
8

Graph Indexing for Efficient Evaluation of

Label-constrained Reachability Queries

YANGJUN CHEN and GAGANDEEP SINGH, Dept. Applied Computer Science,

University of Winnipeg, Canada

Given a directed edge labeled graph G, to check whether vertex v is reachable from vertex u under a label set

S is to know if there is a path from u to v whose edge labels across the path are a subset of S. Such a query is

referred to as a label-constrained reachability (LCR) query. In this article, we present a new approach to store

a compressed transitive closure of G in the form of intervals over spanning trees (forests). The basic idea is to

associate each vertex v with two sequences of some other vertices: one is used to check reachability from v to

any other vertex, by using intervals, while the other is used to check reachability to v from any other vertex.

We will show that such sequences are in general much shorter than the number of vertices in G. Extensive

experiments have been conducted, which demonstrates that our method is much better than all the previous

methods for this problem in all the important aspects, including index construction times, index sizes, and

query times.

CCS Concepts: • Theory of computation → Shortest paths;

Additional Key Words and Phrases: Labeled directed graphs, Label constraint reachability, Tree labeling,

Recursive graph decomposition, Spanning trees

ACM Reference format:

Yangjun Chen and Gagandeep Singh. 2021. Graph Indexing for Efficient Evaluation of Label-constrained

Reachability Queries. ACM Trans. Database Syst. 46, 2, Article 8 (May 2021), 50 pages.

https://doi.org/10.1145/3451159

1 INTRODUCTION

Graph reachability has received much attention in recent years in the graph database research
community. One of the important research problems is the so-called Label-Constrained Reach-

ability (LCR) over graphs. Given two vertices u and v in an edge labeled directed graph G and
a label constraint set S, an LCR query asks if there is a path from u to v such that all edge la-
bels on the path are a subset of S. As an example, consider a social network, where each vertex
v represents a person and two persons are linked by an edge if they are related in some way,
over which we may ask, for instance, whether u is a remote relative of v. Then, we will check
whether u is reachable from v through a path with each edge on it labeled only with those relation-
ships like parent-of, brother-of, sister-of, uncle-of, and so on. As a second example, we consider an

Authors’ addresses: Y. Chen, Dept. Applied Computer Science, University of Winnipeg, 515 Portage Ave., Winnipeg, Man-

itoba, Canada R3B 2E9; email: yc9579@gamil.com; G. Singh, 60 Osborne st. Winnipeg, Manitoba, Canada R3L 03C; email:

gagandeep.singh5133@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0362-5915/2021/05-ART8 $15.00

https://doi.org/10.1145/3451159

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

https://doi.org/10.1145/3451159
mailto:permissions@acm.org
https://doi.org/10.1145/3451159

8:2 Y. Chen and G. Singh

application in forensics and assume that a detective may want to investigate an individual who
is related to a known criminal through some relationships, such as money laundry, human traf-

ficking, and so on. Then, the reachability is checked under a set of labels, representing different
criminal activities. For the third example, let us have a look at a metabolic network that is also
an edge labeled graph with each vertex representing a compound. Two compounds are connected
by an edge if one can be transformed into another through a certain chemical reaction controlled
by a certain enzyme. Here, a basic question is whether two compounds can be active through a
pathway under a set of enzymes. Other practical applications such as semantic web, security net-
works, citation, and tracing the transmission of infectious diseases all need to take edge labels into
account. In fact, LCR queries also appear as an important fragment of the language of regular path
queries [4, 5, 7, 31], which are essentially reachability queries constrained by regular expressions.
Indeed, formulated in terms of regular path queries, LCR is equivalent to the problem of determin-
ing whether or not there is a path in G from u to v such that the concatenation of edge labels along
the path forms a string in the language denoted by a regular expression (a1 ∪· · · ∪ an)*, where
ai is taken from a certain alphabet (i = 1, . . . , n), ∪ is disjunction, and ∗ is the Kleene star. LCR

and, more generally, regular path queries are supported in practical graph query languages such
as SPARQL 1.1 (http://www.w3.org/TR/sparql11-query/), PGQL (pgql-lang.org), and openCypher
(http://www.opencypher.org).

According to the research on the large SPARQL query logs [40], LCR queries are a vast majority
of path related queries in the practical workload.

The research on efficient solutions for LCR queries was initiated in the work of Jin et al. [13]
with several recent follow-up studies [3, 16, 20, 22, 32]. However, they need either too much time to
build up indexes, such as the methods reported in References [22, 32], or too much time to answer
a query, such as in Reference [20], not scaling well to larger graphs that are common in contem-
porary applications. References [3] and [16]mainly target the computation of shortest paths.

In this article, we address this issue and present a new indexing method to solve the problem.
Generally, we recognize a kind of graph decomposition and edge classification, by which, with
respect to a spanning tree (forest) T of G, all the edges in G are divided into four disjoint groups:
tree edges, forward edges, cross edges, and back edges [10] and handled in different ways to avoid
constructing transitive closures (TC) or partial TCs [13], both of which require a great amount
of generation time and a very large storage space.

Concretely, our method works as follows:

• G will be decomposed into a series of k spanning trees (forests) T0, . . . , Tk-1 (for some k ≤ n).
Then, a series of tree-like subgraphs T0

′, . . . , Tk-1
′ will be created. If G is a directed acyclic

graph (DAG for short), then each Ti
′ (i = 1, . . . , k - 1) is constructed by adding to Ti, the

forward edges with respect to Ti. If G contains cycles, then both the corresponding forward
and back edges will be added to Ti to form Ti

′.
• Accordingly, each vertex v will be associated with two (uniquely determined) sequences:

X = x0, . . . , xr and Y = y0, . . . , yr with 0 ≤ r ≤ k - 1, x0 = y0 = v, and xj, yj ∈ Tj (0 ≤ j ≤ r). For 0 <
i ≤ r, xi is the dominant vertex of xi-1, used to check reachability from xi-1 to any other vertex
through cross edges while yi is the transferring vertex of yi-1, used to check reachability to
yi-1 from any other vertex through cross edges. So, X is called a from-sequence while Y is
called a to-sequence.

• To check whether v is reachable from another vertex u, also associated with a from-
sequence W = w0, . . . , ws and a to-sequence Z = z0, . . . , zs with 0 ≤ s ≤ k - 1, we will find
whether there exists an j (0 ≤ j ≤ min{r, s}) such that u = w0 �· · ·� wj-1 � wj, yj � yj-1

�· · ·� y0 = v, and yj is reachable from wj through a path in Tj
′. Here, wi � wi+1 (yi+1 � yi)

for 0 ≤ i ≤ j - 1 represents that wi+1 is reachable from wi (yi is reachable from yi+1) in Ti
′.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

http://www.w3.org/TR/sparql11-query/
http://www

Efficient Evaluation of Label-constrained Reachability Queries 8:3

• In this way, a query q (to check whether u � v under S) will be decomposed into a series of
subqueries q0, . . . , ql (0 ≤ l ≤ j), defined as below:
—For i = 0, q0 is to check whether w0 � y0 under S in T0

′. If it is the case, then return true.
Otherwise, continue to check q1.

—For i > 0, qi is evaluated in three steps:
(a) Check whether wi � wi+1 under S in Ti

′. If it is not the case, return false. Otherwise,
go to (b).

(b) Check whether yi+1 � yi under S in Ti
′. If it is not the case, then return false. Otherwise,

go to (c).
(c) Check whether wi � yi under S in Ti

′. If it is the case, then return true. Otherwise,
continue to check qi+1 if i < j - 1, or return false if i = j.

In addition, we also associate each vertex v with an extra pair of integers (sv, tv), working as a
filter, which are in fact two topological numbers, described in Reference [29]. If v is reachable from
another node u, associated with (su, tu), then we must have sv ≤ su and tv ≤ tu. Thus, sv � su or
tv � tv indicates a negation, and then neither the scanning of the to- and from-sequences nor the
checking of labels is needed to negatively answer a label constraint reachability query from u to v.

In this way, a query can be evaluated very efficiently, since the reachability within each Ti
′ (i =

1, . . . , k - 1) can be checked very quickly by using the index structure built for Ti
′. We will discuss

this index structure in great detail.
In summary, the index construction time for DAGS can be reduced to

O(
∑k−1

i=0 (mi + χi |Σ| + χihi)) while the index space to O(
∑k−1

i=0 (|Ti | + χi |Σ| + χihi)), where
mi is |Ti

′| plus the number of all the corresponding cross edges with respect to Ti, χ i, and hi

are, respectively, the number of all forward edges and the maximum number of forward edges
attached to a path in Ti, and Σ is the set containing all the edge labels of G. (We say, a forward
edge s → t is attached to a path p if both s and t appear on p.) The query time is bounded by

O(
∑k−1

i=0 (h2
i + hi |Σ|)). For cyclic graphs, the index construction time and the index space are

bounded by O(
∑k−1

i=0 (mi + bi + χi |Σ| + χihi)) and O(
∑k−1

i=0 (|Ti | + bi + χi |Σ| + χihi)), respectively,
where bi is the maximum number of all those back edges s→ t such that their end vertices t are

on a same path in Ti
′. The query time is bounded by O(

∑k−1
i=0 bi (h2

i + hi |Σ|)).
In general, k ≤ n. However, in our experiments, for all the tested real data graphs, k� n.
The organization of the rest of this article is as follows: We summarize the notations and symbols

used throughout this article in Section 2. In Section 3, we review the related work. In Section 4, we
define some important concepts related to graphs, edge labeled graphs, as well as LCR queries to
provide a discussion background. Section 5 is devoted to the description of our method for DAGs,
while Section 6 is for graphs containing cycles. In Section 7, we discuss all the important techniques
used by the processes described in Sections 5 and 6. In Section 8, we report the experiment results.
A short conclusion is set forth in Section 9.

2 NOTATIONS

Throughout the article, a lot of symbols and notations are used, which are summarized in Table 1
for reference.

3 RELATED WORK

In the past several decades, much research on the evaluation of reachability queries has been
made and many algorithms have been proposed. Roughly speaking, all of them can be divided
into two categories: reachability without label constraints and reachability with label constraints.
By the former, we will check whether two vertices are connected through a path in a directed

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:4 Y. Chen and G. Singh

Table 1. Symbols and Notations

G a directed graph

LCR(u, v, S, G) a query to check whether v is reachable from u under label set S in G

u � v representing that vertex v is reachable from vertex u through a path in G

T a spanning tree T plus all the forward edges

Tc a skeleton tree, formed by removing some vertices from T

Gc a summary graph, formed by removing some edges from T and adding some new
edges

T′ a spanning tree plus all the forward edges and back edges

l(e) label associated with an edge e

L(p) path label: all labels cross p

pv a tree path (a path in T) from the root to vertex v

puv a segment from u to v on a tree path p

A(p) a multi-set representing all the labels on p

T[v] the subtree rooted at v in T

[α , γ , β] a triplet associated with each vertex v, where α is v’s preorder number; β - 1 is equal
to the largest preorder number among all the vertices in T[v]; and γ is a set
containing the multi-labels of all the root-to-v paths in T that can be represented
very efficiently.

τ a quadruple of the form [s, t, A(pst), x], representing a forward edge from vertex s to
vertex t, attached to a tree path pst and labeled with x

Vc−start all the start vertices of cross edges

Vc−end all the end vertices of cross edges

Vf−start all the start vertices of forward edges

Vf−end all the end vertices of forward edges

Vfs all those start vertices s of forward edges s→ t, where t ∈ Vc−start or t is an ancestor
of some vertex in Vc−start with respect to T.

Vfe all those end vertices t of forward edges s→ t, where s ∈ Vc−end or s is a descendant
of some vertex in Vc−end with respect to T.

VLCA all those vertices with each being a lowest common ancestor (LCA for short) of more
than one vertex in Vc−start ∪ Vfs, which are not related by the ancestor/descendant
relationship in T

v→ dominant vertex of v, used to check reachabilty from v to some other vertices in Gc.

v← transferring vertex of v, used to check reachabilty to v from some other vertices in Gc.

Ef-c set of forward edges to be inserted into Gc

ωv combined sequence of dominant and transferring vertices, associated with v

ϖv label sequence, associated with v

Vb−start all the start vertices of back edges

Vb−end all the end vertices of back edges

Vbs all those start vertices u of back edges u→ v, where v ∈ Vc−start or v is an ancestor of
some vertex in Vc−start with respect to T.

Vbe all those end vertices v of back edges u→ v, where u ∈ Vc−end or u is a descendant of
some vertex in Vc−end with respect to T.

T′ a spanning tree T plus all the forward edges and all back edges

Gc
′ a summary graph, formed by removing some edges from T′ and adding some new

edges

Eb-c set of back edges to be inserted into Gc
′

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:5

graph [1, 4–6, 11–14, 23, 26, 27, 43–47]. By the latter, we will not only check whether a vertex is
reachable from another vertex in a directed graph, but also through a certain path whose labels
fall into a given set of labels [13, 16, 20, 22, 32].

—reachability without label constraints

Let G(V, E) be a directed graph. The reflexive, transitive closure of G is a digraph G* = (V, E*),
where v→ u ∈ E* iff there is a path from v to u in G. Obviously, if a transitive closure is physically
stored, then the checking of the ancestor-descendant relationship can be done in a constant time.
However, the materialization of a whole transitive closure is very space-consuming. Therefore, it
is desired to find a way to compress transitive closures, but without sacrificing too much query
time.

Chain decomposition methods. In Reference [11], Jagadish suggested a method to decompose
a DAG into vertex-disjoint chains. On a chain, if vertex v appears above vertex u, then there is a
path from v to u in G. Then, each vertex v is assigned an index (i, j), where i is a chain number,
on which v appears, and j indicates v’s position on the chain. These indexes can be used to check
reachability efficiently with O(μn) space overhead and O(1) query time, where μ is the number of
chains. However, to find a set of chains for a graph, Jagadish’s algorithm requires O(n3) time (see
page 566 in Reference [11]). In addition, the number μ of the produced chains is normally much
larger than the minimal number of chains. In the worst case, μ is O(n).

The method discussed in Reference [5] greatly improves Jagadish’s method. It needs only O(n2 +

ω1.5n) time to decompose a DAG into a minimum set of vertex-disjoint chains, whereω represents
G’s width, defined to be the size of a largest vertex subset U of G such that for any pair of vertices u,

v ∈ U there does not exist a path from u to v or from v to u. Its space overhead is O(ωn) and its query
time is bounded by a constant. In Reference [4, 6], the concept of the so-called general spanning
tree is introduced, in which each edge corresponds to a path in G. Based on this data structure, the
real space requirement becomes smaller than O(ωn), but the query time increases to log ω.

Interval-based methods. In Reference [1], Agrawal et al. proposed a method based on interval
labeling. This method first figures out a spanning tree T and assigns to each vertex v in T an interval
(a, b), where b is v’s postorder number (which reflects v’s relative position in a postorder traversal
of T); and a is the smallest postorder number among v and v’s descendants with respect to T (i.e.,
all the vertices in T[v], the subtree rooted at v). Another vertex u labeled (a′, b′) is a descendant
of v (with respect to T) iff a ≤ b′ < b. This idea originates from Schubert et al. [58]. In a next step,
each vertex v in G will be assigned a sequence s(v) of intervals such that another vertex u in G with
interval (x, y) is a descendant of v (with respect to G) iff there exists an interval (a, b) in s(v) such
that a ≤ y < b. The time and space complexities are bounded by O(λm) and O(λn), respectively,
where m = |E| and λ is the number of the leaf vertices in T. The querying time is bounded by O(log
λ). In the worst case, λ = O(n).

The method discussed in Reference [21] can be considered as a variant of the interval-based
method, and called Dual-I, specifically designed for sparse graphs G(V, E). As with Agrawal et al.’s,
it first finds a spanning tree T, and then assigns to each vertex v a dual label: [av, bv) and (xv, yv, zv).
In addition, a t × t matrix N (called a TLC matrix) is maintained, where t is the number of non-tree
edges (edges not appearing in T). Another vertex u with [au, bu) and (xu, yu, zu) is reachable from
v iff au ∈ [av, bv), or N(xv, zu) – N(yv, zu) > 0. The size of all labels is bounded by O(n + t2) and
can be produced in O(n +m + t3) time. The query time is O(1). As a variant of Dual-I, one can also
store N as a tree (called a TLC search tree), which can reduce the space overhead from a practical
viewpoint, but increases the query time to log t. This scheme is referred to as Dual-II.

2-hop labeling. The method proposed by Cohen et al. [8] labels a graph based on the so-called
2-hop covers. It is also designed for sparse graphs. A hop is a pair (h, v), where h is a path in G and

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:6 Y. Chen and G. Singh

v is one of the endpoints of h. A 2-hop cover is a collection of hops H such that if there are some
paths from v to u, then there must exist (h1, v) ∈ H and (h2, u) ∈ H and one of the paths between
v and u is the concatenation h1h2. Using this method to label a graph, the worst space overhead
is still in the order of O(n2). The main theoretical barrier of this method is that finding a 2-hop
cover of minimum size is an NP-hard problem. So, a heuristic method is suggested in Reference
[8], by which each vertex v is assigned two labels, Cin(v) and Cout(v), where Cin(v) contains a set
of vertices that can reach v, and Cout(v) contains a set of vertices reachable from v. Then, a vertex
u is reachable from vertex v if Cin(u) ∩ Cout(v) � ϕ (empty set). Using this method, the overall
label size is increased to O(

√
mlog n). In addition, a reachability query takes O(

√
m) time, because

the average size of each label is above O(
√
m). The time for generating labels is O(n4). The 2-hop

labeling is improved by the so-called 3-hop labeling [61] and path-hop labeling [9]. The path-hop
labeling is slightly better than the 3-hop labeling with its indexing time and index size bounded
by O(nm) and O(λn), respectively. Its query time is in the order of O(log2 λ).

Path-tree decomposition. Recently, Jin et al. [14] discussed a new method, by which a DAG
G is decomposed into a set of vertex-disjoint paths. Then, a weighted directed graph Gw (called
path-graph in Reference [15]) is constructed, in which each vertex represents a path and there is an
edge (i, j) if on path i there is a vertex connected to a vertex on path j. The weight associated with
(i, j) is the number of such connections. Then, find a maximum spanning tree Tw (called path-tree)
of Gw and label the vertices in Tw with intervals as done in the method proposed by Agrawal et al.
The space complexity of this method is O(λn). The query time and the labeling time are bounded
by O(log2 λ) and O(λm), respectively (see the analysis of Reference [14]). As mentioned above, λ is
bounded by O(n) in the worst case. Thus, theoretically, both the space requirement and the query
time of this method are worse than Agrawal’s [1].

GRAIL. The method proposed by Yildirim et al. [23] is a lightweight indexing structure. It
traverses G for several times to create an interval sequence for each vertex, used as a filter as
follows: Let LuL

1
u, . . . ,L

K
u and LV = L1

v, . . . ,L
K
v be the interval sequences of u and v, respectively.

If there exists i (i ∈ {1, . . . , k}) such that Li
u � Li

v then u is definitely not a descendant of v. But
if for all i ∈ {1, . . . , k} Li

u � Li
v, then it cannot be determined whether u is a descendant of v, or

vice versa. In this case, the whole G will be searched in the depth-first manner, but with the label
sequences used to prune the search space. The labeling time of this method is bounded by O(k(n +
m). If k is chosen as a constant, then the index size is proportional to O(n) and can be established
very fast. But in the worst case, the query time is O(m) as if no index is established. The method
discussed in Reference [29] is similar to GRAIL, but each vertex v is associated with a single pair
of integers (x, y). If v is reachable from another vertex u, associated with (x′, y′), we must have
x ≤ x′ and y ≤ y′. Thus, x � x′ or y � y′ indicates a negative answer, and then no traversal of G

is needed to further check the reachability from u to v.
SCARAB. In Reference [27], a different method is discussed, in which a deducted TC over a

subset V* of vertices, called a backbone and denoted as TC(V*), is created. Then, for any pair (u,

v), if u can reach v but through at least δ + 1 intermediate vertices (where δ is a pre-determined
constant), i.e., their distance is greater than δ , then there must exist two vertices u* and v* in V* such
that u can reach u*, v* can reach v within δ steps, and u* can reach v* in TC(V*). To find TC(V*), an
approximative algorithm is proposed in Reference [27], which is based on the set-cover algorithm
[59] and needs Ω(

∑
v∈V (Nδ (v) + Eδ (v))) time, where Nδ (v) and Eδ (v) denote the vertices and the

edges, respectively, in v’s forward δ -neighbourhood. In the worst case, its size is Ω(ndδ), where d

is the maximum out-degree of a vertex in G. This running time is slightly improved by using the
so-called one-side condition, by which V* is defined to be a subset covering any pair (u, v) with
distance(u, v) = δ , where distance(u, v) is the length of a shortest path from u to v. The index size
is obviously bounded by O(n + m + |V*|2). The query time is bounded by O(d �δ /2 + d2δ log |V*|).

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:7

This method is further improved by Jin et al. [31]. Two new strategies are proposed. One is called
hierarchical-labeling (HL) and the other is called distribution-labeling (DL). They are in fact
two variants of backbones. By the HL, a vertex hierarchy is defined as V0 = V ⊃ V1 ⊃ V2 ⊃ ··· ⊃ Vh,
with corresponding edge sets E0, E1, E2, . . . , Eh, such that Gi = (Vi, Ei) is the (one-side) reachability
backbone of Gi−1 = (Vi−1, Ei−1), where 0 < i ≤ h. Its theoretical labeling time is slightly better than
SCARAB, since Gi is constructed from Gi-1 and for the whole working process some time can be
saved. However, the backbone is used in the same way as SCARAB. So it has almost the same index
size and query time as SCARAB. By the DL, each single vertex makes up a layer, but with very high
labeling time Ω(nl(n + m)L), where L is the maximal labeling size. Also, its index size and query
time are comparable to SCARAB [27].

Independent-permutation. The method discussed in References [43, 47] is a hash-based ap-
proach. The main idea is to associate each vertex v with two sets out(v) and in(v). out(v) is the entire
set of vertices that u can reach including u itself while in(v) is the entire set of vertices in which
every vertex can reach u including u itself. To check u � v, it will be checked if u can reach all the
vertices that v can reach and all vertices that can reach u can also reach v, respectively, denoted as
out(v) ⊆ out(u) and in(v) ⊆ in(u). However, the set-containment checking out(v) ⊆ out(u) is done
by checking out(v) � out(u), instead. To speed up the operation, the so-called Bloom-filtering [47]
is used, by which the hash functions are utilized to reduce the space requirements. The main dis-
advantage of this method is the possible false positives due to the use of hash functions. In many
cases, the search of G is needed to answer a query.

PWAH. The method discussed in Reference [26] works in two phases. In the first phase, a
deducted transitive closure of G will be created using a method described in Reference [41], and
then for each vertex a bit vector is used to represent all those vertices reachable from it. In the
second phase, each of such vectors will be compressed using the so-called PWAH-8 encoding. In
this way, the size of TC can be effectively reduced at cost of more query time, since to check
reachability the relevant compressed bit vector has to be partially decompressed.

—reachability with label constraints

LCR queries are mainly discussed in References [13, 16, 20, 22, 32]. Although many strategies are
available for evaluating reachability queries without edge labels, such as those described above, as
well as those via regular paths [51, 52], none of them can be easily modified or extended for LCR

queries.
Jin et al. The first algorithm for this purpose was proposed in Reference [13], by which the

whole transitive closure of a graph G is divided into a spanning tree (forest) T and a partial tran-
sitive closure NT, defined according to a kind of path classification:

—Ps contains all the paths whose start edge is a tree edge (an edge in T).
—Pe contains all the paths whose end edge is a tree edge.
—Pn – contains all the paths whose start and end edges are both non-tree edges.

Accordingly, three sets of path labels between two vertices u and v can be defined. (A path label
is all the edge labels across a certain path.)

Ms (u,v) = {L(puv) |puv ∈ Ps }
Me (u,v) = {L(puv) |puv ∈ Pe }
NT (u,v) = {L(puv) |puv ∈ Pn } −Ms (u,v) −Me (u,v)

where puv stands for a path from u to v, and L(puv) for the path label of puv.
Then, NT is defined to be all NT(u, v)’s for (u, v) ∈ V × V.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:8 Y. Chen and G. Singh

Denote by succ(v) all the successors of v in T and pred(v) all the predecessors of v in T. All the
path labels between u and v can be represented as

M (u,v) = NT (u,v) ∪ ({T (u,u ′) |u ′ ∈ succ (u)} � {NT (u ′,v ′)} � {T (v ′,v) |v ′ ∈ pred (v)})

where T(u, u′) represents a path label from u to u′ in T, and ʘ operator joins two sets of sets, such
as {s1, s2} ʘ {s1’, s2’} = {s1 ∪ s1’, s1 ∪ s2’, s2 ∪ s1’, s2 ∪ s1’}.

To mitigate the computational complexity of NTs to some extent, Jin et al. have also used two
additional techniques. By the first one, NT(u, v) is reduced based on a simple fact that if a path label
L from u to v is a superset of another path label L′ also from u to v, then L can be removed from
NT(u, v) without affecting the correctness of LCR queries, since if L ⊆ some label constraint S, then
we must also have L′ ⊆ S. Thus, NT(u, v) contains only non-comparable elements in the power set

of Σ and its size is bounded by (|Σ ||Σ |/2
). This bound can be easily observed and in Combinatorics

is often referred to as the Sperner’s theorem [2]. In the worst case, this pruning process requires
O(n32|Σ|) time [13]. The second technique is based on a different observation that different spanning
trees (forests) will lead to different NTs. To find a best spanning tree (forest) to minimize the size
of an NT, a weight w(e) for each edge e is introduced, defined to be proportional to the number
of path labels that can be removed from the NT if e appears in T. With w(e)’s, any algorithm for
finding a maximum spanning tree can be used for this purpose.

However, the cost for finding w(e)’s is prohibitively high. For this reason, Jin et al. proposed a
sampling method to compute a single-source transitive closure for each sampling vertex, which
enables them to develop a heuristics to find w(e)’s. The time required for this process is bounded

by O
(
km
(|Σ |
|Σ |/2

))
with O (n2 (|Σ ||Σ |/2

)) space required for storing indexes, where κ is the number of

sampling seeds (vertices) for each of which a single-source transitive closure is created [13]. The

query time is bounded by O(logκ +
∑k−1

i=0 |NT (ui ,vi) |), where k is the maximum number of pairs
(ui, vi) such that ui is reachable from u (under a label constraint set S) and v is reachable from vi

(under S) through a tree path in T [13].
Zou et al. The method described above has been improved by Zou et al. [22, 32]. In their algo-

rithm, an interesting concept of distance was introduced, by which the distance of two vertices u,

v is defined to be the minimum number of distinct edge labels among all the paths from u to v.
Based on this concept, they designed a Dijkstra-like algorithm to generate single-source transitive
closures, by which redundant path labels, which would be created by Jin et al. [13] can be avoided.
The reason for this is as follows: Let p1, p2 be two paths both going from u to v. Assume that
L(p2) ⊆ L(p1). Then, the distance of p1 must be larger than p2 and the Dijkstra’s algorithm will
ignore p1 and only explore the shorter path p2.

Another improvement of Reference [32] consists in the isolation of SCCs. For each SCC contain-
ing vertices v1, . . . , vk for some k, a bipartite graph is created, which contains two sets of vertices
V1 = {v1

1 , . . .v
1
k
},V2 = {v2

1 , . . .v
2
k
}, and there is an edge v1

1 → v2
j for each pair vi, vj in the SCC, as-

sociated with the path labels of all the paths from vi to vj. In this way, many redundant path labels
can be removed.

For very large graphs, Zou et al. [32] also proposed a graph partitioning strategy, by which
G is divided into several components and for each of them an index as described above will be
constructed. Hence, for evaluating an LCR query, the use of indexes and graph searching have to
be hybridized in some way.

Although much redundant work is removed by Zou et al. [32], the theoretical computational
complexities of their methods remain the same as the algorithm of Jin et al. [13]. This can be easily
seen by considering a graph with each edge differently labeled. In such a graph, no path label is
redundant.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:9

Valstar et al. Recently, Valstar et al. has proposed a method [20] that is slightly different from
Jin’s. By this method, a set of vertices, referred to as landmarks, is first randomly selected, and for
each of them a single-source transitive closure is constructed. Then, two more data structures are
added:

• For each non-landmark vertex v, a set of pairs (v′, L) with v′ being a landmark will be built,
where L is a set of path labels from v to v′.

• For each landmark vertex u, a set of pair (H, L) will be established, where H contains a subset
of landmarks each reachable from u through a path labeled with L.

According to Reference [20], the index construction time and size are, respectively, bounded
by O(λ(n(log n + 2|Σ|) + m)2|Σ|), and O(λn2|Σ|), where λ is the number of the chosen landmarks.
However, in the worst case, the query time is bounded by O(m), since for a false query almost the
whole graph needs to be searched if the landmarks in the index cannot be used.

Hassan et al. The method discussed in Reference [16] is to find a shortest path p from a vertex
v to another vertex u such that all edge labels on p are a subset of S, which is a more general
problem than LCR. The main idea behind it is to run the Dijkstra’s algorithm against an index
structure described below.

• By the index, graph G is partitioned into |Σ| portions such that each of them contains only
the edges of the same label.

• A vertex u in a portion P is called a bridge if it has at least one outgoing edge with a label
different from P. Then, between each u and a bridge vertex v (within P) a short cut edge e

is produced. The weight of e is defined to be the sum of all the edge weights on a shortest
path from u to v (within P).

To check whether v is reachable from u under S, the subgraph composed of all the shortcuts in
all those portions with labels appearing in S will be traversed using the Dijkstra’s algorithm.

The indexing time and the index size are bounded by O(|Σ|n′3) and O(m + |Σ|n′d), respectively,
where n′ is the largest number of vertices in a portion and d is the largest vertex out-degree in G.
According to Reference [16], its query time is bounded by O(|S| m′ + |S|n′log n′), where m′ is the
number of edges in a largest portion. (The method proposed in Reference [39] is another algorithm
for finding a shortest path under S. But according to the experiments reported in Reference [16],
this method’s query time is up to four orders of magnitude worse than the algorithm discussed in
Reference [16]).

Regular path queries (RPQ). This kind of queries is essentially reachability queries, but con-
strained by regular expressions [51], and therefore is also more general than LCR. In fact, LCR is
just a subset of RPQ, equivalent to the problem of determining whether or not there is a path in
G from u to v such that the edge labels along the path make up a string ∈ (a1 ∪· · · ∪ an)*, where
each ai (i = 1, . . . , n) is a label taken from a given set of symbols. To the best of our knowledge,
current state-of-the-art systems (such as SPARQL engines) rely on variations of BFS with no in-
dex being used [55] or use indexes that cannot be effectively applied for LCR queries, since they
handle different query types (see References [56, 57]). Besides, the current techniques on regular
path query evaluation on RDF database systems is impractical on graphs with more than a few
thousand edges [38]. However, modern applications require to process queries on a graph that is
multiple orders of magnitude larger.

In addition to the above methods, there are some approximate approaches discussed in the lit-
erature, such as the algorithm proposed by Bonchi et al. [3] to compute approximately shortest
paths between two vertices, and the method described by Dumbrava et al. in Reference [42] to
give approximate answers to LCR queries, as well as the strategy discussed in Reference [52] for

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:10 Y. Chen and G. Singh

Fig. 1. A running example.

approximate regular-simple-path reachability. None of these methods can be modified to an effi-
cient approach to produce exact answers to LCR.

In our approach, however, we avoid constructing large TCs or partial TCs by decomposing a
graph into a series of subgraphs to keep and transfer reachability information through common
edges among them. More importantly, this enables us to build a very concise index structure by
which each vertex v is associated with two sequences used to check reachability from v, as well as
to v, respectively. The length of each sequence is much shorter than n, therefore requiring much
less space for storing indexes than all the existing methods. However, unlike Valstar’s [20] and
Hassan’s [16], by which only part of vertices is indexed and G needs to be searched when the
index cannot be used, our method indexes all vertices and no search of G is needed in any case.

4 BASIC DEFINITION

In this section, we give all the basic definitions that are required for the subsequent discussion.
First, we restate the edge labeled directed graph, which was first described in Reference [13].

Definition 4.1 (Edge Labeled, Directed Graphs [13]). An edge labeled, directed graph is a quadru-
ple G = <V, E, Σ, l>, where V is a finite set of vertices, Σ is a set of labels, E ⊆ V × V is a finite set of
edges, and l: E→ Σ is a labeling function that assigns each edge e ∈ E a label in Σ, denoted as l(e).

As an example, consider Figure 1, in which we show a typical edge labeled directed graph (where
solid and dashed edges are with respect to the edge classification to be discussed later in this
section). As in Reference [13], we will use integers to represent vertices and letters for edge labels.
In addition, in the following discussion, we will simply refer to an edge labeled directed graph as
a graph, since we will not touch any other kind of graphs.

Given two vertices u and v in a graph G, a path p from u to v is represented as a sequence p =

(u1, e1; u2, e2; . . . ; uk) for some k, where u1 = u, uk = v, and for each i ∈ {1, . . . , k − 1} ei = ui → ui+1.
In the case that k = 1, we have u = v and consider e0 = u → u as a virtual edge labeled with an
empty symbol.

Based on the edge labels, the label of a path can be defined as follows:

Definition 4.2 (Path Labels). Let G = <V, E, Σ, l> be a graph. Let p = (u1, e1; u2, e2; . . . ; uk) be a
path from u to v. Then, the label of p is a set of labels L(p) = {l(e1)} ∪ {l(e2)} ∪ . . . ∪ {l(ek−1)}.

For example, in Figure 1, for path p = 1
b−→ 2

a−→ 5
e−→ 10

d−→ 13, we have L(p) = {a, b, d, e}.

Definition 4.3 (Problem Definition [14]). Given two vertices u and v in G and a label set S. Vertex
v is reachable from vertex u under S if there is a path p from u to v and L(p) ⊆ S.

The query defined above is denoted as LCR(u, v, S, G), or LCR(u, v, S) if G is clear from the
context. For example, with respect to G shown in Figure 1, LCR(1, 13, {b, c, d, e}) asks if vertex

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:11

13 is reachable from vertex 1 under label constraint {b, c, d, e}. Since there is a path p from 1 to
13 such that L(p) = {b, c, d} ⊂ {b, c, d, e}, the query evaluates to true. However, LCR(1, 13, {a, c})
evaluates to false, since although vertex 13 is reachable from vertex 1, we cannot find any path
satisfying the corresponding label constraint. In fact, infinitely many paths connecting 1 and 13

can be recognized due to the cycle: 5
e−→ 10

d−→ 13
f
−→ 5. However, none of them have a path label

in {a, c}.

Definition 4.4 (Edge Classification [10]). By a spanning tree (forest) T of G, we mean a subgraph
of G, which is a tree (forest) and covers all the vertices of G. With respect to T, all the edges in G

can be classified into four groups:

• Tree Edge (Etree): edges appearing in T.
• Cross Edge (Ecross): any edge u→ v such that u and v are not on the same tree path in T.
• Forward Edge (Eforwad): any edge u→ v not appearing in T, but there is a tree path from u

to v in T.
• Back Edge (Eback): any edge u→ v not appearing in T, but there is a tree path from v to u in

T.

For example, by exploring G in Figure 1 in the depth-first manner, we can find a
spanning tree T as shown by the solid edges. With respect to T, we have Ecross =

{6 d−→ 13, 14
e−→ 6, 15

e−→ 5, 9
b−→ 7, 9

d−→ 15}, Ef orward = {3
d−→ 11, 7

f
−→ 14, 4

d−→ 12}, and Eback =

{13
f
−→ 5, 15

b−→ 1}. All such cross, forward, and back edges together are referred to as non-tree
edges and represented as dashed edges in Figure 1. Finally, we point out that in a DAG, we defi-
nitely have no back edges, since a back edge implies a cycle.

In addition, we may not be able to find a spanning tree, instead, a spanning forest T. In this case,
we can always construct a spanning tree by creating a virtual root and connecting it to the root
of every tree in T with an edge labeled with an empty symbol. Therefore, we will not distinguish
spanning trees and spanning forests and always assume that there is a virtual root if what is found
is a spanning forest.

5 LCR QUERIES OVER DAGs

In this section, we present our algorithm to evaluate LCR queries over DAGs, by which a DAG will
be recursively decomposed and accordingly a query will be transformed into a series of subqueries
with each being able to be evaluated efficiently.

We first sketch the overall idea of graph decomposition in Section 5.1. Then, we discuss how
to evaluate reachability queries over the decomposed two parts in Section 5.2 and Section 5.3,
respectively. In Section 5.4, we discuss how the recursive graph decomposition can be carried out.
The analysis of time and space complexities and a proof of correctness are presented in Section 5.5.

5.1 Overall Idea

Let T be a spanning tree of G. Denote T ∪ Eforward by T. By the first decomposition of G, we will
establish T from G and form a summary graph Gc containing the reachability information through
the cross edges and transform the query LCR(u, v, S, G) to a subquery that checks reachability
over T (referred to as a T-checking) followed by another subquery checking reachability over
Gc (referred to as a Gc-checking). Specifically, we will first check whether v is reachable from u

under S in T. If it is the case, then return true. Otherwise, we will continue to check whether v

is reachable from u under S in Gc. When doing this, Gc itself will be further decomposed, leading
to an elegant recursive strategy. As an example, consider the DAG shown in Figure 2(a), which is

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:12 Y. Chen and G. Singh

Fig. 2. A spanning tree and the corresponding Gc.

obtained by eliminating all the back edges from the graph shown in Figure 1. It can be decomposed
into a spanning tree T shown by the solid edges in Figure 2(a) plus the relevant forward edges

(3
d−→ 11, 7

f
−→, 14, 4

d−→ 12), and a Gc shown in Figure 2(b). Here, we notice that Gc is not a proper
subgraph of G, but with some edges changed to transfer information of reachability. However,
we will use the word “decomposition” to refer to the transformation of G into T and Gc without
causing confusion.

Assume that we want to know whether vertex 10 is reachable from vertex 4 under {b, d, e}. First,
we will check whether 10 is reachable from 4 under {b, d, e} in T. Since it is not the case, we need
to check Gc. For this, we will find vertex 9 and vertex 5 in Gc and check their reachability. It is
because

if vertex 4 reaches any vertex in G through a path going through some cross edges, it must go

through vertex 9; and if any vertex in G reaches vertex 10 through a path going through some cross

edges, it must go through vertex 5.
Thus, the following three-step checking will be carried out:

(i) 4 � 9 under {b, d, e} in T?
(ii) 9 � 5 under {b, d, e} in Gc?

(iii) 5 � 10 under {b, d, e} in T?

Each of the above checks returns true. So we know that vertex 10 is reachable from vertex 4
under {b, d, e}.

The motivation to decompose a graph in such a way is that the transitive closure of T can be
very effectively compressed while the corresponding queries can be very efficiently evaluated.

In the following, we will first discuss the T-checking, and then how Gc can be constructed, as
well as how the Gc-checking can be recursively conducted. For simplicity, here we will not discuss
how to select spanning trees to increase the number of forward edges (and then decrease the
number of cross edges), which will eventually lead to fewer recursive graph decompositions. We
shift this part of discussion to Section 7.1.

5.2 T-checking

For doing a T-checking efficiently, a kind of tree labeling needs to be designed.

5.2.1 Tree Labeling. Let p be a Path in T. We will use A(p) to represent a multi-set of the form

{aj1

1 , . . . a
jk

k
}, or simply aj1

1 . . . a
jk

k
with each ji > 0 (i = 1, . . . , k), containing all the edge labels on p,

where each ai (1 ≤ i ≤ k) is a label appearing on p and ji is the number of edges on p, which are
labeled with ai. For example, for p = 1→ 3→ 7→ 11→ 14 in Figure 1, we have A(p) = b2c2.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:13

Fig. 3. Tree encoding for the vertices in T shown in Fig. 2(a).

First, for computing the labels over a subpath, we need the following concept:

Definition 5.1 (Difference of Multi-Sets). Let B and C be two multi-sets. The difference between

B and C, denoted as B - C, is also a multi-set of the form aj1

1 . . . a
jk

k
with each ji > 0 such that for

each i ∈ {1, . . . , k} ai ∈B, but ai� C; or there exist integers x, y such that ax
i ∈ B, a

y
i ∈ C , and x - y =

ji.

Let p′ be a subpath of p. Denote by p\p′ the remaining part of p after p′ is cut off from it. We can
use A(p) - A(p′) to represent the remaining multi-set of p after p′ is discarded. For instance, for a
subpath p′ (of p) = 1→ 3→ 7, we have A(p′) = bc. Then, A(p) - A(p′) = b2c2 - bc = b(2-1)c(2-1) = bc,
which is all the edge labels over p′′ = p\p′ = 7→ 11→ 14.

Obviously, if A(p) = aj1

1 . . . a
jk

k
with each ji > 0, then we must have L(p) = {a1, . . . , ak}. Different

from L(p), A(p) is referred to as a multi-label of p. Without causing confusion, we will interchange-
ably use A(p) ⊆ S or L(p) ⊆ S to represent the containment of all the labels on p in S.

Now, consider LCR(u, v, S, G). By the T-checking, we will evaluate LCR(u, v, S, T). For this
purpose, we will associate each vertex v in T with a triplet: [α , γ , β], where α is v’s preorder
number, which is created when searching T in preorder; β - 1 is equal to the largest preorder
number among all the vertices in T[v], and γ is a set containing the multi-labels of all the root-to-v
paths in T. For example, with respect to the spanning tree shown by the solid arrows in Figure 2(a),
vertex 6 is labeled with [5, {bc}, 6], and vertex 12 is labeled with [14, {cb2, cd}, 15] (see Figure 3). In
the same way, we can check all the other triples in Figure 3. In addition, we call [α , β] an interval
of v.

Let u, v be two vertices on a tree path in T and u is above v (i.e., u is an ancestor of v with respect
to T). We will use pu to stand for the tree path from the root to u and puv for the tree path from
u to v. Obviously, A(puv) = A(pv) - A(pu). If there exists a forward edge e = s→ t attached to puv,
then we say, pst (also, any of its subpaths) is covered by e. Replacing pst with e, we will get another
path whose multi-label can be obtained by replacing the multi-label of pst by the label on e.

Using γ uv to represent all those multi-labels with each representing a path label from u to v, we
have the following lemma:

Lemma 5.1. Let u and v be two vertices in T associated with [αu, γ u, βu] and [αv, γ v, βv], respec-

tively, and S be a label set. Vertex v is reachable from vertex u under S if the following two conditions

are satisfied:

1. [αu, βu] ⊇ [αv, βv], and

2. there exists a multi-label S′ in γ uv such that S′ ⊆ S.

Proof. If [αu, βu] ⊇ [αv, βv], then there must be a path from u to v in T. So, v is reachable from
u in T. If S′ ⊆ S, then there must be a path p from u to v such that A(p) = S′ ⊆ S, where p is either
the tree path from u to v, or a path formed by replacing some edges on the tree path from u to v

with the corresponding covering forward edges. �

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:14 Y. Chen and G. Singh

For example, to check whether 14 is reachable from 3 in T (i.e., T plus all the forward edges
shown in Figure 2(a)) under {d, b, e}, we will first check whether [α3, β3] = [6, 11] ⊇ [α14, β14] =
[9, 10]. Since it is the case, we will further check whether there is a multi-label in γ 3,14 = {bd, cf,

bc2}, which is a subset of {d, b, c}. Since it is also true, the answer to the query is yes.
However, the reverse of Lemma 5.1 is not always true. That is, Lemma 5.1 is only a sufficient

condition, not necessary for reachability, since we may have reachability through cross edges.
Therefore, in the case that a T-checking returns false, the corresponding Gc-checking should be
conducted. For instance, even though [α4, β4] = [11, 15] � [α14, β14] = [9, 10], 14 is reachable from
4, but through some cross edges in Gc.

According to Lemma 5.1, we give the following algorithm T-checking() to do a T-checking:

ALGORITHM 1: T -checking(u, v , S , T)

begin

1. if u = v then return true;

2. if [αv , βv] � [αu , βu] then return false;

3. check all multi-labels from u to v by using γuv ;

end

However, in the above algorithm, line 3 should be further specified on how to compute γ uv, as
well as how to check multi-labels in γ uv. In the following, we will present two methods to do this
task.

5.2.2 T-search Based Method. By the first method, we view T itself as a storage of all γ ’s. To
evaluate LCR(u, v, S, T), we will explore T to find a path p, which is made up of some edges on puv

and some forward edges attached to puv, such that A(p) ⊆ S.
Specifically, this can be done as follows.

(1) Search T starting from u in the depth-first manner.

(2) For each encountered edgeu ′
l−→v ′ (a tree edge or a forward edge), we will check whether

[αv′ , βv′] ⊇ [αv, βv]. If it is not the case, then the containment of l in S will not be checked
and the subgraph rooted at v′ will not be further explored. Otherwise, we distinguish
between two cases:

(i) l ∈ S. In this case, if v′ = v, then return true; otherwise, continue to explore the subgraph
rooted at v′ in T.

(ii) l � S. We will check another edge going out from u′, which has not yet been visited.
If such an edge does not exist, then backtrack to explore the edges leaving the vertex
from which u′ was discovered.

(3) This process continues until we find a path satisfying the condition, or all the edges going
out of u have been visited. In the former case, return true. In the latter case, return false.

This is a very simple process, but needs to search part of T (concretely, a tree path from u to
v in T and some forward edges attached to it). For very large graphs, it can be time-consuming.
To mitigate this problem to some extent, we organize all the forward edges into a graph, called
a compatible graph, and replace the search of T with the search of such a graph, which will be
discussed in the next subsection in great detail.

5.2.3 Compatible Graph-based Method. Let v be a vertex in T. Let ei = si
x−→ ti

(i = 1, . . . , l for some l) be all the forward edges attached to pv. We will use a compact data
structure (accompanied with a simple procedure to do replacements of subpaths by forward

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:15

Fig. 4. Illustration for compatible graphs.

edges) to represent γ v in [αv, γ v, βv]:

<A(pv);τ1, . . . ,τl ; λv>,

where each τ i (i ∈ {1, . . . , l}) is a quadruple of the form [si , ti ,A(psi ti
),x] corresponding to a forward

edge ei and λv is a multi-label (appearing on pv) such that each label in it is not covered by any
forward edge attached to pv, and therefore cannot be “replaced away” by using forward edges.
That is, λv must appear on any path from the root to v in T.

For example, in the spanning tree T shown in Figure 2(a), we have p12 =

1
c−→ 4

b−→ 9
b−→ 12,A(p12) = b2c , and then γ 12 = <b2c; [4, 12, b2, d]; {c}>. Here, we note

that λ12 = {c} contains a label not appearing on the segment from 4 to 12 in T, which is covered by

the unique forward edge 4
d−→ 12 attached to p12.

Using this data structure, any path label in T can be dynamically produced.
To show how this works, we need to define another two concepts.

Definition 5.2 (Replacement). Let v be a vertex in T, and s
x−→ t be a forward edge attached to pv.

A replacement of pst with τ = [s, t, A(pst), x] on pv, denoted as pv°τ , is a multi-set, equal to (A(pv) -
A(pst)) ∪ {x}.

For example, for p12 and τ = [4, 12, b2, d] shown above, we have p12 ° τ = cd. This is A(p) for
another path p from vertex 1 to 12.

Definition 5.3 (Compatibility of τ ’s). Let τ 1 = [s, t, A(pst), x1], and τ 2 = [s’, t’, A(ps’t’), x2] be two
quadruples in a γ v. We say τ 1 and τ 2 are compatible if pst and ps’t’ are not edge-overlapped.

For illustration, consider the tree path shown in Figure 4(a) and the four attached forward edges
e1, e2, e3, and e4. Denote by τ i the quadruple built for ei (i = 1, . . . , 4). Then, τ 1 and τ 3 are compatible
while τ 1 and τ 2 not. So, for a set of compatible quadruples τ 1, . . . , τ j corresponding to j forward
edges attached to pv, pv° τ 1 ° . . . ° τ j must be equal to A(p) for some p in T.

Assume that for a given query LCR(u, v, S, T) we have [αu, βu] ⊇ [αv, βv], but L(puv) � S. In this
case, we will first check λuv = λv - λu. If λuv contains any label � S, then return false, since such
a label definitely appears on any path from u to v and thus the query cannot be satisfied. To see
this, consider LCR(1, 12, {d, f }, T) with T being a tree shown by the solid edges in Figure 2(a) plus
all the forward edges. Obviously, we have [α1, β1] = [0, 15] ⊇ [α12, β12] = [14, 15]. But L(p1,12)
= {b, c } � S = {d, f }. We will then check λ1,12 = λ12 - λ1 = {c } - ϕ = {c }. Since c � S = {d, f },

return false. It is because 1
c−→ 4 is not covered by any forward edge attached to p1,12 and therefore

cannot be replaced, which implies that a path label (from 1 to 12) coverable by S can never be
found. In the opposite, however, for the path shown in Figure 4(a), λv = ϕ ⊆ any set S, and hence

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:16 Y. Chen and G. Singh

the corresponding replacements should be always searched (since a replacement may lead to a
satisfying answer).

Let γ u = <A(pu); τ 1, . . . , τ k; λu> and γ v = <A(pv); τ 1
′, . . . , τ l

′; λv>. The general working process
begins to calculate Auv =A(pv) - A(pu) first. If Auv � S, then we will check whether λuv = λv - λu ⊆ S.
If it is not the case, then return false. Otherwise, we will try to find a set of compatible quadruples:
τi1, . . . τi f (0 ≤ f ≤ l) (0 ≤ f ≤ l) attached to puv such that puv ◦ τi1 ◦ . . . τif

⊆ S . This process can
be expedited by organizing all τ i’s in γ v into a graph, called a compatible graph, as defined below.

First, we use τ .s, τ .t, τ .A, τ .x to refer to the four elements in τ , respectively.

Definition 5.4 (Compatible Graphs). A compatible graph Cv for γ v = <A(pv); τ 1, . . . , τ l; λv> is a
graph, in which each vertex represents a τ i in γ v. There is an edge τ i → τ j if (1) τ i and τ j are com-
patible, (2) τ i.s is an ancestor of τ j.s, (3) between τ i and τ j is there no other τ , which is compatible
to both.

According to this definition, for any edge τ → τ ′ in a compatible graph, we definitely have no
path of length at least two (edges) from τ to τ ′. Otherwise, condition (3) is violated.

As an example, see the path (segment) puv shown in Figure 4(a) and all the attached forward
edges, for which we will construct a compatible graph as shown in Figure 4(b). In this graph, each
τ i corresponds to a forward edge ei in Figure 4(a). In terms of the above description, we can design
an algorithm to explore Cv to find a set: τ 1, . . . , τ j (for some j) along a path such that puv° τ 1 ° . . . °
τ j ⊆ S. For instance, to evaluate LCR(u, v, {a, c, d }, T), where T is shown in Figure 4(a), we need to
explore a path from v1 to v4 in Figure 4(b) to find τ 1 and τ 4 such that puv° τ 1 ° τ 4 = a2c2b2

° [u, h,

ab, d] ° [z, v, bc, a] = a2cd ⊆ S = {a, c, d }.
In Section 7.2, we will discuss in great detail how to explore Cv efficiently to find a replacement.

Also, how to create a general compatible graph, denoted CT, for all forward edges in T, instead of
separated Cv’s.

5.3 Gc-checking

In this subsection, we discuss the Gc-checking, which will be invoked if the corresponding T-
checking fails. As will be seen later, it is much more complicated than the T-checking, but can be
done very efficiently. First, we show how Gc is constructed. Then, how a Gc-checking is made to
complete the evaluation of an LCR query.

5.3.1 Subgraph Gc. It is a difficult task to construct Gc efficiently, since we have to figure out
what edges should be added to Gc to transfer reachability. For this purpose, a subtle classification
of vertices in T needs to be carefully conducted:

• Vc−start - all the start vertices of cross edges.
• Vc−end - all the end vertices of cross edges.
• Vf−start - all the start vertices of forward edges.
• Vf−end - all the end vertices of forward edges.
• Vfs - all those start vertices s of forward edges s → t, where either t ∈ Vc−start or t is an

ancestor of some vertex in Vc−start with respect to T. (See the left part of Figure 5(a) for
illustration.)

• Vfe - all those end vertices t of forward edges s → t, where either s ∈ Vc−end or s is a de-
scendant of some vertex in Vc−end with respect to T. (See the left part of Figure 5(b) for
illustration.)

• VLCA - all those vertices with each being a lowest common ancestor (LCA) of more than
one vertex in Vc−start ∪ Vfs, which are not related by the ancestor/descendant relationship
in T.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:17

Fig. 5. Illustration for Vfs and Vfe.

In the above classification of vertices, the first four classes are quite straightforward. To see
what is Vfs, let us have a look at Figure 5(a) (left part), in which we can see a forward edges s→
t (labeled with x) with t being an ancestor of a vertex v ∈ Vc−start. Then, s is a vertex belonging to
Vfs.

Similarly, to see what is Vfe, let us see Figure 5(b) (left part). Here, we can find another forward
edge s → t (labeled with y) with s being a descendant of a vertex u ∈ Vc−end. Then, t is a vertex
belonging to Vfe.

The reason for recognizing these vertices is that both kinds of forward edges need to be kept
in Gc to check reachability through cross edges, but with edge labels somehow changed (to be
discussed below).

Finally, the understanding of VLCA is also straightforward. As an example, let us have a close
look at Figure 2(a) again, for which we have

Vc−star t = {6, 14, 15, 9}
Vc−end = {5, 13, 6, 7, 15}
Vf −star t

= {3, 7, 4}
Vf −end

= {11, 12, 14}
Vf s = {3, 7}
Vf e = {14}, and
VLCA = {1, 7}

Especially, we notice that vertex 1 is the LCA of {6, 3, 9} ⊂ Vc−start ∪ Vfs while vertex 7 is the
LCA of {14, 15} ⊂ Vc−start. We need to recognize this sort of vertices, since they can be used as
“connecting” points to transfer information on reachability through cross edges.

By using a linear time algorithm for finding all LCAs, we can recognize all these subsets in O(m)
time. We will discuss this algorithm in great detail in Section 7.3.

Now, we begin to discuss the construction of Gc. First, let us denote Vc = VLCA ∪ Vc−start ∪ Vc−end

∪ Vfs ∪ Vfe. We define a tree (forest) structure Tc (as part of Gc), called a skeleton tree of G (with
respect to T), which contains all the vertices in Vc for the following reasons:

Vc−start and Vc−end are included to keep information on reachability through cross edges;
Vfs and Vfe are included to keep information on reachability through forward edges; and
VLCAis included as “connecting” points between T and Gc.
In Tc, there is an edge from u to v if and only if there is a path p from u to v in T and p contains

no other vertices in these subsets except u and v themselves. In Figure 6, we show a Tc built for the
graph shown in Figure 2(a). So, an edge u→ v in Tc may correspond to a path in T, labeled with

L(puv). (See edge 1
ba−→ 5 in Figure 6 for illustration.)

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:18 Y. Chen and G. Singh

Fig. 6. A skeleton tree.

To construct Gc (see Figure 2(b) for illustration), we still need another two concepts to recognize
all those forward edges that have to be kept in Gc. In addition, they also play an important role for
transferring reachability from T to Gc.

Let v be a vertex in T. We denote by D(v) all those vertices in T[v], which also appear in VLCA

∪ Vc−start ∪ Vfs. We consider a vertex v′∈ D(v), which has no ancestors in D(v). Then, any other
vertex in D(v) must be a descendant of v′. Otherwise, assume that u ∈ D(v) is not a descendant of v′.
Then, the LCA of v′ and u should be an ancestor of v′ and this is also in D(v). It is a contradiction.
This observation motivates the following concept:

Definition 5.5 (Dominant Vertex). Let v be a vertex in T. Let V′ = VLCA∪ Vc−start ∪ Vfs. A vertex
u ∈ V′ is called a dominant vertex of v, denoted as v→, if one of the following two conditions is
satisfied:

—u is a vertex closest to v in T[v] among all vertices in V′ if v � V′, or
—u is v itself if v ∈ V′.

If such a vertex does not exist, then v→ is set to be the special symbol ⊥.

Definition 5.6 (Transferring Vertex). Let v be a vertex in T. Let V′′ = Vc−end ∪ Vfe. A vertex u ∈
V′′ is called a transferring vertex of v, denoted as v←, if one of the following two conditions is
satisfied:

—u is the lowest ancestor of v in T among all vertices in V′′ if v � V′′, or
—u is v itself if v ∈ V′′.

If such a vertex does not exist, then v← is set to be ⊥.
As an example, consider the graph shown in Figure 2(a) again, in which 11→ is vertex 14, since

14 is a vertex closest to 11 in T[11] among all the vertices in VLCA ∪ Vc−start ∪ Vfs. In addition, 11←

= 7, since 7 is the lowest ancestor of 11 in T among all vertices in Vc−end ∪ Vfe. In a similar way, we
find that 7→ = 7← = 7. The motivation of dominant vertices is that v→ dominates all those vertices
in Vc−start ∪ Vfs, which appear in T[v]. That is, such vertices must also appear in T[v→]. Thus, if
any vertex is reachable from v through a cross edge, then it must be through v→. In the opposite,
if v is reachable from a certain vertex through a cross edge, then it must be through v←. So, it is
referred to as a transferring vertex.

In general, any forward edge s
x−→ t in T satisfying one of the following two conditions will be

kept or replaced with a new edge while all the other forward edges will be simply removed.

(i) t ∈ Vc-start or is an ancestor of some vertex in Vc-start, or
(ii) t ∈ Vfe.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:19

If (i) is satisfied, then we distinguish between two cases: if t ∈ Vc, then s
x−→ t will be simply

kept; if t � Vc , then s
x−→ t will be replaced with a new edge s→ t′, labeled with xL(ptt′), where t′ is

the dominant vertex of t. For instance, for forward edge 3
d−→ 11 in T shown in Figure 2(a) a new

forward edge 3
db−→ 14 will be generated as shown in Figure 2(b).

If (ii) is satisfied, then we also distinguish between two cases: if s ∈ Vc, then s
x−→ t is kept; if s

� Vc , then s
x−→ t will be replaced with s′ → t, labeled with L(ps′ s)x, where s′ is the transferring

vertex of s. In Figure 2(b), the new forward edge 7
f
−→ 14 is the same as the original one in T shown

in Figure 2(a), since vertex 7 itself is in Vc−end = {5, 13, 6, 7, 15}.

The forward edge 4
d−→ 12 will be simply eliminated, since 12 is neither a vertex in Vc-start, nor an

ancestor of some vertices in Vc-start, and also 12 � Vfe = {14}, i.e., either of the above two conditions
is not met.

Denote by Ef−c the set of all such new forward edges. Gc is constructed as

Gc = Tc È ∪ Ecross ∪ Ef −c . (1)

So, the graph given in Figure 2(b) is the Gc with respect to G and T shown in Figure 2(a), whose
size is significantly reduced.

5.3.2 Gc-checking by Using “Connecting” Vertices. Having specified the construction of Gc, we
are now ready to discuss how a Gc-checking can be carried out.

The following lemma is critical to this task:

Lemma 5.2. Assume that vertex u is not an ancestor of vertex v in T, but v is reachable from u via

some cross edges in G. Then, any way v is reached from u must be through u→ and v←.

Proof. According to Definition 5.5, u→ is closest to u in T[u] among all vertices in V′ = VLCA ∪
Vc−start ∪ Vfs. According to Definition 5.6, v← is the lowest ancestor of v in T among all vertices in
V′′ = Vc−end ∪ Vfe. It indicates that any path from u to v through some cross edges must go through
u→ and v←.

According to the above discussion, we give the following algorithm to do the Gc-checking:

ALGORITHM 2: Gc -checking(u, v , S ,Gc)

begin

1. if T -checking(u, u→ , S , T) then

2. {if T -checking(v←, v , S , T) then

3. {if LCR(u→, v← S , Gc) then return true;}}

4. return false;

end

The above algorithm is a three-step computation. In step (1), we first check whether u→ is reach-
able from u under S in T. If not successful, then return false. Otherwise, we go to step (2), in which
we will check whether v is reachable from v← under S in T. Again, depending on whether it fails
or not, return false or go to step (3). In step (3), we will check whether v← is reachable from u→

under S in Gc.
Now, to evaluate LCR(u, v, S, G), we need to associate each v ∈ G with a tuple <x, y, z>:

—x = [α , γ , β], a triplet created by labeling the vertices in T (see Section 5.2);
—y = v→; and
—z = v←.

In <x, y, z>, x is used for T-checking while y and z are for Gc-checking.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:20 Y. Chen and G. Singh

The following proposition is easy to prove:

Proposition 5.1. Let u and v be two vertices in G, labeled ([αu, γ u, βu], yu, zu) and ([αv, γ v, βv],
yv, zv), respectively. Vertex v is reachable from u under a label set S if one of the following conditions

holds:

(1) [αu, βu] ⊇ [αv, βv] and there exists a multi-label S′ in γ uv such that S′ ⊆ S, or

(2) v is reachable from zv under S in T, zv is reachable from yu under S in Gc, and yu is reachable

from u under S in T.

Proof. The proposition can be derived from the following two facts:

(1). According to Lemma 5.1, v is reachable from u under S in T if (i) holds.

(2). According to Lemma 5.2, v is reachable from u under S in Gc if (ii) holds. �

By using the T-checking and Gc-checking, the general process to evaluate LCR(u, v, S, G) can
be easily described as below, in which we use G = T ⊕ Gc to represent the decomposition of G

described above.

ALGORITHM 3: LCR(u, v , S ,G)

begin

1. let G = T ⊕ Gc ;

2. if T -checking(u, v , S , T) then return true

3. else return Gc -checking(u, v , S , Gc);
end

In the above algorithm, we first make a T-checking to see whether v is reachable from u under S

in T (see line 2). If it is the case, then the task is done. Otherwise, we have to make a Gc-checking.
Especially, in the third step the Gc-checking has a recursive call to algorithm 2 that in turn calls Al-
gorithm 3 again, so we have mutual recursion here. This implies a recursive graph decomposition
to divide G into a series of spanning trees.

5.4 Recursive DAG Decomposition

From the above discussion, we can see that Gc itself can be further decomposed, leading to a
recursive decomposition of G. The only difference is that in Gc an edge may correspond to a path
in T and therefore labeled with the corresponding path label. So, the reachability checking over Gc

can be done in the same way as described in Section 5.2 and Section 5.3.
Let G0 be a DAG. We will use T0,E

0
cross ,E

0
f orward

to represent one of its spanning trees, the

corresponding set of cross edges and forward edges, respectively. Then, we have

T0 = T0 ∪ E0
f orward

G0
c = T

0
c ∪ E0

cross ∪ E0
f −c

(2)

where T 0
c is the skeleton tree for G0, and E0

f −c
the corresponding set of new forward edges. De-

note Gi+1 = G
i
c for i ≥ 0. The recursive decomposition of G0 can be represented by the following

equations:
⎧⎪⎨
⎪
⎩

Ti = Ti ∪ Ei
f orward

Gi+1 = T
i
c ∪ Ei

cross ∪ Ei
f −c

(3)

where T i
c is the skeleton tree for Gi for i = 0, 1,, k − 1 for some k. Note that each Ti (i ∈ {0, . . . ,

k − 1}) is a tree-like graph.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:21

Fig. 7. Recursive DAG decomposition.

The following example helps for illustration:

Example 5.1. Denote by G0 the graph shown in Figure 2. Denote by T0 the spanning tree
represented by the solid edges in the graph. With respect to T0 (in Figure 2), both E0

cross and
E0

f orword
are shown by the dashed edges in the same figure. T 0

c is shown in Figure 6. Then,

G1 = T
0
c ∪ E0

cross ∪ E0
f −c

is a graph as shown in Figure 2(b).

A spanning tree T1 of G1 is shown by the solid edges in Figure 7(a). With respect to T1, we have
V 1

c−star t = {5, 9}, V 1
c−end

= {7, 13, 15},V 1
f −star t

= {1, 3, 7},V 1
f −end

= {5, 6, 14},V 1
f s
= {1},V 1

f e
= {14},

and V 1
LCA = {1}.

Thus, T 1
c is constructed as shown by the solid edges in Figure 7(b). Adding E1

cross = {9
b−→ 7,

9
b−→ 15, 5

ed−→ 13} and E1
f −c
= {1 ba−→ 5, 7

f
−→ 14 to T 1

c , we get G2 = T
1
c ∪ E1

cross ∪ E1
f −c

. Note that

forward edge 1
bc−→ 6 is simply removed, since 6 is neither inV 1

c−star t nor an ancestor of any vertex
in V 1

c−star t , and also 6 � V 1
f e
= {14}, showing that it will not be involved in reachability through

cross edges and thus deleted from G2. (See the conditions for keeping forward edges given in

Subsection 5.3.1.) For the same reason, 3
db−→ 14 is also removed.

One of the spanning trees of G2 is shown by the solid edges in Figure 7(c), denoted T2. With
respect to T2, we have V 2

c−star t = {14}, V 2
c−end

= {13}, V 2
f −star t

= {1, 7, 9}, V 2
f −end

= {5, 7, 14, 15},
V 2

f s
= {1, 7}, V 2

f e
= ϕ, and V 2

LCA = {1}. Then, we are able to construct T 2
c . Recognizing E2

cross and

E2
f −c

as described above, we can build G3 as shown in Figure 7(d). (Note that forward edge 9
d−→ 15

and 1
ba−→ 5 in Figure 7(c) are removed for the same reason as 1

bc−→ 6 was taken away from G2.)
Assume that the spanning tree found for G3 is a tree shown by the solid arrows in Figure 7(d),

with respect to which we have no cross edges. Then, when constructingT 3
c , all the forward edges

can be simply ignored and the graph will not be further decomposed any more.
From the above discussion, each vertex v in Gi (0 ≤ i ≤ k - 1) will be associated with a triplet

[α i
v,γ

i
v , β

i
v] and a pair of “connecting” vertices (vi

→, vi
←). Therefore, as a whole data structure, each

vertex v in G will be associated with two sequences:

• ϖv = [α0
v ,γ

0
v , β

0
v] . . . , [αk−1

v ,γ k−1
v , βk−1

v], and
• ωv = (v→0 ,v

←
0), . . . , (v→

(k−1)
,v←

(k−1)
)

where v→i (i ≥ 0) stands for its dominant in Ti while v←i for its transferring vertex in Ti.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:22 Y. Chen and G. Singh

Table 2. ϖv-sequences

v T0 T1 T2 T3

1 [0, -, 15] [0, -, 9] [0, -, 7] [0, -, 4]

2 [1, {b }, 6]

3 [6, {b }, 11] [1, {b }, 8]

4 [11, {c }, 15]

5 [2, {bd }, 5] [7, {bc2d, ba }, 8] [5, {c2b2d, bc2d, ba }, 7]

6 [5, {be }, 6] [4, {b2c2e, bc,
b2d2e, bcef }, 6]

7 [7, {bc }, 11] [2, {bc }, 8] [2, {cb, b2c },7] [1, {cb, b2c }, 4]

8 [12, {ca }, 13]

9 [12, {cb }, 15] [8, {cb }, 9] [1, {cb }, 7]

10 [3, {bae }, 5]

11 [8,{bc2, bd }, 11]

12 [14,{cb2, cd },15]

13 [4,{baed },5] [5,{b2c2de,bcd,
b2d2e,bcdef },6]

[6,{c2b2d2e, bc2d2e, bade },7] [3,{b3c2de, b2cfde,
b2ce2d2, b2c2de, bcfed,

bce2d2}, 4]

14 [9,{b2d,bcf,b2c2},10] [3,{b2c2, b2d,
bcf }, 6]

[3,{c2b3, c2b2, cb2f, bcf }, 4] [2, {c2b3, c2b2, cb2f,
cbf }, 4]

15 [10,{bcd }, 15] [6, {bcd }, 8] [4, {b2cd, bcd }, 7]

To evaluate a query LCR(u, v, S, G), we will repeatedly perform the following steps until we find
that v is reachable from u under S or the relevant data structure is used up.

Initially, i = 0.

(1) Use [α i
u,γ

i
v , β

i
v] and [α i

u,γ
i
v , β

i
v] to check whether v is reachable from u under S in Ti. If it

is the case, then return true. Otherwise, go to (2).
(2) x: = u→. Use [α i

u,γ
i
u, β

i
u] and [α i

x ,γ
i
x , β

i
x] to check whether x is reachable from u under S

in Ti. If it is not the case, then return false. Otherwise, go to (3).
(3) y: = v←. Use [α i

y ,γ
i
y , β

i
y] and [α i

v,γ
i
v , β

i
v] to check whether v is reachable from y under S in

Ti. If it is not the case, then return false. Otherwise, go to (4).
(4) Use [α i

x ,γ
i
x , β

i
x] and [α i

y ,γ
i
y , β

i
y] to check whether y is reachable from x under S in Ti+1. If

it is the case, then return true. Otherwise, u := x, v := y, i := i + 1. If i < k, then go to (1);
otherwise, return false.

Example 5.2. Along with the graph decomposition shown in Example 5.1, two sequences for
every vertex will be created as shown in Table 2 and Table 3, respectively. In Table 2, for ease of
understanding, we show path labels in a naive way, which should, however, be stored by using
the compatible graph-based method or the T-search-based method discussed in Section 5.2 for
efficiency.

In the second column of Table 2, we show the labels for the vertices in T0 (i.e., the spanning tree
T0 of G0 = G shown in Figure 2(a), plus the forward edges with respect to T0). Each node in T0 is
associated with a dominant and a transferring vertex, which are shown in the second column in
Table 3. These vertices are used to check reachability inG1 = G

0
c , which is shown in Figure 2(b). For

G1, we will generate T1. It is T1, plus the relevant forward edges shown in Figure 7(a). The labels
of the vertices in T1 are shown in the third column of Table 2. Their dominant and transferring

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:23

Table 3. ωv-sequences

v T0 T1 T2

1 <1, ⊥> <1, ⊥> <1, ⊥>
2 <6, ⊥>
3 <3, ⊥> <5, ⊥>
4 <9, ⊥>
5 <⊥, 5> <⊥, 15> <⊥, ⊥>
6 <6, 6> <⊥, 7>
7 <7, 7> <5, 7> <7, ⊥>
8 <⊥, ⊥>
9 <9, ⊥> <9, ⊥> <7, ⊥>
10 <⊥, 5>
11 <14, 7>
12 <⊥, ⊥>
13 <⊥, 13> <⊥, 13> <⊥, 13>
14 <14, 7> <⊥, 4> <14, ⊥>
15 <15, 7> <5, 15> <⊥, ⊥>

vertices are shown in the third column of Table 3. In the same way, we can generate the remaining
parts of Table 2 and Table 3. The corresponding summary graphs and spanning trees are shown
in Figures 7(b), (c), and (d), respectively.

Now, we trace the evaluation of a query LCR(4, 13, S, G), where G is the graph shown in
Figure 2(a) and S = {b, d, e }, to demonstrate how the data structures are utilized.

Step 1: Evaluate LCR(4, 13, S, T0) by using [α0
4 ,γ

0
4 , β

0
4] = [11, {c}, 15] and [α0

13,γ
0
13, β

0
13] =

[4, {bd2e}, 5] (see ϖ4 and ϖ13 in Table 2). It returns false.
Step 2: Find 4→ = 9 and 13← = 13 with respect to T0. (See ω4 and ω13 in Table 3.) So,

we will first evaluate LCR(4, 4→, S, T0) = LCR(4, 9, S, T0) by using [α0
4 ,γ

0
4 , β

0
4] =

[11, {c}, 15] and [α0
9,γ

0
9 , β

0
9] = [12, cb, 15]. It returns true. Then, we evaluate LCR(4→,

13←, S, T1) = LCR(9, 13, S, T1) by using [α1
9 ,γ

1
9 , β

1
9] = [8, {cb}, 9] and [α1

13,γ
1
13, β

1
13] =

[5, {b2c2de,bcd,b2d2e,bcde f }, 6]. It returns false. (9 and 13 are not on a same tree path in
T1.)

Step 3: Find 9→ = 9 and 13← = 13 with respect to T1. Since 9→ = 9 and 13← = 13, we need only
to evaluate LCR(9→, 13←, S, T2) = LCR(9, 13, S, T2) by using [α2

9,γ
2
9 , β

2
9] = [1, {cb}, 7] and

[α2
13,γ

2
13, β

2
13] = [6, {c2b2d2e,bc2d2e,bade}, 7]. It also returns false. (9 and 13 are on a same

tree path in T2; but any path label on a path from 9 to 13 contains c � S or a � S.)
Step 4: Find 9→ = 7 and 13← = 13 with respect to T2. We will first evaluate LCR(9, 9→, S, T2) =

LCR(9, 7, S, T2) by using [α2
9,γ

2
9 , β

2
9] = [1, cb, 7] and [α2

7,γ
2
7 , β

2
7] = [2, {cb,b2c}, 7]. It returns

true. Then, we continue to check LCR(13←, 13, S, T3) = LCR(13, 13, S, T3). It trivially evalu-
ates to true. Next, we check LCR(9→, 13←, S, T3) = LCR(7, 13, S, T3) by using [α3

7 ,γ
3
7 , β

3
7] =

[1, {cb, cb2}, 4] and [α3
13,γ

3
13, β

3
13 = [3, {b3c2de,b2c f de,b2ce2d2,b2c2de,bc f ed,bce2d2}, 4].

It returns true. So, the query LCR(9, 13, S, G) evaluates to true. (7 and 13 are on a same
tree path in T3 and there is a path from 7 to 13 with the path label = {e, d } ⊆ S.)

From the above discussion, we can see that the to- and from-sequences of v mentioned in Sec-
tion 1 consists in ωv’s while ϖv’s are mainly used to facilitate the T-checking.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:24 Y. Chen and G. Singh

Formally, the from-sequence of v is a sequence calculated when evaluating a query, as shown
below:

v,v→0 , (v
→
0)→1 , . . . (. . . ((v

→
0)→1)) . . .)→l for some l ≤ k − 1.

The to-sequence of v is similar:

v,v←0 , (v
←
0)←1 , . . . (. . . (((v

←
0)←1)) . . .)←l .

Notice that these two kinds of sequences are implicitly associated with each vertex in G and
accessed when executing a query LCR(u, v, S, G).

5.5 Time Complexity and Correctness

From the above discussion, the computational complexities of our method can be easily observed.
Denote by mi, χ i, and hi the numbers of edges in Gi, the number of forward edges with respect
to Ti, and the maximum number of forward edges attached to a path in Ti, respectively. Then, we
have

— time for index construction: t1=O(
∑k−1

i=0 (mi + χi |Σ| + χihi)),

—space for storing index: t2 = O(
∑k−1

i=0 (|Ti | + χi |Σ| + χihi)),

— time for evaluating a query: t3 = O(
∑k−1

i=0 (h2
i + hi |Σ|)).

To analyze t1, we should note that the index construction for Ti mainly consists of two parts.
The first part is to search Gi to find Ti, as well as the corresponding forward and cross edges. Its
cost is bounded by O(mi). The second part is the cost for constructing the compatible graphs Cv’s
for every vertex v in Gi. We can organize all of them into a global graph Ci, in which each vertex
is a quadruple (see Section 5.2.3) and therefore its construction requires O(|Σ|) time. In addition,
the number of edges in Ci is bounded by O(χ ihi), since each vertex in Ci has at most O(hi) parents.
Thus, the time for constructing the index for Ti (i.e., Ci and the intervals of the vertices in Ti) is

bounded by O(|mi| + χ i|Σ|+ χ ihi) and t1 is O(
∑k−1

i=0 (mi + χi |Σ| + χihi)).
Accordingly, the index size generated for Gi is bounded by O(|Ti| + χ i|Σ|+ χ ihi), since besides

the global compatible graph, |Ti| intervals need to be stored. So, t2 is O(
∑k−1

i=0 (|Ti | + χi |Σ| + χihi)).
Next, we have t3, since for each Ci we only explore part of it, corresponding to the forward edges
attached to a certain path in Ti. That means, we will only access at most hi vertices and hi

2

edges in Ci. So, its cost for evaluating a subquery against Ti is bounded by O(hi
2 + hi|Σ|) and

t3 is O(
∑k−1

i=0 (h2
i + hi |Σ|)).

However, in general, the number of edges in a Ci is considerably smaller than O(χ ihi). It is
because in a compatible graph for each edge τ → τ ′ we have no path containing two or more
edges connecting τ and τ ′. According to Mehlhorn (see Reference [60], pp. 9–11), the expected

outdegree of a vertex in a random graph with such a property is bounded by O(
√
hi). Thus, the

expected number of edges in a compatible graph is χi

√
hi , not χ ihi. Finally, we notice that the

recursive depth k will greatly impact the computational complexities, but we shift the discussion
on this to Section 7.1.

To prove the correctness of the algorithm, we first introduce a new concept.

Definition 5.7 (Index). Let G be an edge labeled graph <V, E, Σ, l>. Denote by indG an index over
G, including all ϖv’s and ωv’s for the vertices v in G, as well as compatible graphs Ci (i = 1, . . . , k −
1), built as described in Sections 5.2–5.4. Define indG(v) to be a set of pairs (u, L) such that u can be
found through indG as a vertex reachable from v, and L is a set of labels that can be formed by using
the replacement operations over all the tree paths each connecting a vertex in the from-sequence
of v to the corresponding vertex in the to-sequence of u.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:25

We say that indG(v) is complete over G if, for any path labeled L′ from v to u, we have (u, L) ∈
indG(v) for some L ⊆ L′. We say that indG(v) is sound over G if, for any (w, L) ∈ indG(v), there is a
path labeled L from v to w. In the following, we prove that our index is both complete and sound.

Lemma 5.3. Let T be a spanning tree of G and T be a graph obtained by adding to T all the forward

edges with respect to T. Denote by indT an index over T. Then, indT′(v) is complete and sound over T

for any v ∈ T.

Proof (Completeness). Let p be a path from v to u in T. Then, p is a tree path or a path obtained
by replacing some segments of the tree path pu with the corresponding covering forward edges.
We consider [αu, γ u, βu] and [αv, γ v, βv]. They are part of indT. Then, by applying the replacement
operations to pvu, using some τ i’s in γ u= <A(pu); τ 1, . . . , τ l; λu> (for some l) and A(pvu) = A(pu) -
A(pv) (which is inγ v=<A(pv);τ 1

′, . . . ,τ h
′; λv> for some h), we can generate indT′(v), which contains

(u, L(p)). So, indT′(v) is complete.

Soundness. Assume that (u, L) ∈ indT(v). That means, by applying some τ i’s inγ u= <A(pu); τ 1, . . . ,
τ i; λu> to A(pvu) = A(pu) - A(pv), we can get L. This shows that L must be a path label over a path
from v to u in T, since both γ u and γ v are created in terms of the labels over all the paths from v

to u in T.

Proposition 5.2. Let G be an edge labeled DAG. Then, indG(v) is complete and sound for any

v ∈ G.

Proof (Completeness). We prove the completeness of indG(v) by induction on k, the depth of
recursive decompositions of G. (Here, by the depth of recursive decomposition of G, we mean
when we will stop the recursive decomposition.)

Basic step: When k = 0, G itself is a tree-like graph T0, which is a spanning tree T plus all the
forward edges with respect to T. According to Lemma 5.3, indG(v) is complete for each v ∈ T0.
When k = 1, G is decomposed into T0 and T1 and any v is associated with two labels: [α1

v ,γ
1
v , β

1
v],

[α2
v ,γ

2
v , β

2
v]; and a pair <v→, v←>. Assume that there exists a path p from v to u in G. If p does not

go through any cross edge with respect to T0, then the completeness of indG(v) holds according to
Lemma 5.3. If p contains some cross edges, then, according to Lemma 5.2, there exist two paths in
T0: p1 goes from v to v→, p2 from u← to u, and a path in T1: p3 goes from v→ to u← such that p is
the concatenation of p1, p2, and p3. Obviously, L(p1) ∪ L(p2) ∪ L(p3) = L(p). Applying Lemma 5.3,
respectively, to these three subpaths, we can see that the completeness of indG(v) holds.

Induction step: Assume that when k = l ≥ 0 indG(v) is complete for each v ∈ G. That is, for any
path p from v to another vertex u, we have (u, L′) ∈ indG(v) with L′ ⊆ L(p). That means there exists
j ≤ l such that

—v � x1 �· · ·� xj,
—xj � zj in Tj, where Tj is the spanning tree of Gj plus the forward edges with respect to Tj,
—zj � . . . � z1 � u, and
—all the labels on the relevant paths make up a subset of L(p)), where x1, . . . , xj are the first j

vertices in the from-sequence associated with v; and z1, . . . , zj are the first j vertices in the
to-sequence associated with u.

Now, we consider the case of k = l + 1. We need to distinguish between two cases:

(1) p contains only the edges in T0.
(2) p contains some edges not in T0.

In case (1), according to Lemma 5.3, the completeness of indG(v) holds.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:26 Y. Chen and G. Singh

Fig. 8. Illustration for b-chains.

In case (2), we consider v→ and u← and notice that p must go through both these two vertices.
Then, we denote by p1 the subpath from v to v→, p2 the subpath from v→ to u←, and p3 the subpath
from u← to u. Notice that p2 appears in G ′ = G0

c , for which the recursive depth is l. (It is because
for G the recursive depth is l + 1 and the recursive depth for G′is then one less than that for G.)
According to the induction hypothesis, indG′(w) is complete for each w ∈ G′. Thus, indG′(v

→) is
complete. Then, there exists L′ ⊆ L(p2) such that (u←, L′) ∈ indG′(v

→). From this, we can see that
(u, L(p1) ∪ L(p2) ∪ L′) ∈ indG(v) and (L(p1) ∪ L(p2) ∪ L′) ⊆ L(p) = (L(p1) ∪ L(p2) ∪ L(p3)). This shows
the completeness in case (2).

Soundness. The proof of the soundness can also be done by induction as above.

6 LCR QUERIES OVER CYCLIC GRAPHS

Let G be a cyclic graph, i.e., a graph containing cycles. Let T be a spanning tree (forest) of it. As with
DAGs, we will decompose G into two components T′ and Gc

′, where T′ = T ∪ Eback = T ∪ Eforward

∪ Eback (= G\Ecross), and Gc
′ is a subgraph to be defined below. Accordingly, we will transform an

LCR query to a T′-checking and a Gc
′-checking.

6.1 T
′-checking

Now, for doing T′-checking LCR(u, v, S, T′), we need some new concepts. The first of them is the
so-called back edge chains.

Definition 6.1 (Back Edge Chain). A sequence of back edges s1
x1−→ t1, . . . , sl

xl−→ tl (l > 0) with ti+1

being an ancestor of ti for i ∈ {1, . . . , l - 1} is called a back edge chain (b-chain for short) if ti = si+1

or ti is an ancestor of si+1.

See Figure 8(a) for illustration, in which a b-chain starting from s and containing two back edges:
s→ t and s′ → t′ is demonstrated. In Figure 8(b), we illustrate another b-chain also containing two
back edges s→ t and s′ → t′, but s and s′ are not on a same path.

Definition 6.2 (b-chain Path). Let B = s1
x1−→ t1, . . . , sl

xl−→ tl be a b-chain. A b-chain path with

respect to B is a set of subpaths connected by all the back edges si

xl−→ ti (i = 1, . . . , l) in B, each
subpath is from ti+1 to si (i = 1, . . . , l - 1) in T.

For example, in Figure 8(b), we can see a b-chain path, which is made up of back edge s → t,
path from t to s’ in T, and back edge s′ → t′.

Then, to see whether v is reachable from u under S through back edges, we will check whether

there exists a b-chain path P starting from a back edge s
x−→ t and ending at another back edge

s
x−→ t such that

(i) s ∈ T[u],
(ii) there is a path p from u to s in T with L(p) ⊆ S,

(iii) there is a path p′ from t′ to v in T with L(p′) ⊆ S, and
(iv) all the labels on P fall in S.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:27

Fig. 9. Illustration for the execution of b-path() and sets Vbs and Vbe.

To describe a process to evaluate LCR(u, v, S, T′), we recognize a set of vertices {v1, . . . , vl } (for
some l ≥ 0) in T, called a transit set with respect to u with the following conditions being satisfied:

(1) Each vi (i = 1, . . . , l) is an ancestor of u in T.

(2) For each vi, there exists a back edge s
x−→ t with t = vi, x ∈ S, and there is also a path p in

T from u to s such that L(p) ⊆ S.

Obviously, should there be a path p′ from a vi (∈{v1, . . . , vl }) to v in T such that L(p′) ⊆ S, then
LCR(u, v, S, T′) returns true. Otherwise, we will continue to figure out a transit set Vj with respect
to each vj ∈ {v1, . . . , vl }. Then, for each v′ ∈ V1 ∪ . . . ∪ Vl, we will check whether there exists a path
p′′ from a v′ to v in T such that L(p′′) ⊆ S. We repeat this process until we find a b-chain path with
all its labels in S or end up with an empty transit set. In the former case, LCR(u, v, S, T′) returns
true while in the latter case LCR(u, v, S, T′) returns false.

In terms of the above discussion, we give the following recursive algorithm to evaluate LCR(u,

v, S, T′):

ALGORITHM 4: b-path(u, v , S , A) (*Initially, u = {u}, A = T′.*)
begin

1. let u = {v1, . . . , vl }; let v ′ ∈ u be the ancestor of all the other vi ’s in u;

2. if there exists i such that T -checking(vi , v , S , A\Eback) = true then return true;

3. else {for each vj ∈ u do {figure out the transit set Vj with respect to vj ;}

4. u := –V1∪ . . .∪Vl ;}

5. if u � ϕ then return b-path(u, v , S ,A\{back edges in A[v ′]}) else return false;

end

In the above algorithm, u represents a transit set. Initially, u is set to be {u } and A to T′. First,
in line 2, we will check whether there exists vi ∈ u = {v1, . . . , vl } such that T-checking (vi, v, S,

A\Eback) evaluates to true. If it is the case, then the algorithm returns true. Otherwise, we will find
a transit set with respect to each vj ∈ u (see line 3) and make a recursive call (see line 5), where
special attention should be paid to the new values for u and A. u is set to be V1 ∪· · · ∪ Vl while A

is reduced to A\{back edges in T ′[v′]} to avoid repeated access of back edges.
In Figure 9(a), we illustrate the first execution of b-path(u, v, S, A) for the case of v � u, by

which u = {u } and A = T′. Then, LCR(u, v, S, T′\Eback) (in line 2) definitely returns false. Hence,
line 3 will be executed, generating a new transit set {v1, . . . , vj } (see the back edges in Figure 9(a).)
Figure 9(b) is the illustration of the first recursive call (i.e., the second execution: b-path({v1, . . . ,
vj }, v, S, T′\{back edge in T′[u]}) invoked in line 5, by which the back edges in T′[u] (marked gray)
are removed to avoid visiting them once again.

By using the above algorithm, T′-checking (u, v, S, T′) can be described as below.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:28 Y. Chen and G. Singh

ALGORITHM 5: T ′-checking(u, v , S , T ′)

begin

1. u := {u}; A:= T ′;
2. return b-path(u, v , S , A);
end

Example 6.1. Consider LCR(15, 13, {a, b, d, e }, G), where G is the graph shown in Figure 1. Then,
in the execution of b-path(), we will first make a T-checking by calling T-checking (15, 13, {a,

b, d, e }, T), where T = T′\Eback (see line 2). Since [α15, β15] = [10, 11] � [α13, β13] = [4, 5], this
T-checking will definitely return false and thus line 3 will be executed, where u = {15}, by which

along the back edge 15
b−→ 1, we will find the transit set V = {1}. In line 4, u will be set to be V

= {1}. Then, by the recursive call b-path ({1}, 13, {a, b, d, e }, T′\{back edges in T′[15]}) in line 5,
T-checking(1, 13, {a, b, d, e }, T) will be invoked (see line 2), which returns true.

The main cost of a recursive execution of Algorithm b-path() consists in the execution of T-
checking (vi, v, S, T) (in line 2) for each vi in u = {v1, . . . , vk }. To estimate its value, two facts should
be remarked:

(a) Each vi in u (except the initial value u) is the end vertex of a back edge and all vi’s must
be on the tree path from the root to u.

(b) The transit set used by any other recursive call of Algorithm b-path() must have the same
property as u described in (a).

Denote by b the number of all those back edges s→ t with t appearing on the tree path from the
root to u in T′. Then, the running time of b-path() is bounded by O(bh|Σ|), where h is the maximum
number of all those forward edges attached to a tree path in T′ (see Section 5.5).

Concerning the correctness of Algorithm T′-checking (u, v, S, T′), we have the following lemma:

Lemma 6.1. The answer returned by T′-checking (u, v, S, T′) is correct.

Proof. If there is a path P from a vertex u in u to v under S, then we distinguish between two
cases. In case (1), P is not through any back edges and the algorithm gives the correct answer. In
case (2), P is through some back edges. Without loss of generality, assume that P uses k > 0 back
edges. Then, after one iteration of the algorithm, we obtain a transit set u′ that contains at least
one vertex such that there is a path under S from it to v, using at most k - 1 back edges. Moreover,
every vertex in u′ is reachable from u with a path under S in T′. Thus, by a simple induction on
the number of back edges, we can prove that the algorithm definitely returns the correct answer
in case (2).

If there is no path from any vertex in u to v under S, then for each u in u its transit set u′ is ϕ,
or any vertex in u′ can not reach v under S. Again, by an induction, but on the height of G, we are
able to prove that the algorithm will return false in this case.

6.2 Gc
′-checking

To construct Gc
′, we are required to recognize four more subsets of vertices, besides the subsets

discussed in Subsection 5.3.1:

• Vb−start - all the start vertices of back edges.
• Vb−end - all the end vertices of back edges.
• Vbs - all those start vertices s of back edges s → t, where t ∈ Vc−start or t is an ancestor of

some vertex in Vc−start with respect to T. (See the left part of Figure 9(c) for illustration.)

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:29

• Vbe - all those end vertices t of back edges s → t, where s ∈ Vc−end or s is a descendant of
some vertex in Vc−end with respect to T. (See the right part of Figure 9(d) for illustration.)

Furthermore, VLCA, as well as V′ (set of dominant vertices in Definition 5.5) and V′′ (set of trans-
ferring vertices in Definition 5.6) needs to be redefined as follows:

• VLCA - all those vertices with each being a lowest common ancestor of more than one vertex
in Vc−start ∪Vfs ∪ Vbs, which are not related by the ancestor/descendant relationship in T.

• V′ = VLCA ∪ Vc−start ∪ Vfs ∪ Vbs.
• V′′ = Vc−end ∪ Vfe ∪ Vbe.

Using these notations, we can define v→ and v← in the same way as for DAGs.

Again, as for forward edges, any back edge s
x−→ t in T′ satisfying one of the following two

conditions will be kept or replaced with a new edge while all the other back edges will be simply
removed.

(i) s ∈ Vbs, or
(ii) s ∈ Vc-end, or is a descendant of some vertex in Vc-end.

If (i) is satisfied, we distinguish between two cases: if t ∈ Vc ∪ Vbs ∪ Vbe, then s
x−→ t will be kept;

if s � Vc ∪ Vbs ∪ Vbe, then s
x−→ t will be replaced with a new edge s → t′, labeled with xL(ptt′),

where t′ is the dominant vertex of t (see Figure 9(c) for illustration).

If (ii) is satisfied, then we also distinguish between two cases: if s ∈ Vc ∪ Vbs ∪ Vbe, then s
x−→ t

will be kept; otherwise, s
x−→ t will be replaced with s′ → t, labeled with xL(ps′s), where s′ is the

transferring vertex of s (see Figure 9(d) for illustration).
Denote by Eb−c the set of all such new edges. Gc

′ is constructed as

Gc
′ = Tc ∪ Ecross ∪ Ef −c

∪ Eb−c . (4)

In terms of the above discussion, we give the following algorithm for doing Gc
′-checking (Algo-

rithm 6), in which we first make two T′-checkings: T′-checking (u, u→, S, T′) and T′-checking (v,

v←, S, T′). If both of them return true, then we will call LCR(u→, v←, S, Gc
′), in which Gc

′-checking()
will be recursively invoked (see Algorithm 7). Here, Algorithm 7 works like Algorithm 3. The only
difference consists in that G is decomposed into T′ = T ∪ Eforward ∪ Eback and Gc

′, i.e., G = T′ ⊕
Gc
′. Recall that for DAGs G = T ⊕ Gc.

ALGORITHM 6: G ′c -checking(u, v , S ,G ′c)

begin

1. if T ′-checking(u, u→, S , T ′) then

2. {if T ′-checking(v , v←, S , T ′) then

3. {if LCR(u→, v←, S , G ′c) then return true;}}

4. return false;

end

ALGORITHM 7: LCR(u,v, S,G)

begin

1. let G = T ′ ⊕ G ′c ;

2. if T ′-checking(u, v , S , T ′) then return true

3. else return G ′c -checking(u, v , S , G ′c);
end

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:30 Y. Chen and G. Singh

From the running time of T′-checking, the time complexity of Gc
′-checking can be easily es-

timated. It is O(
∑k−1

i−0 bi (h 2
i
+ hi |

∑ |)), where bi is the maximum number of all those back edges
s→ t with t appearing on a same tree path in Ti

′.
In addition, more effort is required for the index construction to handle back edges, for which

we need to maintain an extra tree structure for Gi, called a be-tree and denoted Di. In Di, each
vertex s is for a set of back edges each with the same starting vertex s, and we have an edge from
s to s′ if s is an ancestor of s′ in Ti

′ and there is no back edges emanating from any vertex on the
tree path from s to s′ (except for s to s′ themselves). Its main purpose is to quickly figure out all
the back edges s→ t with s appearing in a certain subtree of Ti. Obviously, the size of Diis smaller
than |Ti|. Therefore, the index construction time and the index space are the same as for DAGs.

Also, based on Lemma 6.1, the following proposition can be established:

Proposition 6.1. Let G be a cyclic graph. Denote by indG an index over G, including all ϖ v’s and

ω v’s for the vertices in G, all compatible graphs Ci, and all be-trees Di (i = 1, . . . , k - 1). Then, indGis

complete and sound over G.

Proof (Sketch). The proposition is similar to Proposition 5.2. Hence, we just sketch its proof
here. To show the completeness, however, we should explain that for any path p from v to another
vertex u, we have (u, L) ∈ indG(v) with L ⊆ L(p)). That means, there exists j such that

—v � x1 �· · ·� xj,
—xj � zj in Tj

′, where Tj
′ is the spanning tree Tj of Gj plus the forward and back edges with

respect to Tj,
—zj �· · ·� z1 � u, and
—all the labels on the relevant paths make up a subset of L(p), where x1, . . . , xj are the first j

vertices in the from-sequence associated with v; and z1, . . . , zj are the first j vertices in the
to-sequence associated with u.

According to Lemma 6.1, the Tj
′-checking of xj� zj in Tj

′ will return the correct answer. So, by
induction on j, we can prove this proposition as for Proposition 5.2. �

7 TECHNIQUE DETAILS

In the previous sections, the main process of our method is described. In this section, we will
discuss three important techniques aforementioned to speed up the process: (i) how to find a better
spanning tree in Section 7.1; (ii) how to explore a compatible tree efficiently in Section 7.2; finally,
(iii) how to make the vertex classification in linear time in Section 7.3.

7.1 Finding Spanning Trees

For a given DAG G(V, E), we can find different spanning trees by exploring G in different ways.
Especially, for different spanning trees, the size of Gc can be different. Clearly, what we want is
to find such a spanning tree that the number of edges in Gc is minimized. But, how to find such a
spanning tree?

Let �(G) be a family including all the spanning trees of G. For a spanning tree T ∈ �(G), denote
by rT (V) the number of the cross edges with respect to T, which come into v. We define

R (T) =
∑

v ∈V
rT (v).

Intuitively, the smaller R(T) is, the smaller the size of Gc. So, our optimization problem is to find
a T such that R(T) is minimum. Unfortunately, there are exponentially many spanning trees for a
given DAG. So, it is unlikely to find an optimal one in polynomial time. In fact, it is NP-complete.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:31

In the following discussion, we will first prove the NP-completeness of the problem. Then, we
will present a top-down algorithm to find a spanning tree of G with fewer cross edges than the
traditional depth-first search (DFS).

7.1.1 NP-completeness. First, we notice that

R (T) =
∑

v ∈V
rT (v),

where fT(v) is the number of the forward edges coming into v with respect to T. Thus, minimizing
R(T) is equivalent to maximizing

F (T) =
∑

v ∈V
fT (v).

Therefore, to show the NP-completeness of minimizing R(T), we can show the NP-completeness
of maximizing F(T).

To maximize F(T), we need to maximize the number of the attached forward edges of each path
in T.

Now, we consider a much easier problem to find a T such that it has a path with the maxi-
mal number of attached forward edges and show that even this problem is NP-complete. For this
purpose, we define the following decision problem:

Input: A DAG G and a positive integer k ≤ n.
Question: Is there a spanning tree T such that it contains a path p of length k with the number

of the attached forward edges of p equal to (k – 1)(k – 2)/2?
We call this problem a maximum p-attachment problem.

Proposition 7.1. The maximum p-attachment is NP-complete.

Proof. It is easy to see that the problem is in NP: An algorithm can generate all spanning trees
T of G and check each T to see whether it has a maximum p-attachment.

The completeness for NP is shown by a reduction from the basic NP-complete problem SATIS-
FIABILITY [10]. Let an instance of SATISFIABILITY be given by a collection of clauses C = {c1, . . . ,
ck }. Each ci is of the form xi 1 ∨ xi 2 ∨ . . . ,xik , where xij is a literal. We form a DAG in two steps:

(1) Generate an undirected graph G′, whose vertices are pairs of integers [i, j], for 1 ≤ i ≤ k

and 1 ≤ j ≤ ki. A vertex [i, j] is connected to another vertex [k, l] if both of the following
hold:
— i � k, and
—xij � ¬xkl.

(2) Explore G′ in the depth-first manner to change it to a DAG G′′ as follows:
—If an edge (u, v) in G′ is explored from u to v, then create an edge u→ v in G′′.
—In G′′, reverse the direction of any back edge. (Then, the resulting G′′ must be a DAG.)
Obviously, the DAG can be constructed in polynomial time.

Now, we claim that there is a satisfying truth assignment for C if and only if there is spanning
tree containing a path p of length k such that the number of the attached edges of p is equal to (k –
1)(k – 2)/2. It is because if C is satisfiable, then there must be a clique of size k. Exploring the clique
in the depth-first fashion and then reverse any back edge, we will get a path of length k with the
number of the attached edges equal to (k – 1)(k – 2)/2.

Next, assume that T is a spanning tree of G′′, which contains a path p of length k with the number
of the attached forward edges equal to (k – 1)(k – 2)/2. Assigning a value to the variable in each
literal x corresponding to a vertex on p such that x is true while a value to the variable in any other

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:32 Y. Chen and G. Singh

Fig. 10. Illustration for “triangles” encountered during a DFS.

Fig. 11. A spanning tree and a dense graph.

literal y such that y is false, we get a satisfying truth assignment for C for the following reason:
First, each vertex corresponds to a literal in a different clause. Second, for each pair of literals
represented by two vertices on the path, they are not negation of each other. This completes the
proof. �

7.1.2 A Top-down Algorithm. In this subsection, we give our top-down algorithm to explore
G, which is able to find a spanning tree with more forward edges than the traditional depth-first
search. The main idea behind the algorithm is to recognize a kind of “triangles” as illustrated in
Figure 10(a) during a search.

In Figure 10(a), assume that vertex c is the current vertex along a path from a to c, and b is one
of c’s children, but has been visited before (along the edge from a to b, as illustrated in the figure).
We can remove the tree edge a→ b and make c→ b a tree edge. Then, a→ b becomes a forward
edge, as demonstrated in Figure 10(b). We call this process a triangle transformation. To do such a
transformation efficiently, we arrange a Boolean array B such that B[i] = 1 indicates that vertex i

is on the current path during the depth-first search. Otherwise, B[i] = 0. For simplicity, we assume
that G is a rooted graph. Then, by the current path, we mean the path from the root to the currently
encountered vertex. Let v1 → v2 →· · ·→ vk be such a path. Assume that we are going to access
one of vk’s children. At this moment, in B, all B[vj]’s for j = 1, . . . , k must be set to 1 while all the
other entries must be 0.

In addition, three extra data structures are used:
s – a stack to control the depth-first search;
c-list(v) – a list of all those children of v in G, which have not yet been visited.
ChT(v) – a list containing all the children of v in T.
In the above algorithm, the stack s is used to keep the current path. Then, for each vertex w in

s, we have B[w] = 1. Let v be the vertex at the top of s (i.e., top(s) = v; see line 5). We will check the

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:33

ALGORITHM 8: DFS-f (G)

begin

1. Each entry of B is set 0;

2. for each v , store its children in c-list(v);
3. push(root, s); mark root; B[root] := 1;

4. while (s � ϕ) do {

5. v := top(s);

6. while c-list(v) � ϕ do {

7. let u be the first vertex in c-list(v), chosen according to a heuristic if any;

8. if u is marked then {

9. let u ′ be the parent of u in T ;

10. if B[u ′] = 1 then {remove u from ChT (u ′); add u to ChT (v); }

11. remove u from c-list(v); }

12 else {add u to ChT (v); push(u, s); mark u; B[u] := 1; v := u; }}

13. w := pop(s); B[w] := 0; }

end

first element u in c-list(v) (note that initially c-list(v) contains all the children of v; see line 2). Two
cases need to be distinguished: u is marked (showing that v has been visited before), or not marked.
If u is marked, then we will check whether its parent u′ (in the spanning tree T created up to now)
is on the current path by checking B[u′] (see lines 9–10.) If it is the case, then a transformation
will be conducted (see line 10). Otherwise, u is simply removed from c-list(v) (see line 11). If u is
not marked, then it will be added to T as one of v’s children (see line 12). Then, u is pushed into
s and marked (see line 12). In a next step, one of u’s children will be visited (see the assignment
statement: v := u in line 12). We repeat this process until we meet a vertex v′ with c-list (v′) = ϕ.

In this case, the top element of s is popped out and the corresponding entry in B is set to 0 (see
line 13).

Example 7.1. Consider the graph shown in Figure 11(a). If we use the traditional depth-first
search to explore the graph, then we may create a spanning tree as shown by the solid arrows.

But if we use DFS-f to explore G, then the triangle with three corners 3, 11, and 7 (see
Figure 11(a)) will be recognized and transformed, leading to the spanning tree shown by the
solid edges in Figure 2(a), which has two more forward edges than the spanning tree shown in
Figure 11(a).

Concerning the correctness of the algorithm, we have the following proposition:

Proposition 7.2. Let T and T′ be two spanning trees generated by a traditional depth-first search

and a DFS-f search of DAG G, respectively. Then, F(T) ≤ F(T′).

Proof. Let Δa ,b ,c be a triangle met during the depth-first search. That is, a→ b is a tree edge,
c → b is a cross edge, and there is a tree path from a to c. By the DFS-f(), this triangle will be
transformed such that a→ b becomes a forward edge, and c→ b a tree edge. More importantly,
any forward edge from a or an ancestor of a to b or a descendant of b in T[b] is still a forward edge
with respect to T′. This shows that F(T) ≤ F(T′). �

The time for doing a transformation is bounded by a constant. Thus, the time complexity of
DFS-f () is still in O(n + m).

7.1.3 About Recursive Depth k. Now, we are in position to discuss the recursive depth, i.e., the
value of k. Intuitively, the sparser a graph is, the smaller the value of k. However, for a very dense
graph, the value of k can be very small. To see this, let us consider a very dense graph shown in

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:34 Y. Chen and G. Singh

Fig. 12. Illustration of the execution of DFS-f ().

Fig. 13. Illustration of an unreducible graph.

Figure 11(b), for which we can find a spanning tree shown as solid edges in Figure 11(c). It is in
fact a single path. The corresponding Gc is ϕ. Thus, for this graph k is equal to 1.

In Figure 12, we illustrate the execution of DFS-f () when applied to this graph.
In Figure 12(a), we show the first triangle encountered during the execution of DFS-f (). By the

triangle transformation, it will be changed to a graph as shown in Figure 12(b). In Figure 12(c), we
show the second triangle encountered. Then, it will be changed to a graph as shown in Figure 12(d).
The third triangle encountered is shown in Figure 12(e). It will be changed to a graph as shown in
Figure 12(f). Continuing in this way, we will finally get the spanning tree shown in Figure 11(c).

However, there exist some DAGs G, whose Gc is G itself. As an example, consider the graph
shown in Figure 13(a). One of the spanning trees T of this graph is shown by the solid edges in
Figure 13(b). With respect to T, we have Vc-start = {4}, Vc-end = {3, 5}, VLAC = {1, 2}, and Vf-start = Vf-end

= Vfs = Vfe = ϕ. Then, we can see that Vc-start ∪ Vc-end ∪ VLAC ∪ Vfs ∪ Vfe = {1, 2, 3, 4, 5}, same as
the vertex set of the original graph. Thus, its Gc must be identical to the original graph.

Figure 13(c) shows another spanning tree of the graph. Its Gc is also identical to G itself.
We have two ways to handle this situation. In the first way, we simply establish an index for

Gc by using an existing method if Gc is small. In the second way, we slightly extend the strategy
described in the previous sections. Assume that T is a forest. Let r1, r2, . . . , rl (from left to right) be

the roots of the subtrees in T. For each cross edge v
a−→u with both v and u appearing in T[r1], we

will add a forward edge e to T as follows: Denote by p the tree path from r1 to v. e will be labeled
with L (p)a if no forward edge is attached to p, as illustrated in Figure 13(d), where corresponding to
the two cross edges shown in Figure 13(b), two forward edges labeled, respectively, with “be” and
“bf” are added to the tree shown in Figure 13(b). Should be there some forwards edges attached to p,

e will be labeled with Cv.a, where Cv is the compatible graph associated with v and Cs.a represents
a set of path labels with each made up of a plus one of the path labels obtained by exploring Cv

as described in Section 5.2. Then, we are able to remove r1 and the edges incident to r1 from Gc

without loss of reachability information. It is because using DFS-f (G), we definitely have no cross
edge from a vertex in T[r1] to a vertex in any other T[ri] for i > 1 and the reachability from r1 to
any other vertex can be checked within T[r1]. In Figure 13(e), we give the Gc of the graph shown
in Figure 13(a).

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:35

Fig. 14. Illustration for compatible graphs.

In this way, we always have |Gi+I
C
| ≤ |Gi

c | - 1 (i = 0, . . . , k - 2), where |Gi
c | stands for the number

of vertices inGi
c . Thus, we have k ≤ n. In our experiments, for all the tested real data graphs G, we

have k� n.

7.2 Searching Compatible Graphs

In this subsection, we discuss compatible graphs. First, how to explore a compatible graph Cv

associated with a γ v is described. Then, how to organize all Cv’s into a single global graph to save
space.

7.2.1 Searching Compatible Graphs. To find a compatible set: τ 1, . . . , τ j (for some j) along a path
such that puv ° τ 1 ° . . . ° τ j ⊆ S, we need to search a Cv. For simplicity, however, we consider only a
simple case that in Auv, we have only a single label ai such that a � S. But it can be easily extended

to general cases of ai1

1 , . . . a
ik

k
with each al � S and il ≥ 1 (1 ≤ l ≤ k). The algorithm to be given

is in fact a depth-first search with a technique like finishing timestamps [10] being used to avoid
repeated access of vertices. In the algorithm, the following notations will be used:

• o(τ , a) - an operator, which returns an integer l if τ .A contains al.
• f [τ] - a maximum number i such that ai can be replaced by using the quadruples along

a certain path in Cv[τ] (subtree rooted at τ in Cv). So, when we encounter a vertex τ once
again, f [τ] can be simply used, which enables us to avoid searching Cv[τ] for a second time.
(See Figure 14 for illustration, in which we show that if a vertex τ is met once again along a
different path, we will utilize f [τ] to avoid a repeated visit of Cv[τ].) As will be seen in the
following algorithm, f [τ] is created in a way like finishing timestamps during a depth-first
search of a directed graph (see Reference [10], p. 540).

The whole working process consists of two procedures, named CompExpl () and R (), respec-
tively. In Algorithm CompExpl (aj, Cv, u, S), each vertex is initially considered as not marked (see
line 1). Lines 2–5 check each vertex in Cv in turn and, when an unmarked vertex τ is found, visit
it by calling R (τ , a, j, S) to explore part of Cv[τ].

ALGORITHM 9: CompExpl(aj , Cv , u,S)

begin

1. Initially, each vertex in Cv is considered as unmarked.

2. for each vertex τ ∈ Cv do {

3. if τ is not marked and τ .s is a descendant of u in T then

4. {if R (τ , a, j, S) = true then return true;}}

5. return false;

end

In each call R (τ , a, j, S), τ is first marked in line 1. Here, variable z is used to represent az, which
we want to replace to satisfy the query. In line 2, we first check whether τ .x ∈ S. If it is the case,

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:36 Y. Chen and G. Singh

ALGORITHM 10: R (τ , a, j, S)

begin

1. mark τ ; z := j; temp := 0;

2. if τ .x ∈ S then temp := o(τ , a);
3. z := z - temp;

4. if z = 0 then return true;

5. for each τ → τ ′ in Cv do {/*access every child τ ′of τ */

6. if τ ′ is not marked then

7. {if R (τ ′, a, z, S) = true then return true;}

8. else {if f [τ ′] = z then return true; }}

9. if τ is a leaf then f [τ] := temp

10. else f [τ] := temp + maxτ→τ ′ ∈Cv{f [τ ′]};
11. return false;

end

then the corresponding replacement can be conducted. Assume that o(τ , a) = l. Then, al can be
replaced and z will be decreased by l (see line 3.) If z becomes zero, then it shows that the whole aj

can be replaced and the algorithm returns true (see line 4). Otherwise, we will recursively explore
all the subgraphs each rooted at a child of τ (see line 5). Lines 5–9 examine each vertex τ ′ adjacent
to τ . If τ ′ is not marked (not yet visited), then we will recursively visit τ ′ if τ ′.x ∈ S. If τ ′ is marked,
then we will check whether f [τ ′] = z and return true if it is the case. In any case, Cv[τ ′] will not
be repeatedly searched. Finally, after every edge leaving τ has been explored, lines 9–10 set value
f [τ] for τ and returns false (see line 11), since in this case the checking of each subgraph Cv[τ ′]
must return false (see lines 7 and 8). Special attention should also be paid to how f [τ] is calculated
for each τ in lines 9 and 10. It is determined in a bottom-up way, i.e., it is computed based on
the values for its children while the values for leaf vertices can always be directly calculated. As
illustrated in Figure 14, when a τ is visited again along a different path, f [τ] can be used (see line
8) and Cv[τ] will not be repeatedly searched.

Example 7.2. Consider LCR (u, v, S, T), where T is shown in Figure 4(a), and S = {a, b, d, p }. T is
composed of a tree path puv and four forward edges e1, e2, e3, and e4. Obviously, we have [αu, βu]
⊇ [αv, βv], L (puv) - {a, b, c } � S, and λuv = λv - λu = ϕ - ϕ = ϕ ⊂ S. In this case, we will check γ v =

<A (pv); τ 1, τ 2, τ 3, τ 4; ∅>. (Since u is the root, A (pu) is trivially ϕ and need not be checked.) Here,
we have

—A (pv) = {a2, b2, c2}. (Since c � S, c2 should be replaced to satisfy the query.)
—τ 1 = [u, h, {a, b }, d], τ 2 = [g, w, {b, c }, p], τ 3 = [w, y, {a, b }, c], τ 4 = [z, v, {b, c }, a].

The compatible graph over them is shown in Figure 4(b). When exploring the graph, the follow-
ing steps of computation will be carried out:

Step 1: τ 1 is visited by calling R (τ 1, c, 2, S). z is initialized to 2. Since τ 1.x = d ∈ S, temp is set to
be o(τ 1, c) = 0 (it is because A (puh) = {a, b } does not contain c.) So z is not changed.

In the subsequent recursive calls, Cv will be continually explored.
Step 2: τ 3 is visited by calling R(τ 3, c, 2, S). z is initialized to 2. Since τ 1.x = c � S, temp = 0 and z

remains the same as before. Since τ 3 is a leaf, f [τ 3] is set to be the same as temp = 0.
Step 3: τ 4 is visited by calling R(τ 4, c, 2, τ). Since τ 4.x = a ∈ S, temp is set be o(τ 4, c) = 1 and z is

decreased to 1. Since τ 4 is a leaf, f [τ 4] is set to be the same as temp = 1.
Step 4: τ 2 is visited by calling R (τ 2, c, 2, S). Since τ 2.x = p ∈ S and o(τ 2, c) = 1, z is decreased

from 2 to 1. Both its children τ 3 and τ 4 are marked and will not be further accessed. But f [τ 4] = 1
= z. So R(τ 2, c, 2, S) returns true.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:37

From the above example, we can see that each vertex τ in Cv is visited at most once. Each time
τ is met again, its f [τ] will be used to avoid repeated access.

For the general cases, we need to change o(τ , a) to o(τ , B) with B being an array of the form:

[a1, . . . , ak]. Its return value is also an array of the form: [j1, . . . , jk], indicating that ai1

1 , . . . ,a
ik

k
can

be replaced by τ .
In the following, we prove the correctness of Algorithm R ().

Lemma 7.1. Let R (τ 1, a, j1, S)→· · ·→ R (τ k, a, jk, S) be a chain of recursive calls with j1 ≥ j2 ≥ . . .

≥ jk during the execution of CompExpl (aj, Cv, u, S). If R (τ k, a, jk, S) returns true, then each recursive

call on the chain returns true. (Especially, if R (τ k, a, jk, S) does not invoke a further recursive call,

then by the replacement puv ◦ τ1 ◦ . . . ◦ τk ,a
j1

1 will be removed.)

Proof. Consider R (τ k-1, a, jk-1, S) and R (τ k, a, jk, S). If jk can be reduced to 0 by using τ k, then
R (τ k, a, jk, S) returns true (see line 4). Then, from line 7, we can see that R (τ k-1, a, jk-1, S) returns
true. So, recursively, each R (τ i, a, ji, S) (1 ≤ i ≤ k) will return true. �

Lemma 7.2. Let R (τ , a, l, S) be a call during the execution of CompExpl (aj, Cv, u, S). If R (τ , a, l, S)

returns false, then any recursive call R (τ ′, a, l′, S), invoked during the execution of R (τ , a, l, S) with

τ ′ being a vertex in Cv[τ] and l′ ≤ l, will return false.

Proof. The lemma holds in terms of Lemma 7.1 and line 12 in Algorithm R (). �

Proposition 7.3. Let T be a spanning tree (forest) of G. Let T = T ∪ Eforward. Let u and v be two

vertices in G. Assume that aj is the only label in A (puv) such that a � S. Then, Algorithm CompExpl

(aj, Cv, u, S) returns true if aj can be removed by using the corresponding forward edges. Otherwise,

not.

Proof. Let e1, . . . , ek be a set of compatible forward edges attached to puv such that by using them
to replace the corresponding segments, aj can be removed. Then, the corresponding quadruples
τ 1, . . . , τ k must be on a path p in Cv, and p can be searched in one of two ways:

(1) Along p, we will have a chain of recursive calls R (τ 1, a, j1, S)→ . . . → R (τ k, a, jk, S) with
j1 = j, j1 ≥ j2 ≥ . . . ≥ jk, and R (τ k, a, jk, S) returns true. According to Lemma 7.1, R (τ 1, a,

j1, S) returns true.
(2) Along a chain of recursive calls p1 = R (τ 1, a, j1, S)→ . . . → R (τ l, a, jl, S) with j1 = j, j1 ≥

j2 ≥ . . . ≥ jl such that there exists another chain p2 starting from a recursive call R (τ l+l,
a, jl+l, S) with its return value being false, but f [τ l+l] = jl - o(τ l, a). So, R (τ l+l, a, jl+l, S)
will return true (see line 8 in Algorithm R ()) and then R (τ 1, a, j1, S) returns true. p is the
concatenation of p1 and p2. �

If aj cannot be replaced, then any recursive call returns false. According to Lemma 7.2, R (τ 1, a,

j1, S) returns false.

Since each vertex in Cv is accessed at most once, the running time of the algorithm is bounded
by O(h), where h is the number of all forward edges attached to puv.

7.2.2 About General Compatible Graphs. For efficiency, we can create a general compatible
graph for all forward edges in T, instead of a compatible graph for each single vertex v (or say, for
each γ v).

Definition 7.1 (General Compatibility Graph). A general compatible graph for a T is a graph, CT,
in which there is a vertex for each quadruple τ representing a forward edge in T, and an edge
τ → τ ′ if (1) τ i and τ j are compatible, (2) τ i.s is an ancestor of τ j.s, (3) between τ i and τ j is there no
other τ , which is compatible to both.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:38 Y. Chen and G. Singh

Now, when looking for replacements to complete a T-checking LCR (u, v, S, T), we will explore
CT, controlled by using intervals so that only the relevant part is visited. More exactly, the following
property will be used: For any vertex (in CT) representing a forward edge s→ t attached to puv, we
must have [αu, βu] ⊇ [α s, β s] and [α t, β t] ⊇ [αv, βv].

In addition, we can associate each vertex u in T with a set of pointers with each pointing to a
vertex τ in CT such that u is an ancestor of τ .s in T and there is not any other forward edge attached
to the tree path from u to τ .s. Thus, such vertices can be used as the starting points to explore CT

when looking for replacements to satisfy reachability from vertex u to some other vertex v.

7.3 Classification of Vertices in T

We discuss now how to do the vertex classification with respect to a spanning tree T of G to
construct Gc, but only focus on how to figure out the vertices in VLCA, Vfs, and Vfe, since the
vertices in Vc−start and Vc−end, as well as in Vf−start and Vf−end, can be easily recognized according
to their definitions.

First, we mark all vertices in Vc−start ∪ Vc−end ∪ Vfe as follows:

• Search T in the depth-first manner. In the process, keep a variable x, which contains the
highest c-end vertex on the current path.

• For each encountered vertex v, we will do the following checking:
• if it belongs to Vc−start ∪ Vc−end, then mark it.
• In addition, if it belongs to Vf−end, then we will check the corresponding forward edge s→

v. If x is equal to s or an ancestor of s, then mark it, since it must be a vertex in Vfe.

Next, we will search T bottom-up and produce the skeleton tree Tc of T, containing only the
vertices in Vc = VLCA ∪ Vc−start ∪ Vc−end ∪ Vfs ∪ Vfe. Note that to recognize VLCA, we can use the al-
gorithm discussed in Reference [41]. However, besides VLCA, we also need to recognize Vfs (Vc−start

and Vfe are already marked as described above). For this reason, we design a new procedure for
this task.

Initially, Tc is set to ϕ. Then, during a bottom-up traversal of T, not only the vertices in Vc−start

∪ Vfe (they are all marked) will be inserted into Tc, but the vertices in VLCA ∪ Vfs will also be
recognized and inserted into Tc.

For each vertex u, which has already been inserted into Tc, it will be associated with a Boolean
value: c (u) and two links: l1(u) and l2(u), described below.

• c (u) is true if T[u] contains a vertex v ∈ Vc−start. Otherwise, c (u) is false.

During a bottom-up traversal of T, c (u) can be computed as follows:

—If u ∈ Vc−start, then set a temporary Boolean variable σ to be true; otherwise, false.
—Let u1, . . . , ul be the children of u. Set c (u)← c (u1) ∨· · · ∨ c (ul) ∨ σ .
• l1(u) is a link to a vertex inserted into Tc just before u, which is not a descendant of u in T.
• l2(u) is a link to its parent or one of its ancestors, whichever first inserted into Tc.

l2(u) can be created as below, during the construction of Tc.
Let u′ be the vertex inserted just before u. If u′ is a child (descendant) of u, then we will first

create a link from u′ to u, denoted as l2(u′) = u. Then, we will go along the l1-chain starting from
u′: u′ → l1(u′)→ l1(l1(u′))→· · ·→
l (i)
1 (u′) = u′′ for some i such that l1(u′), l1(l1(u′)), . . . , l (i−1)

1 (u′) are all the children (descendants)

of u, but l (i)
1 (u′) not, where l (i)

1 (u′) is just l1 applied i times to u′. That is, we will go along the
chain until we meet a vertex u′′ that is not a child (descendant) of u. For each encountered vertex

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:39

v except u′′, set l2(v)← u. Finally, set l1(u)← u′′ (i.e., change the l1-link of u to point to u′′.) We
denote the whole process as

r ← linkTrav (u),

where r is the number of vertices ∈ VLCA ∪ Vc−start ∪ Vfs, encountered during the navigation along
the l1-chain. If r > 1, then u will be inserted into Tc no matter whether it is marked or not. Other-
wise, u will not be inserted into Tcif it is not marked.

According to the above discussion, we design an efficient algorithm for recognizing all the ver-
tices in Vc and store them in Tc.

ALGORITHM 11: find-Tc (T)

begin

1. Tc ← φ Mark any vertex in T , which belongs to Vc−star t ∪Vc−end ∪Vf e . Establish c (v) for

all v

2. Explore T bottom-up. Let u be the currently encountered vertex. Do the following operations:

(a) If u is the first marked vertex encountered during the bottom-up searching, then simply insert u
in Tc . Otherwise, do (b).

(b) Let u ′ be the vertex inserted into Tc just before u is met. Do (i) or (ii), depending on whether u
is a marked vertex or not.

(i) If u is marked, then insert u into Tc

− If u ′ is not a child (descendant) of u, then set l1 (u) ← u ′ (i.e., set a l1-link from u to u ′).
− If u ′ is a child (descendant) of u, then execute r ← linkTrav(u).

(ii) If u is a non-marked vertex, then do the following:

− If u ′ is not a child (descendant) of u, then u is ignored.

− If u ′ is a child (descendant) of u then r ← linkTrav(u). If r >1, then mark u and insert u into

Tc . Otherwise, u is ignored.

(c) If u is inserted in Tc , then check all those forward edges: s1 → u, . . . , sq → u, each with u being its

end vertice in T and c (u) = true. Mark s1, . . . , sq (*It is because all these vertices must be in Vf s .*)

end

In the above algorithm, special attention should be paid to (2-b-ii) and (2-c). In (2-b-ii), we rec-
ognize all those vertices ∈ VLCA while in (2-c), we recognize all those vertices ∈ Vfs.

Example 7.3. Consider T shown in Figure 2(a) (i.e., the spanning tree shown by the solid edges
plus the corresponding forward edges). By executing find-Tc (T), we will first mark vertices 13, 5,
6, 14, 15, and 9. They are all ∈ Vc−start ∪ Vc−end ∪ Vfe. Thus, the first vertex inserted into Tcshould
be vertex 13 (see Figure 15(a).) In a next step, vertex 5 will be inserted into Tc and l2(13) = 5 will
be generated (see Figure 15(b)). In the third step, we will meet vertex 6. Since it is to the right of
6, a link l1(6) = 5 will be created (see Figure 15(c)). When vertex 14 is encountered next, it will be
inserted into Tc, as shown in Figure 16(d). Following this, we will meet vertex 15 (see Figure 15(e)).
The next encountered vertex is vertex 7 (see Figure 15(f)). It is not marked, but the parent of vertex
15. So, the l1-link chain starting from vertex 15 will be searched to find another child (vertex 14)
of vertex 7 along the chain. Here, a close attention should be paid to the replacement of l1(14) =
6 with l1(7) = 6, which enables us to easily find the lowest common ancestor of 6 and some other
vertices from VLCA ∪Vc−start ∪ Vfs if any. In the last three steps, we will meet vertices 3, 9, and 1.
Among them, 3 and 9 are marked and will be inserted into Tc as shown in Figures 15(g) and (h),
respectively. When vertex 1 is met, we will find all the four children of it in Tc along the l1-link
chain starting from vertex 9. They are 5, 6, 3, and 9 with 5 ∈ Vc−end, 6, 9 ∈ Vc−start, and 3 ∈ Vfs. Thus,
r = 4 (see 2-b-ii) and vertex 1 will be added to Tc (see Figure 15(i)).

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:40 Y. Chen and G. Singh

Fig. 15. A sample trace.

The Tc shown in Figure 15(i) is the same as the tree shown in Figure 6, from which Gc can be
efficiently constructed, as illustrated in Figure 2(b). The algorithm for doing this requires only
O(m) time, as analyzed below:

—The time for executing line (1) is obviously bounded by O(m).
—During the bottom-up search of T, each vertex in T is accessed at most two times: one access

is done along the whole postorder of vertices, and another access is along a series of l1-links,
by which for a vertex v out-degree (v) edges will be visited. So, we have

∑

v ∈V
out-deдree (v) =m.

Concerning the correctness of this algorithm, we have the following proposition:

Proposition 7.4 Let G = (V, E) be a DAG. Let T be a spanning tree (or a spanning forest) of G.

Algorithm find-Tc (T) generates Tc of G with respect to T correctly.

Proof. To show the correctness of the algorithm, we should prove the following: (1) each vertex
in Tc is a vertex ∈ Vc = VLCA ∪ Vc−start ∪ Vc−end ∪ Vfs ∪ Vfe; (2) any vertex not in Tc does not belong
to Vc; (3) for each edge u→ v in Tc there is a path from u to v in T, which does not contain any
vertex in Tc (except the two end points).

First, we prove (1) by induction on the height h of Tc. The height of a vertex v in Tc is defined
to be the longest path from v to a leaf vertex in Tc.

Basis step. When h = 0, each leaf vertex in Tc is a vertex in Vc−start ∪ Vc-end ∪ Vfe. So it is correct.
Induction step. Assume that every vertex appearing at height h = k in Tc is a vertex in Vc. We

prove that every vertex v at height k + 1 in Tc is also a vertex in Vc. If v is marked, then it must be a
vertex in Vc−start ∪ Vc-end Vfs ∪ Vfe, the proposition holds. Assume that v is not marked. According
to the algorithm, v has at least two children ∈ VLCA ∪ Vc−start ∪ Vfs. Thus, v ∈ VLCA.

To prove (2), we notice that (i) any vertex in Vc−start ∪ Vc-end ∪ Vfe is marked (see line 1); (ii) any
vertex in Vfs is marked before it is encountered (see line 2-c); and (iii) any unmarked vertex but
inserted into Tc must belong to VLCA (see line 2-b-ii). Finally, (3) can be seen from the fact that each
l2-link corresponds to a path in T and such a path cannot contain any vertex in Tc (except the two
end points), since the vertices in T are checked level-by-level bottom-up. �

8 EXPERIMENTS

To show that our method does not only have a better theoretical computational complexity than
the existing methods for this problem, but is also greatly better than them in practice, we have
done a lot of tests on some real data and synthetic data.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:41

Table 4. Real Datasets with Edge Labels

Datasets |V| |E| |Σ| syn. label

robots 1.40k 2.90k 4 -

yeast 3.06k 13.3k 5 -

yago 5.00k 28.5k 66 -

advogato [35] 5.40k 51.0k 4 -

Youtube 15.0k 10.7M 5 -

BioGrid 64.0k 1.5M 7 -

yago2 16.4M 31.9M 97 -

Table 5. Real Datasets without Edge Labels

Datasets |V| |E| |Σ| syn. label

epinions [35] 131k 840k 10 �

webStanford [36] 251k 2.3M 10 �

webGoogle [36] 875k 5.1M 10 �

webBerkstan [36] 685k 7.0M 10 �

socPokec [36] 1.6M 30M 10 �

wikiLinks [35] 3.0M 102.0M 10 �

citeseerX [35] 6.54M 150.1M 10 �

In our experiments, we have altogether tested five different methods:

(1) BFS-based [10] (BFS for short),
(2) Landmark-based [20] (LandM for short),
(3) Zou’s method [32] (Zou’s for short),
(4) Hassan’s method [16] (Hassan’s for short), and
(5) Compatible-graph-based discussed in this article (CGB for short).

The LandM, Zou’s, and Hassan’s methods are briefly described in Section 3. But special attention
should be paid to the Hassan’s, since it was designed to find a shortest path p from a vertex v to
another vertex u such that all edge labels on p fall in S. This is more general than LCR and requires
in general much more query time.

The code of the landmark-based method is downloaded from https//github.com/DeLaChance/
LCR, and the code of the Hassan’s method is from Reference [17]. All the other three methods
are implemented by ourselves. The Hassan’s code is written in Java, and all the others in C++,
running on a Linux machine with 128 GB of memory and a 2.9 GHz 64-core processor.

In the tests, both synthetic and real datasets are used, and queries are generated in a way con-
trolled to avoid trivial cases that the checked vertices v and u are not far away from each other.
Our goal is twofold:

(i) to study how well our method performs on real data concerning the indexing time, index
space, and query time.

(ii) to examine the effects of different graph parameters on the performance, such as graph
density, and the distribution of outdegrees of vertices, as well as the number of labels.

For this purpose, we will divide the experiments into two groups. In the first group, we test
all the methods against real data. The second group is on synthetic data and further divided into
three parts. In the first part, we compare our method with the LandM and the Zou’s on two kinds
of synthetic data (the uniform-data and Zipf-data to be described below). In the second part, we fix
the number of vertices of the synthetic graphs while vary the other parameters, such as the out-
degree per vertex and label set size to study their effects. In the third part, we study the scalability
of our method by increasing graph sizes.

As will be seen later, our method uniformly outperforms all the other tested approaches due to
its greatly reduced index space and the short to- and from-sequences associated with each vertex.

8.1 Datasets

Table 4 provides an overview of the real datasets used in the experiments. These datasets are taken
from various sources. Some are edge-labeled and some not. For those not edge-labeled, we assign
labels to edges synthetically, which is indicated in the column “Synthetic labels.”

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

https//github.com/DeLaChance/LCR
https//github.com/DeLaChance/LCR

8:42 Y. Chen and G. Singh

Table 6. Parameters for Synthetic Graphs

Size (# of nodes) n

Edge labels Σ = {1, 2, . . . }
Node types not specified
Node type constraints not specified
Probability distribution of out-degree P(d), where d represents the outdegree of a vertex.

All the graphs listed in Table 4 are with edge labels. Among them, except BioGrid [62], all the
others robots [63], yeast [64], yago and yago2 [65], advogato [66], and Youtube [36] are directed
graphs. In addition, yago and yago2 are two RDF data collections. In BioGrid, each undirected edge
is replaced by directed edges to create a directed graph.

In Table 5, all the graphs are not edge labeled. For this reason, we will assign each edge in such
graphs a number out of {1, 2, . . . , 9}, working as its label. All these datasets are taken from either
SNAP [36] or KONECT [35] (http://konect.cc/), but come from a wide variety of application do-
mains, including education (robots), Biology (yeast), RDF graphs (yago), media (YouTube), social
network (socPokec), web network (webStanford, webGoogle, webBerkstan), Wikipedia (wikiLinks),
and citation (citeseerX). Experimenting with them, we can observe the general behaviors of dif-
ferent strategies.

All the synthetic datasets are created by using the gMark [67]. According to the probability
distribution of degrees of vertices, they can be categorized into two groups: data following uniform

distribution (P (d) = 1/(b – a + 1) (d ∈ [a, b]); and data following Zipfian distribution (P (d) = αd-l)
[18], where d represents the out-degree of a vertex, and a, b, α , and l are four constants with
b > a. For the uniform distribution, we take a = 2 and b = 5. For the Zipfian distribution, we fix α
to 1, but set l to different values (either 2.2, 2.4, 2.6, or 2.8) to change the distribution of vertices’
outdegrees. We notice that the larger l is, the smaller the number of edges in a graph. To study the
scalability in these two kinds of graphs, we vary graph size from 100k to 400K vertices.

In Table 6, we show the main parameters used to determine the graph configuration [49].

8.2 Query Generation

By using the gMark, different kinds of regular path queries [51] can be created, including LCRs.
However, by the gMark, we are not able to control two important properties of queries:

(1) To avoid trivial cases that v and u are only few steps away for a query LCR (u, v, S, G).
(2) To determine whether LCR (u, v, S, G) returns true or false.

For this reason, we have designed our own procedure to create queries for each dataset G (Al-
gorithm 12) such that the “distance” between u and v, denoted as dis (u, v), are properly controlled.
Here, by “distance,” we mean the number of vertices visited by the BFS from u to v.

The above algorithm is used to generate both true- and false-queries, which takes a graph G and
an integer l (to indicate the number of queries to be created) as inputs. To generate queries, we will
randomly select l vertices u. For each of them, we will randomly select �l/100 vertices v different
from u. Then, for each (u, v), we will further create 10 subsets S of Σ and for each of them check
whether u � v under S. If it is the case, then add a query LCR (u, v, Sk, G) to Qt, which is used
to accommodate positive queries; otherwise, add it to Qf, which is used to accommodate negative
queries. The cardinality of both Qt and Qf is bounded by l.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

http://konect.cc/

Efficient Evaluation of Label-constrained Reachability Queries 8:43

Table 7. Indexing Time and Size on Real Datasets

Datasets CGB LandM Zou’s Hassan’s
IT(s) IS(M) IT(s) IS(M) IT(s) IS(M) IT(s) IS(M)

robots 0.8 0.1 0.1 5 7 1.457 6.02 3.2
yeast 2.1 0.5 0.41 6 14 3.0 13.08 11.23
yago 4.79 3.33 3.21 59 101 11.23 29.21 28.2
advogato 53 7.2 3 131 178 20.32 33.0 31.34
Youtube 1,699 92.2 2,831 300 713 245.15 727.11 693.1
BioGrid 142 12.8 50 1,302 3,007 1,011.1 203.35 73.2
yago2 1,749 1,076.08 5,3857 28,152 F F F F
epinions 92 10.8 205 2,903 1,404 2,212 217.23 69.7
webStanford 510 28.6 935 7,806 1,710 6,766 640.37 231.28
webGoogle 701 153.6 5,887 33,931 5,056 22,130 979.02 502.15
webBerkstan 833 144.0 2,463 15,690 4,236 12,475 953.04 451.51
socPokec 1,612 512.3 9,762 75,698 F F 2,302.71 2,307.23
wikiLinks 11,906 1,159 24,736 93,414 F F 28,408.92 6,216.15
citeseerX 18,782 8,886 29,836 105,751 F F F F

ALGORITHM 12: queryGen(G, l)

Input: G — a graph; l — size of query set;

Output: Qt — set of true-queries; Qf — set of false-queries;

begin

1. Qt := ϕ; Qf := ϕ; l ′ := �l/100;
2. while |Qt | ≤ l or |Qt | ≤ l do {

3. choose a random vertex u from G, and generate a random number 10 ≤ r ≤ n;

4. for j = 1 to l ′ do {

5. choose a random vertex v (� u) from G; generate randomly 10 subsets of Σ: S1, . . . , S10;

6. for each Sk do {

7. run BFS to find whether u � v under Sk ;

8. if it is the case and dis(u, v) > r then

9. {if |Qt | < l then Qt := Qt ∪ {LCR(u,v, Sk);}
10. else {if |Qf | < l then Qf := Qf ∪ {LCR(u,v, Sk);}
end

8.3 Tests on Real Datasets

In the first experiment, we compare the performance of our method with the landM [20], the Zou’s
[32], and the Hassan’s on the real datasets described in Tables 4 and 5. We mainly report their
respective indexing times (IT) and index sizes (IS), as well as their query times (QT). Indexing
times and sizes are summarized in Table 7, which clearly show that ours uniformly outperforms
the others; the LandM, the Zou’s, and Hassan’s. In the case of Zou’s, we want to emphasize that it
is only possible for small graphs to establish the indexes within the time limitation (four hours).
For all the graphs with the number of edges close to 1M or above, it times out or collapses due to
the system stack overflow. In addition, the indexing time of the Hassan’s is comparable to ours,
but better than all the other methods even though its index space is in general much larger than
ours. However, the index space of the Hassan’s is still much smaller than the LandM and Zou’s. The
reason for this is that by the Hassan’s, not all the shortest paths are created as an index; instead,

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:44 Y. Chen and G. Singh

Table 8. Breakdown of Indexing Time of CGB

robots yeast yago Advo- You- Bio- yago2 epinions Web- Web- web- soc- Wiki- citeseerX

gato tube Grid Stanford Google Berkstan Pokec Links

t1 (s) 0.537 1.42 3.21 30.01 676.56 63.7 1025.77 64.57 207.52 347.98 367.34 689.43 4,236.23 6,987.56

t2 (s) 0.263 0.68 1.58 22.99 1,022.4 28.3 723.23 27.43 302.48 353.02 465.66 922.57 7,669.77 11,794.44

Table 9. Query Time on Real Datasets

Datasets True query (μs) False query (ms)

CGB LandM Zou’s BFS Hassan’s CGB LandM Zou’s BFS Hassan’s

robots 0.13 20.12 8.90 17.77 3.19 0.01 0.06 0.02 0.70 0.12

yeast 0.31 45.81 23.23 56.78 6.73 0.09 0.11 0.06 3.23 0.13

yago 0.45 47.21 60.69 89.21 8.01 0.11 0.17 0.10 34.32 0.19

advogato 36.0 43.08 46.34 120.6 531.0 0.09 0.21 0.05 7.67 0.32

Youtube 8.50 21.10 25.80 3,220.6 2,324.04 8.50 8.19 3.07 38,88 10.9

BioGrid 11.9 23.71 35.23 1,754.3 420.05 1.9 11.95 3.45 29.0 16.4

yago2 71.5 292.73 F 16,547.7 F 22.31 121.64 F 269.8 F

epinions 20.8 52.10 65.77 106 989.8 1.1 1.58 1.02 2.31 1.7

webStanford 209.3 418.87 403.0 280 1,989.2 2.3 3.16 2.24 14.6 3.9

webGoogle 108.9 192.72 157.01 1,340 3,456.2 3.9 17.57 13.76 29.65 10.7

webBerkstan 116.4 139.52 146.78 995 3,743.0 7.4 20.78 13.66 27.6 30.0

socPokec 8.4 12.76 F 1,290 7,923.3 10.5 19.25 F 79.0 23.7

wikiLinks 31.4 49.06 F 3,120 12,432.2 11.4 25.42 F 101.9 45.9

citeseerX 46,7 67.98 F 5,769 F 13.02 209.16 F 363.56 F

graph G is partitioned into a set of contracted paths with each edge in it having the same label, plus
some bridge vertices and OtherHost Lists [16], which can be used to speed up the navigation of G

when evaluating a query. Such a data structure needs much less space than a transitive closure or
a partial transitive closure.

Table 8 shows the breakdown of the indexing time of our method, which is mainly composed
of two parts: the time t1 for find spanning trees for G and the time t2 for constructing compatible
graphs.

In Table 9, we show the query times of our method and all the other four approaches. First, we
notice that the query time for the true-queries is given in microseconds, while the query time for
the false-queries is given in milliseconds. It is due to the huge difference between the query times
of these two kinds of queries. From this, we can see that for true-queries, ours, the LandM, and
the Zou’s are slightly better than the BFS and the Hassan’s. However, for false-queries, there is a
big gap between the BFS and the others. The reason for this is that a true-query can stop after
hitting its target, whereas by a false-query a large part of a graph has to be searched for the BFS

to find that the source cannot reach to the target. In fact, the same analysis applies to the LandM

even though it can be somehow better than the BFS in some cases. It is because by this method
an index is constructed only for a small fraction of vertices and for most false-queries they are
useless. To be clearer, consider graph wikiLinks with n = 3.0M. For it, the set of the chosen land
marks will contain 1, 250 +

√
n = 2, 980 vertices [20], which are only about 0.3% of all vertices.

Then, for evaluating a query, the probability that the index is utilized is (0.3 + 99.7 × 0.3)/100 =
30.21%. That is, for a false-query, the probability that the LandM will search the whole wikiLinks is

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:45

Table 10. Maximum Length of to- and from-sequences of Vertices by CGB

robots yeast yago Advo- You- Bio- yago2 epinions Web- Web- web- soc- Wiki- citeseerX

gato tube Grid Stanford Google Berkstan Pokec Links

Max. Len. 24 60 82 91 233 396 546 96 107 76 167 301 423 388

Table 11. Average Length of Sequences Accessed and Average Number
of Replacements when Evaluating a Query by CGB

robots yeast yago Advo- You- Bio- yago2 epinions Web- Web- web- soc- Wiki- citeseerX

gato tube Grid Stanford Google Berkstan Pokec Links

Ave. Num. interval 9 23 37 39 97 117 383 36 54 48 78 132 183 214

Ave. replacements 27 39 25 14 73 61 343 89 93 77 202 208 267 387

about 70%. So, for false-queries, the LandM is not much better than the BFS, and even worse than
the Hassan’s. However, ours is still better than the Hassan’s although its index structure can be
almost 5 times larger than ours. For small graphs, the Zou’s exhibits a great gain of the query time
over both the BFS and the LandM, which shows that fully indexing a graph is beneficial, since in
any case searching a large part of a graph can be avoided. Unfortunately, both its indexing time
and index size are too large and cannot scale well on large graphs. In the opposite, by our method,
the to-sequence and from-sequence of a vertex are quite short and when the to-sequence of the
source, or the from-sequence of the target is exhausted, returns false. See Table 10 for some real
tested lengths.

To show the reason why our index is much smaller than the others, in Table 10, we give the
maximum lengths k of the to- and from-sequences associated with the vertices in different graphs
by our method. Clearly, we can see that k � n. In Table 11, we show the average number of
checked intervals and performed replacements by evaluating a query, from which we can observe
the reason why our query time is much better than the others.

8.4 Tests on Synthetic Datasets

In this section, we report the tests on synthetic datasets. As mentioned before, this test is divided
into three parts, which will be presented in Sections 8.4.1, 8.4.2, and 8.4.3, respectively.

8.4.1 Part I: Synthetic Graph Performance. In Part I, we compare the performance of our method
with the LandM and the Zou’s on two groups of synthetic datasets created by using gMark [38].
For them, we choose n = 250,000 and |Σ| = 10. In the first group, the outdegree of vertices follows
the uniform distribution, called uniform-graphs. Concretely, we will create four graphs, each with
P (d) = 1 for a different d ∈ {2, 3, 4, 5}. Accordingly, the density of graphs is gradually increased.
In the second group, the outdegree of vertices follows the Zipfian distribution (P (d) = αd-l), called
zipf-graphs. In this graph, also four graphs are created, each with α = 1, and l = 2.2, 2.4, 2.6, 2.8,
respectively. Our goal here is to understand the impact of graph density on performance for both
different synthetic graph generation models. We expect that all the parameters for all the tested
methods will increase as the graphs become denser. It is because the number of possible paths
to explore and indexes between vertices, as well as the number of minimal label sets, increase
with density. Especially, for our method, the number of decomposed spanning trees will also be
incremented. Table 12 and 13 summarize the results. From these, we can see that the index sizes
of our method are much smaller than the LandM and Zou’s. It is because the indexes produced by

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:46 Y. Chen and G. Singh

Table 12. Test Results on Uniform-graphs

d CGB LandM Zou’s
IT IS QT IT IS QT IT IS QT

2 10.2 17.2 1.1 170.3 45.02 75.2 745.1 372.3 54.4
3 20.1 25.6 1.4 219.3 67.5 89.3 901.4 350.7 73.0
4 31.2 29.1 2.3 438.9 80.3 219.8 1401.2 432.2 100.0
5 45.7 42.3 2.6 912.7 292.1 252.5 1695.1 481.1 127.2

For all the methods, IT is given in seconds, IS in Mbytes, and QT in milliseconds.

Table 13. Test Results on Zipf-graphs

l CGB LandM Zou’s
IT IS QT IT IS QT IT IS QT

2.8 17.03 6.9 0.12 13,3 107,5 90.7 1678.1 157.5 4.7
2.6 23.17 8.1 0.24 14,1 109.1 132.4 1710.7 166.3 7.4
2.4 26.2 11.05 0.47 14,7 112.3 200.2 1839.4 171.6 11.93
2.2 32.13 15 0.76 15.7 148.4 287.7 2120.7 183.8 15.02

For all the methods, IT is given in seconds, IS in Mbytes, and QT in milliseconds.

our method are highly compacted by using the multi-sets and the compatible graphs to represent
path labels, which leads to a very short indexing time, since both the multi-sets and the compatible
graphs can be constructed very fast. Our query time is also much better than LandM and Zou’s.
It includes a series of interval checks and a searching of several compatible graphs, whose cost is
linear in the number of forward edges with respect to the found spanning trees.

In all cases, the Zou’s method needs much more time than the LandM to establish an index. Its
index sizes are also much larger than the LandM’s. The reason for this is simple: The Zou’s indexes
are over all the vertices, while the LandM’s only over part of vertices. This difference leads to a big
difference between their query times. In many cases, especially for the Zipf-graphs, the LandM’s
query time can be 10 times higher than the Zou’s.

8.4.2 Part II: Impact of Number of Edges and Label Set Size. We next test the performance of our
method while varying the number of edges and labels using synthetic datasets. Again, we will use
uniform-graphs (UG) and Zipf-graphs (ZU) of n = 250,000 with |Σ| set to be different values: 8,
10, 12, 14, and 16. For uniform-graphs, d = 2, 3, 4, 5; and for Zipf-graphs, α = 1 and l = 2.2, 2.4, 2.6,
2.8. Here, what we want is to better understand the impact of both the number of labels of a graph
and the graph density on our method’s performance. We expect that as graphs grow in either of
these dimensions, indexing costs will increase, since the sizes of both multi-sets and compatible
graphs will be enlarged. Especially, the number of recursive graph decompositions will also be
increased as the density of graphs grows or more labels are attached to edges, leading to larger
sequences associated with vertices as indexes.

Figures 16 and 17 show the indexing time, the index size, and the query time for the uniform-
datasets and Zipf-datasets. When d is large, we observe that both the indexing time and index size
rapidly grow as |Σ| increases. However, when d is small, the growth of the indexing time and index
size is slow. This shows that the size of multi-sets and compatibles increases exponentially in |Σ|
for large d and remains small when d is small, no matter what |Σ| is.

The growths of the indexing time and index size are larger for the uniform-graphs than for the
Zipf-graphs. This is because the uniform-graphs have a close uniformal out-degree distribution.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:47

Fig. 16. Indexing time, index size, and average query times for uniform-graphs with n= 250,000, as a function
of label set size |Σ|. The different curves indicate the vertex degree (either 2, 3, 4, or 5) of the datasets.

Fig. 17. Indexing time, index size, and average query times for Zipf-graphs with n = 250,000, as a function
of label set size |Σ|. The different curves indicate the vertex degree (either 2, 3, 4, or 5) of the datasets.

In general, more paths connecting any two vertices imply larger multi-sets and larger compatible
graphs.

Although the query time for the Zipf-graphs is in general lower than for the uniform-graphs,
for small l values (then more vertices with larger out-degrees) their query time grows very fast as
|Σ| increases.

8.4.3 Part III: Impact of Graph Structures. Finally, we analyze the performance of our method
on uniform- and Zipf-graphs as we vary the number of vertices n ∈ {1,000k, 1,500k, 2,000k, 2,500k,
3,000k, 3,500k, 4,000k} while fix |Σ| = 10. For the uniform-graphs, d = 5; and for the Zipf-graphs, l

= 2.6 (recall that P (d) = αd-l). Our goal here is to understand the scalability of our method.
Figure 18 shows the indexing time, index size, and the average query time. We can observe that

all the three parameters for the uniform-graphs grow much faster than those for the Zipf-graphs.
This can be explained by the fact that in a graph with a more uniform out-degree distribution, the
average number of paths between any two vertices is higher than in a graph with more skewed
out-degree distribution. If the number of paths increases between any two vertices, then so does
the size of the corresponding compatible graph. Due to this effect, all the three parameters for the
uniform-graphs increase faster.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

8:48 Y. Chen and G. Singh

Fig. 18. Indexing time, index size, and average query times for uniform-graphs (UG) and Zipf-graphs (ZG),
as a function of the number of vertices.

9 CONCLUSION

In this article, a new method to evaluate LCR queries is discussed. The main idea behind it is to de-
compose a graph G into a series of spanning trees T0, . . . , Tk−1. Then, construct a series of tree-like
subgraphs T0

′, . . . , Tk−1
′ with each Ti

′ being Ti plus the corresponding forward and back edges.
With respect to each Ti

′, we recognize different kinds of vertices to evaluate queries and transfer
reachability information efficiently. In this way, the index construction time and the index space

can be, respectively, reduced to O(
∑k−1

i=0 (mi + χi |Σ| + χihi)) and O(
∑k−1

i=0 (|Ti | + χi |Σ|) + χihi) for
DAGS, where mi is |Ti

′| plus the number of all the corresponding cross edges with respect to
Ti, χ i, and hi are, respectively, the number of all forward edges and the maximum number of
forward edges attached to a path in Ti (i = 1, . . . , k - 1), and Σ is the set containing all the

edge labels of G. The query time is bounded by O(
∑k−1

i=0 (h2
i + hi |Σ|)). For cyclic graphs, the in-

dex construction time and the index space are bounded by O(
∑k−1

i=0 (mi + bi + χi |Σ| + χihi)) and

O(
∑k−1

i=0 (|Ti | + bi + χi |Σ| + χihi)), respectively, where bi is the maximum number of all those back
edges s → t such that their end vertices t are on a same path in Ti

′. The query time is bounded

by O(
∑k−1

i=0 bi (h2
i + hi |Σ|)). Extensive experiments have been conducted that show our method is

much better than all the existing methods in all the important aspects, including index construction
times, index sizes, and query times.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for their valuable comments.

REFERENCES

[1] R. Agrawal, A. Borgida, and H. V. Jagadish. 1989. Efficient management of transitive relationships in large data and

knowledge bases. In Proceedings of the ACM SIGMOD International Conference. 253–262.

[2] T. Anderson. 1987. Combinatorics of Finite Sets. Clarendon Press, Oxford.

[3] F. Bonchi, A. Gionis, F. Gullo, and A. Ukkonen. 2014. Distance oracles in edge-labeled graphs. In Proceedings of the

17th International Conference on Extending Database Technology (EDBT’14). 547–558.

[4] Y. Chen and Y. Chen. 2008. Core labeling: A new way to compress transitive closure. In Proceedings of the International

Conference on Signal Image Technology and Internet Based Systems. 3–10.

[5] Y. Chen and Y. Chen. 2008. An efficient algorithm for answering graph reachability queries. In Proceedings of the 24th

International Conference on Data Engineering. IEEE, 893–902.

[6] Y. Chen and Y. Chen. 2011. Decomposing DAGs into spanning trees: A new way to compress transitive closures. In

Proceedings of the 27th International Conference on Data Engineering. IEEE, 1007–1018.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

Efficient Evaluation of Label-constrained Reachability Queries 8:49

[7] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. 2006. Fast computation of reachability labeling for large graphs. In

Proceedings of the International Conference on Extending Database Technology. 26–31.

[8] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. 2003. Reachability and distance queries via 2-hop labels. SIAM J.

Comput. 32, 5 (2003), 1338–1355.

[9] J. Cai and C. K. Poon. 2010. Path-hop: Efficiently indexing large graphs for reachability queries. In Proceedings of the

Conference on Information and Knowledge Management (CIKM’10). 119–128.

[10] T. H. Corman, C. E. Leierson, R. L. Rivest, and C. Stein. 2002. Introduction to Algorithms. McGraw Hill.

[11] H. V. Jagadish. 1990. A compression technique to materialize transitive closure. ACM Trans. Datab. Syst. 15 (Dec.

1990), 558–598.

[12] R. Jin, Y. Xiang, N. Ruan, and H. Wang. 2008. Efficiently answering reachability queries on very large directed graphs.

In Proceedings of the ACM SIGMOD International Conference on Management of Data. 595–608.

[13] R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang. 2010. Computing label-constraint reachability in graph databases.

In Proceedings of the ACM SIGMOD International Conference on Management of Data. 123–134.

[14] R. Jin, N. Ruan, Y. Xiang, and H. Wang. 2011. Path-Tree: An efficient reachability indexing scheme for large directed

graphs. ACM Trans. Datab. Syst. 36, 1 (2011), 1–52.

[15] R. Jin, X. Yang, R. Ning, and F. David. 2009. 3hopp: A high compression indexing scheme for reachability query. In

Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 813–826.

[16] M. S. Hassan, W. G. Aref, and A. M. Aly. 2016. Graph indexing for shortest-path, finding over dynamic sub-graphs.

In Proceedings of the Special Interest Group on Management of Data Conference (SIGMOD’16).

[17] I. Munro. 1971. Efficient determination of the transitive closure of directed graphs. Inf. Proc. Lett. 1, 2 (1971), 56–58,

1971.

[18] M. E. J. Newman. 2005. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 5 (2005), 323–351.

[19] M. Thorup. 2004. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51, 6 (2004),

993–1024.

[20] L. Valstar, G. Fletcher, and Y. Yoshida. 2017. Landmark indexing for evaluation of label-constrained reachability. In

Proceedings of the Special Interest Group on Management of Data Conference (SIGMOD’17). 14–19.

[21] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. 2006. Dual labeling: Answering graph reachability queries in constant

time. In Proceedings of the 22nd International Conference on Data Engineering.

[22] K. Xu et al. 2011. Answering label-constraint reachability in large graphs. In Proceedings of the 20th ACM International

Conference on Information and Knowledge Management.

[23] H. Yildirim, V. Chaoji, and M. J. Zaki. 2010. GRAIL: Scalable reachability index for large graphs. Proc. VLDB Endow.

3, 1 (2010) 276–284.

[24] Y. Zibin and J. Gil. 2001. Efficient subtyping tests with PQ-encoding. In Proceedings of the ACM SIGPLAN Conference

on Object-oriented Programming Systems, Languages and Application. 96–107.

[25] H. S. Warren. 1975. A modification of Warshall’s algorithm for the transitive closure of binary relations. Commun.

ACM 18, 4 (1975), 218–220.

[26] S. J. van Schaik and O. de Moor. 2011. A memory efficient reachability data structure through bit vector compression.

In Proceedings of the Special Interest Group on Management of Data Conference (SIGMOD ’11). 913–924.

[27] R. Jin, N. Ruan, S. Dey, and J. X. Yu. 2012. SCARAB: Scaling reachability computation on large graphs. In Proceedings

of the Special Interest Group on Management of Data Conference (SIGMOD’12). 20–24.

[28] H. Wei, J. X. Yu, C. Lu, and R. Jin. 2014. Reachability querying: An independent permutation labeling approach. Proc.

VLDB Endow. 7, 12 (2014).

[29] R. R. Veloso, L. Cerf, W. Meira Jr, and M. J. Zaki. 2014. Reachability queries in very large graphs: A fast refined online

search approach. In Proceedings of the 17th International Conference on Extending Database Technology (EDBT’14).

511–522.

[30] K. Mehlhorn. 1984. Graph Algorithms and NP-completeness. Springer-Verlag New York.

[31] R. Jin and G. Wang. 2013. Simple, fast, and scalable reachability oracle. Proc. VLDB Endow. 6, 14 (2013).

[32] L. Zou et al. 2014. Efficient processing of label-constraint reachability queries in large graphs. Inf. Syst. 40 (2014),

47–66.

[33] A. Mendelzon and P. Wood. 1995. Finding regular simple paths in graph databases. SIAM J. Comput. 24, 6 (1995),

1235–1258.

[34] Z. Abul-Basher. Multiple-query optimization of regular path queries. In Proceedings of the IEEE International Confer-

ence on Data Engineering (ICDE’17). IEEE, 1426–1430.

[35] J. J. Kunegis. 2013. KONECT—The Koblenz network collection. In Proceedings of the International Conference on World

Wide Web Companion. 1343–1350.

[36] J. Leskovec and A. Krevl. 2019. SNAP datasets: Stanford large network dataset collection. Retrieved from http://snap.

stanford.edu/data.

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

8:50 Y. Chen and G. Singh

[37] F. M. Suchanek, G. Kasneci, and G. Weikum. 2007. Yago: A core of semantic knowledge. In Proceedings of the 16th

International Conference on World Wide Web. 697–706.

[38] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher, A. Lemay, and N. Advokaat. 2017. gMark: Schema-driven gener-

ation of graphs and queries. IEEE Trans. Knowl. Data Eng. 29, 4 (2017), 856–869.

[39] M. N. Rice and V. J. Tsotras. 2010. Graph indexing of road networks for shortest path queries with label restrictions.

PVLDB 4, 2 (2010), 69–80.

[40] A. Bonifati, W. Martens, and T. Timm. 2017. An analytical study of large SPARQL query logs. PVLDB 11, 2 (2017),

149–161.

[41] M. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. 2005. Lowest common ancestors in trees and

directed acyclic graphs. J. Algor. 57, 2 (2005), 75–94.

[42] S. Dumbrava, A. Bonifati, A. Diaz, and R. Vuillemot. 2019. Approximate evaluation of label-constrained reachability

queries. SUM (2019) 250–265. arxiv.org/abs/1811.11561v1.

[43] H. Wei, J. X. Yu, C. Lu, and R. Jin. 2014. Reachability querying: An independent permutation labeling approach. Proc.

of the VLDB Endow. 7, 12 (2014).

[44] J. Zhou, S. Zhou, J. X. Yu, H. Wei, Z. Chen, and X. Tang. 2017. DAG reduction: fast answering reachability queries. In

Proceedings of the Special Interest Group on Management of Data Conference (SIGMOD’17). 375–390.

[45] A. D. Zhu, W. Lin, S. Wang, and X. Xiao. 2014. Reachability queries on large dynamic graphs: a total order approach.

In Proceedings of the Special Interest Group on Management of Data Conference (SIGMOD’14). 1323–1334.

[46] J. Zhou et al. 2018. Accelerating reachability query processing based on DAG reduction. J. VLDB 27, 2 (2018), 271–296.

[47] J. Su, Q. Zhu, H. Wei, and J. X. Yu. 2017. Reachability querying: Can it be even faster? IEEE Trans. Knowl. Data Eng.

29, 3 (2017), 683–697.

[48] R. Angles, M. Arenas, P. Barcelo, A. Hogan, J. L. Reutter, and D. Vrgoc. 2016. Foundations of modern graph query

languages. CoRR, abs/1610.06264 (2016).

[49] P. Baeza. 2013. Querying graph databases. In Proceedings of the Symposium on Principles of Database Systems. 175–188.

[50] C. Barrett, R. Jacob, and M. Marathe. 2000. Formal-language-constrained path problems. SIAM J. Comput. 30, 3 (2000),

809–837.

[51] P. T. Wood. 2012. Query languages for graph databases. ACM SIGMOD Rec. 41, 1 (2012), 50–60.

[52] S. Wadhwa, A. Prasad, S. Ranu, A. Bagchi, S. Bedathur. 2019. Efficiently answering regular simple path queries on

large labeled networks. In Proceedings of the Special Interest Group on Management of Data Conference (SIGMOD’19).

[53] M. Chen, Y. Gu, Y. Bao, and G. Yu. 2014. Label and distance-constraint reachability queries in uncertain graphs. In

Proceedings of the International Conference on Database Systems for Advanced Applications. 188–202.

[54] A. Likhyani and S. Bedathur. 2013. Label constrained shortest path estimation. In Proceedings of the Conference on

Information and Knowledge Management (CIKM’13), 1177–1180.

[55] N. Yakovets, P. Godfrey, and J. Gryz. 2016. Query planning for evaluating SPARQL property paths. In Proceedings of

the Special Interest Group on Management of Data Conference (SIGMOD’16), 1875–1889.

[56] G. H. L. Fletcher, J. Peters, and A. Poulovassilis. 2016. Efficient regular path query evaluation using path indexes. In

Proceedings of the International Conference on Extending Database Technology. 636–639.

[57] A. Gubichev et al. 2013. Sparqling Kleene: Fast property paths in RDF-3X. In Proceedings of the International Workshop

on Graph Data Management Experiences and Systems.

[58] M. A. Schubert and J. Taugher, Determing type, part, colour, and time relationship. J. Computer 16, 10 (special issue

on Knowledge Representation), 53–60.

[59] U. Feige. 1998. A threshold of ln(n) for approximating set cover. J. ACM 45, 4 (1998), 634–652.

[60] K. Mehlhorn. 1986. Graph Algorithm and NP-Completeness, 2. Springer-Verlag.

[61] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 2009. 3-HOP: A high-compression indexing scheme for reachability query. In

Proceedings of the ACM SIGMOD International Conference on Management of Data. 813–826.

[62] BioGrid, Retrieved on 2018 from http://thebiogrid.org.

[63] robots, Retrieved on 2018 from http://tinyurl.com/gnexfoy.

[64] yeast, Retrieved on 2018 from http://vlado.fmf.uni-lj.si/pub/networks/data/.

[65] yago and yago2, Retrieved on 2018 from http://www.mpi-inf.mpg.de/yago-naga/yago.

[66] advogato, Retrieved on 2018 from http://networkrepository.com/soc-advogato.php.

[67] gMark, Retrieved on 2018 from https://github.com/graphMark/gmark.

[68] T. Neumann and G. Weikum. 2010. The RDF-3X engine for scalable management of RDF data. VLDB J. 19 (2010),

91–113.

Received May 2020; revised February 2021; accepted February 2021

ACM Transactions on Database Systems, Vol. 46, No. 2, Article 8. Publication date: May 2021.

http://thebiogrid.org
http://tinyurl.com/gnexfoy
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://www.mpi-inf.mpg.de/yago-naga/yago
http://networkrepository.com/soc-advogato.php
https://github.com/graphMark/gmark

