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Abstract: We consider the following tree-matching problem: Given labelled, 
ordered trees P and T, can P be obtained from T by deleting nodes. Deleting a 
node v entails removing all edges incident to v and, if v has a parent u, 
replacing the edges from u to v by edges from u to the children of v. The  
best known algorithm for this problem needs O(|T|·|leaves(P)|) time and 
O(|leaves(P)|·min{DT,·|leaves(T)|} + |T| + |P|) space, where leaves(T) (resp. 
leaves(P)) stands for the set of the leaves of T (resp. P), and DT (resp. DP) for 
the height of T (resp. P). In this paper, we present a new algorithm that requires 
O(|T|·|leaves(P)|) time but only O(|T| + |P|) space. 
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1 Introduction 

Ordered labelled trees are trees whose nodes are labelled and in which the left-to-right 
order among siblings is significant. Given two ordered labelled trees T and P, called the 
target and pattern, respectively, the tree inclusion problem is to determine whether it is 
possible to obtain P from T by deleting nodes. Deleting a node v in T means making each 
child of v a child of the parent of v and then removing v. The children of v are placed in 
the position of v in the left-to-right order among the siblings of v. Ordered labelled trees 
appear in various research fields, including programming language implementation, 
natural language processing, and molecular biology. 

As an example, consider querying grammatical structures as shown in Figure 1, 
which is the parse tree of a natural language sentence. 

Figure 1 The parse tree of a sentence 

 

Figure 2 An included tree of the parse tree 
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One might want to locate, say, those sentences that include a verb phrase containing the 
verb ‘is’ and after it there are two adjectives ‘discreet’ and ‘courteous’ followed by any 
noun. They are exactly the sentences whose parse tree can be obtained by deleting some 
nodes from the tree shown in Figure 1 (see Figure 2 for illustration). 

The ordered tree inclusion problem was initially introduced by Knuth (1969). It has 
been suggested as an important primitive for expressing queries on structured document 
databases (Mannila and Raiha, 1990). A structured document database is considered as a 
collection of parse trees that represent the structure of the stored texts and tree inclusion 
is used as a means of retrieving information from them. This problem has been the 
attention of much research. Kilpelainen and Mannila (1995) presented the first 
polynomial time algorithm using O(|T|⋅|P|) time and space. Most of the later 
improvements are refinements of this algorithm. In Richter (1997), Richter gave an 
algorithm using O(|α(P)|⋅|T| + m(P, T)⋅DT) time, where α(P) is the alphabet of the labels 
of P, m(P, T) is the size of a set called matches, defined as all the pairs (v, w) ∈ P ×  T 
such that label(v) = label(w), and DT (resp. DP) is the depth of T (resp. P). Hence, if the 
number of matches is small, the time complexity of this algorithm is better than O(T|⋅|P|). 
The space complexity of the algorithm is O(|α(P)|⋅|T| + m(P, T)). In Chen (1998), a more 
sophisticated algorithm was presented using O(|T|⋅|leaves(P)|) time and 
O(|leaves(P)|⋅min{DT, |leaves(T)|} + |T| + |P|) space. In Alonso and Schott (1993), an 
efficient average case algorithm was discussed. Its average time complexity is  
O(|T| + C(P, T)⋅|P|), where C(P, T) represents the number of T’s nodes that have been 
examined during the inclusion search. However, its worst time complexity is still 
O(|T|⋅|P|). In Bille and Gortz (2005), another bottom-up algorithm is proposed. It is 
claimed that the algorithm needs only O(|T| + |P|) space. However, a careful analysis 
reveals that the space complexity of the algorithm is the same as that of Chen (1998). In 
the algorithm, a data structure EMB(v) for each v in P is used to record deep occurrences 
of P[v] in T. It is of size O(|leaves(T)|) in the worst case. EMB(v) is generated recursively 
and works in a way similar to the concept of shell discussed in Chen (1998). So the 
analysis of shell applies to EMB(v)’s. 

In our earlier work (Chen and Chen, 2004, 2006a, 2006b), a top-down algorithm was 
proposed with O(|T| + |P|) space requirement. But its time complexity is not polynomial, 
as shown in Cheng and Wang (2007). 

In this paper, we improve our earlier work and present a new top-down algorithm to 
remove any redundancy of Chen and Chen (2006a). The time complexity of the new one 
is bounded by O(|T|⋅|leaves(P)|). It is the same as Chen’s algorithm (Chen, 1998). But the 
space requirement remains O(|T| + |P|). 

The tree inclusion problem on unordered trees is NP-complete (Kilpelainen and 
Mannila, 1995) and not discussed in this paper. 

2 Basic definitions 

We concentrate on labelled trees that are ordered, i.e., the order between siblings is 
significant. Technically, it is convenient to consider a slight generalisation of trees, 
namely forests. A forest is a finite ordered sequence of disjoint finite trees. A tree  
T consists of a specially designated node root(T) called the root of the tree, and a forest 
<T1, …, Tk>, where k ≥ 0. The trees T1, …, Tk are the subtrees of the root of T or the 
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immediate subtrees of tree T, and k is the outdegree of the root of T. A tree with the root t 
and the subtrees T1, …, Tk is denoted by <t; T1, …, Tk>. The roots of the trees T1, …, Tk 

are the children of t and siblings of each other. Also, we call T1, …, Tk the sibling trees of 
each other. In addition, T1, …, Ti – 1 are called the left sibling trees of Ti, and Ti – 1 the 
immediate left sibling tree of Ti. The root is an ancestor of all the nodes in its subtrees, 
and the nodes in the subtrees are descendants of the root. The set of descendants of a 
node v is denoted by desc(v). A leaf is a node with an empty set of descendants. 

Sometimes we treat a tree T as the forest <T>. We may also denote the set of nodes in 
a forest F by V(F). For example, if we speak of functions from a forest G to a forest F, 
we mean functions mapping the nodes of G onto the nodes of F. The size of a forest F, 
denoted by |F|, is the number of the nodes in F. The restriction of a forest F to a node v 
with its descendants desc(v) is called a subtree of F rooted at v, denoted by F[v]. 

Let F = <T1, …, Tk> be a forest. The preorder of a forest F is the order of the nodes 
visited during a preorder traversal. A preorder traversal of a forest <T1, …, Tk> is as 
follows. Traverse the trees T1, …, Tk in ascending order of the indices in preorder. To 
traverse a tree in preorder, first visit the root and then traverse the forest of its subtrees in 
preorder. The postorder is defined similarly, except that in a postorder traversal the root is 
visited after traversing the forest of its subtrees in postorder. We denote the preorder and 
postorder numbers of a node v by pre(v) and post(v), respectively. 

Using preorder and postorder numbers, the ancestorship can be easily checked. If 
there is path from node u to node v, we say, u is an ancestor of v and v is a descendant of 
u. In this paper, by ‘ancestor’ (‘descendant’), we mean a proper ancestor (descendant), 
i.e., u ≠ v. 

Lemma 1. Let v and u be nodes in a forest F. Then, v is an ancestor of u if and only if 
pre(v) < pre(u) and post(u) < post(v). 

Proof. See Exercise 2.3.2–20 in Knuth (1969, p.347). � 

Similarly, we check the left-to-right ordering as follows. 

Lemma 2. Let v and u be nodes in a forest F. v is said to be to the left of u if they are not 
related by the ancestor-descendant relationship and u follows v when we traverse F in 
preorder. Then, v is to the left of u if and only if pre(v) < pre(u) and post(v) < post(u). 

Proof. The proof is trivial. � 

In the following, we use the postorder numbers to define an ordering of the nodes of a 
forest F given by v ≺ v’ iff post(v) < post(v’). Also, v ≺ v’ if v ≺ v’ or v = v’. Furthermore, 

we extend this ordering with two special nodes ⊥ ≺ v ≺ T. The left relatives, lr(v), of a 
node v ∈ V(F) are the set of nodes that are to the left of v and similarly the right relatives, 
rr(v), are the set of nodes that are to the right of v. 

The following definition is due to Kilpelainen and Mannila (1995). 

Definition 1. Let F and G be labelled ordered forests. We define an ordered embedding  
(ϕ, G, F) as an injective function ϕ: V(G) → V(F) such that for all nodes v, u ∈ V(G), 

1 label(v) = label(ϕ(v)); (label preservation condition) 

2 v is an ancestor of u iff ϕ(v) is an ancestor of ϕ(u), i.e., pre(v) < pre(u) and post(u) < 
post(v) iff pre(ϕ(v)) < pre(ϕ(u)) and post(ϕ(u)) < post(ϕ(v)); (ancestor condition) 
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3 v is to the left of u iff ϕ(v) is to the left of ϕ(u), i.e., pre(v) < pre(u) and post(v) < 
post(u) iff pre(ϕ(v)) < pre(ϕ(u)) and post(ϕ(v)) < post(ϕ(u)) (Sibling condition). � 

If there exists such an injective function from V(G) to V(F), we say, F includes G, F 
contains G, F covers G, or say, G can be embedded in F. 

Figure 3 shows an example of an ordered inclusion. 

Figure 3 Illustration for ordered tree inclusion 

 

Figure 4 A pattern tree 

 

Let P and T be two labelled ordered trees. An embedding ϕ of P in T is said to be  
root-preserving if ϕ(root(P)) = root(T). If there is a root-preserving embedding of P in T, 
we say that the root of T is an occurrence of P. 

Figure 3 also shows an example of a root preserving embedding. According to 
Kilpelainen and Mannila (1995), restricting to root-preserving embedding does not lose 
generality. In fact, what can be found by the top-down algorithm to be discussed is a  
root-preserving tree embedding. 

Throughout the rest of the paper, we refer to the labelled ordered trees simply as 
trees. 

3 Algorithm 

Let G = <P1, ..., Pl> (l ≥ 1) be a forest. We handle G as a tree P = <pv; P1, …, Pl>, where 
pv represents a virtual node, matching any node in T. Note that even though G contains 
only one single tree it is considered to be a forest. So a virtual root is added. Therefore, 
each node in G, except the virtual node, has a parent. 

Consider a node v in P with children v1, …, vj. We use a pair <i, v> (i ≤ j) to represent 
an ordered forest containing the first i subtrees of v: <P[v1], …, P[vi]>. Then, <j, pv> 
represents the first j trees in G. In addition, δ(v) represents a link from v in P to the  
left-most leaf node in P[v], as illustrated in Figure 4. 
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Let v’ be a leaf node in P. δ(v’) is defined to be v’ itself. In addition, we denote by  
δ–1(v’) a set of nodes x such that for each v ∈ x δ(v) = v’. 

Also, h(v) represents the height of v in a tree, defined to be the number of edges on 
the longest downward path from v to a leaf. The height of a leaf node is set to be 0. 

The following algorithm takes a target F = <T1, …, Tk> (k ≥ 1) and a pattern G = <P1, 
…, Pl> (l ≥ 1) as the input; and returns a pair <i, v> as the output, where v is pv or a node 
on the left-most path in P1, showing that F embeds the first i subtrees of v. We denote by 
ts the root of Ts (s = 1, …, k); and by pj the root of Pj (j = 1, …, l). 

In the algorithm, we distinguish between two cases: 

Case 1 k > 1. That is, F is a forest containing more than one trees. 

Case 2 k = 1. That is, F is a forest containing only a single tree. 

In Case 1, F = <T1, …, Tk> with k > 1. We will make a series of recursive calls to the 
algorithm itself to check <Ts> against <

sjP , …, Pl>, where s = 1, …, k, j1 = 1, and  

j1 ≤ j2 ≤ … ≤ jx ≤ l (for some x ≤ k), controlled as follows. 

1 Two index variables s, j are used to scan T1, …, Tk and P1, …, Pl, respectively. 
(Initially, s is set to 1, and j is set to 0.) They also indicate that <P1, …, Pj> has been 
successfully embedded in <T1, …, Ts>. 

2 Let <is, vs> be the return value of checking <Ts> against <Pj+1, …, Pl>). If vs = p1’s 
parent, set j to be j + is. Otherwise, j is not changed. Set s to be s + 1. Go to (2). 

3 The loop terminates when all Ts’s or all Pj’s are examined. 

If j > 0 when the loop terminates, the algorithm returns <j, p1’s parent>. 
Otherwise, j = 0. In this case, we will continue to search for a pair <i, v> such that F 

contains the first i subtrees of v, where v ∈ δ–1(v’) and v’ is the left-most leaf node in P1, 
as described below. 

1 Let <i1, v1>, …, <ik, vk> be the return values of the recursive calls to check <T1> 
against <P1, …, Pl>, …, <Tk> against <P1, …, Pl>), respectively. Since j = 0, each vs 
∈δ–1(v’) (s = 1, …, k). 

2 If each is = 0, return <0, φ,>, where φ is considered to be a descendant of any node in 
G. Otherwise, there must be some vs’s such that is > 0. We call such a node a  
non-zero point. Find the first non-zero point vf (with if > 0) with children w1, …, wg 
such that vf is not a descendant of any other non-zero point. Then, make a recursive 
call to check <Tf + 1, …, Tk> against <P[ 1fiw + ],…, P[wg]>). Let <x, y> be its return 

value. If y = vf, then the return value of the algorithm is set to be <if + x, vf>. 
Otherwise, the return value is <if, vf>. 

In Case 2, F = <T>. We need to handle two sub-cases. 

a Sub-case 1: G = <P1>; or G = <P1, ..., Pl> (l > 1), but |T | ≤ |P1| + |P2|. In this case, to 
find a pair <i, v> as described above, we will do the following checkings: 
1 Let T = <t; T1, …, Tk>. If t is a leaf node (i.e., T is a single node), we will check 

whether label(t) = label(δ(p1)), where p1 is the root of P1. If it is the case, return 
<1, parent of δ(p1)>. Otherwise, return <0, parent of δ(p1)>. 
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2 If |T| < |P1| or h(t) < h(p1), we will make a recursive call to check <T> against 
<P11, …, P1j>), where <P11, …, P1j> be a forest of the subtrees of p1. The return 
value of this recursive call is used as the return value of the checking of <T> 
against G. 

3 If |T| ≥ |P1| and h(t) ≥ h(p1), we further distinguish between two cases: 
• label(t) = label(p1). In this case, we will make a recursive call to check  

<T1, …, Tk> against <P11, …, P1j>. 
• label(t) ≠ label(p1). In this case, we will make a recursive call to check  

<T1, …, Tk> against <P1>. 

In both cases, assume that the return value is <i, v>. A further checking needs to be 
conducted: 

• If label(t) = label(v) and i = the outdegree of v, the return value should be <1, v’s 
parent>. 

• Otherwise, the return value is the same as <i, v>. 

b Sub-case 2: G = <P1, ..., Pl> (l > 1), and |T | > |P1| + |P2|. In this case, we will make a 
recursive call to check <T1, …, Tk> against G. Assume that the return value is <i, v>. 
The following checkings will be continually conducted. 
1 If v = p1’s parent, the return value is the same as <i, v>. 
2 If v ≠ p1’s parent, check whether label(t) = label(v) and i = the outdegree of v. If 

so, the return value will be changed to <1, v’s parent>. Otherwise, the return 
value remains <i, v>. 

In terms of the above analysis, we give the formal description of the algorithm as below. 

function td(F, G) 

input: F = <T1, …, Tk>, G = <P1, …, Pl>. 

output: <i, v> specified above. 

begin 

1 if k > 1 then { (*Case 1*) 

2  s := 1; j := 0; 

3  while (j < l and s ≤ k) do 

4  { <is, vs> := td(<Ts>, <Pj+1, …, Pl>); 

5   if (vs = p1’s parent and is > 0) then j := j + is; 

6   l := l + 1; 

7  } 

8  if j > 0 then return <j, p1’s parent>; 

9  if for all <is, vs>‘s is = 0 then return <0, φ> 

10  else {let vf be the first non-zero point such that it is not a descendant of 
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   any other non-zero point; 

11   let w1, …, wg be the children of vf; 

12   <i, v> := td(<Tf + 1, ..., Tk>, <P[ 1fiw + ], …, P[wg]>); 

11  if v = vf then return <if + i, vf> else return <if, vf>; } 

12 } 

13 else { (*k = 1 – Case 2*) 

14  T := T1; 

15  if (|T | ≤ |P1| + |P2| or l = 1) 

16  then {let P1 = <p1; P11, …, P1j>; 

17   if t is a leaf then { 

18   let δ(p1) = v; 

19   if label(t) = label(v) then return <1, v’s parent> else return <0, v’s 

parent>; 

20   } 

21   if (|T| < |P1| or h(t) < h(p1)) 

22   then return td(<T >, <P11, …, P1j>); 

23   if label(t) = label(p1)   (*|T| ≥ |P1| and h(t) ≥ h(p1)*) 

24   then <i, v> := td(<T1, …, Tk>, <P11, …, P1j>) 

25   else <i, v> := td(<T1, …, Tk>, <P1>); 

26   if (label(t) = label(v) and i = v’s outdegree ) 

27   then return <1, v’s parent> 

28   else return <i, v>; 

29 } 

30  else {<i, v> := td(<T1, …, Tk>, G); 

31  if v ≠ p1’s parent then 

32  if (label(t) = label(v)) and i = v’s outdegree) 

33  then return <1, v’s parent>; 

34  return <i, v>; 

35  } 

36 } 

end 
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In the above algorithm, Case 1 (when k > 1) is handled in lines 1–12 while Case 2 (when 
k = 1) is in lines 13–36. 

Example 1. Consider the tree T and the forest G shown in Figure 5. As indicated by the 
dashed lines, we have an ordered embedding of a subtree of G in T. 

Figure 5 A target tree and a pattern forest 

 

In Figure 5, each node in T is identified with ti, such as t0, t1, t11, and so on; and each node 
in G is identified with pj. Besides, each subtree rooted at ti (pj) is represented by Ti (resp. 
Pj). 

In Figure 6, we trace the computation process when applying the algorithm to <T> 
and G. In this figure, indentation is used to represent recursive calls. Associated with 
each recursive call are several conditions, under which the corresponding recursive call is 
conducted. The conditions are placed before each corresponding recursive call. 

The return value of the whole procedure is <1, pv>, showing that T contains P1. � 
From the sample trace, we can see that a node in T can be checked multiple times, but 

against different nodes in G. For instance, t112 is first checked against p111, and then 
against p112. t2 is also checked two times, against p111 and p12, respectively. 

In order to estimate the number of such checkings, we count how many times t is 
involved in a recursive call of the form td(T[t], <G[vi], …, G[vl]>), where vi, …, vl are the 
consecutive children of a certain node in G. For simplicity, we denote such a recursive 
call by [t, vi]. 

First, we note that for each [t, vi], t can be checked at most two times. The first 
checking is performed in line 23 or in line 32 in td(F, G), and the second checking is in 
line 26. 

Next we pay attention to line 4 and 12 in td(F, G). Assume that [t, v] is the recursive 
call with t involved for the first time (in line 4). It is possible for t to be involved in a 
second recursive call [t, v’] (see line 12). But v’ must be a descendant of v. In addition, v’ 
cannot be a node on the left-most path in G[v]. It is because the following conditions 
must be satisfied to have a second checking (see line 9 and 10): 

1 j = 0 

2 at least there exists a <if, vf> such that if > 0. 

T: 
t0 

t2 

t111 t112 

t1111 

t21 
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g t1 

t11 
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d e 
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G:
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p11 p12
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Since j = 0, vf must be a node on the left-most path in G[v]. But its (if + 1)th child 1fiw + is 

definitely not on such a path, and v’ (if [t, v’] is invoked) is a node appearing in the 
subtree rooted at 1,

fiw +  or to the right of 1fiw +  (see line 12). 

Figure 6 A sample trace 

 

Now we consider a child tj of t. Obviously, during the execution of [t, v], tj can be 
involved in two recursive calls [tj, u1] and [tj, u2] while during the execution of [t, v’] tj 
can be involved in another two recursive calls [tj, u1’] and [tj, u2’]. Concerning u1, u2, u1’, 
and u2’, the following properties hold: 

• u2 must be a descendant of u1 but not on the left- most path in G[u1]. u2’ must be a 
descendant of u1’ but not on the left-most path in G[u1’]. 

• Both u1 and u2 are to the left of u1’ and u2’. 

Mapping u1 (u1’) to a node on the left-most path in G[u1] (G[u1’]), we think that tj is 
involved in four [t, v]’s with each v on a different path in G. So we claim that the number 
of checkings for any node in T is bounded by O(|leaves(G)|). Therefore, the time 
complexity of the algorithm is bounded by O(|T|⋅|leaves(G)|). The space overhead is  
O(|T| + |G|) since no extra data structure is used except for the space storing T and G. 

Proposition 1. The time complexity of the algorithm is bounded by O(|T|⋅|leaves(P)|). 

Proof. See the above analysis.      � 

Although this algorithm has the same worst-case time complexity as Chen’s algorithm 
(Chen, 1998), it is more efficient than Chen’s since in Chen (1998) each node in T will be 
checked against, besides some internal nodes, all the leaf nodes in G. But in the above 
algorithm, a node in T may be checked so many times only when the two conditions 
specified above is satisfied. 

The space complexity of the algorithm can be analysed as follows. 
First, we notice that the algorithm uses no extra data structure. However, some space 

is used for controlling recursive calls of functions. Consider a chain of recursive calls, on 
which a recursive call A immediately followed by another recursive call B indicates that 
B is invoked during the execution of A. Obviously, the size of the recursion stack is 
bounded by the length of the longest among all such chains. On a chain, we distinguish 
between two kinds of recursive calls: td(<T1, …, Tk>, <P1, …, Pl>) and td(<T>, <P1, …, 
Pl>), referred to as the first and second kind of recursive calls, respectively. For 
simplicity, we use <I, t, p1, –> and <I, t, p, . > respectively to represent td(<T1, …, Tk>, 
<P1, …, Pl>) and td(<T1, …, Tk>, <P>); and <II, t, p1, -> and <II, t, p, . > respectively for 
td(<T>, <P1, …, Pl>) and td(<T>, <P>), where t, p, t1, and p1 represent the roots of T, P, 
T1, and P1, respectively. 

Consider a longest chain C. We divide C into two sequences: CI and CII such that in 
CI we have only the first kind of calls while in CII we have only the second kind of calls. 
For CII, we have the following proposition. 

Proposition 2. Let v1 = <II, t1, p1, a1> and v2 = <II, t2, p2, a2> be two consecutive calls on  

 Step-by-step trace: Explanation: 
 
td(<T>, G) td(<T>, G)  begins. 
 |T| > |P1| + |P2| It is Case II. Go to line 13. 
 td(<T1, T2>, <P1, P2>) Since |T| > |P1| + |P2|, go to line 30. 
  td(<T1>, <P1, P2>) In the while-loop, first check <T1> against <P1, P2>. 
   |T1| = |P1|, label(t1) ≠ label(p1) Since |T1| = |P1|, label(t1) ≠ label(p1), check T11 
   td(<T11>, <P1>) against <P1>. 
    |T11| < |P1| Since |T11| < |P1|, check <T11> against < P11, P12>. 
    td(<T11>, <P11, P12>) See lines 21 - 22. 
    |P11| < |T11| = |P11| + |P12|, label(t11) ≠ label(p11) |T11| = |P11| + |P12|. lines 16 – 29 will be executed. 
    td(<T111, T112> <P111, P112>) See line 25.)  
     td(<T111>, <P111, P112>) It is Case I. Lines 3 – 7 will be executed. 
       |P111| < |T111| = |P111| + |P112|, label(t111) ≠ label(p111) Since |T111| = |P111| + |P112|, label(t11) ≠ label(p11), 
       td(<T1111>, <P111>) check T1111 against <P111> (see line 25).  
        T1111 is a leaf, label(t1111) = label(p111) = f T1111 is a leaf. Check it against δ( p111) = p111. 
       return <1, p11>  Return value of td(<T1111>, < P111, P112>). See line 19. 
      return <1, p11>   Return value of td(<T111>, < P111, P112>). 
      td(<T112>, <P11, P12>) Since T111 does not contain any subtree in < P11, P12>. 
       T112 is a leaf, label(t112) ≠ label(p111) T112 is a leaf. Check it against δ( p11) = p111. 
      return <0, p11>   Return value of td(<T112>, < P11, P12>) is <0, p11>.  
      td(<T112>, <P112>) It is because td(<T111>, < P11, P12>) returns <1, p11>. 
       T112 is a leaf, label(t112) = label(p112) T112 is a leaf. Check it against δ( p112) = p112. 
      return <1, p11>   Return value of td(<T112>, <P112>). 
     return <2, p11>    Return value of td(<T111, T112>, …). See line 11. 
    return <2, p11>    Return value of td(<T11>, <P11, P12>) 
   return <2, p11>     Return value of td(<T11>, <P1>). 
   label(t1) = label(p11)   Since td(<T11>, <P1>) returns <2, p11> and label(t1) 
  return <1, p1>      = label(p11), td(<T1>, <P1, P2>) should be <1, p1>. 
  td(<T2>, <P1, P2>)    Since td(<T1>, <P1, P2>) returns <1, p1>, call td(<T2>, 
              <P1, P2>). See lines 5 – 6. 
   |T2| < |P1| Since |T2| < |P1|, check <T12> against < P11, P12> by 
       calling td(<T2>, < P11, P12>). 
   td(<T2>, <P11, P12>) See lines 21 – 22. 
    |T2| < |P11| Since |T2| < |P11|, check <T12> against 
        < P111, P112> by td(<T2>, < P111, P112>). 
    td(<T2>, <P111, P112>)  See lines 21 – 22. 
     |P111| < |T2| = |P111| + |P112|, label(t2) ≠ label(p111) Since |T2| = |P111| + |P112|, label(t2) ≠ label(p111), 
           check the subtrees rooted at 
     td(<T21>, < P111>) t2’s children against < P111, P112> (see line 25). 
           t2 has only one child t21. 
      T21 is a leaf, label(t21) ≠ label(p111) t21 is a leaf. Check it against δ( p111) = p111. 
     return <0, p11> Since label(t21) ≠ label(p111), the return value of 
           td(<T21>, < P111>) is <0, p11>. 
    return <0, p11>  Return value of td(<T2>, <P111, P112>). 
   return <0, p11>   Return value of td(<T2>, <P11, P12>). 
  return <0, p11>   Return value of td(<T2>, <P1, P2>). 
  td(<T2>, <P12>) < T1, T2> does not contain P1. But T1 contains 
       P11. So call td(<T2>, <P12>).   
   label(t2) = label(p12), p21 is a leaf. label(t2) = label(p12) and p21 is a leaf.  
  return <1, p1>   td(<T2>, <P12>) returns <1, p1>. 
 return <2, p1>    td(<T1, T2>, <P1, P2>) returns <2, p1> because 
           td(<T1>, <P1, P2>) returns <1, p1>. 
 label(t0) = label(p1), p1’s outdegree = 2. In line 26, compare the labels of and t0 and 
           p1; and check p1’s outdegree.   
return <1, pv>     Since label(t0) = label(p1) and p1’s outdegree = 2, 
           T contains P1. 



   

 

   

   
 

   

   

 

   

    On the top-down evaluation of tree inclusion problem 11    
 

    
 
 

   

   
 

   

   

 

   

       
 

C2. Then,  

1 if t1 = t2, p2 is a child of p1 

2 if p1 = p2, t2 is a child of t1. 

Proof. We first prove (1). If t1 = t2, it shows that T[t1] is involved in a second call of the 
second kind, but checked against a forest containing the subtrees respectively rooted at 
the children of p1 (see line 21 in td(F, G).) Therefore, p2 is a child of p1. 

Now we consider (2). If p1 = p2, it shows that G[p1] is involved in a second call of the 
second kind, which happens when the size of T[t1] is larger that the size of G[p1] plus the 
size of the subtree rooted at p1’s direct right sibling. This leads to a first kind of call to 
check the forest containing the subtrees respectively rooted at the children of t1 against 
the subtrees respectively rooted at p1 and its right siblings [see line 30 in td(F, G)]. In the 
execution of the first kind of call, p1 will be checked for a second time, but against a child 
of t1. � 

In terms of Proposition 2, we can see that |C2| is bounded by O(DF + DG). In a similar 
way, we can show that |C1| is also bounded by O(DF + DG). Therefore, |C| = |C1| + |C2| is 
in the order of O(DF + DG). 

Proposition 3. The space complexity of the algorithm is bounded by O(|F| + |G|). 

Proof. See the above analysis. � 

4 Correctness 

In this section, we prove the correctness of our algorithm. 

Proposition 4. Let T = <t; T1, …, Tk> and G = <P1, …, Pl>. If Algorithm td(<T>, G) 
returns <i, v>, where v = pv, or v ∈ δ–1(v’) and v’ is the left-most leaf node in P1, then T 
embeds the first i subtrees of v, and there is not any ancestor v’’ of v such that T 
embedding <j, v’’> with j > 0. 

Proof. We prove the proposition by induction on the sum of the heights of T and G,  
H = h(T) + h(G). h(T) is defined to be the height of its root, and h(G) is the height of its 
highest subtrees. 

Basic step. When H = 0, T is a singular t, and G is a set of nodes: p1, …, pk. In this 
case, the algorithm returns <0, pv> or <1, pv>, depending on whether label(t) = label(p1). 
See lines 17–19 in td(F, G). 

When H = 1, we consider the following two cases. 

1 T is a tree of height 1: <t; t1, …, tk> and G is a set of nodes: <p1, …, pl>. 

2 T is a singular t; but G is a set of trees of height 1 or height 0, but at least one of them 
is of height 1. 

In Case (1), lines 23 - 29 will be executed if |T| ≤ 2. If label(t) = label(p1), return <1, pv>. 
Otherwise, we will call td(<t1>, <p1>). If label(t1) = label(p1), it returns <1, pv>; 
Otherwise, it returns <0, pv>. If |T| > 2, td(<t1, …, tk>, <p1, …, pl>) is called (see line 30), 
which will find a sequence of integers: k1, …, kf such that label(

ikt ) = label(pi). The 

return value is <f, pv> (0 ≤ f ≤ l). 
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In Case (2), the return value is <0, p1> or <1, p1>, depending on whether t matches 
the first child of p1. See lines 17–19 in td(F, G). 

Induction hypothesis. Assume that when H = q, the proposition holds. 
Consider T = <t; T1, …, Tk> and G = <P1, …, Pl> with h(T) + h(G) = q + 1. 
If l = 1, or l > 1 but |T | ≤ |P1| + |P2|, the following checkings will be performed. 
If |T| < |P1| or h(t) < h(p1), we will make a recursive call td(<T >, <P11, …, P1j>), 

where <P11, …, P1j> is a forest of the subtrees of p1. The return value of td(<T>, <P11, …, 
P1j>) is used as the return value of td(<T>, G). According to the induction hypothesis, the 
return value is correct. Otherwise, we further distinguish between two cases: 

• label(t) = label(p1). In this case, we will call td(<T1, …, Tk>, <P11, …, P1j>). 

• label(t) ≠ label(p1). In this case, we will call td(<T1, …, Tk>, <P1>). 

In both cases, assume that the return value is <i, v>. A further checking needs to be 
conducted: 

If label(t) = label(v) and i = the outdegree of v, the return value should be <1, v’s 
parent>. 

Otherwise, the return value is the same as <i, v>. 
In the execution of td(<T1, …, Tk>, <P11, …, P1j>), a series of recursive calls of the 

form: td(<Ts>, <P1a, …, P1b>) will be performed. According to the induction hypothesis, 
each of them returns a correct value. 

Assume that the return value of each td(<Ts>, <P1a, ..., P1b>) is <is, vs>. If <T1, ..., Tk> 
is not able to cover any subtree from P11, ..., P1j, then each vs cannot be the parent of p1a, 
but a node on the left-most path in P1a. In this case, an extra recursive call of the form: 
td(<Tf+1, …, Tk>, <P[ 1fiw + ], ..., P[wg]>) will be conducted, where vf (with if > 0) is the 

first non-zero point such that it is not a descendant of any other non-zero point, and  
w1, …, wg are all its children. Repeat the above analysis, we can show the correctness of 
td(<T1, …, Tk>, <P11, …, P1j>). 

The above discussion demonstrates that the return value of td(<T1, …, Tk>, <P11, …, 
P1j>) is correct. In the same way, we can also show the return value of td(<T1, …, Tk>, 
<P1>) is correct. 

If l > 1 and |T | > |P1| + |P2|. In this case, we will call td(<T1, …, Tk>, G). Assume that 
the return value is <i, v>. The following checkings will be conducted. 

• If v = p1’s parent, the return value is the same as <i, v>. 

• If v ≠ p1’s parent, check whether label(t) = label(v)) and i = the out degree of v. If so, 
the return value will be changed to <1, v’s parent>. Otherwise, the return value 
remains <i, v>. 

According the induction hypothesis, in this case, the return value is correct. It completes 
the proof. � 

5 Experiments 

We have compared our algorithm with the algorithm by Chen (1998) experimentally. We 
conducted our experiments on a DELL desktop PC equipped with Pentium III 1.6 GHz 
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processor, 1.00 GB RAM and 20GB hard disk. The code was compiled using Microsoft 
Visual C++ compiler version 6.0, running standalone. 

In our experiments, two data sets are used as the target trees. One is part  
of DBLP, which is a popular computer science bibliography in XML format 
(http://www.cs.washington.edu/research/xmldatasets). The other is TreeBank, which is a 
database containing a set of linguistic text structures (http://www.cs.washington.edu/ 
research/xmldatasets). The important parameters of these data sets are summarised in 
Table 1. 
Table 1 Data set for experimental evaluation 

 Part of DBLP TreeBank 

Data size 2 (MB) 82 (MB) 
Number of nodes 53k 2,437k 
Max/Avg. depth 6/2.9 36/7.9 

The pattern trees (P1 and P2) used for testing the first data set is shown in Figure 7. This 
test is to check the impact of the number of leaf nodes in a tree pattern. The test results of 
P1 and P2 are shown in Table 2 and 3, respectively. 

Figure 7 Pattern trees checked against DBLP 

 

Table 2 Test result of checking P1 against DBLP 

 Time Number of node comparison 

Top-down 0.54s 178,287 
Bottom-up 0.56s 179,345 

Table 3 Test result of checking P2 against DBLP 

 Time Number of node comparison 

Top-down 0.647 191,252 
Bottom-up 1.73s 263,912 

From Table 2 and 3, we can see that although our top-down algorithm has the same 
worst-case time complexity as Chen’s bottom-up method (Chen, 1998), our algorithm 
makes much less node comparisons than Chen’s. This confirms the theoretical analysis 
conducted in Section 3. 

 
 
 

Year

DBLP 

Title Journal

Disjunctive 
unification 

1998 Fuzzy sets 
and systems

P1: 

Year

DBLP 

Title Journal

Disjunctive 
unification

1998 Fuzzy sets 
and systems

P2:

Author 

Tsu-Shin-Liu 



   

 

   

   
 

   

   

 

   

   14 Y. Chen and Y. Chen    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 8 Pattern trees checked against TreeBank 

 

The pattern tree (P3) for testing the second data set is shown in Figure 8. 
It is a forest containing two trees. In this test, a huge target tree is used to observe the 

difference caused by the space overheads of these two methods. 
Table 4 Test result of checking P3 against TreeBank 

 Time Number of node comparison 

Top-down 54.62s 7,038,874 
Bottom-up 372.32s 49,449,170 

From Table 4, we can see that for a large target tree the difference between ours and 
Chen’s is significant. It is not only due to the fewer comparisons conducted by our 
method, but also to the much less space used by ours. Chen’s method needs to create and 
maintain a set of data structures (called interval in Chen, 1998) for each node of the 
target tree, which requires extra time. 

6 Conclusions 

In this paper, a new algorithm is proposed to improve the algorithm discussed in Chen 
and Chen (2006a). The main idea behind it is to let any subprocedure call return a pair to 
indicate a subtree (subforest) embedding while in Chen and Chen (2006a), only a single 
integer is returned to indicate whether a whole forest (or the first several subtrees of the 
forest) is embedded by the corresponding target subtree. Together with a kind of 
information transferring to transfer the results obtained in a previous step to the next step 
computation to avoid any useless effort, high performance is achieved. The time 
complexity of the new algorithm is bounded by O(|T|⋅|leaves(P)|) while the space 
requirement is bounded by O(|T| + |P|), where T and P are a target and a pattern tree, 
respectively. 
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