

 Int. J. Information Technology, Communications and Convergence, Vol. X, No. Y, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

On the top-down evaluation of tree inclusion problem

Yangjun Chen* and Yibin Chen
Department of Applied Computer Science,
University of Winnipeg,
Winnipeg, Manitoba, R3B 2E9, Canada
E-mail: ychen2@uwinnipeg.ca
E-mail: chenyibin@gmail.com
*Corresponding author

Abstract: We consider the following tree-matching problem: Given labelled,
ordered trees P and T, can P be obtained from T by deleting nodes. Deleting a
node v entails removing all edges incident to v and, if v has a parent u,
replacing the edges from u to v by edges from u to the children of v. The
best known algorithm for this problem needs O(|T|·|leaves(P)|) time and
O(|leaves(P)|·min{DT,·|leaves(T)|} + |T| + |P|) space, where leaves(T) (resp.
leaves(P)) stands for the set of the leaves of T (resp. P), and DT (resp. DP) for
the height of T (resp. P). In this paper, we present a new algorithm that requires
O(|T|·|leaves(P)|) time but only O(|T| + |P|) space.

Keywords: ordered labelled trees; tree inclusion; TreeBank.

Reference to this paper should be made as follows: Chen, Y. and Chen, Y.
(xxxx) ‘On the top-down evaluation of tree inclusion problem’, Int. J.
Information Technology, Communications and Convergence, Vol. X, No. Y,
pp.000–000.

Biographical notes: Yangjun Chen received his BS in Information System
Engineering from the Technical Institute of Changsha, China, in 1982, and his
Diploma and PhD in Computer Science from the University of Kaiserslautern,
Germany, in 1990 and 1995, respectively. From 1995 to 1997, he worked as a
Post-Doctor at the Technical University of Chemnitz-Zwickau, Germany. After
that, he worked as a Senior Engineer at the German National Research Center
of Information Technology (GMD) for more than two years. Since 2000, he has
been a Professor in the Department of Applied Computer Science at the
University of Winnipeg, Canada. His research interests include deductive
databases, federated databases, document databases, constraint satisfaction
problem, graph theory and combinatorics. He has more than 150 publications in
these areas.

Yibin Chen received his BS degree from University of Waterloo in 2006 and
his Master degree from University of Toronto, in 2008. He is a Software
Engineer.

This paper is a revised and expanded version of a paper entitled ‘A new
top-down algorithm for tree inclusion’ presented at Cyberc’2010, HuangShan,
China, 10–12 October 2010.

 2 Y. Chen and Y. Chen

1 Introduction

Ordered labelled trees are trees whose nodes are labelled and in which the left-to-right
order among siblings is significant. Given two ordered labelled trees T and P, called the
target and pattern, respectively, the tree inclusion problem is to determine whether it is
possible to obtain P from T by deleting nodes. Deleting a node v in T means making each
child of v a child of the parent of v and then removing v. The children of v are placed in
the position of v in the left-to-right order among the siblings of v. Ordered labelled trees
appear in various research fields, including programming language implementation,
natural language processing, and molecular biology.

As an example, consider querying grammatical structures as shown in Figure 1,
which is the parse tree of a natural language sentence.

Figure 1 The parse tree of a sentence

Figure 2 An included tree of the parse tree

S

VP

VBZ NP

NNADJPis

JJ JJ,

discreet courteous

S

NP VP .

DT NN VBZ NP

DT NNADJPThe student is

JJ JJ,a individual

discreet courteous

 On the top-down evaluation of tree inclusion problem 3

One might want to locate, say, those sentences that include a verb phrase containing the
verb ‘is’ and after it there are two adjectives ‘discreet’ and ‘courteous’ followed by any
noun. They are exactly the sentences whose parse tree can be obtained by deleting some
nodes from the tree shown in Figure 1 (see Figure 2 for illustration).

The ordered tree inclusion problem was initially introduced by Knuth (1969). It has
been suggested as an important primitive for expressing queries on structured document
databases (Mannila and Raiha, 1990). A structured document database is considered as a
collection of parse trees that represent the structure of the stored texts and tree inclusion
is used as a means of retrieving information from them. This problem has been the
attention of much research. Kilpelainen and Mannila (1995) presented the first
polynomial time algorithm using O(|T|⋅|P|) time and space. Most of the later
improvements are refinements of this algorithm. In Richter (1997), Richter gave an
algorithm using O(|α(P)|⋅|T| + m(P, T)⋅DT) time, where α(P) is the alphabet of the labels
of P, m(P, T) is the size of a set called matches, defined as all the pairs (v, w) ∈ P × T
such that label(v) = label(w), and DT (resp. DP) is the depth of T (resp. P). Hence, if the
number of matches is small, the time complexity of this algorithm is better than O(T|⋅|P|).
The space complexity of the algorithm is O(|α(P)|⋅|T| + m(P, T)). In Chen (1998), a more
sophisticated algorithm was presented using O(|T|⋅|leaves(P)|) time and
O(|leaves(P)|⋅min{DT, |leaves(T)|} + |T| + |P|) space. In Alonso and Schott (1993), an
efficient average case algorithm was discussed. Its average time complexity is
O(|T| + C(P, T)⋅|P|), where C(P, T) represents the number of T’s nodes that have been
examined during the inclusion search. However, its worst time complexity is still
O(|T|⋅|P|). In Bille and Gortz (2005), another bottom-up algorithm is proposed. It is
claimed that the algorithm needs only O(|T| + |P|) space. However, a careful analysis
reveals that the space complexity of the algorithm is the same as that of Chen (1998). In
the algorithm, a data structure EMB(v) for each v in P is used to record deep occurrences
of P[v] in T. It is of size O(|leaves(T)|) in the worst case. EMB(v) is generated recursively
and works in a way similar to the concept of shell discussed in Chen (1998). So the
analysis of shell applies to EMB(v)’s.

In our earlier work (Chen and Chen, 2004, 2006a, 2006b), a top-down algorithm was
proposed with O(|T| + |P|) space requirement. But its time complexity is not polynomial,
as shown in Cheng and Wang (2007).

In this paper, we improve our earlier work and present a new top-down algorithm to
remove any redundancy of Chen and Chen (2006a). The time complexity of the new one
is bounded by O(|T|⋅|leaves(P)|). It is the same as Chen’s algorithm (Chen, 1998). But the
space requirement remains O(|T| + |P|).

The tree inclusion problem on unordered trees is NP-complete (Kilpelainen and
Mannila, 1995) and not discussed in this paper.

2 Basic definitions

We concentrate on labelled trees that are ordered, i.e., the order between siblings is
significant. Technically, it is convenient to consider a slight generalisation of trees,
namely forests. A forest is a finite ordered sequence of disjoint finite trees. A tree
T consists of a specially designated node root(T) called the root of the tree, and a forest
<T1, …, Tk>, where k ≥ 0. The trees T1, …, Tk are the subtrees of the root of T or the

 4 Y. Chen and Y. Chen

immediate subtrees of tree T, and k is the outdegree of the root of T. A tree with the root t
and the subtrees T1, …, Tk is denoted by <t; T1, …, Tk>. The roots of the trees T1, …, Tk

are the children of t and siblings of each other. Also, we call T1, …, Tk the sibling trees of
each other. In addition, T1, …, Ti – 1 are called the left sibling trees of Ti, and Ti – 1 the
immediate left sibling tree of Ti. The root is an ancestor of all the nodes in its subtrees,
and the nodes in the subtrees are descendants of the root. The set of descendants of a
node v is denoted by desc(v). A leaf is a node with an empty set of descendants.

Sometimes we treat a tree T as the forest <T>. We may also denote the set of nodes in
a forest F by V(F). For example, if we speak of functions from a forest G to a forest F,
we mean functions mapping the nodes of G onto the nodes of F. The size of a forest F,
denoted by |F|, is the number of the nodes in F. The restriction of a forest F to a node v
with its descendants desc(v) is called a subtree of F rooted at v, denoted by F[v].

Let F = <T1, …, Tk> be a forest. The preorder of a forest F is the order of the nodes
visited during a preorder traversal. A preorder traversal of a forest <T1, …, Tk> is as
follows. Traverse the trees T1, …, Tk in ascending order of the indices in preorder. To
traverse a tree in preorder, first visit the root and then traverse the forest of its subtrees in
preorder. The postorder is defined similarly, except that in a postorder traversal the root is
visited after traversing the forest of its subtrees in postorder. We denote the preorder and
postorder numbers of a node v by pre(v) and post(v), respectively.

Using preorder and postorder numbers, the ancestorship can be easily checked. If
there is path from node u to node v, we say, u is an ancestor of v and v is a descendant of
u. In this paper, by ‘ancestor’ (‘descendant’), we mean a proper ancestor (descendant),
i.e., u ≠ v.

Lemma 1. Let v and u be nodes in a forest F. Then, v is an ancestor of u if and only if
pre(v) < pre(u) and post(u) < post(v).

Proof. See Exercise 2.3.2–20 in Knuth (1969, p.347). �

Similarly, we check the left-to-right ordering as follows.

Lemma 2. Let v and u be nodes in a forest F. v is said to be to the left of u if they are not
related by the ancestor-descendant relationship and u follows v when we traverse F in
preorder. Then, v is to the left of u if and only if pre(v) < pre(u) and post(v) < post(u).

Proof. The proof is trivial. �

In the following, we use the postorder numbers to define an ordering of the nodes of a
forest F given by v ≺ v’ iff post(v) < post(v’). Also, v ≺ v’ if v ≺ v’ or v = v’. Furthermore,

we extend this ordering with two special nodes ⊥ ≺ v ≺ T. The left relatives, lr(v), of a
node v ∈ V(F) are the set of nodes that are to the left of v and similarly the right relatives,
rr(v), are the set of nodes that are to the right of v.

The following definition is due to Kilpelainen and Mannila (1995).

Definition 1. Let F and G be labelled ordered forests. We define an ordered embedding
(ϕ, G, F) as an injective function ϕ: V(G) → V(F) such that for all nodes v, u ∈ V(G),

1 label(v) = label(ϕ(v)); (label preservation condition)

2 v is an ancestor of u iff ϕ(v) is an ancestor of ϕ(u), i.e., pre(v) < pre(u) and post(u) <
post(v) iff pre(ϕ(v)) < pre(ϕ(u)) and post(ϕ(u)) < post(ϕ(v)); (ancestor condition)

 On the top-down evaluation of tree inclusion problem 5

3 v is to the left of u iff ϕ(v) is to the left of ϕ(u), i.e., pre(v) < pre(u) and post(v) <
post(u) iff pre(ϕ(v)) < pre(ϕ(u)) and post(ϕ(v)) < post(ϕ(u)) (Sibling condition). �

If there exists such an injective function from V(G) to V(F), we say, F includes G, F
contains G, F covers G, or say, G can be embedded in F.

Figure 3 shows an example of an ordered inclusion.

Figure 3 Illustration for ordered tree inclusion

Figure 4 A pattern tree

Let P and T be two labelled ordered trees. An embedding ϕ of P in T is said to be
root-preserving if ϕ(root(P)) = root(T). If there is a root-preserving embedding of P in T,
we say that the root of T is an occurrence of P.

Figure 3 also shows an example of a root preserving embedding. According to
Kilpelainen and Mannila (1995), restricting to root-preserving embedding does not lose
generality. In fact, what can be found by the top-down algorithm to be discussed is a
root-preserving tree embedding.

Throughout the rest of the paper, we refer to the labelled ordered trees simply as
trees.

3 Algorithm

Let G = <P1, ..., Pl> (l ≥ 1) be a forest. We handle G as a tree P = <pv; P1, …, Pl>, where
pv represents a virtual node, matching any node in T. Note that even though G contains
only one single tree it is considered to be a forest. So a virtual root is added. Therefore,
each node in G, except the virtual node, has a parent.

Consider a node v in P with children v1, …, vj. We use a pair <i, v> (i ≤ j) to represent
an ordered forest containing the first i subtrees of v: <P[v1], …, P[vi]>. Then, <j, pv>
represents the first j trees in G. In addition, δ(v) represents a link from v in P to the
left-most leaf node in P[v], as illustrated in Figure 4.

v1

v6 v2

v3 v5 v4

δ(v2)

δ(v1)

a

b b

a

d b

e b

b

T: P:

 6 Y. Chen and Y. Chen

Let v’ be a leaf node in P. δ(v’) is defined to be v’ itself. In addition, we denote by
δ–1(v’) a set of nodes x such that for each v ∈ x δ(v) = v’.

Also, h(v) represents the height of v in a tree, defined to be the number of edges on
the longest downward path from v to a leaf. The height of a leaf node is set to be 0.

The following algorithm takes a target F = <T1, …, Tk> (k ≥ 1) and a pattern G = <P1,
…, Pl> (l ≥ 1) as the input; and returns a pair <i, v> as the output, where v is pv or a node
on the left-most path in P1, showing that F embeds the first i subtrees of v. We denote by
ts the root of Ts (s = 1, …, k); and by pj the root of Pj (j = 1, …, l).

In the algorithm, we distinguish between two cases:

Case 1 k > 1. That is, F is a forest containing more than one trees.

Case 2 k = 1. That is, F is a forest containing only a single tree.

In Case 1, F = <T1, …, Tk> with k > 1. We will make a series of recursive calls to the
algorithm itself to check <Ts> against <

sjP , …, Pl>, where s = 1, …, k, j1 = 1, and

j1 ≤ j2 ≤ … ≤ jx ≤ l (for some x ≤ k), controlled as follows.

1 Two index variables s, j are used to scan T1, …, Tk and P1, …, Pl, respectively.
(Initially, s is set to 1, and j is set to 0.) They also indicate that <P1, …, Pj> has been
successfully embedded in <T1, …, Ts>.

2 Let <is, vs> be the return value of checking <Ts> against <Pj+1, …, Pl>). If vs = p1’s
parent, set j to be j + is. Otherwise, j is not changed. Set s to be s + 1. Go to (2).

3 The loop terminates when all Ts’s or all Pj’s are examined.

If j > 0 when the loop terminates, the algorithm returns <j, p1’s parent>.
Otherwise, j = 0. In this case, we will continue to search for a pair <i, v> such that F

contains the first i subtrees of v, where v ∈ δ–1(v’) and v’ is the left-most leaf node in P1,
as described below.

1 Let <i1, v1>, …, <ik, vk> be the return values of the recursive calls to check <T1>
against <P1, …, Pl>, …, <Tk> against <P1, …, Pl>), respectively. Since j = 0, each vs
∈δ–1(v’) (s = 1, …, k).

2 If each is = 0, return <0, φ,>, where φ is considered to be a descendant of any node in
G. Otherwise, there must be some vs’s such that is > 0. We call such a node a
non-zero point. Find the first non-zero point vf (with if > 0) with children w1, …, wg
such that vf is not a descendant of any other non-zero point. Then, make a recursive
call to check <Tf + 1, …, Tk> against <P[1fiw +],…, P[wg]>). Let <x, y> be its return

value. If y = vf, then the return value of the algorithm is set to be <if + x, vf>.
Otherwise, the return value is <if, vf>.

In Case 2, F = <T>. We need to handle two sub-cases.

a Sub-case 1: G = <P1>; or G = <P1, ..., Pl> (l > 1), but |T | ≤ |P1| + |P2|. In this case, to
find a pair <i, v> as described above, we will do the following checkings:
1 Let T = <t; T1, …, Tk>. If t is a leaf node (i.e., T is a single node), we will check

whether label(t) = label(δ(p1)), where p1 is the root of P1. If it is the case, return
<1, parent of δ(p1)>. Otherwise, return <0, parent of δ(p1)>.

 On the top-down evaluation of tree inclusion problem 7

2 If |T| < |P1| or h(t) < h(p1), we will make a recursive call to check <T> against
<P11, …, P1j>), where <P11, …, P1j> be a forest of the subtrees of p1. The return
value of this recursive call is used as the return value of the checking of <T>
against G.

3 If |T| ≥ |P1| and h(t) ≥ h(p1), we further distinguish between two cases:
• label(t) = label(p1). In this case, we will make a recursive call to check

<T1, …, Tk> against <P11, …, P1j>.
• label(t) ≠ label(p1). In this case, we will make a recursive call to check

<T1, …, Tk> against <P1>.

In both cases, assume that the return value is <i, v>. A further checking needs to be
conducted:

• If label(t) = label(v) and i = the outdegree of v, the return value should be <1, v’s
parent>.

• Otherwise, the return value is the same as <i, v>.

b Sub-case 2: G = <P1, ..., Pl> (l > 1), and |T | > |P1| + |P2|. In this case, we will make a
recursive call to check <T1, …, Tk> against G. Assume that the return value is <i, v>.
The following checkings will be continually conducted.
1 If v = p1’s parent, the return value is the same as <i, v>.
2 If v ≠ p1’s parent, check whether label(t) = label(v) and i = the outdegree of v. If

so, the return value will be changed to <1, v’s parent>. Otherwise, the return
value remains <i, v>.

In terms of the above analysis, we give the formal description of the algorithm as below.

function td(F, G)

input: F = <T1, …, Tk>, G = <P1, …, Pl>.

output: <i, v> specified above.

begin

1 if k > 1 then { (*Case 1*)

2 s := 1; j := 0;

3 while (j < l and s ≤ k) do

4 { <is, vs> := td(<Ts>, <Pj+1, …, Pl>);

5 if (vs = p1’s parent and is > 0) then j := j + is;

6 l := l + 1;

7 }

8 if j > 0 then return <j, p1’s parent>;

9 if for all <is, vs>‘s is = 0 then return <0, φ>

10 else {let vf be the first non-zero point such that it is not a descendant of

 8 Y. Chen and Y. Chen

 any other non-zero point;

11 let w1, …, wg be the children of vf;

12 <i, v> := td(<Tf + 1, ..., Tk>, <P[1fiw +], …, P[wg]>);

11 if v = vf then return <if + i, vf> else return <if, vf>; }

12 }

13 else { (*k = 1 – Case 2*)

14 T := T1;

15 if (|T | ≤ |P1| + |P2| or l = 1)

16 then {let P1 = <p1; P11, …, P1j>;

17 if t is a leaf then {

18 let δ(p1) = v;

19 if label(t) = label(v) then return <1, v’s parent> else return <0, v’s

parent>;

20 }

21 if (|T| < |P1| or h(t) < h(p1))

22 then return td(<T >, <P11, …, P1j>);

23 if label(t) = label(p1) (*|T| ≥ |P1| and h(t) ≥ h(p1)*)

24 then <i, v> := td(<T1, …, Tk>, <P11, …, P1j>)

25 else <i, v> := td(<T1, …, Tk>, <P1>);

26 if (label(t) = label(v) and i = v’s outdegree)

27 then return <1, v’s parent>

28 else return <i, v>;

29 }

30 else {<i, v> := td(<T1, …, Tk>, G);

31 if v ≠ p1’s parent then

32 if (label(t) = label(v)) and i = v’s outdegree)

33 then return <1, v’s parent>;

34 return <i, v>;

35 }

36 }

end

 On the top-down evaluation of tree inclusion problem 9

In the above algorithm, Case 1 (when k > 1) is handled in lines 1–12 while Case 2 (when
k = 1) is in lines 13–36.

Example 1. Consider the tree T and the forest G shown in Figure 5. As indicated by the
dashed lines, we have an ordered embedding of a subtree of G in T.

Figure 5 A target tree and a pattern forest

In Figure 5, each node in T is identified with ti, such as t0, t1, t11, and so on; and each node
in G is identified with pj. Besides, each subtree rooted at ti (pj) is represented by Ti (resp.
Pj).

In Figure 6, we trace the computation process when applying the algorithm to <T>
and G. In this figure, indentation is used to represent recursive calls. Associated with
each recursive call are several conditions, under which the corresponding recursive call is
conducted. The conditions are placed before each corresponding recursive call.

The return value of the whole procedure is <1, pv>, showing that T contains P1. �
From the sample trace, we can see that a node in T can be checked multiple times, but

against different nodes in G. For instance, t112 is first checked against p111, and then
against p112. t2 is also checked two times, against p111 and p12, respectively.

In order to estimate the number of such checkings, we count how many times t is
involved in a recursive call of the form td(T[t], <G[vi], …, G[vl]>), where vi, …, vl are the
consecutive children of a certain node in G. For simplicity, we denote such a recursive
call by [t, vi].

First, we note that for each [t, vi], t can be checked at most two times. The first
checking is performed in line 23 or in line 32 in td(F, G), and the second checking is in
line 26.

Next we pay attention to line 4 and 12 in td(F, G). Assume that [t, v] is the recursive
call with t involved for the first time (in line 4). It is possible for t to be involved in a
second recursive call [t, v’] (see line 12). But v’ must be a descendant of v. In addition, v’
cannot be a node on the left-most path in G[v]. It is because the following conditions
must be satisfied to have a second checking (see line 9 and 10):

1 j = 0

2 at least there exists a <if, vf> such that if > 0.

T:
t0

t2

t111 t112

t1111

t21

a

g t1

t11

b

a h

d e

f

G:
p1

p11 p12

p111 p112

a

b g

f e

p2

p21

h

e

 10 Y. Chen and Y. Chen

Since j = 0, vf must be a node on the left-most path in G[v]. But its (if + 1)th child 1fiw + is

definitely not on such a path, and v’ (if [t, v’] is invoked) is a node appearing in the
subtree rooted at 1,

fiw + or to the right of 1fiw + (see line 12).

Figure 6 A sample trace

Now we consider a child tj of t. Obviously, during the execution of [t, v], tj can be
involved in two recursive calls [tj, u1] and [tj, u2] while during the execution of [t, v’] tj
can be involved in another two recursive calls [tj, u1’] and [tj, u2’]. Concerning u1, u2, u1’,
and u2’, the following properties hold:

• u2 must be a descendant of u1 but not on the left- most path in G[u1]. u2’ must be a
descendant of u1’ but not on the left-most path in G[u1’].

• Both u1 and u2 are to the left of u1’ and u2’.

Mapping u1 (u1’) to a node on the left-most path in G[u1] (G[u1’]), we think that tj is
involved in four [t, v]’s with each v on a different path in G. So we claim that the number
of checkings for any node in T is bounded by O(|leaves(G)|). Therefore, the time
complexity of the algorithm is bounded by O(|T|⋅|leaves(G)|). The space overhead is
O(|T| + |G|) since no extra data structure is used except for the space storing T and G.

Proposition 1. The time complexity of the algorithm is bounded by O(|T|⋅|leaves(P)|).

Proof. See the above analysis. �

Although this algorithm has the same worst-case time complexity as Chen’s algorithm
(Chen, 1998), it is more efficient than Chen’s since in Chen (1998) each node in T will be
checked against, besides some internal nodes, all the leaf nodes in G. But in the above
algorithm, a node in T may be checked so many times only when the two conditions
specified above is satisfied.

The space complexity of the algorithm can be analysed as follows.
First, we notice that the algorithm uses no extra data structure. However, some space

is used for controlling recursive calls of functions. Consider a chain of recursive calls, on
which a recursive call A immediately followed by another recursive call B indicates that
B is invoked during the execution of A. Obviously, the size of the recursion stack is
bounded by the length of the longest among all such chains. On a chain, we distinguish
between two kinds of recursive calls: td(<T1, …, Tk>, <P1, …, Pl>) and td(<T>, <P1, …,
Pl>), referred to as the first and second kind of recursive calls, respectively. For
simplicity, we use <I, t, p1, –> and <I, t, p, . > respectively to represent td(<T1, …, Tk>,
<P1, …, Pl>) and td(<T1, …, Tk>, <P>); and <II, t, p1, -> and <II, t, p, . > respectively for
td(<T>, <P1, …, Pl>) and td(<T>, <P>), where t, p, t1, and p1 represent the roots of T, P,
T1, and P1, respectively.

Consider a longest chain C. We divide C into two sequences: CI and CII such that in
CI we have only the first kind of calls while in CII we have only the second kind of calls.
For CII, we have the following proposition.

Proposition 2. Let v1 = <II, t1, p1, a1> and v2 = <II, t2, p2, a2> be two consecutive calls on

 Step-by-step trace: Explanation:

td(<T>, G) td(<T>, G) begins.
 |T| > |P1| + |P2| It is Case II. Go to line 13.
 td(<T1, T2>, <P1, P2>) Since |T| > |P1| + |P2|, go to line 30.
 td(<T1>, <P1, P2>) In the while-loop, first check <T1> against <P1, P2>.
 |T1| = |P1|, label(t1) ≠ label(p1) Since |T1| = |P1|, label(t1) ≠ label(p1), check T11
 td(<T11>, <P1>) against <P1>.
 |T11| < |P1| Since |T11| < |P1|, check <T11> against < P11, P12>.
 td(<T11>, <P11, P12>) See lines 21 - 22.
 |P11| < |T11| = |P11| + |P12|, label(t11) ≠ label(p11) |T11| = |P11| + |P12|. lines 16 – 29 will be executed.
 td(<T111, T112> <P111, P112>) See line 25.)
 td(<T111>, <P111, P112>) It is Case I. Lines 3 – 7 will be executed.
 |P111| < |T111| = |P111| + |P112|, label(t111) ≠ label(p111) Since |T111| = |P111| + |P112|, label(t11) ≠ label(p11),
 td(<T1111>, <P111>) check T1111 against <P111> (see line 25).
 T1111 is a leaf, label(t1111) = label(p111) = f T1111 is a leaf. Check it against δ(p111) = p111.
 return <1, p11> Return value of td(<T1111>, < P111, P112>). See line 19.
 return <1, p11> Return value of td(<T111>, < P111, P112>).
 td(<T112>, <P11, P12>) Since T111 does not contain any subtree in < P11, P12>.
 T112 is a leaf, label(t112) ≠ label(p111) T112 is a leaf. Check it against δ(p11) = p111.
 return <0, p11> Return value of td(<T112>, < P11, P12>) is <0, p11>.
 td(<T112>, <P112>) It is because td(<T111>, < P11, P12>) returns <1, p11>.
 T112 is a leaf, label(t112) = label(p112) T112 is a leaf. Check it against δ(p112) = p112.
 return <1, p11> Return value of td(<T112>, <P112>).
 return <2, p11> Return value of td(<T111, T112>, …). See line 11.
 return <2, p11> Return value of td(<T11>, <P11, P12>)
 return <2, p11> Return value of td(<T11>, <P1>).
 label(t1) = label(p11) Since td(<T11>, <P1>) returns <2, p11> and label(t1)
 return <1, p1> = label(p11), td(<T1>, <P1, P2>) should be <1, p1>.
 td(<T2>, <P1, P2>) Since td(<T1>, <P1, P2>) returns <1, p1>, call td(<T2>,
 <P1, P2>). See lines 5 – 6.
 |T2| < |P1| Since |T2| < |P1|, check <T12> against < P11, P12> by
 calling td(<T2>, < P11, P12>).
 td(<T2>, <P11, P12>) See lines 21 – 22.
 |T2| < |P11| Since |T2| < |P11|, check <T12> against
 < P111, P112> by td(<T2>, < P111, P112>).
 td(<T2>, <P111, P112>) See lines 21 – 22.
 |P111| < |T2| = |P111| + |P112|, label(t2) ≠ label(p111) Since |T2| = |P111| + |P112|, label(t2) ≠ label(p111),
 check the subtrees rooted at
 td(<T21>, < P111>) t2’s children against < P111, P112> (see line 25).
 t2 has only one child t21.
 T21 is a leaf, label(t21) ≠ label(p111) t21 is a leaf. Check it against δ(p111) = p111.
 return <0, p11> Since label(t21) ≠ label(p111), the return value of
 td(<T21>, < P111>) is <0, p11>.
 return <0, p11> Return value of td(<T2>, <P111, P112>).
 return <0, p11> Return value of td(<T2>, <P11, P12>).
 return <0, p11> Return value of td(<T2>, <P1, P2>).
 td(<T2>, <P12>) < T1, T2> does not contain P1. But T1 contains
 P11. So call td(<T2>, <P12>).
 label(t2) = label(p12), p21 is a leaf. label(t2) = label(p12) and p21 is a leaf.
 return <1, p1> td(<T2>, <P12>) returns <1, p1>.
 return <2, p1> td(<T1, T2>, <P1, P2>) returns <2, p1> because
 td(<T1>, <P1, P2>) returns <1, p1>.
 label(t0) = label(p1), p1’s outdegree = 2. In line 26, compare the labels of and t0 and
 p1; and check p1’s outdegree.
return <1, pv> Since label(t0) = label(p1) and p1’s outdegree = 2,
 T contains P1.

 On the top-down evaluation of tree inclusion problem 11

C2. Then,

1 if t1 = t2, p2 is a child of p1

2 if p1 = p2, t2 is a child of t1.

Proof. We first prove (1). If t1 = t2, it shows that T[t1] is involved in a second call of the
second kind, but checked against a forest containing the subtrees respectively rooted at
the children of p1 (see line 21 in td(F, G).) Therefore, p2 is a child of p1.

Now we consider (2). If p1 = p2, it shows that G[p1] is involved in a second call of the
second kind, which happens when the size of T[t1] is larger that the size of G[p1] plus the
size of the subtree rooted at p1’s direct right sibling. This leads to a first kind of call to
check the forest containing the subtrees respectively rooted at the children of t1 against
the subtrees respectively rooted at p1 and its right siblings [see line 30 in td(F, G)]. In the
execution of the first kind of call, p1 will be checked for a second time, but against a child
of t1. �

In terms of Proposition 2, we can see that |C2| is bounded by O(DF + DG). In a similar
way, we can show that |C1| is also bounded by O(DF + DG). Therefore, |C| = |C1| + |C2| is
in the order of O(DF + DG).

Proposition 3. The space complexity of the algorithm is bounded by O(|F| + |G|).

Proof. See the above analysis. �

4 Correctness

In this section, we prove the correctness of our algorithm.

Proposition 4. Let T = <t; T1, …, Tk> and G = <P1, …, Pl>. If Algorithm td(<T>, G)
returns <i, v>, where v = pv, or v ∈ δ–1(v’) and v’ is the left-most leaf node in P1, then T
embeds the first i subtrees of v, and there is not any ancestor v’’ of v such that T
embedding <j, v’’> with j > 0.

Proof. We prove the proposition by induction on the sum of the heights of T and G,
H = h(T) + h(G). h(T) is defined to be the height of its root, and h(G) is the height of its
highest subtrees.

Basic step. When H = 0, T is a singular t, and G is a set of nodes: p1, …, pk. In this
case, the algorithm returns <0, pv> or <1, pv>, depending on whether label(t) = label(p1).
See lines 17–19 in td(F, G).

When H = 1, we consider the following two cases.

1 T is a tree of height 1: <t; t1, …, tk> and G is a set of nodes: <p1, …, pl>.

2 T is a singular t; but G is a set of trees of height 1 or height 0, but at least one of them
is of height 1.

In Case (1), lines 23 - 29 will be executed if |T| ≤ 2. If label(t) = label(p1), return <1, pv>.
Otherwise, we will call td(<t1>, <p1>). If label(t1) = label(p1), it returns <1, pv>;
Otherwise, it returns <0, pv>. If |T| > 2, td(<t1, …, tk>, <p1, …, pl>) is called (see line 30),
which will find a sequence of integers: k1, …, kf such that label(

ikt) = label(pi). The

return value is <f, pv> (0 ≤ f ≤ l).

 12 Y. Chen and Y. Chen

In Case (2), the return value is <0, p1> or <1, p1>, depending on whether t matches
the first child of p1. See lines 17–19 in td(F, G).

Induction hypothesis. Assume that when H = q, the proposition holds.
Consider T = <t; T1, …, Tk> and G = <P1, …, Pl> with h(T) + h(G) = q + 1.
If l = 1, or l > 1 but |T | ≤ |P1| + |P2|, the following checkings will be performed.
If |T| < |P1| or h(t) < h(p1), we will make a recursive call td(<T >, <P11, …, P1j>),

where <P11, …, P1j> is a forest of the subtrees of p1. The return value of td(<T>, <P11, …,
P1j>) is used as the return value of td(<T>, G). According to the induction hypothesis, the
return value is correct. Otherwise, we further distinguish between two cases:

• label(t) = label(p1). In this case, we will call td(<T1, …, Tk>, <P11, …, P1j>).

• label(t) ≠ label(p1). In this case, we will call td(<T1, …, Tk>, <P1>).

In both cases, assume that the return value is <i, v>. A further checking needs to be
conducted:

If label(t) = label(v) and i = the outdegree of v, the return value should be <1, v’s
parent>.

Otherwise, the return value is the same as <i, v>.
In the execution of td(<T1, …, Tk>, <P11, …, P1j>), a series of recursive calls of the

form: td(<Ts>, <P1a, …, P1b>) will be performed. According to the induction hypothesis,
each of them returns a correct value.

Assume that the return value of each td(<Ts>, <P1a, ..., P1b>) is <is, vs>. If <T1, ..., Tk>
is not able to cover any subtree from P11, ..., P1j, then each vs cannot be the parent of p1a,
but a node on the left-most path in P1a. In this case, an extra recursive call of the form:
td(<Tf+1, …, Tk>, <P[1fiw +], ..., P[wg]>) will be conducted, where vf (with if > 0) is the

first non-zero point such that it is not a descendant of any other non-zero point, and
w1, …, wg are all its children. Repeat the above analysis, we can show the correctness of
td(<T1, …, Tk>, <P11, …, P1j>).

The above discussion demonstrates that the return value of td(<T1, …, Tk>, <P11, …,
P1j>) is correct. In the same way, we can also show the return value of td(<T1, …, Tk>,
<P1>) is correct.

If l > 1 and |T | > |P1| + |P2|. In this case, we will call td(<T1, …, Tk>, G). Assume that
the return value is <i, v>. The following checkings will be conducted.

• If v = p1’s parent, the return value is the same as <i, v>.

• If v ≠ p1’s parent, check whether label(t) = label(v)) and i = the out degree of v. If so,
the return value will be changed to <1, v’s parent>. Otherwise, the return value
remains <i, v>.

According the induction hypothesis, in this case, the return value is correct. It completes
the proof. �

5 Experiments

We have compared our algorithm with the algorithm by Chen (1998) experimentally. We
conducted our experiments on a DELL desktop PC equipped with Pentium III 1.6 GHz

 On the top-down evaluation of tree inclusion problem 13

processor, 1.00 GB RAM and 20GB hard disk. The code was compiled using Microsoft
Visual C++ compiler version 6.0, running standalone.

In our experiments, two data sets are used as the target trees. One is part
of DBLP, which is a popular computer science bibliography in XML format
(http://www.cs.washington.edu/research/xmldatasets). The other is TreeBank, which is a
database containing a set of linguistic text structures (http://www.cs.washington.edu/
research/xmldatasets). The important parameters of these data sets are summarised in
Table 1.
Table 1 Data set for experimental evaluation

 Part of DBLP TreeBank

Data size 2 (MB) 82 (MB)
Number of nodes 53k 2,437k
Max/Avg. depth 6/2.9 36/7.9

The pattern trees (P1 and P2) used for testing the first data set is shown in Figure 7. This
test is to check the impact of the number of leaf nodes in a tree pattern. The test results of
P1 and P2 are shown in Table 2 and 3, respectively.

Figure 7 Pattern trees checked against DBLP

Table 2 Test result of checking P1 against DBLP

 Time Number of node comparison

Top-down 0.54s 178,287
Bottom-up 0.56s 179,345

Table 3 Test result of checking P2 against DBLP

 Time Number of node comparison

Top-down 0.647 191,252
Bottom-up 1.73s 263,912

From Table 2 and 3, we can see that although our top-down algorithm has the same
worst-case time complexity as Chen’s bottom-up method (Chen, 1998), our algorithm
makes much less node comparisons than Chen’s. This confirms the theoretical analysis
conducted in Section 3.

Year

DBLP

Title Journal

Disjunctive
unification

1998 Fuzzy sets
and systems

P1:

Year

DBLP

Title Journal

Disjunctive
unification

1998 Fuzzy sets
and systems

P2:

Author

Tsu-Shin-Liu

 14 Y. Chen and Y. Chen

Figure 8 Pattern trees checked against TreeBank

The pattern tree (P3) for testing the second data set is shown in Figure 8.
It is a forest containing two trees. In this test, a huge target tree is used to observe the

difference caused by the space overheads of these two methods.
Table 4 Test result of checking P3 against TreeBank

 Time Number of node comparison

Top-down 54.62s 7,038,874
Bottom-up 372.32s 49,449,170

From Table 4, we can see that for a large target tree the difference between ours and
Chen’s is significant. It is not only due to the fewer comparisons conducted by our
method, but also to the much less space used by ours. Chen’s method needs to create and
maintain a set of data structures (called interval in Chen, 1998) for each node of the
target tree, which requires extra time.

6 Conclusions

In this paper, a new algorithm is proposed to improve the algorithm discussed in Chen
and Chen (2006a). The main idea behind it is to let any subprocedure call return a pair to
indicate a subtree (subforest) embedding while in Chen and Chen (2006a), only a single
integer is returned to indicate whether a whole forest (or the first several subtrees of the
forest) is embedded by the corresponding target subtree. Together with a kind of
information transferring to transfer the results obtained in a previous step to the next step
computation to avoid any useless effort, high performance is achieved. The time
complexity of the new algorithm is bounded by O(|T|⋅|leaves(P)|) while the space
requirement is bounded by O(|T| + |P|), where T and P are a target and a pattern tree,
respectively.

References
Alonso, L. and Schott, R. (1993) ‘On the tree inclusion problem’, Proceedings of Mathematical

Foundations of Computer Science, pp.211–221.
Bille, P. and Gortz, I.L. (2005) ‘An ordered tree inclusion algorithm based on dynamic tree

labeling’, Proc. 32nd Intl. Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science, Vol. 3580, pp.66–77.

NNP

S

NNP NNP

KQp+lUsPgdCX
TBKFZyPjXR==

P3:
NP

idJNoIG4xOgcdHaC
fDu+Hh==

Encrypted texts
In TreeBank, the text
nodes have been
encrypted because they
are copywritten text from
the Wall Street Journal.

 On the top-down evaluation of tree inclusion problem 15

Chen, W. (1998) ‘More efficient algorithm for ordered tree inclusion’, Journal of Algorithms,
Vol. 26, pp.370–385.

Chen, Y. and Chen, Y.B. (2004) ‘An efficient top-down algorithm for tree inclusion’, Proc. of 18th
Intl. Conf. Symposium on High Performance Computing System and Application, May,
pp.183–187, IEEE, Winnipeg, Canada.

Chen, Y. and Chen, Y. (2006) ‘On the top-down tree inclusion’, Proc: Intl. Conf. on Advances in
Computer Science and Technology (ACST 2006), January, Vol. 25, pp.61–66 Puerto Vallarta,
Mexico.

Chen, Y. and Chen, Y.B. (2006) ‘A new tree inclusion algorithm’, Information Processing Letters,
Vol. 98, pp.253–262, Elsevier Science B.V.

Cheng, H.L. and Wang, B.F. (2007) ‘On Chen and Chen’s new tree inclusion algorithm’,
Information Processing Letters, Vol. 103, pp.14–18, Elsevier Science B.V.

Kilpelainen, P. and Mannila, H. (1995) ‘Ordered and unordered tree inclusion’, SIAM Journal of
Computing, Vol. 24, pp.340–356.

Knuth, D.E. (1969) The Art of Computer Programming, Vol. 1, 1st ed., Addison-Wesley, Reading,
MA.

Mannila, H. and Raiha, K-J. (1990) ‘On query languages for the p-string data model’, in
Kangassalo, H., Ohsuga, S. and Jaakola, H. (Eds.): Information Modelling and Knowledge
Bases, pp.469–482, IOS Press, Amsterdam.

Richter, T. (1997) ‘A new algorithm for the ordered tree inclusion problem’, Proceedings of the 8th
Annual Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes of Computer
Science (LNCS), Vol. 1264, pp.150–166, Springer.

U of Washington XML Repository (2007) available at
http://www.cs.washington.edu/research/xmldatasets.

