
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 20, 275-304 (2004)

275

Building Signature Trees into OODBs

YANGJUN CHEN

Department of Applied Computer Science
University of Winnipeg

Winnipeg, Manitoba, R3B 2E9, Canada

Although object-oriented database systems offer more powerful modeling

capability than relational database systems, their performance suffers from the increased
complexity in the data model. Recently, a lot of research has focused on mitigating this
problem by building indexes over single classes, class hierarchies, or nested object
hierarchies. In this paper, we propose a new indexing method. It is based on the
technique that employs signature files, but differs from the existing methods in two
aspects: (1) all the signature files are organized into a hierarchy to filter irrelevant data as
early as possible; (2) a signature file itself is stored as a tree structure (called a signature
tree) to speed up signature scanning. Together with the concept of query signature
hierarchies, this technique reduces the search space dramatically and, therefore,
improves significantly the time complexity of query evaluation.

Keywords: OODBs, indexes, signature files, signature trees, query evaluation

1. INTRODUCTION

In the past two decades, object-oriented database systems (OODBS) have attracted a

significant amount of attention in academic and industrial communities [11, 27]. Several
experimental and commercial systems, such as GemStone [36], Orion [27], and O2 [4],
have been developed. Its powerful modeling capability is a major advantage of OODBS
over relational databases. However, much work still needs to be done on query process-
ing, optimization, and indexing techniques in order to improve performance.

In most OODBSs, secondary indexes on objects are supported to improve the re-
trieval of instances from a single class as well as from all the classes in a class hierarchy.
A lot of indexing techniques have been proposed. For example, GemStone builds indexes
along a path of object links [36]; class-hierarchy index and single-class index were in-
vestigated in the Orion project [28]. In addition, several B-tree like indexing methods
have been published in the literature, such as CH-trees [29], H-trees [33], and hcC-trees
[48], which are indexes over class hierarchies. Instead of focusing on the inheritance hi-
erarchy of classes, other researchers have explored the aggregation hierarchy of classes
(nested object hierarchies) and proposed various indexing structures on nested attributes
[5, 7, 21, 30].

Received February 22, 2002; revised November 25, 2002; accepted February 21, 2003.
Communicated by Arbee L. P. Chen.

YANGJUN CHEN

276

Quite different from the methods that employ tree-based indexes, signature file
techniques have been extensively investigated with respect to relational databases and
text retrieval, and recently extended to object-oriented databases [26, 32, 41], where each
object is assigned a signature, and each class is assigned a signature file, which contains
all the signatures of the objects belonging to it.

In this paper, we organize the signature files into a hierarchy to filter irrelevant data
as early as possible. In addition, we introduce the concept of signature trees, by means of
which signatures are not simply organized as a flat file, but stored as a tree structure.
Then, the scanning of a signature file is changed to the searching of a binary tree, which
reduces the time complexity by one order of magnitude or more.

The rest of this paper is organized as follows. In section 2, we survey related work.
In section 3, we describe the basic features of queries used in an object-oriented
database. Section 4 is devoted to introducing the concepts of signature files and signature
file hierarchies. In section 5, we introduce signature trees and discuss how to use them to
expedite query evaluation as well as how to maintain them. In section 6, we evaluate the
performance achieved. Section 7 focuses on the maintenance of signature trees. Finally,
section 8 is a short conclusion.

2. RELATED WORK

Index techniques have been extensively investigated in both the information
retrieval and database research areas and many methods have been developed within the
past three decades.

To index large files in information retrieval systems, different tree indexing
approaches have been proposed, such as binary trees [31], suffix trees [15], position trees
[3], and their variants built over flat files. By means of these mechanisms, the system
performance can be improved significantly. The signature file scheme [13, 17, 20] is a
method quite different from the tree indexing techniques, where each key word is
assigned a signature, and a set of key words is assigned a “super” signature constructed
by superimposing the signatures in that set. It works as an inexact filter. Another
interesting approach is the inverted index, which is a set of postings lists [24], each of
which maps one keyword to a list of links to the data entries containing that keyword.
Inverted indices can be implemented as sorted arrays, tries, B-trees, and various hashing
structures [24]. Recently, Much work has been done on the encoding of postings lists in
the context of document databases [37, 42]. When Golomb’s encoding for the integers
[22] is employed, the index size can be reduced to 14% of the indexed data with little or
no loss of retrieval effectiveness [43]. Unfortunately, Golomb’s encoding approach
cannot be applied to an objected-oriented database since any postings list for it will be a
series of pairs of the form (C, oid), where C represents a class name and oid represents an
object identifier, not satisfying the encoding condition. Therefore, in the context of
object-oriented databases, the inverted file will require much storage space for postings
lists [10, 25].

Some of the techniques mentioned above have been modified or extended to support
query evaluation in databases. A notable example is B-tree [9] and its variants, such as
B+-tree, B*-tree [18] and fat-btree [41], which were developed based on the balancing

BUILDING SIGNATURE TREES INTO OODBS

277

mechanism of binary trees with some special features added to ease tree balancing or to
minimize accesses to data files. Such techniques have been further developed to speed up
query evaluation in object-oriented databases [29, 33, 38]. In [29], an indexing structure,
called CH-trees, was proposed, which is based on B+-trees and essentially maintains a
single index for all classes of a class (inheritance) hierarchy. It clusters the object oids of
all classes in the class hierarchy for a given value of the indexed attribute. In [33],
another indexing structure, called H-trees, was discussed. Its central idea is that one
B+-tree per class in a class hierarchy is maintained, but the indexes are nested according
to their subclass-superclass relationship. Essentially, a H-tree clusters together the object
oids of a single class with a given value of the indexed attribute. The above two
tree-based indexing approaches were combined to create a new method, called hcC-trees,
in [38], and it achieves has better performance. Recently, based on these techniques,
several new methods have been proposed, such as χ-tree, discussed in [14], and the
multikey type indexing method addressed in [35]. In addition to the indices over
inheritance hierarchies, a lot of indexing schemes for nested attribute queries have been
proposed in the literature [5, 7, 12, 21, 30]. Three index organizations for use in the
evaluation of a query in an OODBS were introduced in [8]. As an extension of [8], the
performance of path indexes for queries containing several predicates was evaluated in
[7]. In [30], query processing in an OODBS was improved by maintaining separate
structures to redundantly store objects which are frequently traversed by database
queries. A hybrid indexing approach, called a generalized index, was proposed in [21] to
support aggregation hierarchies of classes with complex and primitive objects. In [12], an
optimal index configuration for a path was achieved by splitting the path into subpaths
and optimally indexing each of them. Contrary to the single path indexing mentioned
above, index interaction was considered in [12]. In the case of multi-indexes, the index
with optimal behaviors will be chosen in terms of the objective functions developed in
[12].

The signature file technique can be conveniently used to index nested object
hierarchies. In [32], how to construct signature files for classes was discussed. In [42], an
optimal method was proposed, by means of which signatures are distributed over a
nested object hierarchy and the signature of a referred object is stored in the referring
one. Then, such a signature can be used to check the predicate involving the
corresponding object before it is visited. In this way, some evaluation time can be saved.
In addition, signature files can also be utilized as a set access facility in OODBSs [26].
Moreover, according to the analysis of [26], the bit-sliced signature file (BSSF) achieves
better performance than the sequential signature file approach (SSF) by almost 50% (of
the time cost) in the best case. But the storage cost of BSSF is twice that of SSF, and the
update cost of BSSF is triple that of SSF or more [26]. The basic advantage of sequential
signature files lies in their efficiency in handling new insertions and queries on parts of
words. When compared to tree-based indexing, however, sequential signature files suffer
from two drawbacks: (1) they can not be used to evaluate range queries; and (2) for each
query processed, the entire signature file needs to be scanned, which involves high
processing and I/O costs.

In this paper, we try to mitigate the second problem to some extent. First, we
organize the sequential signature files into a hierarchical structure which can be used to
reduce the search space during a query evaluation. Second, we store a single signature

YANGJUN CHEN

278

file as a tree, a so-called signature tree, to expedite the scanning of a single signature file.
When a signature file itself is large, the amount of time saved using this approach is
significant. A closely related work is the S-tree proposed in [16]. It is, in fact, a B-tree
built over a signature file. Thus, it can be used to speed up the process of locating a
signature in a signature file, just like a B-tree for primary keys in a relational database.
However, in a signature tree, each path corresponds to a signature identifier, which can
be used to identify uniquely the corresponding signature in a signature file. It helps to
find the set of signatures matching a query signature quickly.

In the following discussion, we use the term “signature file” to refer to a sequential
signature file.

3. QUERIES IN OBJECT-ORIENTED DATABASES

In object-oriented database systems, an entity is represented as an object, which
consists of methods and attributes. Methods are procedures and functions associated with
an object defining actions taken by the object in response to messages received.
Attributes represent the state of the object. Objects having the same set of attributes and
methods are grouped into the same class. A class is either a primitive class or a complex
class. Objects in the respective classes are called primitive objects and complex objects.
A primitive class, such as an integer and string, is not further broken down into attributes
or substructures. A complex class is defined by a set of attributes, which may be
primitive, or complex with user-defined classes as their domains. Since a class C may
have a complex attribute with domain C’, a relationship can be established between C
and C’. The relationship is called the aggregation relationship. When arrows connecting
classes are used to represent the aggregation relationship, an aggregation hierarchy (or,
say, a nested object hierarchy) can be constructed to show the nested structure of the
classes.

An example of a nested object hierarchy is extracted from [8] and shown in Fig. 1,
where an attribute of any class can be viewed as a nested attribute of the root class.

manufacturer
model
color

DriveTrain

body

engine
transmission

names
headquarters

divisions

names
function

location

HPpower
CCsize

CylinderN

chassis
interior

door

Ve hicle

Company Division

Ve hicleDriverT rain PistonEngine

VehicleBody

String

String

String

String

String

String

String

String

Numeric
Numeric

Numeric

String
String

Numeric
Fig. 1. An example of a nested object hierarchy.

BUILDING SIGNATURE TREES INTO OODBS

279

As pointed out in [32], an important element of OODBS is the concept that the
value of an attribute of an object can be an object or a set of objects. If an object O is
referenced as an attribute of object O’, then O is said to be nested in O’, and O’ is
referred to as the parent object of O.

In object-oriented databases, the search condition in a query is expressed as a
boolean combination of predicates of the form <attribute operator value>. The attribute
may be a nested attribute of the target class. For example, the query “retrieve all red
vehicles manufactured by a company with a division located in Ann Arbor” can be
expressed as:

select vehicle
where Vehicle.color = “red”
and Vehicle.company.Division.location = “Ann Arbor”

The search condition against the class Vehicle consists of two predicates, one

involving the attribute ‘Color’ and the other involving the nested attribute ‘location’.
Without indexing structures, the above query can be evaluated in a top-down

manner as follows. First, the system has to retrieve all of the objects in the class Vehicle
and single out those that are red in color. Then, the system retrieves the company objects
referenced by the red vehicles and checks the locations of the divisions of the
manufacturers. Finally, those red vehicles made by a company that has a division located
in “Ann Arbor” are returned.

In this paper, we introduce a new indexing method to speed up this process. This
method is based on the technique of signature files and can be summarized as follows:

(i) All signature files are organized into a hierarchical structure to facilitate the
implementation of a step-by-step filtering strategy.

(ii) Each signature file is stored as a tree structure to speed up signature file scanning.

In the following, we first discuss signature file hierarchies in section 4. We then
discuss signature trees in section 5.

4. SIGNATURES

In this section, we discuss the concept of signature file hierarchies as well as its
application to efficient query evaluation. We first discuss how to construct a signature
file hierarchy in 4.1. Then, in 4.2, we introduce the concept of query signature
hierarchies. Together with signature file hierarchies, this concept enables us to reduce the
search space to be explored during a query evaluation.

4.1 Signature File Hierarchy

Signature files are based on the inexact filter. They provide a quick test, which
discards many nonqualifying elements. Besides qualifying elements that definitely pass
the test, some elements which actually do not satisfy the search requirement may also

YANGJUN CHEN

280

pass it accidentally. Such elements are called “false hits” or “false drops” [19, 20]. In an
object-oriented database, an object is represented by a set of attribute values. The
signature of an attribute value is a hash-coded bit string of length m with k bit set to 1,
stored in the signature file (see [17] to know how to construct a signature for an attribute
value). An object signature is formed by superimposing its attribute values. (By
“superimposing,” we mean a bit-wise OR operation.) Object signatures of a class will be
stored sequentially in another signature file.

In the following, we first show how to establish a signature for an object. Then, the
construction of signature files for classes will be discussed.

[13] showed that letter triples are the best choice for information carrying text
segments in the construction of word signatures. Given an attribute value, for example,
“professor”, we will decompose it into a series of triplets: “pro,” “rof,” “ofe,” “fes,”
“ess,” and “sor.” Then, using a hash function h, we will map a triplet to an integer k
indicating that the kth bit in the string will be set to 1. For instance, assume that we have
h(pro) = 2, h(rof) = 4, h(ofe) = 8, and h(fes) = 9. Then, we will establish a bit string: 010
100 011 000 for “professor” as its word signature (see [17] for a detailed discussion). To
establish a bit string for an object, we superimpose the signatures of all its attribute
values together. Fig. 2 depicts the signature generation and comparison process of an
object having three attribute values: “John,” “12345678,” and “professor.”

object:

attribute signature:

John

12345678

professor

010 000 100 110

100 010 010 100

010 100 011 000

110 110 111 110object signature (OS)

∨

John 12345678 professor

Fig. 2. Signature generation and a comparison.

When a query arrives, the object signatures are scanned, and many nonqualifying

objects are discarded. The rest are either checked (so that the “false drops” are
discarded), or they are returned to the user as they are. Concretely, a query specifying
certain values to be searched for will be transformed into a query signature sq in the same
way as is done for attribute values. The query signature is then compared to every object
signature in the signature file. Three possible outcomes of the comparison are
exemplified in Fig. 2: (1) the object matches the query; that is, for every bit set in sq, the
corresponding bit in the object signature s is also set (i.e., s Ÿ sq = sq), and the object
really contains the query word; (2) the object doesn’t match the query (i.e., s Ÿ sq π sq) ;
and (3) the signature comparison indicates a match, but the object in fact does not match
the search criteria (false drop). In order to eliminate false drops, the object must be
examined after the object signature signifies a successful match.

The purpose of using a signature file is to screen out most of the nonqualifying
objects. A signature failing to match the query signature guarantees that the
corresponding object can be ignored. Therefore, unnecessary object accesses are

queries:

John

Paul
11223344

query signatures:

010 000 100 110

011 000 100 100
110 100 100 000

matching results:

match with OS

no match with OS
false drop

BUILDING SIGNATURE TREES INTO OODBS

281

prevented. Signature files have a much lower storage overhead and a simpler file
structure than inverted indexes.

In terms of an aggregation hierarchy, a signature file hierarchy can be constructed as
follows:

(i) The signature of an object is generated by superimposing the signatures of all its

primitive and complex attributes.
(ii) The signature of a primitive attribute is obtained by hashing on the attribute values;

the signature of a complex attribute is the signature of the object it references.
(iii) Let C be a class, and let o1, ..., ol be its objects; there exists a signature file S such

that each oi (i = 1, ..., l) has an entry <osig, oid> in S.
(iv) Let Si and Sj be two signature files associated with classes Ci and Cj, respectively. If

there exists an arrow from Ci to Cj, then there is implicitly an arrow from Si to Sj.

To illustrate the above process, consider the class “Division” in the class hierarchy
shown in Fig. 1, which contains no complex attributes. The signature of an object o of
this class can be constructed as shown in Fig. 3 (a), where each s(o, x) stands for the
signature produced for the attribute value x of o and s(o) for the signature of o. (See [17]
for a detailed discussion on the generation of a signature for an attribute value.) For a
class containing complex attributes, the signature of its objects can be generated in the
same way as for a class containing only primitive attributes. The only difference is that
the signature of a complex attribute is the signature of the object it references. See Fig. 3
(b) for an illustration. In Fig. 3 (b), o’ stands for an object of class “Company”, and
object o (of class “Division”) is the attribute value of “division” of o’.

OID

OID

s(o, names)

s(o, function)

s(o, location)

s(o’, names)

s(o’, headquarters)

s(o) ∨ ∨

s(o) s(o’)

Vehicle

110 110 111 110
 … …

Company

110 110 000 110
 … …

VehicleDriveTrain

110 100 000 100
 … …

VehicleBody

110 010 110 110
 … …

Division

110 110 111 110
100 010 010 100
 … …

PistonEngine

110 110 111 110
 … …

OID

OID

OID
OID

(a) (b)

(c)
Fig. 3. Signature and signature file hierarchy.

YANGJUN CHEN

282

In Fig. 3 (c), we show a signature file hierarchy which may be constructed for a
database with the schema shown in Fig. 1.

From the above analysis, we can see that each class will be associated with a
signature file with each signature for an object, which is constructed by superimposing
the signatures for its attribute values. Then, each object can be considered as a block. To
determine the size of a signature file, we use the following formula [13]:

m ¥ ln2 = h ¥ D,

where N is the number of signatures in a signature file, m is the signature length, h is the
number of bits set to 1 in a signature, and D is the average size of a block.

4.2 Reducing Searching Space Using Signature Files

To cut off irrelevant data as early as possible, we use the top-down approach, by
means of which all of objects are retrieved along the path from the target class to its
nested attributes specified in the search condition of the query. Then, the value of the
nested attribute is checked to decide if it is a desired object or not. With the signature
file, the query is evaluated as follows. A query signature sq for the query Q is generated.
sq is compared with every signature stored in the signature file associated with the target
class. If a signature matches sq, the path is traverse to verify the nested attribute. In the
following, a trivial algorithm for top-down retrieval is described. A refined version of it
will be discussed later in detail.

Algorithm top-down-retrieval;
Input: an object query Q;
Output: a set of OIDs whose texts satisfy the query.
1. Compute the query signature sq for the query Q.
2. For every entry <osigi, oidi> of the signature file associated with the target class,

compare sq with osigi. If osigi matches sq, then put oidi in a temporal set S.
3. For each object in S, traverse the path from the object to the nested attributes specified

in Q to eliminate false drops.

Example 1 Consider the query given in section 3. Assume that the signatures for “red”
and “Ann Arbor” are sred = 100 110 000 100 and sAnn Arbor = 010 000 100 110,
respectively. First, we construct sq = sred ∨ sAnn Arbor = 100 110 000 100 ∨ 010 000 100
110 = 110 110 100 110. It matches the entry in the signature file of Vehicle shown in Fig.
3(c). Then, the corresponding OID is put in S. In step (3), we first check the ‘color’
attribute of OID. If it matches sred, we traverse the paths from this Vehicle object to those
Division objects reachable over some Company objects. Such objects of Division are
checked to eliminate false drops. The signature of the Division object shown in Fig. 3(c)
matches sAnn Arbor. Then, the attribute value of “Location” of this object is checked to see
whether it really matches “Ann Arbor”.

From this example, we can see that the signature files are used only to locate the
relevant objects of the target class. The optimization possibility provided by the signature

BUILDING SIGNATURE TREES INTO OODBS

283

file hierarchy is not employed at all. It is not efficient because all the subtrees rooted at
the relevant objects of the target class have to be searched exhaustively. To overcome
this drawback, we have developed another strategy, by means of which attention is paid
to the query structure to make the signature file hierarchy useful. To this end, we define
the following two concepts.

Definition 1 (Query tree) Let pred1 Ÿ pred2 … Ÿ predk be the search condition in
query Q, where each predi is a predicate of the form: <attribute operator value>. Then, all
the paths appearing in the search condition constitute a query tree, denoted Qt. (See Fig.
4 (a) for illustration.)

Vehicle

Color Company

Division

Location

Vehicle

Color Company

red

110 110 100 110

010 000 100 110

010 000 100 110Division

100 110 000 100

100 110 000 100

Ann Arbor 010 000 100 110

Location 010 000 100 110

(a) (b)

Fig. 4. Query tree and query signature tree.

Definition 2 (Query signature tree) Let p1.p2pn be a path in a query tree Qt (from
the root to some leaf). Let <pipn operator value> be a predicate appearing in the
search condition of Q. Then pn’s signature is svalue. The signature of a non-leaf node in Qt
can be obtained by superimposing the signatures of its child nodes. The query signature
tree is denoted Q(s,t).

For example, for our exemplar query, the query tree and the query signature tree are
as shown in Figs. 4 (a) and (b), respectively.

In addition, for the purpose of optimization, each entry in a signature file should be
a triple of the form: <osig, oid, list>, where list is a list containing all the addresses of the
object signatures referenced by oid.

In the following, we give an algorithm for evaluating queries with the query
structure considered. The main idea here is to use the query signature tree to reduce the
search space. For this purpose, two stack structures are needed to control depth-first
traversal of tree structures: stackq for Q(s,t) and stackc for the class hierarchy. In stackq,
each element is a signature, while in stackc, each element is a set of objects belonging to
the same class reached during class hierarchy traversal.

Algorithm top-down-hierarchy-retrieval;
Input: an object query Q;
Output: a set of OIDs whose texts satisfy the query.
1. Compute the query signature hierarchy Q(s,t) for the query Q.

YANGJUN CHEN

284

2. Push the root signature of Q(s,t) into stackq; push the set of object OID of the target
class into stackc.

3. If stackq is not empty, sq ¨ pop stackq; else go to (7).
4. S ¨ pop stackc; for each oidi E S, if its signature osigi does not compare sq, remove it

from S; put S in Sresult.
5. Let C be the class to which the objects of S belong; let C1, ..., Ck be the subclasses of

C; then partition the OID set of the objects referenced by the objects of S into S1, ..., Sk
such that Si belongs to Ci; push S1, ..., Sk into stackc; push the child nodes of sq into
stackq.

6. Go to (3).
7. For each leaf object, check false drops.

By means of this strategy, optimization is achieved by executing step (4). In this

step, some objects are filtered using the corresponding signature in the query signature
tree. In step (5), the referenced objects and the signatures of the child nodes of the query
signature tree are put in stackc and stackq, respectively. In step (7), the checking of false
drops is performed.

Example 2 We will Continue with our running example. Assume that part of the
signature file hierarchy constructed for a database with the schema shown in Fig. 1 is of
the form shown in the upper part of Fig. 5.

010 110 101 110
100 010 010 100

Division

... ...
010 110 101 111110 110 101 111

Vehicle Company

... ...

OID
OID

110 110 110 100
... ...

... ...

100 110 010 100 OID
... ...

Vehicle
Company

Color

Division110 110 100 110

100 110 000 100 010 110 000 100
red

010 110 100 110 010 110 100 110
Ann Arbor

010110 100 110

matched matched

not matched

this part will not
be visited.

110 110 110 110

legend:
matched
not matched

Fig. 5. Illustration of query evaluation.

Since both the top two signatures in the signature file for Vehicle (called V-file for

short) match the corresponding signature in the query signature tree, the signatures
referenced by them in the signature file for Company (called C-file for short) are further
checked. Assume that the first signature in C-file is referenced by the first signature in
V-file, while the second one in C-file is referenced by the second one in V-file. We can
see that the second signature in C-file does not match the corresponding signature in the
query signature tree. Thus, all those Division object signatures referenced by it will not
be checked further (see the grey part of Fig. 5 for an illustration.) This is optimal

BUILDING SIGNATURE TREES INTO OODBS

285

compared to “top-down-retrieval” since by means of “top-down-retrieval”, checking
against all Division object signatures has to be performed.

5. SIGNATURE TREES

Although query signature hierarchies can be used to reduce the search space for
top-down evaluation of queries, the signature file for the target class has to be scanned
completely. If it is large, the amount of time used to search such a file becomes
significant. Furthermore, if a path in a query contains variables, the method presented in
the previous section does not help a lot. As an example, consider a query containing a
search condition like Vehicle.x.location = “Ann Arbor” or Vehicle.x = “Ann Arbor”,
where x is variable representing a sub-path. Using a top-down method, all the paths
whose signatures “match” the signature of “Ann Arbor” will be checked. Obviously, this
is not efficient. If backward references are supported, we may try a bottom-up method. In
this case, all the signature files for leaf classes will be searched.

From the above discussion, we can see that efficient scanning of signature files
should always be supported. One idea for improving the performance is to sort the
signature file and then employ binary searching. Unfortunately, this does not work due to
the fact that a signature file is only an inexact filter. The following example helps to
illustrate this.

Consider a sorted signature file containing only three signatures:

010 000 100 110
010 100 011 000
100 010 010 100

Assume that the query signature sq is equal to 000010010100. It matches 100 010

010 100. However, if we use a binary search, 100 010 010 100 can not be found.
For this reason, we try another method and construct a signature tree over a

signature file like a suffix tree for a text.
How to construct such a tree is discussed in detail in the following subsections.

5.1 Definition of Signature Trees

A signature tree works for a signature file just as a trie [31] does for a text. But in a
signature tree, each path is a signature identifier, which is not a continuous piece of bits,
so it is quite different from a trie, in which each path corresponds to a continuous piece
of bits.

Consider a signature si of length m. We denote it as si = si[1]si[2] ... si[m], where
each si[j] Œ {0, 1} (j = 1, ..., m). We also use si(j1, ..., jh) to denote a sequence of pairs
w.r.t. si: (j1, si[j1])(j2, si[j2]) ... (jh, si[jh]), where 1 ≤ jk ≤ m for k Œ {1, ..., h}.

Definition 3 (signature identifier) Let S = s1.s2sn denote a signature file. Consider si

(1 £ i £ n). If there exists a sequence: j1, ..., jh such that for any k ≠ i (1 £ k £ n) we have

YANGJUN CHEN

286

 si(j1, ..., jh) ≠ sk
(j1, ..., jh), then we say that si(j1, ..., jh) identifies the signature si, or we

say that si(j1, ..., jh) is an identifier of si w.r.t. S.

For example, in Fig. 6 (a), s6(1, 7, 4, 5) = (1, 0)(7, 1)(4, 1)(5, 1) is an identifier of s6
since for any i π 6, we have si(1, 7, 4, 5) π s6(1, 7, 4, 5). (For instance, s1(1, 7, 4, 5) = (1,
0)(7, 0)(4, 0)(5, 0) π s6(1, 7, 4, 5), s2(1, 7, 4, 5) = (1, 1)(7, 0)(4, 0)(5, 1) π s6(1, 7, 4, 5),
and so on. Similarly, s1(1, 7) = (1, 0)(7, 0) is an identifier for s1 since for any i π 1, we
have si(1, 7) π s1(1, 7).)

In the following, we will see that in a signature tree, each path corresponds to a
signature identifier.

011 001 000 101
111 011 001 111
111 101 010 111
011 001 101 111
011 101 110 101
011 111 110 101
011 001 111 111
111 011 111 111

s
1
.

s
2
.

s
3
.

s
4
.

s
5
.

s
6
.

s
7
.

s
8
.

1

6 3

4

-3 3

1

3.1.

4. 7.

2. 8.

6.5.

0

0

0 0

0 0

0

1

11

11

1
1

(a)

(a) (b)
Fig. 6. Signature tree.

Definition 4 (signature tree) A signature tree for a signature file S = s1.s2sn, where
si π sj for i π j and |sk| = m for k = 1, ..., n, is a binary tree T such that:

1. For each internal node of T, the left edge leaving it is always labeled 0, and the
right edge is always labeled 1.

2. T has n leaves labeled 1, 2, ..., n, used as pointers to n different positions of s1,
s2 … and sn in S.

3. Each internal node is associated with a number which tells how many bits to skip
when searching.

4. Let i1, ..., ih be the numbers associated with the nodes on a path from the root to a
leaf labeled i (then, this leaf node is a pointer to the ith signature in S). Let p1, …,
ph be the sequence of labels of edges on this path. Then, (j1, p1) ... (jh, ph) makes

up a signature identifier for si, si(j1, ..., jh), where j i k hk l

l

k

= =

=

Â (, ...,).1
1

Example 3 In Fig. 6 (b), we show a signature tree for the signature file shown in Fig. 6
(a). In this signature tree, each edge is labeled 0 or 1 and each leaf node is a pointer to a
signature in the signature file. In addition, each internal node is marked with an integer
(which is not necessarily positive) used to calculate how many bits to skip when
searching. Consider the path going through the nodes marked 1, 6 and - 3. If this path is

BUILDING SIGNATURE TREES INTO OODBS

287

searched to locate some signature s, then three bits of s: s[1], s[7] (7 = 1 + 6) and s[4] (4
= 1 + 6 - 3) are checked at that moment. If s[4] = 1, the search goes to the right child of
the node marked “- 3.” This child node is marked 1, and then the 5th bit of s: s[5] (5 = 1
+ 6 - 3 + 1) is checked.

See the path consisting of dashed lines in Fig. 6 (b), which corresponds to the
identifier of s6: s6(1, 7, 4, 5) = (1, 0)(7, 1)(4, 1)(5, 1). Similarly, the identifier of s3 is s3(1,
4) = (1, 1)(4, 1) (see the path consisting of bold lines).

In the next subsection, we discuss how to construct a signature tree for a signature
file.

5.2 Construction of Signature Trees

In order to construct a signature tree for a signature file, we need another concept
that is the so-called signature graph, which is a directed graph and can be generated
using an algorithm presented below. This graph can then be transformed into a signature
tree in a simple step. To ease explanation, we first introduce some terminology from
graph theory.

During a depth-first traversal of a directed graph, we distinguish four types of edges
[39]:

(i) tree edges: An edge e: v → u is a tree edge if u is reached from v when it is scanned,

and if u has not been visited before (then at this moment, defnumber(u) = 0 if we ini-
tially assign 0 to defnumber(u) for each node u.)

(ii) forward edges: An edge e: v → u is a forward edge if when it is scanned for the first
time, defdefnumber(u) > defnumber(v) > 0.

(iii) back edge: An edge e: v → u is a back edge if when it is scanned for the first time,
defnumber(v) > defnumber(u) > 0, and at the same time, u is an “ancestor” of v.

(iv) cross edges: An edge e: v → u is a cross edge if when it is scanned for the first time,
defnumber(v) > defnumber > 0, but u is not an “ancestor” of v.

For convenience, we regard an edge of the form: v → v as a back edge.
Using the above terms, we define a signature graph as follows.

Definition 5 A signature graph associated with a signature file containing n signatures
is a directed graph containing only tree and back edges and at the same time, satisfying
the following properties:

1. The graph consists of a header and n − 1 nodes.
2. Each node U contains six fields:

− Pointer to a signature in the signature file, denoted P(U).
− LLINK(U) and RLINK(U): pointers within the graph. (LLINK is always la-

beled 0, and RLINK is always labeled 1.)
− LTAG(U) and RTAG(U): one-bit fields which tell whether or not LLINK and

RLINK, respectively, are pointers to sons (tree edges) or to ancestors (back
edges) of the node. (For example, when LTAG(U) = 1, this indicates that

YANGJUN CHEN

288

LLINK(U) is a pointer to an ancestor of U. When LTAG(U) = 0, this indicates
that LLINK(U) is a pointer to a son of U.)

− SKIP(U): a number which tells how many bits to skip when searching.
3. The head has only three fields: Pointer to a signature, LLINK and LTAG.

To construct a signature graph for a signature file, we use two procedures: one for

graph search and one for node insertion, which together are, in fact, a modified version
of the Patricia algorithm [34]. Using the Patricia algorithm, a tree structure is constructed
to index a text (which is represented as a bit string) and each path (from the root to a leaf)
corresponds to a prefix of a sistring (see [34] for a definition of the sistring). But in a
signature tree, each path corresponds to a signature identifier. Note that a prefix of a sis-
tring is always a continuous piece of a bit sequence, while a signature identifier is not.

At the very beginning, the graph contains an initial node: Header with P(Header)
pointing to the first signature in the signature file, LLINK(Header) = Header and
LTAG(Header) = 1. (Note that the other three fields for Header are not defined.)

Then, we take the next signature to be inserted into the graph. Let s be the next sig-
nature we wish to insert. We first execute the procedure search for graph search. It must
terminate unsuccessfully since no signature is the same as any other one in a signature
file. But several bits of s can be determined, which agree with some other signature s0

already inserted into the graph. (See step (6) of search.) Assume that k bits of s agree
with s0, but that s differs from s0 in the (k + 1)th position, where s has the digit b and s0
has 1 − b. Now we repeat the procedure search with s replaced with those k bits. This
time, the search is successful, and the insertion point can be determined. In a next step,
the procedure insertion is performed to insert s into the graph.

The procedure below consists of six steps.

Procedure search

(1) U ¨ Header; j ¨ 0; n ¨ number of bits of s.
(2) Q ¨ U; U ← LLINK(Q); If LTAG(Q) = 1, go to step (6).
(3) j ¨ j + SKIP(U); If j > n, go to step (6). (*SKIP(U) is calculated by Procedure in-

sertion.*)
(4) If the jth bit of s is 0, go to step (2); otherwise go to step (5).
(5) Q ¨ U; U ← RLINK(Q); If RTAG(Q) = 0, go to step (3).
(6) Compare s with the signature pointed to by P(U) in the signature file. If they are

equal (up to n bits, the length of s), the algorithm terminates successfully; otherwise,
it terminates unsuccessfully. (*Through the comparison, k can be determined.*)

The following procedure takes five arguments as the inputs: U, Q, b, j, and k, which

are produced during the execution of Procedure search.

U is the node encountered; U is determined by line (2) or (5) in Procedure search;
Q is U’s parent;
b is the first bit of s, which differs from the signature pointed to by P(U);

BUILDING SIGNATURE TREES INTO OODBS

289

j is a number indicating that if LTAG(Q) = 1 or RTAG(Q) = 1, then the jth bit of s is
checked when Q is visited (see lines (2) and (5)); otherwise, the jth bit of s is
checked when U is visited (see line (3)); and

k is a number indicating how many first bits of s match U, which is determined by
line (6).

In the following procedure, R represents a new node to be inserted into the graph.

Procedure insertion

(1) R ¨ address of a structure created for the new element;
(2) P(R) ¨ position of the new sistring;
(3) if LLINK(Q) = U then

 {LLINK(Q) ¨ R; t ¨ LTAG(Q); LTAG(Q) ¨ 0;}
 else (*move right; RLINK(Q) = U*)
 {RLINK(Q) ¨ R; t ¨ RTAG(Q); RTAG ¨ 0;}

(4) if b = 0 then
 {LTAG(R) ¨ 1; LLINK(R) ¨ R; RTAG(R) ¨ t; RLINK(R) ¨ U;}
 else (*b = 1*)
 {RTAG(R) ¨ 1; RLINK(R) ¨ R; LTAG(R) ¨ t; LLINK(R) ¨ U;}

(5) if t = 1 then
 {SKIP(R) ¨ 1 + k − j;}
 else (*t = 0*)
 {SKIP(R) ¨ 1 + k − j + SKIP(U); SKIP(U) ¨ j − k + 1;}

In the above procedure, attention should be paid to the calculation of SKIP(R).
If t = 1, then SKIP(R) ¨ 1 + k − j, which corresponds to the insertion shown in Fig.

7 (a). This situation happens when Procedure search stops after the execution of line (2)
and then goes to line (6). If t = 0, then SKIP(R) ¨ 1 + k − j + SKIP(U), and at the same
time, SKIP(U) is changed: SKIP(U) ← j − k + 1, which corresponds to the insertion
shown in Fig. 7 (b). This situation happens when Procedure search stops after the execu-
tion of line (3) and then goes to line (6).

Q

U

R Q

U

R

or

(a)

Q

U

R
Q

U
or

R

(a) (b)

Fig. 7. Illustration of the insertion of a node R.

In addition, we note line (4) in Procedure insertion. If b = 0, then the corresponding

position in the signature pointed to by U is 1. Thus, R should be inserted in such a way
that U becomes the right child node of R. Similarly, if b = 1, U should become the left
child node of R. In Fig. 7, a dashed arrow represents a back edge, and a solid arrow
represents a tree edge.

YANGJUN CHEN

290

Q = B, U = A
b=1, j=1, k=6

header

P(1)

1

P(2)

3

P(3)

6

P(4) D

Q = D, U = D
b=1, j=7, k=3

Q = E, U = E
b=1, j=4, k=4

header

P(1)

1

P(2)

3

P(3)

6

P(4)

-3

P(5) E

header

P(1)

1

P(2)

3

P(3)

6

P(4)

-3

P(5)

F 1

P(6)

Q = E, U = D
b=1, j=4, k=7

header

P(1)

1
P(2)

3

P(3)

6

P(4)

-3

P(5)

G
1

P(6)

4

P(7)
Q = C, U = B
b=1, j=4, k=6

header

P(1)

1

P(2)

3

P(3)

6

P(4)

-3

P(5)

H

1

P(6)

4

P(7)

-3

P(5)

A

header

P(1)

1

P(2)

header

P(1)

Q = A, U = A
b=1, j=0, k=0

B

Q = B, U = B
b=1, j=1, k=3

header

P(1)

1

P(2)

3

P(3)
C

Fig. 8. Sample trace of signature-graph generation.

BUILDING SIGNATURE TREES INTO OODBS

291

In the following, we trace the above algorithm against the signature file shown in
Fig. 6 (a).

In Fig. 8, P(i) represents a pointer to the ith signature in the signature file, and s = j
indicates that the jth signature is being considered. The nodes are also labelled A, B, ...,
H as they are inserted into the graph.

Next we give an important property of a signature graph, which exhibits its main
usage.

First, we notice that in a signature graph, each node v is associated with a number to
show how many bits to skip and with a pointer to a signature in the signature file, de-
noted k(v) and p(v), respectively. In addition, each edge e (except the edge extending
from the header to its left child) is labelled with a value (0 or 1), denoted b(e). The edge
from the header to its left child is established at the very beginning - before Procedure
search is executed and no value (0 or 1) is associated with it. We call the left child of the
head the root of the signature graph.

Definition 6 (identifying path) Let P = v1.e1 ... vt-1.et-1.vt be a path in a signature graph,
where vi (1 £ i £ t) represents a node on the path and ej (1 £ j £ t − 1) represents an edge
from vj-1 to vj. If v1 is the root and tn-1 is the only back edge appearing on P, then P is
called an identifying path.

Proposition 1 Let P = v1.e1 ... vt-1.et-1.vt be an identifying path for some signature s, i.e,

p(vt) = s. Denote j k vl i

i

l

=

=

Â ()
1

(l = 1, ..., t − 1). Then, s(j1, j2, ..., jt-1) = (j1, b(e1)) ... (jt-1,

b(et-1)) constitutes an identifier for s.

Proof: Let S = s1.s2sn be a signature file, and let G be a signature graph for it. Let P =
v1e1 ... vt-1et-1vt be an identifying path for si in G. Assume that there exists another signa-

ture sg such that sg(j1, j2, ..., jt-1) = si(j1, j2, ..., jt-1), where j k vl i

i

l

=

=

Â ()
1

(l = 1, ..., t − 1).

Without loss of generality, assume that g > i. Then, at the moment when sg is inserted
into G, a new node v will be inserted as shown in Fig. 9 (a) or (b).

v
1

v
t

v
t -1

v

e
e’

(b)

v
1

v
t

v
t -1

v

e e’

(a) (b)

Fig. 9. Inserting a node v into G.

YANGJUN CHEN

292

Fig. 9 shows that the identifying path for si should be v1.e1 ... vt-1.e.ve’.vt, which con-
tradicts the assumption. Therefore, there is no other signature sg with sg(j1, j2, ..., jt-1) = (j1,
b(e1)) ...(jt-1, b(et-1)), so si(j1, j2, ..., jt-1) is an identifier of si. �

A signature graph can always be transformed into a signature tree by splitting each
node into two nodes. That is, each pointer to the text is separated from the corresponding
node. There is an arc from a node v to a separated pointer node u (corresponding to a
pointer to the text) if there is a back edge from v to a node containing u in the original
graph. See Fig. 10 (a) for an illustration.

In Fig. 10 (a), node A is split into two nodes connected by a dashed line A’, and
node B is split into two nodes connected by a dashed line B’. The signature tree shown in
Fig. 10 (b) is produced from the signature graph shown in Fig. 8.

Based on the above analysis, we have the following proposition.

 6

P(4)
A

-3

P(5)
B

66

6-3

P(5) P(4)

B’

A’

header

1

6 3

-3 3

4 1 P(2) P(8)

P(4) P(7) P(5) P(6)

P(1) P(3)

(a) (b)

Fig. 10. Node splitting.

Proposition 2 Each signature graph can be transformed into a signature tree by split-
ting each node into two nodes as described above.

Proof: Let G be a signature graph, and let T be another graph obtained by splitting each
node of G as described above. Then, each pointer (in G) to a signature (in the corre-
sponding signature file) becomes a leaf node in T; and each path in T from the root (cor-
responding to the root node in G) to a leaf is just an identifying path in G. Note that the
transformation will not change the binary property of G (i.e., each internal node in T will
have two child nodes) or the edge label. Based on Definition 4, T is a signature tree. �

5.3 Searching Signature Trees

Next, we discuss how to search a signature tree to model the behaviour of a signa-
ture file as a filter. Let sq be the node encountered during a traversal of the query signa-
ture hierarchy Q(s,h). The i-th position of sq is denoted by sq(i). During the traversal of a
signature tree, inexact matching is defined as follows:

(i) Let v be the node encountered, and let sq (i) be the position to be checked.
(ii) If sq(i) = 1, we move to the right child of v.
(iii) If sq(i) = 0, both the right and left child of v will be visited.

In fact, this definition corresponds to the signature matching criterion.

BUILDING SIGNATURE TREES INTO OODBS

293

To implement this inexact matching strategy, we search the signature tree in a
depth-first manner and maintain a stack structure stackp to control the tree traversal.

Algorithm signature-tree-search
Input: a node in Q(s,h);
Output: a set of object OIDS whose signatures survive the checking process;
1. Let sq be the node encountered during a traversal of the query signature hierarchy Q(s,h).

The i-th position of sq is denoted by sq(i). S ¨ ∅.
2. Push the root of the signature tree into stackp.
3. If stackp is not empty, then v ¨ pop stackp; else return(S).
4. If v is not a leaf node, then i ¨ skip(v);

If sq(i) = 0, then push cr and cl into stackp (where cr and cl are v’s right and left children,
respectively); otherwise, push only cr into stackp.

5. Compare sq with the signature pointed to by p(v).
If sq matches, then S ← S » {OID}, where OID is the object identifier associated with
the signature pointed to by p(v).

The following example illustrates the main idea of the algorithm.

Example 3 Consider the signature file and the signature tree shown in Fig. 6 once
again.

Assume that sq = 000 100 100 000. Then, only part of the signature tree (indicated

by bold lines in Fig. 11) will be searched. When a leaf node is reached, the signature
pointed to by the leaf node will be checked against sq. Obviously, this process is much
more efficient than sequential searching. In this example, only 42 bits are checked (6 bits
during tree search and 36 bits during signature checking). But when the signature file is
scanned, 96 bits are checked. In general, if a signature file contains N signatures, the
method discussed above requires only O(N/2l) comparisons in the worst case, where l
represents the number of bits set in sq since each bit set in sq will keep half of a subtree
from being visited. Compared with the time complexity of signature file scanning O(N),
this is a major benefit. We will discuss this issue in the next section in more detail.

1

6 3

4

-3 3

1

3.1.

4. 7.

2. 8.

6.5.

0

0

0 0

0 0

0

1

11

11

1
1

Fig. 11. Signature tree search.

YANGJUN CHEN

294

6. PERFORMANCE

An indexing technique is always associated with some trade-offs. This is also true
for the method presented in this paper. In this section, we first show the time savings
obtained using the signature file hierarchy in 6.1. Then, in 6.2, we demonstrate the bene-
fits obtained by using a signature tree. In 6.3, we analyze the extra space overhead of a
signature tree.

6.1 Performance of Signature File Hierarchies

For the purpose of comparison, we consider a linear setting as in [42]. That is, query
evaluation is performed along a class path as shown in Fig. 12.

... ...
C

1
C

2
C

3
C

na
1

a
2

a
3

a
n -1

Fig. 12. Class path.

In this figure, each class Ci has a complex attribute ai whose domain is Ci+1. In addi-

tion, we assume that a predicate pi is defined over Ci and is executed to evaluate the
query. In the following, the parameters and assumptions used for the performance
evaluation are given:

Pi: Probability that an object in class Ci satisfies pi.
vi: Number of objects in class Ci visited by a nested loop (brute force) top-down strategy

to process the given query.
Pf: False drop probability of signatures.
Pq: Probability that an object satisfies checking against the corresponding signature in the

query signature hierarchy.
d: Average out-degree of objects (i.e., the average number of objects referenced by an

object).
Ni: Number of objects in class Ci.

In the following, we use these parameters to estimate the numbers of objects visited

when evaluating a query using three different methods: top-down-retrieval (TDR), the
method proposed in [42] (referred to as Yong’s method later) and top-down-hierarchy-
retrieval (TDHR).

Top-down-retrieval (TDR)

With this method, the number of the visited objects in class Ci for evaluating a
query can be computed using the following formula:

vi = d ◊ vi - 1 ◊ Pi - 1 (2 £ i ≤ n)
 = d ◊ v1 ◊ P1 ◊ Pi - 1

BUILDING SIGNATURE TREES INTO OODBS

295

Therefore, the total number of the visited objects is equal to the following sum:

v v v d Pi

i

n

j
j

i

i

n

= = ◊ + ◊

=

-

==

Â ’Â
1

1 1
12

1().

Yong’s method
Yong’s method was proposed in [42]. With this method, the signature of a refer-

enced object is stored in the referring one. Then, predicate checking can be performed
against their signatures before they are accessed. In this way, a lot of I/O operations can
be saved. According to this property, we analyze its performance as follows.

Let vi’ be the number of objects in class Ci visited by Yong’s method. Due to the
earlier checks done for the referenced objects, for each class Ci, vi’ can be computed as
follows:

vi’ = vi − (1 − Pi) ◊ vi + (1 − Pi)Pf ◊ vi
= vi ◊ (Pi + (1 − Pi)Pf),

where (Pi + (1 - Pi)Pf) is the probability that an object is not removed by checking
against the signatures of the referenced objects. Thus, the total number of the objects
accessed by Yong’s method is

v v v d P P P Pi

i

n

i i f j
j

i

i

n

'= = ◊ + ◊ + -

=

-

==

Â ’Â' ((())).
1

1 1
12

1 1

Top-down-hierarchy-retrieval (TDHR)
Top-down-hierarchy-retrieval has a stronger filtering ability than Yong’s method.

This is because in each check against a node in a query signature hierarchy, not only is
the predicate related to the current node involved, but also some other predicates whose
impacts are propagated up several paths to that node. We represent such impacts by
means of a probability Pq. Accordingly, we give the following analysis. Let vi” be the
number of objects in class Ci visited by TDHR. Then, we have

vi” = vi ◊ (Pi + (1 − Pi)Pf) ◊ Pq

Thus, the total number of visited objects is

v v v P d P P P Pi

i

n

q i i f j
j

i

i

n

''= = ◊ ◊ + ◊ + -

=

-

==

Â ’Â'' ((())).
1

1 1
12

1 1

We compare the above three methods above using two simple abstract data sets. For
the first data set, each object has only one sub-object (i.e, d = 1; see Fig. 13 (a)). For the
second, each object refers two sub-objects (i.e, d = 2; see Fig. 13 (b)).

YANGJUN CHEN

296

... ...
o

1
o

2
o

3

(a)

... ...
o

1

o
21

o
22

o
31

o
32

o
33

o
34

(b)

(a) (b)
Fig. 13. Two data sets.

Figs. 14 (a) and (b) show the comparison results for the two data sets distributed in

three classes C1, C2 and C3, respectively. In the performance analysis, we assumed that Pi
= 0.1 (i = 1, 2, 3), Pf = 0.01, and Pq = 0.5. Contrary to [42], the visited objects of class C1
were counted since by using the query signature hierarchy, a lot of objects of the target
class can also be removed by checking the corresponding signature file, leading to a dras-
tic reduction in the total number of accessed objects.

1000

2000

3000

4000

5000

6000
7000

1000 5000 10000 15000 20000
number of objects
in C1, C2 and C3

number of visited objects

d = 1
Pf = 0.01
Pi = 0.1
Pq = 0.1

Yong’s method

TDR

1000

2000

3000

4000

1000 5000 10000 15000 20000
number of objects
in C1, C2 and C3

number of visited objects

d = 1
Pf = 0.01
Pi = 0.1
Pq = 0.1 Yong’s method

TDR

 (a) (b)

Fig. 14. Comparison results.

The figure shows that we can achieve high performance by means of

“top-down-hierarchy-retrieval.” From an abstract point of view, the query signature hi-
erarchy is a “global” filter, while the replication technique developed in Yong’s method
can be thought of as a “local” one. Both reduce the number of objects accessed.

6.2 Performance of Signature Trees

To analyze the performance of the signature tree, we consider four parameters: N,
the number of signatures in a signature file; m, the signature length; h, the number of bits
set to 1 in a signature; and D, the size of a block. When the signature is on average
half-populated with 1s and half-populated with 0s, the false drop probability is mini-
mized [13]. In such a setting, the two parameters N and m satisfy the following inequal-
ity:

N
m

m
£
F
HG

I
KJ/
.

2

BUILDING SIGNATURE TREES INTO OODBS

297

We have the above inequality based on a simple observation that if N
m

m
>
F
HG

I
KJ/
,

2

then there must exist two signatures having the same binary strings. In this case, one of
them will be removed from the signature file. In the following, we concentrate on the
estimation of N/2l - the number of signatures to be checked using a signature tree.

In terms of the Stirling formula: m! ~ 2pm m
e

m
d i , we have

m

m m
m

/
~ .

2
2

2
F
HG

I
KJ

◊

p

Then, we have

N
m

m
£ ◊

2
2

p

From this, we have log log log .2
1
2

1
2 2

1
2 2N m m£ - ◊ - ◊ +p

Thus, m satisfies the following inequality:

log log log2
1
2

1
2 2

1
2 2N m m- - ◊ - ◊ £p

According to [13], in the case that the average block signature involves an equal
number of 1s and 0s, the three design parameters h, m, and D satisfy the relationship
below:

m ¥ ln2 = h ¥ D

In addition, averagely l (the number of bits set to 1 in a query signature) is equal to h.
From the above, we derive the time complexity of the signature tree searching as

follows:

N N Nl h m
D/ ~ / / .
ln

2 2 2
2

=

N N N N m
m

D D DN m/ / / () .
ln ln ln(log log)2 2

2 1
2

1
2

1
2

2 21
2

£ = ◊ ◊ ◊
- + +lon p

p

Finally, we have the inequality

N N N m
m

D D/ / ()
ln ln

2
2 21

2
£ ◊ ◊ ◊p

£ ◊ ◊ ◊ - + +N N N m D/ (log log log)
ln1

2
1
2

2

p p

~ () / (log)
ln ln2 2 2

p

D DN N N◊

Fig. 15 shows the calculation results obtained using the above formula.
In Fig. 15, the number of signatures checked is computed in terms of N - the size of

a signature file. From this, we can see that the performance of signature tree searching

YANGJUN CHEN

298

worsens as the size of the block increases. This is because, given a fixed signature length,
a larger block requires fewer bits in a signature set to 1, which weakens the filtering
power of signature trees when it comes to single term query processing.

Fig. 15. Time complexities of signature file scanning and signature tree searching.

signature tree searching:

signature file scanning:

2000

4000

6000

8000

10000

12000

0
2000 4000 6000 8000 10000 12000

N

number of signatures

D = 16ln2

D = 8ln2

D = 2ln2

to be checked

Fig. 15. Time complexities of signature file scanning and signature tree searching.

Normally, l should be considered as a variable parameter. If l > h, the number of
signatures to be checked will be reduced. If l < h, more signatures will be checked.

6.3 Extra Space Overhead of a Signature Tree

Note that a signature tree is a binary tree. Thus, a signature tree can be stored as a
set of triples of the form: <v, lp, rp>, where v represents the number associated with a
node, lp represents the pointer to the left subtree, and rp represents the pointer to the
right subtree.

Assume that the length of a signature is m, and that the number of signatures in a
file is N. (The size of the signature file is, therefore, N × m bits.) Then, for each v, we
need log2m bits, and for each lp (rp), we need log2N bits. Accordingly, for all the internal
nodes of a signature tree, we need space for N × log2m + 2N × log2N bits. To mitigate
this problem to some extent, we use the following relative address encoding:

(1) The triples for a signature tree are stored in breadth-first order.
(2) lp and rp are relative addresses; i.e., the absolute address of node v’ (denoted

add(v’)) pointed to by lp (or rp) is equal to add(v’) = add(v) + lp (or add(v) + rp).

In this way, we need only 2 bits for the addresses of the nodes at the first level, 22
bits for the second level, 23 bits for the third level, and so on. The space overhead can
then be reduced to

N m ii

i

k

¥ + +

=

Âlog (),2
0

2 2 1

where 2k = N. This is almost half of the size of the corresponding signature file.

BUILDING SIGNATURE TREES INTO OODBS

299

7. SIGNATURE TREE MAINTENANCE

In this section, we address how to maintain a signature tree. First, in 7.1, we discuss
the case where a signature tree can entirely fit in main memory. Then, in 7.2, we discuss
the case where a signature tree cannot entirely fit in main memory.

7.1 Maintenance of Internal Signature Trees

An internal signature tree refers to a tree that can fit entirely in main memory. In
this case, insertion and deletion of a signature into and from a tree, respectively, can be
done quite easily as discussed below.

When a signature s is added to a signature file, the corresponding signature tree can
be changed by simply running the algorithm insert() once with s as the input (see 5.2).

When a signature is removed from the signature file, we need to reconstruct the cor-
responding signature tree as follows:

(i) Let z, u, v, and w be the nodes as shown in Fig. 16 (a) and assume that v is a pointer

to the signature to be removed.
(ii) Remove u and v. Set the left pointer of z to w. (If u is the right child of z, set the right

pointer of z to w.)

z
u

v w

(a)

z

w

(b)

 (a) (b)

Fig. 16. Illustration of deleting a signature.

The resulting signature tree is as shown in Fig. 16 (b).
From the above analysis, we can see that maintaining an internal signature tree is an

easy task.

7.2 Maintenance of External Signature Trees

In a database, files are normally very large. Therefore, we have to consider the
situation where a signature tree cannot fit entirely in main memory. We call such a tree
an external signature tree (or an external structure for a signature tree). In this case, a
signature tree is stored in a series of pages organized into a tree structure as shown in
Fig. 17, in which each node corresponds to a page containing a binary tree.

YANGJUN CHEN

300

pages

Fig. 17. An external signature tree.

Formally, an external structure ET for a signature tree T is defined as follows. (To

avoid any confusion, we will, in the following, refer to the nodes in ET as page nodes
and to the nodes in T as binary nodes or, simply, nodes.)

1. Each internal page node n of ET is of the form: bn(rn, an1, ..., nnia), where bn represents

a subtree of T, rn is its root, and an1, ..., nnia are its leaf nodes. Each internal node u of
bn is of the form: <v(u), l(u), r(u)>, where v(u), l(u) and r(u) are the value, left link and
right link of u, respectively. Each leaf node

jnia of bn is of the form: <v(
jnia), lp(

jnia),
rp(

jnia)>, where v(
jnia) represents the value of

jnia , and lp(
jnia) and rp(

jnia) are two
pointers to two pages containing the left and right subtrees of

jnia , respectively.
2. Let m be a child page node of n. Then, m is of the form: bm(rm, am1, ..., mmia), where

bm represents a binary tree, rm is its root, and am1, ..., mmia are its leaf nodes. If m is an
internal page node, am1, ..., mmia will have the same structure as an1, ..., nnia described
in (1). If m is a leaf node, then each

jmia = p(s), the position of some signature s in the
signature file.

3. The size |b| of the binary tree b (the number of nodes in b) within an internal page node
of ET satisfies |b| £ 2k, where k is an integer.

4. The root page of ET contains at least a binary node and the left and right links associ-
ated with it.

If 2k-1 ≤ |b| ≤ 2k holds for each node in ET, it is said to be balanced; otherwise, it is

unbalanced. However, according to [17], the generation of word signatures is a random
process. Therefore, in a large signature file, we expect approximately equal numbers of
1s and 0s, which hints that a signature tree for a large signature file is approximately bal-
anced; i.e., 2k-1 ≤ |b| ≤ 2k holds for almost every page node in ET.

As with a B+-tree, insertion and deletion of page nodes begin always from a leaf
node. To maintain tree balance, internal page nodes may split or merge during the proc-
ess. In the following, we discuss these issues in great detail.

− Insertion of binary nodes

Let s be a signature newly inserted into a signature file S. Accordingly, a node as
will be inserted into the signature tree T for S as a leaf node. In effect, it will be inserted
into a leaf page node m of the external structure ET of T. This can be done by moving the
binary tree within that page into main memory and then inserting the node into the tree as

BUILDING SIGNATURE TREES INTO OODBS

301

discussed in 7.1. If for the binary tree b in m, we have |b| > 2k, the following
node-splitting process will be conducted.

1. Let bm(rm, am1, ..., mmia) be the binary tree within m. Let rm1 and rm2 be the left and

right child nodes of rm, respectively. Assume that bm1(rm1, am1, ..., amij) (ij < im) is the
subtree rooted at rm1, and that bm2(rm1,

1+jima , ..., amim) is rooted at rm2. We allocate a
new page m’ and put bm2(rm1,

1+jima , ..., amim) into m’. Afterwards, we promote rm to
the parent page node n of m and remove bm2(rm1,

1+jima , ..., amim) from m.

2. If the size of the binary tree within n becomes larger than 2k, we split n as described
above. The node-splitting is repeated along the path bottom-up until no splitting is
needed.

− Deletion of binary nodes

When a node is removed from a signature tree, it is always removed from the leaf
level as discussed in 7.1. Let a be a leaf node to be removed from a signature tree T. In
effect, it will be removed from a leaf page node m of the external structure ET for T. Let
b be the binary tree within m. If the size of b becomes smaller than 2k-1, we may merge it
with its left or right sibling as follows.

1. Let m’ be the left (right) sibling of m. Let bm(rm, am1, ..., mmia) and bm’(rm’, am’1, ...,
mima

′′) be two binary trees in m and m’, respectively. If the size of bm’ is smaller than
2k-1, then we move bm’ into m and afterwards eliminate m’. Let n be the parent page
node of m, and let r be the parent node of rm and rm’. We move r into m and afterwards
remove r from n.

2. If the size of the binary tree within n becomes smaller than 2k-1, then we merge it with
its left or right sibling if possible. This process is repeated along the path bottom-up
until the root of ET is reached or no merging operation can be done.

Note that it is not possible to redistribute the binary trees of m or any of its left and

right siblings due to the properties of a signature tree, which may leave an external sig-
nature tree unbalanced. According to the analysis of 5.4, however, this is not a typical
case.

Finally, we point out that for an application in which the signature files do not fre-
quently change, the internal page nodes of an ET can be implemented as a heap structure.
In this way, a lot of space can be saved.

8. CONCLUSIONS

In this paper, a new indexing technique has been proposed. The main idea of this
approach is to combine of signature file hierarchies and signature trees. To optimize the
traversal of object hierarchies, we build signature file hierarchies to cut off irrelevant
branches as early as possible. However, since the signature file works only as an inexact
filter, it can not be sorted and binary search, thus, can not be utilized to speed up signa-
ture file scanning. To this end, we construct a signature tree over each signature file

YANGJUN CHEN

302

which appears as a node in the signature file hierarchy. In this way, sequential searching
can be avoided, which leads to a reduction of the time needed to search a signature file
by one order of magnitude or more.

REFERENCES

1. S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and J. Simeon,
“Querying documents in object databases,” International Journal on Digital Librar-
ies, Vol. 1, 1997, pp. 5-19.

2. S. Abiteboul, S. Cluet, and T. Milo, “Querying and updating the file,” in Proceed-
ings of the 9th International Conference on Very Large Data Bases (VLDB), 1993,
pp. 386-397.

3. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley Publishing Company, 1974.

4. F. Bancihon, S. Cluet, and C. Delobel, “A query language for O2,” Building an Ob-
ject-Oriented Database System: The Story of O2, 1992, pp. 234-255.

5. E. Bertino, “Optimization of queries using nested indices,” in Proceedings of Inter-
national Conference on Extending Database Technology, 1990, pp. 44-59.

6. F. Bancihon, C. Delobel, and P. Kanellakis, Building an Object-Oriented Database
System: The Story of O2, 1992.

7. E. Bertino and C. Guglielmani, “Optimization of object-oriented queries using path
indices,” in 2nd International Workshop on Research Issues on Data Engineering:
Transaction and Query Processing, 1992, pp. 140-149.

8. E. Bertino and W. Kim, “Indexing techniques for queries on nested objects,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 1, 1989, pp. 196-214.

9. R. Bayer and K. Unterrauer, “Prefix B-tree,” ACM Transactions on Database Sys-
tems, Vol. 2, 1998, pp. 11-26.

10. A. Cardenas, “Analysis and performance of inverted data base structures,”
Communications of ACM, Vol. 18, 1987, pp. 253-263.

11. R. G. G. Cattell, Object Data Management: Object-Oriented and Extended Rela-
tional Database Systems, Addison-Wesley Publishing Company, Inc., 1991.

12. S. Choenni, E. Bertino, H. M. Blanken, and T. Chang, “On the selection of optimal
index configuration in OO databases,” in Proceedings of 10th International Confer-
ence on Data Engineering, 1994, pp. 526-537.

13. S. Christodoulakis and C. Faloutsos, “Design consideration for a message file
server,” IEEE Transactions on Software Engineering, Vol. 10, 1984, pp. 201-210.

14. C. Y. Chan, C. H. Goh, and B. C. Ooi, “Indexing OODB instances based on access
proximity,” in Proceedings of 13th International Conference on Data Engineering,
1997, pp. 14-21.

15. M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, 1994.
16. U. Deppisch, “S-tree: A dynamic balanced signature index for office retrieval,”

ACM SIGIR Conference, 1986, pp. 77-87.
17. D. Dervos, Y. Manolopoulos, and P. Linardis, “Comparison of signature file models

with superimposed coding,” Journal of Information Processing Letters, Vol. 65,
1998, pp. 101-106.

BUILDING SIGNATURE TREES INTO OODBS

303

18. R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, Benjamin Cum-
ming, California, 1989.

19. C. Faloutsos, “Access methods for text,” ACM Computing Surveys, Vol. 17, 1985,
pp. 49-74.

20. C. Faloutsos, “Signature files,” Information Retrieval: Data Structures & Algo-
rithms, W. B. Frakes and R. Baeza-Yates, ed., Prentice Hall, New Jersey, 1992, pp.
44-65.

21. F. Fotouhi, T. G. Lee, and W. I. Grosky, “The generalized index model for ob-
ject-oriented database systems,” in 10th Annual International Phonix Conference on
Computers and Communication, 1991, pp. 302-308.

22. S. W. Golomb, “Run-length encoding,” IEEE Transactions on Information Theory,
Vol. 12, 1996, pp. 399- 401.

23. OpenODB Reference Manual B3185A, Hewlett-Packard, 1992.
24. D. Harman, E. Fox, and R. Baeza-Yates, “Inverted files,” Information Retrieval:

Data Structures & Algorithms, 1992, pp. 28-43.
25. R. Haskin, “Special purpose processors for text retrieval,” Database Engineering,

Vol. 4, 1981, pp. 16-29.
26. Y. Ishikawa, H. Kitagawa, and N. Ohbo, “Evaluation of signature files as set access

facilities in OODBs,” in Procreedings of ACM SIGMOD International Conference
on Management of Data, 1993, pp. 247-256.

27. W. Kim, Introduction to Object-Oriented Databases, The MIT Press, 1990.
28. W. Kim, “A model of queries for object-oriented databases,” in Proceedings of In-

ternational Conference on Very Large Data Base, 1989, pp. 423-432.
29. W. Kim, K. C. Kim, and A. Dale, Indexing Techniques for Object Oriented Data-

bases, Addison Wesley, 1989, pp. 371-394.
30. A. Kemper and G. Moerkotte, “Access support relations: an indexing method for ob-

ject bases,” Information Systems, Vol. 17, 1992, pp. 117-145.
31. D. E. Knuth, The Art of Computer Programming: Sorting and Searching, Addison-

Wesley Publishing, London, 1973.
32. W. Lee and D. L. Lee, “Signature file methods for indexing object-oriented database

systems,” in Proceedings of 2nd International Conference on Data and Knowledge
Engineering: Theory and Application, 1992, pp. 616-622.

33. C. C. Low, B. C. Ooi, and H. Lu, “H-trees: a dynamic associative search index for
OODB,” in Proceedings of 1992 ACM SIGMOD Conference on the Management of
Data, 1992, pp. 134-143.

34. D. R. Morrison, “PATRICIA − practical algorithm to retrieve information coded in
alphanumeric,” Journal of ACM, Vol. 15, 1968, pp. 514-534.

35. T. A. Mueck and M. L. Polaschek, “The multikey type index for persistent object
sets,” in Proceedings of 13th International Conference on Data Engineering, 1997,
pp. 22- 31.

36. D. Maier and J. Stein, “Indexing in an object-oriented DBMS,” in Proceedings of
International Workshop on OODB Systems, 1986, pp. 171-182.

37. A. Moffat and J. Zobel, “Self-indexing inverted files for fast text retrieval,” ACM
Transaction on Information Systems, Vol. 14, 1996, pp. 349-379.

YANGJUN CHEN

304

38. B. Sreenath and S. Seshadri, “The hcC-tree: an efficient index structure for object
oriented database,” in Proceedings of International Conference on Very Large Da-
tabase, 1994, pp. 203-213.

39. R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal on Com-
puting, Vol. 1, 1972, pp. 146-150.

40. I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes, Van Nostrand Rein-
hold, 1994.

41. H. Yokota, Y. Kanemasa, and J. Miyazaki, “Fat-Btree: an update-conscious parallel
directory structure,” in Proceedings of 15th International Conference on Data En-
gineering, 1999, pp. 448-457.

42. H. S. Yong, S. Lee, and H. J. Kim, “Applying signatures for forward traversal query
processing in object-oriented databases,” in Proceedings of 10th International Con-
ference on Data Engineering, 1994, pp. 518-525.

43. J. Zobel, A. Moffat, and K. Ramamohanarao, “Inverted files versus signature files
for text indexing,” ACM Transactions on Database Systems, Vol. 23, 1998, pp.
453-490.

Yangjun Chen received his B.S. degree in information sys-
tem engineering from the Technical Institute of Changsha, China,
in 1982, and his diploma and Ph.D. degrees in computer science
from the University of Kaiserslautern, Germany, in 1990 and
1995, respectively. From 1995 to 1997, he worked as a research
assistant professor at the Technical University of Chem-
nitz-Zwickau, Germany. After that, he worked as a senior engi-
neer at the German National Research Center of Information
Technology (GMD) for more than two years. After a short stay-
ing at Alberta University, he joined the Department of Business

Computing at the University of Winnipeg, Canada. His research interests include deduc-
tive databases, federated databases, constraint satisfaction problem, graph theory, and
combinatorics. He has more than 80 publications in these areas.

