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Abstract

In this paper, we propose a new arc consistency algorithm, AC-8, which requires less computation time and space than AC-
6 and AC-7 proposed by Bessière et al. (1994, 1995). The main idea of the optimization is the divide-and-conquer strategy,
thereby decomposing an arc consistency problem into a series of smaller ones and trying to solve them in sequence. In this
way, not only the space complexity but also the time complexity can be reduced. The reason for this is that due to the ahead of
time performed inconsistency propagation (in the sense that some of them are executed before the entire inconsistency checking
has been finished), each constraint subnetwork will be searched with a gradually shrunk domain. In addition, the technique of
AC-6 (Bessière, 1994) can be integrated into our algorithm, leading to a further decrease in computational complexity. 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

Many problems in artificial intelligence can be seen
as special cases of a general NP-complete problem [3]
that has been called the “consistent-labeling problem”
by Haralick et al. [4–6], the “satisfying assignment
problem” by Gaschnig [7] and the “constraint satis-
faction problem” by Fikes and others [8,9].

A constraint satisfaction problem can be defined as
follows [10].
• N = {i, j, . . .} is the set of nodes, with|N | = n,
• D = {b, c, . . .} is the set of labels,
• E = {(i, j) | (i, j) is an edge inN × N}, with
|E| = e,
• Di = {b | b ∈ D and (i, b) is admissible}, with
|Di | = ai ,
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• R1 is a unary relation, and(i, b) is admissible if
Ri(b),
• R2 is a binary relation, and(i, b)–(j, c) is admissi-

ble if Rij (b, c).
The constraint satisfaction problem is to find one or
more n-tuples inD × D × · · · × D which satisfy
the given relations. For example, in the graph col-
oring problem, there are only binary constraints and
R(n1, n2) is the set of all pairs of colors (a, b) such
thata 6= b, for all pairs of adjacent nodesn1 andn2.

Since the problem is NP-complete, it has been sug-
gested that a preprocessing step be applied to elimi-
nate local (node, arc and path) inconsistencies before
any attempt is made to construct solution. These ideas
are significant because such inconsistencies would
otherwise have been repeatedly discovered by any
backtrack search. Especially, such techniques have
found wide application in constraint logic program-
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ming [11], pattern recognition, image analysis and ar-
tificial intelligence [12–14].

By node consistency, only the unary relations on the
different nodes are checked and the values satisfying
these unary constraints are kept in the domain of
each node. The arc consistency algorithm consists of
checking the consistency of labels for each couple of
nodes linked by a binary constraint and removing the
labels that cannot satisfy this local condition [1,15,
16]. Path consistency algorithms ensure that any pair
of labeling(i, b)–(j, c) allowed by a direct relation is
also allowed by all paths fromi to j [17–20]. In this
paper, we discuss only the arc consistency problem.

The idea of the arc consistency algorithm intro-
duced by Mohr and Henderson [19] is based on the
notion of support. (The notion of support was first de-
fined by Mackworth [10].) We say that a labelb at
nodei has a support from nodej (j not equal toi)
if there exists a labelc at j such that (b, c) ∈ Rij .
As long as labelb at nodei has a minimum of sup-
port from the labels at each of the other nodes,b is
considered a viable label for nodei. But once there
exists a node at which no remaining label satisfies the
required relation withb, thenb can be eliminated as
a possible label for nodei. To make the support evi-
dent, each arc–label pair is assigned a counter (denoted
counter[(i, j ), b] for the arc fromi to j with labelb at
nodei) to indicate to what extend a label at some node
is supported by another node. As a matter of fact, the
first step of algorithm AC-4 given by Mohr and Hen-
derson is devoted to the computation of such counters,
constructing a set (denotedSjc for label c at nodej )
for each label to store those labels that are supported
by it and a global set (denotedLIST) to store initial
inconsistent labels. In the second step, the inconsis-
tency is propagated and eliminated iteratively based on
the data structures constructed in the first step. In this
way, the arc consistency can be finally obtained. The
time and space complexities of AC-4 are both O(ea2)

(on the assumption thatai = a for eachDi ). Recently,
some new results have been achieved by Bessière [1]
and Bessière et al. [2]. In [1], a space-optimal algo-
rithm (named AC-6) is proposed, which finds supports
for a label dynamically and requires only O(ea) space.
In [2], a refined version of AC-6 (named AC-7) is de-
veloped based on a general inference schema, which
utilizes the bidirectional property of binary constraints
to remove redundant checks. (By bidirectionality, we

mean that if a labelb at some nodei supports a label
c at another nodej , thenc also supportsb.) In fact,
AC-7 improves the time complexity of AC-6 by a con-
stant factor (see Section 4.2).

In our method, the bidirectional property is also
utilized. But we use it in a different manner. That
is, we use it by assigning the data structure in the
initialization phase. The bidirectionality allows us to
improve the time complexity by a constant factor
(see AC-7 [2] for comparison). Another observation
is that whenever a label is eliminated, all those labels
supported only by it can be immediately removed
and should not be considered any more, which make
the decomposition of a constraint network possible.
More exactly, we can partitionR2 into a collection of
subsets in some way and regard each of them (with the
corresponding node domains) as a subproblem. Then,
we apply AC-6 to each successively and every time
take only a more shrunk domain into account. Based
on a probabilistic analysis, we derive that both the
average time and space complexities can be reduced
to O(na) using our algorithm.

In the next section, we present the refined arc
consistency algorithm. In Section 3, we prove the
correctness of this algorithm. In Section 4, we analyze
the computational complexities of the algorithms.
Section 5 is a short conclusion.

2. Algorithm description of AC-8

An arc consistency problem can be simply denoted
by AC(n,D,R2), whereD = {D1,D2, . . . ,Dn} with
eachDi being the finite set of possible labels for node
i andR2 represents the set of binary constraints con-
sidered. A binary constraint (or relation)Rij between
node i and j is a subset of the Cartesian product
Di ×Dj that specifies the allowed (compatible) pairs
of labels for i and j . Beginning with Montanari [1,
19], a binary constraintRij is usually represented as a
Boolean matrix with|Di | rows and|Dj | columns by
imposing an order on the node domains. Valuetrue at
rowb, columnc, denotedRij (b, c), means that the pair
consisting of thebth label ofDi andcth label ofDj
is compatible; valuefalsemeans that the pair is not al-
lowed. In this paper, we consider only those networks
with Rij (b, c)=Rji(c, b).
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For our purpose, we partitionR2 into R1
2,R

2
2, . . . ,

Rn−1
2 with the following property:

R1
2 contains all constraints of the formR1i in R2;
R2

2 contains all those constraints of the formR2j ,

whereR2j does not appear inR1
2;

...

Rn−1
2 contains all those constraints of the form
R(n−1)k, whereR(n−1)k does not appear in
R1

2 ∪ · · · ∪Rl2 ∪ · · · ∪Rn−2
2 .

Then, we define the following subproblems:

AC(n,D1,R1
2),

AC(n,D2,R2
2),

...

AC(n,Dn−1,Rn−1
2 ),

whereD1 = D = {D1
1, . . . ,D

1
n} (i.e., D1

i = Di , i =
1, . . . , n), D2 represents the shrunk domain after
AC(n,D1,R1

2) is solved (i.e.,D2 = {D2
1, . . . ,D

2
n}),

. . . , and Dn−1 = {Dn−1
1 , . . . ,Dn−1

n } represent the
shrunk domain afterAC(n,D1,R1

2), . . . , and AC(n,
Dn−2,Rn−1

2 ) have been solved. Obviously, what we
want is to solve them, using AC-6, successively with
the following features:
(1) D =D1>D2> · · ·>Dn−1>Dn,
(2) Dn is arc consistent.
Here, Dn represents the shrunk domain after all
AC(n,Dl,Rl2) (l = 1,2, . . . , n− 1) have been solved.
However, if we simply apply AC-6 to each, the
accumulating results may be incorrect due to the fact
that the inconsistency propagation for a subproblem
may not be done completely only according to the
current constraint subnetwork (i.e., someRl2, 16 l 6
n− 1). Therefore, for each inconsistency propagation,
more constraints should be considered. To this end, we
define two procedures:

initialization(n,Dl,Rl2) and

propagation(n,Dl,R1
2 ∪ · · · ∪Rl2).

These yield solutions toAC(n,Dl,Rl2), where initia-
lization(n,Dl,Rl2) is a modified version of the initial-
ization part of AC-6, while propagation(n,Dl,R1

2 ∪
· · · ∪ Rl2) is just a copy of the propagation part

of AC-6 but with an implicit difference. More ex-
actly, by initialization(n,Dl,Rl2), the symmetry will
be utilized to speed up the computation; and by
propagation(n,Dl,R1

2 ∪ · · · ∪ Rl2), not onlyRl2, but
alsoR1

2, . . . ,R
l−1
2 will be considered for the inconsis-

tency propagation. That is, the inconsistency propaga-
tion will not be restricted to the currentRl2. Instead, all
those subnetworks (with the shrunk domains) arranged
prior to Rl2 will be re-checked. In the following, we
will give this algorithm (named “Modified-AC-6”). It
will be embedded in AC-8 to provide solutions to each
subproblem. As we will see later, elaborating in this
way, we can improve the computational efficiency by
an order of magnitude (see Section 4.1 for a proba-
bilistic analysis).

Principally, the following “Modified-AC-6” works
in a similar way to AC-6 to check a subnetwork:
AC(n,Dl,Rl2) (l = 1,2, . . . , n − 1). (Note thatDl =
{Dl1, . . . ,Dln}.) That is, it is also a two-phase al-
gorithm: an initialization process and a propagation
process. Only the bidirectional property of the bi-
nary constraint is employed to avoid many redundant
checks. As with AC-6, the following data structures
are utilized:
• A tableMl of Booleans keeps track of which labels

of the initial domain are in the current domain or
not (Ml(i, b)= true meansb ∈Dli ).• Sjc = {(i, b) | (j, c) is the first encountered label in
Dlj supporting(i, b) onRij }.
• A LIST contains labels deleted from the domain

but for which the inconsistency propagation has not
been performed.

In addition, we use a new data structureT l(i, b)
to support the usage of the bidirectional property
of binary constraints, which guarantees that(i, b) is
inserted at most once in someSjc for nodej .

The procedure remove(c,Dlj) eliminates labelc
from Dlj , while “nextsupport” is used to find a next
support from a node for some label whenever its
current support from this node is removed due to
inconsistency.

procedureModified-AC-6
1 LIST := Empty;
2 for each(i, b) ∈Dl doMl(i, b) := true;

T l(i, b) := true; Sib := Empty_set;
{initialization(n,Dl,Rl2)}

3 for eachRij ∈ Rl2 do {
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4 for (i, b) whereb ∈Dli do {
5 if T l(i, b)= true then

(* “ T l(i, b)= true” indicates that(i, b)
has not yet been inserted into anySjc . *)

6 {
7 c := the first element ofDlj ;

nextsupport(i, j, b, c,empty-mark);
8 if empty-mark= true

(* “ empty-mark= true” indicates that
(i, b) has no supports fromj . *)

9 then remove(b,Dli); M
l(i, b) := false;

Append(LIST, (i, b))
10 else{Append(Sjc, (i, b));

T l(i, b) := false;
11 if T l(j, c) := true then

Append(Sib, (j, c));
T l(j, c) := false;}
(* using symmetry *)

12 }}
13 for (j, c) wherec ∈Dlj do {
14 if T l(j, c)= true then
15 {
16 b := the first element ofDlj ;

nextsupport(j, i, c, b,empty-mark);
17 if empty-mark= true
18 then remove(c,Dlj); M

l(j, c) := false;
Append(LIST, (j, c))

19 else{Append(Sib, (j, c));
T l(j, c) := false;

20 if T l(i, b) := true then
Append(Sjc, (i, b));
T l(i, b) := false;}

21 }}
22 for (i, b) whereb ∈Dli do

(* After Rij has been checked,T l(i, b)
will be reset for each(i, b) for the next call. *)

23 T l(i, b) := true;
24 for (j, c) wherec ∈Dlj do

(* After Rij has been checked,T l(j, c)
will be reset for each(j, c). *)

25 T l(j, c) := true;}
{propagation(n,Dl

′
,R1

2 ∪ · · · ∪Rl2)}
26while LIST is not emptydo
27 {
28 choose(j, c) from LIST and

remove(j, c) from LIST;

29 for (i, b) ∈ Sjc do
30 {
31 remove(i, b) from Sjc ;
32 if (j, c) ∈ Sib
33 then {remove(j, c) from Sib;
34 d := c;

nextsupport(i, j, b, d,empty-mark);
35 if empty-mark= true
36 then remove(b,Dli);

M(i, b) := false;
Append(LIST, (i, b))

(* the propagation will not be
restricted to the currentRl2. *)

37 elseAppend(Sjd, (i, b));
38 }
39 }
40 }

Principally, this algorithm works in a similar way
as AC-6. That is, it is also a two-phase algorithm:
an initialization process and a propagation process. In
addition, the technique of dynamic supports used in
AC-6 is adopted to save space. The first difference
is in lines 10–11 and 19–20, where bothSib andSjc
are increased if(i, b)–(j, c) are compatible, while in
AC-6, only one of them, saySib , is increased. In this
way, each linked node pair{i, j } will be visited only
once instead of two times (one for(i, j) and the
other for(j, i)). The second difference is the usage of
T l(i, b), which guarantees that(i, b) is inserted only
once in someSjc for nodej (see lines 11 and 20).

During the initialization process, eachSjc contains
at most one(i, b) for each linked nodei, which is
the first encountered label supported by(j, c). In the
subsequent propagation process, such a label will be
added to anotherSjd if (j, c) appears inLIST and
(j, d) is the first label supporting(i, b) afterc and has
not been removed. This principle applies to each label
at each node and therefore, each label supported by
(j, c) will be dynamically inserted intoSjc at most
once. Thus, the size ofSjc used by AC-6 is much
smaller than that used by AC-4. Furthermore, due
to the decomposition strategy in our method, each
time only one subnetwork is considered, the space
complexity can be reduced to O(na) in this way (see
Section 4.1 for a probabilistic analysis).

Finally, the following procedure is used to find the
first label inDlj after c (includingc), which supports
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(i, b) onRij . This procedure is wholly the same as that
used by AC-6.

procedurenextsupport(i, j, b, c,empty-mark)
(* inputs: i, j , b, c; outputs:c, empty-mark*)
{
if c ∈Dlj then
{
empty-mark:= false;
while Ml(j, c)= false do
c := the label followingc;

while notRij (b, c) andempty-mark= true do
if c is not the last label inDlj then
c := next(c,Dlj );

elseempty-mark:= true;
}

elseempty-mark:= true;
}
In the above procedure,next(b,Dli) returns the first

not-removed label afterb inDli if b is not the last label
in Dli .

In the following, we give our AC-8 algorithm, in
which both procedures initialization(n,Dl,Rl2) and
propagation(n,Dl,R1

2∪· · ·∪Rl2) are called iteratively
and each time only a subnetwork with shrunk do-
mains is considered. However, as mentioned earlier,
the inconsistency propagation has to be done “glob-
ally”. In this way, the processes for the consistency
checking and the inconsistency propagation are in-
terleaved with each other, leading to a drastic reduc-
tion both in time and space complexities (see Sec-
tion 4.1).

procedureAC-8
{
LIST :=Empty;D1 :=D;
for each(i, b) ∈D1 do
M1(i, b) := true;
T 1(i, b) := true; Sib := Empty_set;

decomposeR2 intoR1
2,R

2
2, . . . ,R

n−1
2 ;

for l = 1, . . . , n− 1 do
{
initialization(n,Dl,Rl2);
propagation(n,Dl,R1

2 ∪ · · · ∪Rl2);
(* For inconsistency propagation,
R1

2 ∪ · · · ∪Rl2 should be considered. *)
let the resulting domain beDl+1;

let the resulting tablesM andT beMl+1 and
T l+1, respectively;

}
}
From AC-8, we see that after each execution of

initialization(n,Dl,Rl2) and propagation(n,Dl,R1
2 ∪

· · · ∪ Rl2), the corresponding domain will be reduced
toDl+1, which is arc consistent with respect toR1

2 ∪
· · · ∪ Rl2. In addition, we do not reproduceMl+1 and
T l+1, which are only a renaming ofMl andT l .

3. Correctness of AC-8

In this section, we give a complete proof of the
correctness of AC-8. First, we show that AC-8 builds
an arc consistent solution. Then we prove that the
solution is complete. For exposition, we useDl+1

i (i =
1, . . . , n) to denote the remaining node domains after
the lth iteration of the mainfor loop andD1

i = Di .
Accordingly,Dni (i = 1, . . . , n) correspond to the arc
consistent solution.

Proposition 3.1. Let Dni (i = 1, . . . , n) be the solu-
tion found byAC-8. ThenDni (i = 1, . . . , n) are arc
consistent.

Proof. For ease of explanation, we assume that each
constraint network corresponds to a complete graph.
That is, each pair of nodes is linked by an edge. If two
nodes are not connected, we add atrue constraint be-
tween them. From algorithm AC-8, we can see that on
the first iteration of the mainfor loop only the con-
sistency of edges(1,2), (1,3), . . . , (1, n) is checked
on R1

2. Since the corresponding data structures for
all nodes are established, the propagation of incon-
sistency can be performed immediately withD1

1 as a
pivot (see Fig. 1(a)). ThenD1

i (i = 1, . . . , n), the re-
maining domains after the first iteration of the main
for loop, will have the property that the labels in each
D1
k (k = 2, . . . , n) is consistent withD1

1.
On the second iteration of the mainfor loop, edges

(2,3), (2,4), . . . , (2, n) will be checked onR2
2 and the

node domains are shrunk toD2
i (i = 1, . . . , n) with

the property that eachD2
k (k = 3, . . . , n) is consistent

with D2
1 andD2

2, and at the same timeD2
1 andD2

2 are
consistent with each other (see Fig. 1(b)). Note that on
this iteration, the inconsistency may be propagated to
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Fig. 1. Illustration for inconsistency propagation.

D2
1 in terms ofsupport relationshipsalready collected

in sets Sjc (on the preceding iteration). It is why
on the second propagation we should considerR1

2 ∪
R2

2 instead ofR2
2 alone. The same analysis applies

to the othern − 3 iterations of the mainfor loop.
Hence,Dni (i = 1, . . . , n) have the property thatDnn
is consistent with allDnk (k = 1,2, . . . , n − 1) and at
the same timeDnk (k = 1,2, . . . , n− 1) are consistent
with each other. In other words,Dnk (k = 1,2, . . . , n)
are arc consistent.2

The other question is: is any solution lost by prop-
agating inconsistency earlier? The following proposi-
tion shows that the arc consistent solution found by
AC-8 is complete.

Proposition 3.2. Let Dni (i = 1, . . . , n) be the arc
consistent solution found byAC-8. ThenDni (i =
1, . . . , n) are arc complete.

Proof. The completeness follows from the fact that
any eliminated labelb at some nodei hasM(i, b) 6=
true. Such a label is removed either due to the lack
of support from some other node (see lines 9 and
18 in Modified-AC-6); or due to the inconsistency
propagation (see line 35 in Modified-AC-6); in this
case, another(j, c′) supporting it cannot be found.
Therefore, such a label can not belong to any solution.
Thus, the solution found by AC-8 is the largest arc
consistent solution. 2

4. Computational complexity

In this section, we analyze the average computa-
tional complexities. First, we compare AC-8 and AC-6
in Section 4.1. Then, in Section 4.2, we show that AC-
7 improves AC-6 only by a constant factor.

4.1. Probabilistic analysis ofAC-8 andAC-6

The constraint satisfaction problems can be repre-
sented by theirrelations matrix[T ijkm] (undefined for

i = j ), a bit-matrix such that elementT ijkm = 1 iff the
kth value for nodei is consistent with thelth value
for node j . Otherwise bitT ijkm = 0. This is essen-
tially a truth-table representation of all relations be-
tween pairs of nodes. To simplify the description of
the results of the analysis, we shall assume thatDi

has the same sizea and Prob(T ijkm = 1) = p for all
i, j , k andm. That is, the probability of compatibil-
ity of any two labels for any two nodes equalsp. Note
that this assumption will not affect the correctness of
our analysis results due to the following considera-
tion. Let Prob(T ijkm = 1)= pijkm. For any network prob-

lem with 06 pijkm < 1, we can always find anotherp

(06 p < 1) such thatpijkm 6 p for all i, j , k andm.
First, we analyze the average time complexity of

AC-6, which has not been reported elsewhere. Let
q = 1 − p be the probability of incompatibility of
any two labels for any two nodes. Then, the expected
number of checks performed on an iteration of the
innerfor loop of AC-6’s initialization part is

p+ 2qp+ 3q2p+ · · · + kqk−1p+ · · ·
+aqa−1p+ aqa

= p

1− q
[

1− qa
1− q − aq

a

]
+ aqa 6 1

p
. (1)

Therefore, its average time complexity can be given
by

2
∑
e

a
1

p
= 2

p
ea. (2)

(Note that each edge(i, j) will be checked two times,
one fori→ j and the other forj→ i.)
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Now we consider the average time complexity of
AC-6’s propagation part. To this end, we partition the
propagation process into a series of phases. The first
phase is defined as the process from the beginning to
the moment when all the unallowed labels found in the
initialization part are removed fromLIST (known as
Waiting-Listin [1]). The second phase is from the end
of the first phase to the moment when those elements
inserted intoLIST during the first phase are removed.
In the same way, we can define thelth phase(l > 2).
Then, we estimate the expected number of elements
removed during each phase.

Consider an edge(i, j). The probability that each
label(i, b) is supported by nodej is

P = pqa−1+p2qa−2+ · · · + pkqa−k + · · · + paq0.

Then, after the execution of the propagation part of
AC-6, the size of each arc consistent node domain
becomesPna. Therefore, in total, for each node, there
are (1− Pn)a labels removed fromLIST. Let Q =
1 − P be the probability that a label(i, b) is not
supported by nodej . Then we have

n(1− Pn)a
=Qna +QPna +QP 2na + · · · +QPa−1na.

Note that thekth item:QPk−1na (16 k 6 n) in the
polynomial corresponds justly to the expected number
of elements removed during thekth phase. This is
because the elements removed during thekth phase
are those put inLIST during the(k − 1)th phase. An
elemente is put in LIST if and only if it is supported
by some elemente′ of node i and at the same time
e′ becomes inviable ande has no more other supports
from i. The probability thate is supported bye′ during
the (k − 1)th phase isPk−1 and the probability of
e′ becoming inviable isQ. Therefore, the probability
that an element is inserted intoLIST isQPk−1 during
the (k − 1)th phase. Thus,QPk−1na is the expected
number of elements removed during thekth phase.

Further, since arc–label pairs[(i, j), b] have at most
one support(j, c) with (i, b) belonging toSjc, each
Sjc contains on average one label (with probabilityP )
for each linked node. Thus, for each removed label
(i, b), there will be on averagediP labels checked,
where di represents the vertex degree at nodei.

Accordingly, the expected number of labels to be
checked for any removed label (fromLIST) is

1

n
(d1P + d2P + · · · + dnP ).
Hence, the average time complexity of thekth phase

is on the order

1

n

(
d1P + d2P + · · · + dnP

) ·QPk−1na

=
n∑
i=1

diPQP
k−1a, (3)

and the total average time complexity of its propaga-
tion part is

n∑
k=1

n∑
i=1

diQP
ka =

n∑
i=1

eQPka =O(ea). (4)

The average space complexity of AC-6 is not much
better than its worst-case complexity and can be
estimated as follows. Since during the initialization
process of AC-6 each label will be inserted into one
Sjc structure once (with probabilityP ) for each of its
adjacent nodes, the size ofSjc sets should be

n∑
i=1

adiP = Pea =O(ea). (5)

This implies that its average space complexity cannot
be below this quantity.

In the following, we analyze the computational
complexity of our algorithm and show that both
the average time and space complexities are O(na).
First, we consider the computational complexity of
all initialization(n,Dl,Rl2)’s. As discussed above, the
time complexity of initialization(n,D1,R1

2) should be
on the order∑
d1

a
1

p
= 1

p
ad1, (6)

whered1 represents the vertex degree at node 1, since
in this process only the edges inR1

2 are checked.
Similarly, the average time complexity of initialization
(n,Dl,Rl2) can be given as

1

p
P l−1adl, (7)

wheredl represents the vertex degree at nodel.
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Therefore, the total average time complexity of all
initialization(n,Dl,Rl2)’s is

n−1∑
l=1

1

p
P l−1adl =O(na). (8)

In order to analyze the time complexity of propaga-
tion(n,Dl,R1

2∪· · ·∪Rl2), we partition the propagation
process as for AC-6.

Consider propagation(n,D1,R1
2). After its execu-

tion, only the size of node 1 becomesPna, while
the other nodesi (i = 2, . . . , n) are all shrunk toPa.
Therefore, in total,(1−Pn)a+(n−1)(1−P)a labels
will be eliminated fromLIST during this process. (In
the following discussion,(1−Pn)a+ (n−1)(1−P)a
is denotedN(1).) By a simple computation, we have

(1− Pn)a + (n− 1)(1−P)a
= nQa +QPa +QP 2a + · · · +QPn−1a. (9)

This implies that the expected number of labels
removed in the first phase isnQa and for thekth phase
(k = 2, . . . , n), the expected number isQPk−1a.
Definedi(l) to be a function, representing the number
of edges incident withi and visited by propagation(n,
Dl,R1

2 ∪ · · · ∪ Rl2). Then, the expected number of
labels to be checked for a removed label (fromLIST)
is
1

n

(
d1(1)P + d2(1)P + · · · + dn(1)P

)
.

Accordingly, the average time complexity of propaga-
tion(n,D1,R1

2) can be estimated as

1

n

(
n∑
i=1

di(1)

)
nQa +

n∑
k=2

1

n

(
n∑
i=1

di(1)

)
QPka

=
n∑
i=1

di(1)QPa +
n−1∑
k=1

n∑
i=1

di(1)
QPk+1a

n
. (10)

Further, after propagation(n,D2,R1
2∪R2

2) has been
performed, both the sizes of node 1 and 2 become
Pna. The sizes of the other nodesi (i = 3, . . . , n)
are allP 2a. Therefore, in this process there areN (2)
labels removed fromLIST, where

N(2)= 2(1− Pn)a + (n− 2)(1− P 2)a −N(1)
= (n− 1)QPa +QP 2a + · · · +QPn−1a. (11)

From this, we know that during this process, the
expected number of labels removed in the first phase

is (n − 1)QPa and the expected number for thekth
phase(k = 2, . . . , n) is QPka. In addition, we notice
that in initialization(n,D2,R1

2 ∪ R2
2) node 1 has not

been checked. Therefore, labels of the(1, j) will
not appear in the first phase but may appear in the
subsequent phases. Then, the average time complexity
of propagation(n,D2,R1

2 ∪R2
2) is

n∑
i=2

di(2)QP
2a +

n−1∑
k=2

n∑
i=1

di(2)
QPk+1a

n
. (12)

In general, we have the following sum as the
average time complexity of propagation(n,Dl,R1

2 ∪
· · · ∪Rl2):
n∑
i=l

di(l)QP
la +

n−1∑
k=l

n∑
i=1

di(l)
QPk+1a

n
. (13)

Therefore, the total average time complexity of all
propagation(n,Dl,R1

2 ∪ · · · ∪ Rl2)’s (l = 1,2, . . . , n)
can be given by

n∑
l=1

n∑
i=l

di(l)QP
la +

n∑
l=1

n−1∑
k=l

n∑
i=1

di(l)
QPk+1a

n
. (14)

Note that
n∑
i=l

di(l)6
n∑
i=1

di(l)6 2ln for 16 l 6 n.

Therefore, sum (14) is less than (15):

n∑
l=1

2nlQP la +
n∑
l=1

n−1∑
k=l

2lQPk+1a

6 2Qna
n∑
l−1

lP l + 2Qpa
n∑
l=1

n−1∑
k=l

lP k. (15)

Finally, we give the following inequality to com-
plete the time complexity analysis.

n∑
l=1

n−1∑
k=l

lP k

6
n∫

1

n−1∫
x

xP y dy dx

= 1

lnP

n∫
1

[
xPy

]n−1
x

dx
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= 1

lnP

(
n2Pn−1

2
− 1

2
Pn−1

)
− 1

(lnP)2

(
nPn − 1

lnP
Pn − P + 1

lnP
P

)
=O(n).

From the above analysis, we know that the average
time complexity of all propagation(n,Dl,R1

2 ∪ · · · ∪
Rl2)’s is also O(na).

The average space complexity of AC-8 can be
computed by investigatingSjc ’s structure and its
incrementation. On the first iteration of the mainfor
loop of AC-8, the total size ofSjc sets is at most
the number of arc–label pairs involved. Therefore, the
corresponding space complexity is

SC1= d1a + (d1− 1)a (* see Fig. 1(a) *). (16)

On the second iteration of the mainfor loop, the total
size ofSjc sets becomes

SC2= d1Pa + d2Pa + (d2− 2)Pa

(* see Fig. 1(b) *). (17)

In general, on thelth iteration of the mainfor loop, the
total size ofSjc sets will be changed to

SCl = d1P
2l+1a + d2P

2l+1a + · · ·
+ dlP 2l+1a + (dl − l)P 2l+1a. (18)

Therefore, the entire space complexity of AC-8 is on
the order

SC=max{SC1,SC2, . . . ,SCn−1}
=O(na). (19)

4.2. Time complexity of AC-7

In order to analyze the time complexity of AC-7 and
to show why it improves AC-6 by a constant factor,
we consider a simple network consisting of only
one edge(i, j). For each arc consistency algorithm,
the checks will be done for bothi → j and j →
i. Without loss of generality, we assume that the
checks fori → j precede those forj → i in AC-7.
Then, no optimization can be done fori → j using
the bidirectional property. Forj → i, AC-7 refines
AC-6 in the following way. When a label forj ,
say (j, c) (supported by some label fori) is picked
from “SeekSupportStream” (see [2]), another label

will be sought due to the fact that the current support
is removed. However, instead of invoking function
“SeekNextSupport” (corresponding “nextsupport” in
this paper) immediately, an inference will be made
by calling function “SeekInferableSupport”, in which
Sjc will be searched to see whether it contains another
label for i. If such a label, say(i, b), exists and at the
same time it is a non-removed element,(j, c) will be
inserted intoSib . Otherwise, “SeekNextSupport” will
be executed to find the next “first” support for(j, c) as
AC-6 does. In this way, many checks forj→ i will be
saved by replacing them with “inferences”. Therefore,
in terms of the probabilistic analysis deriving (1)
and (2), the checks fori→ j is of the time complexity
1
p
a, while the number of checks forj → i is smaller

than 1
p
a. This explains why AC-7 is better than AC-6.

5. Conclusions

In this paper, we have proposed a new algorithm,
AC-8, to achieve arc consistency in a binary network.
The key idea is the divide-and-conquer strategy and
the decomposition of a constraint network into a series
of smaller ones. On the one hand, for each subprob-
lem, the incompatible checks are done with a gradu-
ally shrunk domain. On the other hand, the number
of inconsistency propagations can be reduced dramat-
ically. In this way, an optimal computational complex-
ity can be obtained. In addition, the correctness of
AC-8 is proved formally and the computational com-
plexity comparison between AC-6 and ours is made
based on a probabilistic analysis.
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