting with the
drug d;; and

TD _ D
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which aggregates the similarity of the drug d; with all drugs known to interact with the
target ¢;. The final similarity measure is then defined as

Sy = e=Gi +Si)
Candidate pairs are ranked in descending order of this score, and those with the highest
values are selected as reliable negative samples. These negatives, combined with randomly
sampled positives from known interactions, form the training set for the neural network
classifier.

. Dataset

For this study, we employed a publicly available benchmark dataset encompassing four
major categories of protein targets: nuclear receptors (NR), G protein-coupled receptors
(GPCR), ion channels (IC), and enzymes (E) [25]. The dataset statistics, including the
number of drugs, number of targets, observed interactions, maximum possible interactions,
and calculated sparsity, are summarized in the accompanying table. Sparsity is defined as:

Number of known interactions

Max possible intreaction



A sparsity value approaching 1 (or 100%) indicates that only a small fraction of possible
interactions is known, which increases the difficulty of prediction due to limited training
information. Conversely, smaller sparsity values imply denser interaction networks,
providing richer structural information for learning.
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Figure. 1 Model workflow

D. Workflow

The local 6-k-dimensional Weisfeiler—Leman algorithm [26], abbreviated 6-k-LWL, is a
refinement [27], [28] procedure that generalizes the classical Weisfeiler—Leman (WL)
method for graph isomorphism and graph learning, but modifies it in two important ways:
it works with k-tuples of vertices instead of single vertices, and it restricts the neighborhood
aggregation process to local neighborhoods only. The model begins by constructing a semi-
bipartite graph combining drug-target interactions and intra-type similarities. For each
drug-target pair, all possible k-tuples of fixed size that the drug d; or target ¢t; is included
in apool. Local 6-k-WL is applied to the k-tuples, each of which is labeled through iterative
neighborhood-aware refinement. Unlike standard WL, local-0-k-WL constrains updates to
the k-tuple’s local region, improving efficiency and preserving structural specificity. The
refinement process used in Palette-WL involves repeated hashing and re-labeling steps to
preserve structural consistency. For subgraphs with high-degree nodes, this process
becomes computationally intensive, particularly when applied at scale across many
subgraphs. The traditional WL suffers from high computational cost due to dense, global
aggregation. In contrast, local-0-k-WL restricts aggregation to the local neighborhood of
each node in the k-tuple. Once the graph labeling is done, the k-tuple chosen is made into
an adjacency matrix. Then, as the adjacency matrix is symmetric, the upper triangular
matrix is taken and it is fed vertically to a fully connected neural network. As shown in Fig.
1, the proposed link prediction algorithm consists of four steps:

1. Pool k-Tuples: To capture the complete local structural context surrounding each
candidate drug—target pair, we generate all possible ordered 2-tuples of nodes that
include either the candidate drug d; or the candidate target ¢;. In the bipartite/semi-



bipartite DTI network, this naturally yields three categories of tuples: (1) Drug—Target
tuples (d, 7), which represent potential or known interactions. (2) Drug—Drug tuples (d,
d), derived from drug—drug similarity or co-neighborhood relations. (3) Target—Target
tuples (7, 7), derived from target similarity or shared neighborhoods. All three tuple
types are pooled because the local 5-2-WL refinement algorithm recolors a tuple based
on the multiset of colors of its local neighbors, which are obtained by replacing one
component of the tuple with an adjacent vertex in the graph. If we restrict pooling only
to drug—target pairs, much of this neighborhood structure would be truncated. By
including (d, d) and (7, 1) tuples alongside (d, 7), the refinement step propagates
similarity information within drug and target spaces, enabling the algorithm to
distinguish subtler structural motifs and learn higher-order relationships. The total
number of possible 2-tuples in the system is given by the binomial coefficient

(71 x 21,

Input: Semi-bipartite graph G = (D, T, E, I, H), Tuple size K, (d;,t;)
Output: Set of tuples P(d;,t;)

P(diati)(_{(di’ti)}

Np(d;)—{d,,€DI(d;.,d,,) € F or (d;,t,) € E for some t, }

N, (t;)—{t,€TI(t;,t,) € Hor (t;,d,) € E for some d,, }

For every d,, EN(d;): add (d,,, 4) to P(d;,t;)

For every t,EN(t;): add (d;,t,) to P(d;,t;)

For every d,, EN(d;): add (d;,d,,,) to P(d;.t;)

For every t,€EN(t;): add (t;,t,,) to P(d;,t;)

N N W

Table 3. Pooling 2-Tuples Around a Candidate Pair (di, tj)

. Pattern Encoding: Once k-tuples are generated around (d;, t;), we apply local-6-k-WL
color refinement to assign labels. The refinement algorithm is employed to impose an
ordering on pooled k-tuples by iteratively updating their labels based on structural
context. For a k-tuple V = (V,,...,V,), initially, each k-tuple is assigned a color C°(v)
reflecting its isomorphism type, ensuring that tuples with similar structural roles
receive the same label. The algorithm then proceeds iteratively: in each round, the color
of a tuple is updated by collecting the colors of its so-called j-neighbors. A j-neighbor
of a tuple V' = (V,...,V), is obtained by replacing the j-th component V; with every
possible vertex w of the graph, producing a new tuple @;(v, w). When constructing a /-
neighbor ¢;(v, w), one checks whether the new vertex w is adjacent to the original
vertex V; in the underlying graph. If it is, the new tuple is called a local j-neighbor;
otherwise, it is a global j-neighbor. The local é-k-WL discards the global neighbors
entirely and restricts attention only to local neighborhoods. The refinement step
constructs, for each position j, the multiset of colors of tuples ¢;(v, w) where w ranges
over the adjacency set N(V;) of the vertex V;. These multisets, one for each component,
are combined with the old color of the tuple to form its new color. The neighborhood
aggregation at iteration / computes:
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where C! is the current coloring function after / rounds of refinement. For each tuple u,
C'(u) is the label or “color” assigned at round i. N(V;) is the set of neighbors of the

vertex V; in the graph. This restriction to true neighbors is what makes it local. So M 5(v)
encodes the local structural context of tuple v at iteration 7, by recording how its color
relates to the colors of all its local neighbor tuples. At each iteration, d-k-LWL recolors
every k-tuple by combining its current color with the “fingerprint” of its neighborhood,
where the neighborhood is defined as all A-tuples you get by swapping out one vertex
in the tuple with an actual graph neighbor. The aggregation formula gathers this
fingerprint. The refinement update formula specifies the new color of v at round 7 + 1.

CHYW)=(C W), M ()

In practice, this pair is turned into a unique integer via a deterministic scheme (e.g.,
lexicographic serialization of the k multisets followed by hashing or stable renaming).
Two tuples u and v therefore get the same new color at round 7 + 1 if they had the same
color at round i and their per-position neighborhood multisets match exactly.

The process is iterated in successive rounds until convergence is reached, producing a
stable partition of the 4-tuples. The effect is that each tuple’s identity becomes tied to
the structure of'its immediate neighborhood, with information propagated outward over
multiple refinement rounds. The final labels serve as a canonical representation of the
tuples, making them comparable across tuples. Such encoding captures higher-order
structural features essential for link prediction tasks. To ground this in a concrete &k =2
setting, (e.g., a drug-target bipartite graph): a tuple V' = (d, ¢) initially receives a color.
At round 7, two multisets are formed. The first collects the colors of ¢, (vw) = (w ,f)
for all drugs w that interact with ¢ (neighbors of t); the second collects the colors of
@,(v, w') = (d, w') for all targets w'that interact with d (neighbors of d).These two
multisets, concatenated in order, are the fingerprint M2(d, 7). These fingerprints are
paired with the current color C*(d, 7) and compressed to the next color C**1(d, #). Over
successive rounds, tuples sitting in locally different motifs (e.g., high-degree drug with
low-degree target versus the reverse; different second-shell neighborhoods when it is
iterated) quickly diverge to different colors, while tuples in isomorphic local
neighborhoods converge to the same color class. Because only true adjacencies are
explored when building the fingerprint, the computation respects graph sparsity and
empirically overfits less than global &-WL (colors grow more slowly).

. Aggregate Tuple Features: After labeling all i-tuples, we transform these labels into a
numerical feature representation suitable for input to a neural network. Each Ai-tuple is
first assigned a label through the refinement process, which encodes its structural role
in the graph. To make these categorical labels compatible with a machine learning
model, we map them to a numeric form using integer encoding: every unique color is



assigned a distinct integer index, ensuring a one-to-one correspondence between
structural labels and numeric identifiers. These integer-encoded color IDs are then
passed to an embedding layer within the neural network. The embedding layer maps
each color ID to a dense, fixed-size vector, which in our implementation is set to 16
dimensions. This dimensionality does not represent explicit features; rather, it defines
the size of the continuous vector space in which the model will learn to represent
structural patterns. Initially, these embedding vectors are initialized, and their values
are optimized during training through backpropagation. Consequently, the embedding
process enables the network to learn latent structural characteristics of A-tuples. By
replacing sparse categorical labels with dense, trainable vectors, this approach produces
compact, information-rich representations that are well-suited for fully connected
neural networks. It avoids the limitations and the redundancy of adjacency-based
encoding for small tuples, while remaining computationally efficient and expressive
enough to model higher-order structural relationships.

4. Learning phase by neural network: A fterencoding each tuple into a fixed-length feature
vector derived from its labeled A-tuples, these vectors are provided as input to a fully
connected neural network. During training, the network learns to capture nonlinear
topological patterns associated with interacting and non-interacting drug—target pairs.
Once trained, the model can be applied to predict interactions for unseen drug—target
pairs. The neural network outputs a probability estimate, predicting the interaction
between testing drug-target pair.

IV. EXPERIMENTAL RESULTS

A. Evaluation Metrics

A 10-fold cross-validation protocol was employed to evaluate the predictive performance of
the proposed framework. The dataset was partitioned into ten mutually exclusive subsets, with
nine subsets used for model training and the remaining subset reserved for testing in each fold.
A neural network architecture was used with three fully-connected layers with 32, 32, and 16
neurons, respectively, each employing the Rectified Linear Unit (ReLU) activation function.
The output layer consisted of a Softmax classifier, which produced the predicted probability
of interaction for each candidate pair. Model performance was quantified using the Area Under
the Receiver Operating Characteristic Curve (4UROC), which evaluates the trade-off between
the true positive rate (7PR) and the false positive rate (FPR):

TPR = —2
TP+FN

FPR = £
FP+TN

where TP, T, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively. AUROC was selected due to its robustness to class imbalance and its
widespread adoption as a standard metric in drug—target interaction prediction.
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B. Dataset

For this study, we employed a publicly available benchmark dataset encompassing four major
categories of protein targets: nuclear receptors (NR), G protein-coupled receptors (GPCR), ion
channels (/C), and enzymes (F) [25]. The dataset statistics, including the number of drugs, number
of targets, observed interactions, maximum possible interactions, and calculated sparsity, are
summarized in the accompanying table. Sparsity is defined as:

. Number of known interactions
Sparsity =1 — ( f )

Max possible intreaction

A sparsity value approaching 1 (or 100%) indicates that only a small fraction of possible
interactions is known, which increases the difficulty of prediction due to limited training
information. Conversely, smaller sparsity values imply denser interaction networks, providing
richer structural information for learning.

. . Known Max possible .
Statistics Drugs | Targets Interactions in ter:f)c tions Sparsity
Nuclear receptor (NR) | 54 26 90 1,404 93.5%
GPCR 223 95 635 21,185 97%
Ion channel (IC) 210 204 1476 4,284 96.5%
Enzyme 445 664 2926 295,480 99%

Table 4: Dataset Specification

C. Results
We comprehensively compared our approach with heuristic similarity-based methods[29] for
drug-target interaction predictions reported in the literature, namely the performance of our
method (BG-J-k-WLNM) compared with CN, Jaccard Index, Katz Index, Adamic-Adar (44),
Random Walk (RA), and PA in terms of AUROC on NR, GPCR, IC, and E datasets. In addition,
we also compared our model with deep-learning based methods namely Weisfeiler-Lehman
neural machine (WLNM) and Bipartite-graph-Weisfeiler-Lehman neural machine (BG-
WLN]K).

Enzyme GPCR 1C
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Figure. 2: Comparing the A UROC performance metric of our method (BG-J-K-WLNM) with others for four datasets.

All methods exhibited relatively lower performance on the NR dataset, primarily due to
insufficient positive training samples (Fig. 2). In this dataset, CN achieved nearly identical
results across all cases, as it relies solely on the common-neighbors metric. In contrast, higher-
order heuristics, such as Katz and RW, performed better by leveraging longer paths. For the
Enzyme dataset, the graphs were highly sparse, resulting in minimal neighbor overlap. Figure
3 presents the results of'a 10-fold cross-validation comparison between our proposed BG-J-k-
WLNM and two WL-based baselines (WLNM and BGWLNM) across four benchmark datasets
(NR, Enzyme, GPCR, and IC). The evaluation was performed under three sampling conditions:
balanced (o = 50%), moderately imbalanced (o = 10%), and extremely imbalanced (a =
0.11%). Under balanced conditions, BG-3-k-WLNM consistently outperformed the baseline
methods, achieving AUROC improvements of 18.5% in the NR dataset, 4.6% in the Enzyme
dataset, 6.3% in the GPCR dataset, and 4.6% in the IC dataset. These results demonstrate that
our model effectively captures discriminative structural features when at least one of the drug
or target nodes has known interactions. In contrast, performance declined when both the drug
d; and target t; were novel. This limitation could potentially be mitigated by incorporating
auxiliary information, such as drug—drug and protein—protein similarity networks, to enrich the
representation of novel pairs. The robustness of BG-0-k-WLNM is further highlighted under
imbalanced scenarios, which better reflect the sparsity of real-world DTI networks. When
negative pairs were sampled at ten times the number of positives (a = 10%), AUROC values
decreased for all methods; however, our model consistently maintained superior performance
over the baselines. Even in the most challenging case, where all unknown interactions were
considered as negatives (o = 0.11%), BG-0-k-WLNM continued to outperform other WL-based
approaches. Overall, these results confirm that BG-6-k-WLNM successfully learns higher-order
structural patterns beyond immediate neighbors by systematically encoding local tuple
structures. Its adaptive graph labeling ensures that nodes with similar topological roles receive
consistent representations, thereby enhancing discriminative power and achieving robust
predictive performance across varying levels of class imbalance.
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Figure 3. 10-fold cross-validation performance evaluation of our approach compared with the WL-based method in terms of 4UROC.
A: AUROC scores in which all methods aretrained and tested on balanced datasets, B: AUROC scores in which thenumber ofnegative samples
was 10 times more than the number of positive samples (o =10%),C: AUROC scores in which all unknown drug-target interacting pairs are

considered (o = 0.11%). All results were summarized over 10 trials and expressed as mean+SD.

To evaluate the impact of negative sampling on model performance, we conducted experiments
using the Ion Channel (/C) dataset. Among the four benchmark datasets, /C offers the most
balanced trade-off between size and complexity: it contains a sufficiently large number of
known interactions (1,476) to ensure robust statistical evaluation, while remaining
computationally manageable compared to the much larger Enzyme dataset. This makes /C
particularly suitable for assessing the effect of sampling strategies. We compared two
approaches: random sampling of unknown drug—target pairs and the reliable negative sampling
technique described in Subsection “Data formatting.” The 4UROC results are presented in
Figure 4. As expected, training with reliable negatives consistently outperformed random
sampling, and the advantage became more pronounced under imbalanced conditions (e.g.,
when the positive-to-negative ratio a = 10%). This highlights the necessity of carefully
selecting negative samples to improve model robustness in sparse drug—target interaction
networks.
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Future works

The present study demonstrates that our framework moves beyond handcrafted features by
enabling the neural network to learn structural information directly from the DTI graph. Central to
this approach is the representation of local neighborhoods through K-tuples, which effectively
capture the topology surrounding candidate drug—target pairs. While simple first-order measures
such as Common Neighbors can be derived from 1-hop subgraphs, prior work has shown that
higher-order heuristics, including Katz, generally yield stronger predictive performance [15]. This
observation is consistent with our comparative experiments (Figure 2). A natural assumption is
that modeling higher-order relationships requires enlarging the hop size h indefinitely. In practice,
however, increasing h inflates tuple size (K) and leads to prohibitive computational costs. As
highlighted by Zhang et al. [7], high-order graph patterns can often be captured within relatively
small neighborhoods, mitigating the need for overly large subgraphs. Our method follows the same
principle: by employing the J-k-WL refinement, we preserve both structural roles and directional
topological information [7] [18], while keeping computations manageable. Despite these strengths,
the current framework still has room for improvement. Since the model encodes k-tuples through
fixed-size vectors, this can result in the loss of potentially useful structural information. Future
work could explore integrating graph neural networks (GNN) [30] that naturally handle variable-
size subgraphs and directly leverage node and edge features. Another direction is the incorporation
of heterogeneous biological networks. Recent studies emphasize the added value of integrating
drug—drug, protein—protein, drug—disease, and drug—side effect associations for improving DTI
prediction [31] [32] [33]. Extending our pipeline to jointly model these relations may provide a
richer biological context and improve prediction robustness. Lastly, while our evaluation confirms
strong AUROC performance on benchmark datasets, the most decisive test of predictive utility lies
in practical drug discovery. A crucial step forward will be to assess whether the framework can
successfully re-identifty FDA-approved drug—target pairs and uncover drug repositioning
opportunities. Although our model can already prioritize high-confidence candidates for follow-
up, a systematic validation against comprehensive FDA data and case studies of novel predictions
will be essential to demonstrate clinical relevance [34], [35].



Conclusion

We introduced BG-0-k-WLNM, a deep learning framework for drug—target interaction prediction
that combines a semi-bipartite graph representation with local k-dimensional Weisfeiler—Lehman
refinement. By imposing a consistent node ordering and encoding local K-fuple structure, the
model learns discriminative higher-order patterns directly from topology rather than hand-
engineered features. Across the Yamanishi benchmarks under both balanced and imbalanced
protocols, BG-0-k-WLNM demonstrated consistently strong AUROC performance relative to
heuristic similarity indices and WL-based baselines. Our analysis also showed that training with
reliable negative samples instead of randomly chosen unknown pairs yields more robust classifiers,
an effect that is especially clear on the lon Channel (/C) dataset, which offers a practical balance
of scale and sparsity for evaluating sampling strategies. Altogether, these results indicate that
localized WL refinement with tuple-based encoding is an effective and scalable approach for DTI
link prediction.
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