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Abstract

In this paper, we propose a new arc consistency algorithm, AC-8, which requires less computation time and space than AC-
6 and AC-7 proposed by Bessiére et al. (1994, 1995). The main idea of the optimization is the divide-and-conquer strategy,
thereby decomposing an arc consistency problem into a series of smaller ones and trying to solve them in sequence. In this
way, not only the space complexity but also the time complexity can be reduced. The reason for this is that due to the ahead of
time performed inconsistency propagation (in the sense that some of them are executed before the entire inconsistency checkin
has been finished), each constraint subnetwork will be searched with a gradually shrunk domain. In addition, the technique of
AC-6 (Bessiere, 1994) can be integrated into our algorithm, leading to a further decrease in computational comg/@98y.
Elsevier Science B.V. All rights reserved.
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1. Introduction e Rj is a unary relation, andi, b) is admissible if
Ri (D),
Many problems in artificial intelligence can be seen e Rz is a binary relation, and(i, b)—(j, c) is admissi-
as special cases of a general NP-complete problem [3] ble if R;; (b, ¢).
that has been called the “consistent-labeling problem” The constraint satisfaction problem is to find one or
by Haralick et al. [4-6], the “satisfying assignment more n-tuples in D x D x --- x D which satisfy
problem” by Gaschnig [7] and the “constraint satis- the given relations. For example, in the graph col-

faction problem” by Fikes and others [8,9]. oring problem, there are only binary constraints and
A constraint satisfaction problem can be defined as R(ny, ny) is the set of all pairs of colors:( b) such
follows [10]. thata + b, for all pairs of adjacent nodes andn;.
e N={i,j,..}isthe setof nodes, witN| = n, Since the problem is NP-complete, it has been sug-
e D={b,c,...}is the set of labels gested that a preprocessing step be applied to elimi-
. 55|= {G,j) | G, j) is an edge inN x N}, with nate local (node, arc and path) inconsistencies before
= e,

any attempt is made to construct solution. These ideas

e Dj ={b|beD and(ib) is admissiblg, with are significant because such inconsistencies would
| Dil = ai, otherwise have been repeatedly discovered by any
backtrack search. Especially, such techniques have

1 Email: yangjun@darmstadt.gmd.de. found wide application in constraint logic program-
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ming [11], pattern recognition, image analysis and ar- mean that if a labeb at some nodeé supports a label
tificial intelligence [12-14]. ¢ at another nodg, thenc also support®.) In fact,

By node consistency, only the unary relations on the AC-7 improves the time complexity of AC-6 by a con-
different nodes are checked and the values satisfying stant factor (see Section 4.2).
these unary constraints are kept in the domain of In our method, the bidirectional property is also
each node. The arc consistency algorithm consists of utilized. But we use it in a different manner. That
checking the consistency of labels for each couple of is, we use it by assigning the data structure in the
nodes linked by a binary constraint and removing the initialization phase. The bidirectionality allows us to
labels that cannot satisfy this local condition [1,15, improve the time complexity by a constant factor
16]. Path consistency algorithms ensure that any pair (see AC-7 [2] for comparison). Another observation
of labeling (i, b)—(j, ¢) allowed by a direct relation is  is that whenever a label is eliminated, all those labels
also allowed by all paths fromto j [17-20]. In this  supported only by it can be immediately removed
paper, we discuss only the arc consistency problem.  and should not be considered any more, which make

The idea of the arc consistency algorithm intro- the decomposition of a constraint network possible.
duced by Mohr and Henderson [19] is based on the More exactly, we can partitioR; into a collection of
notion of support. (The notion of support was first de- subsets in some way and regard each of them (with the

fined by Mackworth [10].) We say that a labelat corresponding node domains) as a subproblem. Then,
nodei has a support from nodg (j not equal toi) we apply AC-6 to each successively and every time
if there exists a labet at j such thatg, c) € R;;. take only a more shrunk domain into account. Based
As long as labeb at nodei has a minimum of sup-  on a probabilistic analysis, we derive that both the
port from the labels at each of the other nodess average time and space complexities can be reduced

considered a viable label for nodeBut once there 5 O(n4) using our algorithm.
exists a node at which no remaining label satisfies the | the next section, we present the refined arc

required relation withb, thenb can be eliminated as  consistency algorithm. In Section 3, we prove the
a possible label for node To make the support evi-  cqrrectness of this algorithm. In Section 4, we analyze

dent, each arc—label pair is assigned a counter (denotegqpe computational complexities of the algorithms.
counter[(, j), b] for the arc fromi to j with labelb at Section 5 is a short conclusion.

nodei) to indicate to what extend a label at some node
is supported by another node. As a matter of fact, the
first step of algorithm AC-4 given by Mohr and Hen-
derson is devoted to the computation of such counters,
constructing a set (denotefj. for labelc at nodej)

for each label to store those labels that are supported An arc consistency problem can be simply denoted
by it and a global set (denotddST) to store initial by AC(n, D, R2), whereD = {D1, Da, ..., D,} with
inconsistent labels. In the second step, the inconsis- €achD; being the finite set of possible labels for node
tency is propagated and eliminated iteratively based on i and Rz represents the set of binary constraints con-
the data structures constructed in the first step. In this sidered. A binary constraint (or relatioR); between
way, the arc consistency can be finally obtained. The nodei and j is a subset of the Cartesian product
time and space complexities of AC-4 are botte&) D; x D; that specifies the allowed (compatible) pairs
(on the assumption that = a for eachD;). Recently, of labels fori and j. Beginning with Montanari [1,
some new results have been achieved by Bessiére [1]19], a binary constraink;; is usually represented as a
and Bessiére et al. [2]. In [1], a space-optimal algo- Boolean matrix with| D;| rows and|D;| columns by
rithm (named AC-6) is proposed, which finds supports imposing an order on the node domains. Value at

for a label dynamically and requires onlyéa) space. row b, columnc, denotedk;; (b, ¢), means that the pair
In [2], a refined version of AC-6 (named AC-7) is de- consisting of thebth label of D; andcth label of D;
veloped based on a general inference schema, whichis compatible; valuéalsemeans that the pair is not al-
utilizes the bidirectional property of binary constraints lowed. In this paper, we consider only those networks
to remove redundant checks. (By bidirectionality, we with R;; (b, ¢) = Rji(c, ).

2. Algorithm description of AC-8
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For our purpose, we partitioR, into R, R, ...,
Rg*l with the following property:

R3 contains all constraints of the foriy, in Ry;

R% contains all those constraints of the foRp;,
whereR;; does not appear iR%;

Rg*l contains all those constraints of the form
R(—1)k, WhereR(,_1)x does not appear in
R3U---URLU---URy 2.

Then, we define the following subproblems:

AC(n, DY, R3),
AC(n, D?, R),

AC(n, D" 1 Ry™Y,

whereD! = D = (D},...,D}} (e, D} = D;, i =
1,...,n), D? represents the shrunk domain after
AC(n, DY, R}) is solved (i.e.,D? = {DZ?,..., D3},

.., and D"t = (D71 ... DI7Y) represent the
shrunk domain afteAC(n, D, R)), ..., and AC(n,

D" 2, Rg_l) have been solved. Obviously, what we
want is to solve them, using AC-6, successively with
the following features:

(1) D=D*>D?>...> D" 1> D",

(2) D" is arc consistent.

Here, D" represents the shrunk domain after all
AC(n, D', R}) (1=1,2,...,n — 1) have been solved.
However, if we simply apply AC-6 to each, the
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of AC-6 but with an implicit difference. More ex-

actly, by initializationg, D', R’Z), the symmetry will

be utilized to speed up the computation; and by

propagationg, D', R3 U --- U RL), not only RS, but

alsoR3, ..., R5~ will be considered for the inconsis-
tency propagation. That is, the inconsistency propaga-
tion will not be restricted to the currem’z. Instead, all
those subnetworks (with the shrunk domains) arranged
prior to Rl2 will be re-checked. In the following, we
will give this algorithm (named “Modified-AC-6"). It
will be embedded in AC-8 to provide solutions to each
subproblem. As we will see later, elaborating in this
way, we can improve the computational efficiency by
an order of magnitude (see Section 4.1 for a proba-
bilistic analysis).

Principally, the following “Modified-AC-6" works

in a similar way to AC-6 to check a subnetwork:

AC(n,D',R)) (1=1,2,...,n —1). (Note thatD' =

{Dl,...,D,Q}.) That is, it is also a two-phase al-

gorithm: an initialization process and a propagation

process. Only the bidirectional property of the bi-
nary constraint is employed to avoid many redundant
checks. As with AC-6, the following data structures
are utilized:

o Atable M! of Booleans keeps track of which labels
of the initial domain are in the current domain or
not (M'(i, b) = true means € D').

e Sic ={(,b)|(j,c) is the first encountered label in
D', supporting(i, b) on R;;}.

e A LIST contains labels deleted from the domain
but for which the inconsistency propagation has not
been performed.

In addition, we use a new data structuré(i, b)

accumulating results may be incorrect due to the fact support the usage of the bidirectional property

that the inconsistency propagation for a subproblem
may not be done completely only according to the

current constraint subnetwork (i.e., somg 1<I<
n —1). Therefore, for each inconsistency propagation

define two procedures:

initialization(, D', R,) and
propagation{, D', R} U --- U RL).

These yield solutions t&C(n, D', R.), where initia-
lization(z, D', R’2) is a modified version of the initial-
ization part of AC-6, while propagatiom(D’, R} U
-y R’2) is just a copy of the propagation part

; ) . ' from D, while
more constraints should be considered. To this end, we J

of binary constraints, which guarantees tlab) is
inserted at most once in sorfe. for node;.

The procedure remove, Dﬂ) eliminates labelc
“nextsupport”' is used to find a next
support from a node for some label whenever its
current support from this node is removed due to
inconsistency.

procedure Modified-AC-6
1LIST:=Empty;
2 for each(i, b) € D' do M'(i, b) := true;
T(i, b) :=true; S;; := Empty_set;
{initialization(n, D', R%)}
3for eachR;; € RS do {
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N

for (i, b) whereb € D! do {

5 if T!(i, b) =true then

(*“ T!(i, b) = true” indicates thati, b)
has not yet been inserted into afiy.. *)

6 {
7 ¢ := the first element 0D§.;
nextsupport, j, b, ¢, empty-mark
8 if empty-mark= true
(* “ empty-mark= true” indicates that
(i, b) has no supports from. *)
9 then removeb, D!); M'(i, b) :=false
AppendLIST, (i, b))
10 else{AppendsS;., (i, b));
T!(i,b) :=false
11 if T!(j, c) :=true then
AppendS;s. (. ¢));
T!(j,c) :="false}
(* using symmetry *)
12 1}

13 for (j, ) wherec € D', do {
14 if T!(j, c) =true then

15 {
16 b := the first element oD’ ;
nextsuppofnj, i, c, b, emptymark);
17 if empty-mark= true
18 then removéc, Dﬂ.); M!(j,c) :=false
AppendCIST, (j, ¢))
19 else{AppendSis, (j, ¢));
T!(j, c) :=false
20 if 7!(i, b) := true then
AppendS;e, (i, ));
Tl (i, b) :=false}
21 1}

22 for (i, b) whereb € D! do
(* After R;; has been checked! (i, b)
will be reset for each, b) for the next call. *)
23 Tl (i, b) :=true;
24 for (j,c) wherec € D', do
(* After R;; has been checked!(j, ¢)
will be reset for eaclij, ¢). *)
25 T!(j,c) :=true;}

{propagatiokin, D', R3U --- U Rb))
26 while LIST is not emptydo
27 |
28 choosd, ¢) from LIST and
remove(j, ¢) from LIST;

29 for (i,b) € Sj. do

30 {
31 remove(i, b) from S,
32 if (j,c)€ Sip
33 then {remove(j, c) from S;;;
34 d:=c;
nextsuppoit, j, b, d, emptymark);
35 if empty-mark= true
36 then removeb, D!);
M(i, b) :=false
AppendLIST, (i, b))
(* the propagation will not be
restricted to the currerR’z. *)
37 elseAppendsS;q, (i, b));
38 }
39 }
40 }

Principally, this algorithm works in a similar way
as AC-6. That is, it is also a two-phase algorithm:
an initialization process and a propagation process. In
addition, the technique of dynamic supports used in
AC-6 is adopted to save space. The first difference
is in lines 10-11 and 19-20, where bdifz andS;.
are increased ifi, b)—(j, ¢) are compatible, while in
AC-6, only one of them, say;;, is increased. In this
way, each linked node paft, j} will be visited only
once instead of two times (one fai, j) and the
other for(j, i)). The second difference is the usage of
T!(i, b), which guarantees that, b) is inserted only
once in somes ;. for node; (see lines 11 and 20).

During the initialization process, eadh. contains
at most one(i, b) for each linked node, which is
the first encountered label supported yc). In the
subsequent propagation process, such a label will be
added to anothe§;, if (j,c) appears inLIST and
(j, d) is the first label supporting, b) afterc and has
not been removed. This principle applies to each label
at each node and therefore, each label supported by
(j, c) will be dynamically inserted int&;. at most
once. Thus, the size of;. used by AC-6 is much
smaller than that used by AC-4. Furthermore, due
to the decomposition strategy in our method, each
time only one subnetwork is considered, the space
complexity can be reduced to(@) in this way (see
Section 4.1 for a probabilistic analysis).

Finally, the following procedure is used to find the
first label in Dﬁ after ¢ (includingc), which supports
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(i, b) on R;;. This procedure is wholly the same as that
used by AC-6.

procedure nextsuppotti, j, b, ¢, emptymark)
(*inputs:i, j, b, c; outputs:c, empty-mark)
{
if ce Dg. then
{
empty-mark= false
while M!(j, c) = false do
¢ := the label followingc;
while not R;; (b, ¢) andempty-mark= true do
if ¢ is not the last label in)§. then
¢ :=nexic, Di.);
elseempty-mark= true;
}

elseempty-mark= true;

}

In the above proceduragxib, Df) returns the first
not-removed label afterin Df. if b is not the last label
in D!

In the following, we give our AC-8 algorithm, in
which both procedures initializatigm, D’,R’z) and
propagatiotz, D!, R1U---UR}) are called iteratively
and each time only a subnetwork with shrunk do-
mains is considered. However, as mentioned earlier,
the inconsistency propagation has to be done “glob-
ally”. In this way, the processes for the consistency
checking and the inconsistency propagation are in-
terleaved with each other, leading to a drastic reduc-
tion both in time and space complexities (see Sec-
tion 4.1).

procedure AC-8
{
LIST:= Empty; D! := D;
for each(i, b) € D1 do

ML, b) :=true;

T, b) :=true; S;;, := Empty_set;
decompose; into R3, R, ..., Ry 1,
fori=1,...,n—1do

{

initialization(n, D', Rb);
: I pi Iy
propagationn, D', R; U -+ U Ry);
(* For inconsistency propagation,
R} U---U R should be considered. *)
let the resulting domain be’*+1;
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let the resulting tables/ and7 be M'*1 and
T!+1 respectively;

}

From AC-8, we see that after each execution of
initialization(n, D', R,) and propagatiofx, D', R3 U
ey R’z), the corresponding domain will be reduced
to D'*1, which is arc consistent with respect & U
.-~ U RL. In addition, we do not reproduce’*! and
T!*+1, which are only a renaming aff’ and 7.

3. Correctness of AC-8

In this section, we give a complete proof of the
correctness of AC-8. First, we show that AC-8 builds
an arc consistent solution. Then we prove that the
solution is complete. For exposition, we usg™ (i =
1,...,n) to denote the remaining node domains after
the /th iteration of the mairfor loop andDi1 = D;.
Accordingly, D! (i =1,...,n) correspond to the arc
consistent solution.

Proposition 3.1. Let D! (i =1,...,n) be the solu-
tion found byAC-8. ThenD! (i =1,...,n) are arc
consistent.

Proof. For ease of explanation, we assume that each
constraint network corresponds to a complete graph.
That s, each pair of nodes is linked by an edge. If two
nodes are not connected, we aduee constraint be-
tween them. From algorithm AC-8, we can see that on
the first iteration of the maifor loop only the con-
sistency of edges¢l, 2), (1,3), ..., (1,n) is checked

on R%. Since the corresponding data structures for
all nodes are established, the propagation of incon-
sistency can be performed immediately Wlﬂ’i as a
pivot (see Fig. 1(a)). Thed?! (i = 1,...,n), the re-
maining domains after the first iteration of the main
for loop, will have the property that the labels in each
D} (k=2,...,n) is consistent withD}.

On the second iteration of the méfir loop, edges
(2,3),(2,4),..., (2,n) will be checked orR3 and the
node domains are shrunk IDl.z (i=1,...,n) with
the property that eacD,f (k=3,...,n) is consistent
with D? and D3, and at the same time? and D3 are
consistent with each other (see Fig. 1(b)). Note that on
this iteration, the inconsistency may be propagated to
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Fig. 1. lllustration for inconsistency propagation.

Df in terms ofsupport relationshipalready collected
in sets S;. (on the preceding iteration). It is why
on the second propagation we should consiﬂ%u

RZ instead of RZ alone. The same analysis applies
to the othern — 3 iterations of the mairfor loop.
Hence,D! (i =1,...,n) have the property thab;

is consistent with allD; (k=1,2,...,n — 1) and at
the same timed; (k=1,2,...,n — 1) are consistent
with each other. In other word#);’ (k=1,2,...,n)
are arc consistent.

The other question is: is any solution lost by prop-
agating inconsistency earlier? The following proposi-
tion shows that the arc consistent solution found by
AC-8 is complete.

Proposition 3.2. Let D! (i =1,...,n) be the arc
consistent solution found bRC-8. Then D! (i =
1,...,n) are arc complete.

Proof. The completeness follows from the fact that
any eliminated labeb at some nodeé hasM (i, b) #
true. Such a label is removed either due to the lack
of support from some other node (see lines 9 and
18 in Modified-AC-6); or due to the inconsistency
propagation (see line 35 in Modified-AC-6); in this
case, anothetj, ¢’) supporting it cannot be found.
Therefore, such a label can not belong to any solution.
Thus, the solution found by AC-8 is the largest arc
consistent solution. O

4. Computational complexity

In this section, we analyze the average computa-
tional complexities. First, we compare AC-8 and AC-6
in Section 4.1. Then, in Section 4.2, we show that AC-
7 improves AC-6 only by a constant factor.

4.1. Probabilistic analysis oAC-8 and AC-6

The constraint satisfaction problems can be repre-
sented by theirelations matrix[7; 1 (undefined for
i = j), a bit-matrix such that elemeff}! = 1 iff the
kth value for node is consistent with théth value
for node j. Otherwise bit7,) = 0. This is essen-
tially a truth-table representation of all relations be-
tween pairs of nodes. To simplify the description of
the results of the analysis, we shall assume that
has the same size and Prol7,/ = 1) = p for all
i, j, k andm. That is, the probability of compatibil-
ity of any two labels for any two nodes equalsNote
that this assumption will not affect the correctness of
our analysis results due to the following considera-
tion. Let Prol7;! = 1) = p; . For any network prob-
lem with 0< p;} < 1, we can always find another
(0< p <1)suchthap,/ < pforalli, j, k andm.

First, we analyze the average time complexity of
AC-6, which has not been reported elsewhere. Let
g =1 — p be the probability of incompatibility of
any two labels for any two nodes. Then, the expected
number of checks performed on an iteration of the
innerfor loop of AC-6's initialization part is

p+2qp+3¢2p+-- kg p+ -
+aqa—1p+aqa

p [1-¢°
-2 .

1-g¢
Therefore, its average time complexity can be given
by

1 2
ZZa— = —ea.
—~ P P

(Note that each edgg, j) will be checked two times,
one fori — j and the other foj — i.)

1
—aq“:| +aqg® < —.
p

()
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Now we consider the average time complexity of Accordingly, the expected number of labels to be
AC-6's propagation part. To this end, we partition the checked for any removed label (fronohST) is
propagation process into a series of phases. The first
phase is defined as the process from the beginning to—(d1P +d2P + --- + d,, P).
the moment when all the unallowed labels found in the
initialization part are removed fromlST (known as
Waiting-Listin [1]). The second phase is from the end
of the first phase to the moment when those elements 1 k—1
inserted intaLIST during the first phase are removed. ;(le tdoP -t dy P) FQPTna

Hence, the average time complexity of #tha phase
is on the order

In the same way, we can define thie phasql > 2). n
Then, we estimate the expected number of elements = ZdiPQPkfld, 3)
removed during each phase. i=1
Consider an edgé, j). The probability that each  and the total average time complexity of its propaga-
label (i, b) is supported by nodg is tion part is
P=pa" P PN T 40 OSSPk = Y e PR a = Oea). 4)
k=1i=1 i=1

Then, after the execution of the propagation part of . )
AC-6, the size of each arc consistent node domain  1he average space complexity of AC-6 is not much

becomesP"a. Therefore, in total, for each node, there Detter than its worst-case complexity and can be
are (1 — P")a labels removed fronLIST. Let Q = estimated as follows. Since during the initialization

1 — P be the probability that a labeli, b) is not process of AC-6 each label will be inserted into one
S structure once (with probability?) for each of its

supported by nod¢. Then we have : :
adjacent nodes, the size 8, sets should be

n(l— P"a n
= Qna+ QPna+ QP?na+---+ QP ‘na. QadiP = Pea = Oea). )
i=
Note that thekth item: Q PX~1na (1 <k < n) in the This implies that its average space complexity cannot
polynomial corresponds justly to the expected number be below this quantity.
of elements removed during theh phase. This is In the following, we analyze the computational
because the elements removed during ktre phase complexity of our algorithm and show that both
are those put inLIST during the(k — 1)th phase. An  the average time and space complexities ateaq
elemente is put in LIST if and only if it is supported ~ First, we consider the computational complexity of
by some element’ of nodei and at the same time all initialization(n, D!, Rlz)'S. As discussed above, the
¢’ becomes inviable anelhas no more other supports  time complexity of initializatiorin, D, R%) should be
fromi. The probability that is supported by’ during on the order
the (k — 1)th phase isP*~1 and the probability of 1 1
¢’ becoming inviable isD. Therefore, the probability ~ )4~ = —ad, (6)
that an element is inserted intdSTis Q P¥~1 during a PP
the (k — 1)th phase. ThusQ P¥~1na is the expected  whered; represents the vertex degree at node 1, since
number of elements removed during #te phase. in this process only the edges iR} are checked.
Further, since arc-label pair§, j), b] have atmost  Similarly, the average time complexity of initialization
one suppor{j, ¢) with (i, b) belonging toS;., each (n, D', R}) can be given as
S;c contains on average one label (with probabilty
for each linked node. Thus, for each removed label = pi~144,, 7)
(i, b), there will be on average; P labels checked, p
where d; represents the vertex degree at nade  whered; represents the vertex degree at nbde
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Therefore, the total average time complexity of all
initialization(n, D', R})'s is
n—1 1
Z Zpilaq, = O(na).
=P

In order to analyze the time complexity of propaga-
tion(n, D!, R3U---URYL), we partition the propagation
process as for AC-6.

Consider propagatian, DY, R}). After its execu-
tion, only the size of node 1 becomé¥a, while
the other nodes (i = 2,...,n) are all shrunk taPa.
Therefore, intotal(1— P")a+ (n —1)(1— P)a labels
will be eliminated fromLIST during this process. (In
the following discussion1 — P")a+ (n —1)(1— P)a
is denotedV (1).) By a simple computation, we have

8)

1-PYa+mn—-1)(A—- P)a
=nQa+ QPa+ QP%a+---+QP" la.  (9)
This implies that the expected number of labels
removed in the first phasenga and for thekth phase
(k = 2,...,n), the expected number i®P*1qa.
Defined; (1) to be a function, representing the number
of edges incident with and visited by propagatidn,
D' R} U ..U R,). Then, the expected number of
labels to be checked for a removed label (fral8T)
is
1
;(dl(l)P +do()P + -+ du(DP).

Accordingly, the average time complexity of propaga-
tion(n, D, R}) can be estimated as

%(Zdﬂl))nQa—i—Z%(Zdi(l))QPkd
i i=1

n—1 n

= Zd MOPa+) Y di(D)

k=1i=1

QPk+l

(10)

Further, after propagatien, D, R3U R2) has been

performed, both the sizes of node 1 and 2 become

P"a. The sizes of the other nodés(i = 3,.
are all P%a. Therefore, in this process there aNeéZ)
labels removed fromIST, where

=2(1—PMa+ (n—2)(1— P%a — N(1)
=(m—1)QPa+ QP%a+---+ QP" la. (11)
From this, we know that during this process, the

N(2)

expected number of labels removed in the first phase

Y. Chen / Information Processing Letters 70 (1999) 175-184

is (n — 1)Q Pa and the expected number for théh
phase(k = 2,...,n) is Q P¥a. In addition, we notice
that in initialization(n, D, R U R3) node 1 has not
been checked. Therefore, labels of thk j) will

not appear in the first phase but may appear in the
subsequent phases. Then, the average time complexity
of propagatioi, D?, R U R3) is

n—1 n
Zd(Z)QP2a+ZZd(2)
k=2i=1
In general, we have the following sum as the
average time complexity of propagatian D!, R} U
--URDL):
2

Pk+1

(12)

n—1 n QP
Zd ()OP'a+ ZZd ()
k=l i=1
Therefore, the total average time complexity of all
propagatiott, D', R U--- U RL's 1 =1,2,...,n)
can be given by

(13)

n n—=1 n

ZZd HOP'a+) > > d, (1)

=1 i=l I=1 k=l i=1
Note that

- (14)

n n
Zd,(l) < Zd,ﬂ) <2n forli<i<n.

i=l i=1
Therefore, sum (14) is less than (15):

n n—1

ZanQPla +> ) 210P g

=1 k=l
n n-1

<20na Zzpl +20pay > 1P~

=1 k=l

(15)

Finally, we give the following inequality to com-
plete the time complexity analysis.

n n—1

> ik

=1 k=l

n n—1

g//xPydydx
1 X

1 .
=ﬁ/[xpy !

1
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VAU 2

1
Pt p'_P
(n InpP +

1 (n2P"—l . }P"_l>

1
~ (InP)2
=0(n).

1
—p
InP
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will be sought due to the fact that the current support
is removed. However, instead of invoking function
“SeekNextSuppdr{corresponding “nextsupport” in
this paper) immediately, an inference will be made
by calling function ‘SeekinferableSuppdyin which

S;c will be searched to see whether it contains another

From the above analysis, we know that the average label fori. If such a label, sayi, b), exists and at the

time complexity of all propagatian, D', R3 U --- U
R,)'sis also Qna).

The average space complexity of AC-8 can be
computed by investigating;.'s structure and its
incrementation. On the first iteration of the méan
loop of AC-8, the total size ofS;. sets is at most
the number of arc—label pairs involved. Therefore, the
corresponding space complexity is

SG =dia+ (dp —1a (*seeFig.1(a)*) (16)

On the second iteration of the méor loop, the total
size of§;. sets becomes

SG =di1Pa+daPa + (d2 — 2) Pa
(* see Fig. 1(b) *)

In general, on théth iteration of the maiffior loop, the
total size ofS;. sets will be changed to

(17)

SQ :dlp21+la+d2P2]+la I

+d P2 4+ (d) — ) PP Hg. (18)
Therefore, the entire space complexity of AC-8 is on
the order
SC=maxSGC, SG, ..

= O(na).

., SG—1}
(19)

4.2. Time complexity of AC-7

In order to analyze the time complexity of AC-7 and
to show why it improves AC-6 by a constant factor,
we consider a simple network consisting of only
one edge(i, j). For each arc consistency algorithm,
the checks will be done for both— j and j —

i. Without loss of generality, we assume that the
checks fori — j precede those fof — i in AC-7.
Then, no optimization can be done for j using
the bidirectional property. Foj — i, AC-7 refines
AC-6 in the following way. When a label foy,
say (j, c¢) (supported by some label fa) is picked
from “SeekSupportStredngsee [2]), another label

same time it is a non-removed elemet,c) will be
inserted intoS;,. Otherwise, SeekNextSuppdnvill

be executed to find the next “first” support fgr, ¢) as
AC-6 does. In this way, many checks fpr i will be
saved by replacing them with “inferences”. Therefore,
in terms of the probabilistic analysis deriving (1)
and (2), the checks far— j is of the time complexity
%a, while the number of checks fgr— i is smaller

than%a. This explains why AC-7 is better than AC-6.

5. Conclusions

In this paper, we have proposed a new algorithm,
AC-8, to achieve arc consistency in a binary network.
The key idea is the divide-and-conquer strategy and
the decomposition of a constraint network into a series
of smaller ones. On the one hand, for each subprob-
lem, the incompatible checks are done with a gradu-
ally shrunk domain. On the other hand, the number
of inconsistency propagations can be reduced dramat-
ically. In this way, an optimal computational complex-
ity can be obtained. In addition, the correctness of
AC-8 is proved formally and the computational com-
plexity comparison between AC-6 and ours is made
based on a probabilistic analysis.
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