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INTRODUCTION 
XML uses a tree-structured model for 
representing data. Queries in XML languages 
(such as Xpath [13], Xquery [29, 30], XML-QL 
[12], and Quilt [5, 6]) also typically specify 
selection patterns as a kind of tree-structured 
relations. For instance, the XPath expression: 
 book[title = ‘Art of Programming’]//author[fn = 

‘Donald’ and ln = ‘Knuth’] 
matches author elements that (i) have a child 
subelement fn with content ‘Donald’, (ii) have a 
child subelement ln with content ‘Knuth’, and 
are descendants of book elements that have a 
child title subelement with content ‘Art of 
Programming’. This expression can be 
represented as a tree structure as shown in Fig. 1.  
 
 
 
 
 
 
 
 
In this tree structure, a node v is labeled with an 
element name or a string value, denoted label(v). 
In addition, there are two kinds of edges: child 
edges (c-edges) for parent-child relationships, 
and descendant edges (d-edges) for ancestor-
descendant relationships. A c-edge from node v 
to node u is denoted by v → u in the text, and 
represented by a single arc; u is called a c-child 
of v. A d-edge is denoted v ⇒ u in the text, and 
represented by a double arc; u is called a d-child 
of v. Such a query is often called a twig pattern.  

In any DAG (directed acyclic graph), a node u is 
said to be a descendant of a node v if there exists 
a path (sequence of edges) from v to u. In the 
case of a twig pattern, this path could consist of 
any sequence of c-edges and/or d-edges. Based 
on these concepts, the tree embedding can be 
defined as follows. 
Definition 1. An embedding of a twig pattern Q 
into an XML document T is a mapping f: Q → T, 
from the nodes of Q to the nodes of T, which 
satisfies the following conditions: 
(i) Preserve node label: For each u ∈ Q, u and 

f(u) are of the same label (or more generally, 
u’s predicate is satisfied by f(u).) 

(ii) Preserve c/d-child relationships: If u → v in 
Q, then f(v) is a child of f(u) in T; if u ⇒ v in 
Q, then f(v) is a descendant of f(u) in T. � 

If there exists a mapping from Q into T, we say, 
Q can be imbedded into T, or say, T contains Q. 
Notice that an embedding could map several 
nodes of the query (of the same type) to the same 
node of the database. It also allows a tree 
mapped to a path. This definition is quite 
different from the tree matching defined in [16]. 
There is much research on how to find such a 
mapping efficiently and all the proposed 
methods can be categorized into two groups. By 
the first group [1, 9, 11, 14, 19, 22, 28, 29, 32, 
33, 34], a tree pattern is typically decomposed 
into a set of binary relationships between pairs of 
nodes, such as parent-child and ancestor-
descendant relations. Then, an index structure is 
used to find all the matching pairs that are joined 
together to form the final result. By the second 
group [4, 7, 8, 10, 18, 20], a query pattern is 
decomposed into a set of paths. The final result 
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is constructed by joining all the matching paths 
together. For all these methods, the join 
operations involved require exponential time in 
the worst case. For example, if we decompose a 
twig pattern into paths to find all the matching 
paths from a database, we need O(pλ) time to 
join them together, where p is the largest length 
of a matching path and λ is the number of all 
such paths.  
In this paper, we proposed a new algorithm with 
no join operations involved. The algorithm runs 
in O(|T|⋅Qleaf) time and O(Tleaf⋅Qleaf) space, where 
Tleaf and Qleaf represent the numbers of the leaf 
nodes in T and in Q, respectively. 
The remainder of the paper is organized as 
follows. In Section 2, we restate a kind of tree 
encoding [17], which facilitates the recognition 
of different relationships among the nodes of 
trees. In Section 3, we discuss an algorithm for 
simple cases that a twig pattern contains only d-
edges. In Section 4, we extend this algorithm to 
general cases. Finally, a short conclusion is set 
forth in Section 5. 

TREE ENCODING 
To facilitate the checking of reachability 
(whether a node can be reached from another 
node through a path), a tree encoding is used 
[17]. 
Consider a tree T. By traversing T in preorder, 
each node v will obtain a number pre(v) to 
record the order in which the nodes of the tree 
are visited. In a similar way, by traversing T in 
postorder, each node v will get another number 
post(v). These two numbers can be used to 
characterize the ancestor-descendant relation-
ships as follows. 
Let v and v’ be two nodes of a tree T. Then, v’ is 
a descendant of v iff pre(v’) > pre(v) and post(v’) 
< post(v). See Exercise 2.3.2-20 in [17]. 
As an example, have a look at the pairs 
associated with the nodes of the tree shown in 
Figure 2. The first element of each pair is the 
preorder number of the corresponding node and 
the second is its postorder number. Using such 
labels, the ancestor-descendant relationships can 
be easily checked.  
 
 
 
 
 
 

 
 
For instance, by checking the label associated 
with b against the label for f, we see that b is an 
ancestor of f in terms of Proposition 1. Note that 
b’s label is (2, 4) and f’s label is (4, 1), and we 
have 2 < 4 and 4 > 1. We also see that since the 
pairs associated with g and c do not satisfy the 
condition given in Proposition 1, g must not be 
an ancestor of c and vice versa. 
Let (p, q) and (p’, q’) be two pairs associated 
with nodes u and v, respectively. We say that (p’, 
q’) is subsumed by (p, q), denoted (p’, q’)  (p, q), 
if p’ > p and q’ < q. Then, u is an ancestor of v if 
(p’, q’) is subsumed by (p, q). 
In addition, if p’ < p and q’ < q, u is to the left of 
v. 
Finally, we can associate each node v with a 
level number l(v) (the nesting depth of the 
element in a document). In conjunction with the 
tree encoding, this number can be utilized to tell 
whether a node is the parent of another node. For 
example, if pre(v’) > pre(v), post(v’) < post(v) 
and l(v) = l(v’) + 1, then v’ is a child node of v.  

ALGORITHM FOR SIMPLE CASES 
In this section, we describe an algorithm for 
simple cases that a twig pattern contains only d-
edges. First, we give a basic algorithm to show 
the main idea in 3.1. Then, in 3.2, we discuss 
how this algorithm can be substantially 
improved. In 3.3, we prove the correctness of the 
algorithm and analyze its computational 
complexities. 

Basic algorithm 
The basic algorithm to be given works in a 
bottom-up way. During the process, two data 
structures are maintained and computed to 
facilitate the discovery of subtree matchings. 
- Each node v in T is associated with a set, 

denoted α(v), contains all those nodes q in Q 
such that Q[q] can be imbedded into T[v], 
where T[v] represents a subtree of T rooted at 
v. 

- Each q in Q is associated with a value δ(q), 
defined as follows. 

Initially, for each q ∈ Q, δ(q) is set to φ. During 
the tree matching process, δ(q) is dynamically 
changed as below. 
(i) Let v be a node in T with parent node u.  
(ii) If q appears in α(v), change the value of  

δ(q) to u. 
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Figure 2. Labeling a tree 



Then, each time before we insert q into α(v), we 
will do the following checkings: 
1. Check whether label(q) = label(v). 
2. Let q1, ..., qk be the child nodes of q. For 

each qi (i = 1, ..., k), check whether δ(qi) is 
equal to v or to a descendent of v. 

If both (1) and (2) are satisfied, insert q into 
α(v). 

Below is a bottom-up algorithm, working in a 
recursive way and taking a node v in T as the 
input (which represents T[v]). Initially, the input 
is the root of T. The algorithm will mark any 
node u in T[v] if it finds that T[u] contains Q. In 
the process, two functions are called: 
 node-check(u, q) - It checks whether T[u] 

contains Q[q]. If it is the case, return {q}. 
Otherwise, it returns an empty set { }. 

 leaf-node-check(u) - It returns a set of leaf 
nodes in Q: {q1, ..., qk} such that for each qi (1 
≤ i ≤ k) label(u) = label(qi). 

Algorithm tree-matching(v) 
input: v - a node of tree T. 
output: mark any node u in T[v] if T[u] contains 

Q. 
begin 
1. S := ∅; S1 := ∅; S2 := ∅; 
2. if v is not a leaf node in T then  
3. {let v1, ..., vk be the child nodes of v; 
4. for i = 1 to k do call tree-matching(vi); 
5. α := α(v1) ∪ ... ∪ α(vk);   
6. for each q ∈ α do  
7. {δ(q) := v; S := S ∪ {q’s parent};} 
8. remove all α(vj) (j = 1, ..., k);  
9. for each q in S do 
10. S1 := S1 ∪ node-check(v, q); 
11. } 
12. S2 := leaf-node-check(v); 
13. α(v) := α ∪ S1 ∪ S2; 
end 

Function node-check(u, q) 
begin 
1. S1 := ∅; 
2. if label(q) = label(u) then 
3. {let q1, ..., qk be the child nodes of q; 
4. if for each qi (i = 1, ..., k) δ(qi) is equal to u 
5. or to a descendant of u 
6. then {S1 := S1 ∪ {q};  
7. if q is root then mark u};} 
8. return S1; 
end 

Function leaf-node-check(u) 
begin 

1. S2 := ∅; 
2. for each leaf node q in Q do 
3. {if type(q) = type(u) then {S2 := {q}; 
4. if q is root then mark u;} 
5. return S2; 
end 
The algorithm tree-matching( ) searches T 
bottom-up in a recursive way (see line 4). 
During the process, for each encountered node v 
in T, we first check whether it is a leaf node (see 
line 2). If it is a leaf node, the function leaf-
node-check( ) is called (see line 12),  by which 
all the matching leaf nodes in Q will be stored in 
a temporary variable S2 that will be added to 
α(v) (see line 13). If v is an internal node, lines 3 
- 10 are first conducted and then the function 
leaf-node-check( ) is invoked (see line 12). By 
executing line 4, tree-matching( ) is recursively 
called for each child node vi of v. After that, for 
each q appearing in α(vi), its δ value is set to be 
v (see line 7). In addition, q’s parent is inserted 
into S, a temporary valuable to be used in a next 
step. Since α(vi)’s will not be used any more 
after this step, they are simply removed (see line 
8). By executing lines 9 - 10, we check, for each 
q’ in S, whether v matches q’ by calling node-
check( ), in which the δ values of q’s child nodes 
are utilized to facilitate the checkings (see lines 3 
- 5 in node-check( )). 
The following example helps for illustration. 
Example 1. Consider T and Q shown in Figure. 
3. 
The algorithm works in a bottom-up way. First, 
v3 in T is visited. It is a leaf node, matching q3 of 
the two leaf nodes in Q. Therefore, α(v3) = {q3} 
(see lines 12). In the same way, we will set α(v5) 
= {q2}.  
 
 
 
 
 
 
 
 
In a next step, v4 is encountered. It is the parent 
of v5. In terms of α(v5) = {q2}, δ(q2) is set to be 
v4 (see Fig. 4 for illustration.) After that, node-
check(v4, q1) is invoked. (Note that q1 is the 
parent of q2. See lines 9 - 10.) Since label(v4) 
≠ label(q1), it returns S1 = ∅. leaf-node-check(v4) 
also returns S2 = ∅. So α(v4) = α(v5) ∪ S1 ∪ S2 = 
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a  v2 c  v6 
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Figure 3. A document tree and a query tree 



{q2} (see line 13). When v2 is met, we will first 
set δ(q2) = δ(q3) = v2 (in terms of α(v4) = {q2} 
and α(v3) = {q3}, respectively). Next, we call 
node-check(v2, q1), in which we will check 
whether label(v2) = label(q1). It is the case. So 
we will further check whether δ(qi) (i = 2, 3) is 
equal to v2. Since both δ(q2) and δ(q3) are equal 
to v2, we have that T[v2] contains Q[q1]. 
Therefore, S1 = {q1}. Thus, we set α(v2) = α(v3) 
∪ α(v4) ∪ S1 ∪ S2 = α(v3) ∪ α(v4) ∪ {q1} ∪ ∅ = 
{q1, q2, q3} 
 
 
 
 
 
 
 
 
 
In a next step, we will meet v6. It is a leaf node, 
matching q3. Therefore, α(v6) = {q3}. Finally, we 
will meet v1 and set δ(q1) = v1 and δ(q3) = v1. 
Since label(v1) = label(q1), δ(q2) = δ(q3) = v1, we 
have that T[v1] contains Q[q1] and α(v1) = {q1, 
q2, q3}. 

Improvements 
The above algorithm can be substantially 
improved by elaborating the construction of 
α(v)’s. 
First, we notice that in the case that v is a leaf 
node in T, α(v) is a set of the leaf nodes in Q, 
which match v. Such nodes can be stored in a 
linked list as illustrated below: 
 
 
 
with the left-most node appearing first and the 
right-most node last. Then, for any 1 ≤ i ≤ j ≤ k, 
we have pre(qi) < pre(qj) and post(qi) < post(qj). 
That is, in α(v), qi’s are sorted according to their 
preorder and postorder values. 
Now we consider two α-lists α and α’ sorted 
according to their nodes’ preorder and postorder 
numbers. Define a merging operation over α and 
α’, denoted merge(α, α’), as follows. 
1. Assume that α = {v1, ..., vp} and α’ = {v1’, ..., 

vq’}. We step through both α and α’ from left 
to right. Let vi and vj’ be the nodes 
encountered. We’ll make the following 
checkings. 

2. If pre(vi) > pre(vj’) and post(vi) > post(vj’), 
insert vj’ into α after vi-1 and before vi and 
move to vj+1’ (in α’).  

3. If pre(vi) > pre(vj’) and post(vi) < post(vj’), 
remove vi from α and move to vi+1. (*vi is 
subsumed by vj’.*) 

4.  If pre(vi) < pre(vj’) and post(vi) > post(vj’), 
ignore vj’ and move to vj+1’ (in α’). (*vj’ is 
subsumed by vi.*) 

5. If pre(vi) < pre(vj’) and post(vi) < post(vj’), 
ignore vi and move to vi+1.  

6. If pre(vi) = pre(vj’) and post(vi) = post(vj’), 
ignore both vi and vj’, and move to vi+1 and 
vj+1’ in α and α’, respectively. 

The result of merge(α, α’) is stored in α, and α’ 
remains unchanged. Especially, the changed α is 
still sorted according to their nodes’ preorder 
and postorder numbers.  
In terms of the above discussion, we have the 
following algorithm to merge two sorted α-lists 
together. 
Algorithm merge(α, α’) 
Input: α and α’ - sorted α-lists. 
Output: modified α, containing all the nodes in α 

and α’ with all the subsumed nodes removed. 
begin 
1. p ← first-element(α); 
2. q ← first-element(α’); 
3. while p ≠ nil do{ 
4.  while q ≠ nil do{ 
5.  if (pre(p) > pre(q) ∧ post(p) > post(q)) 
6. then {insert q into α before p; 
7.  q ← next(q);} (*next(q) represents 
    the node next to q in α’.*) 
8.  else if (pre(p) > pre(q) ∧ post(p) < post(q))  
9.  then {p’ ← p; (*p is subsumed by q; 
   remove p from α.*) 
10. remove p from α; 
11.  p ← next(p’);} (*next(p’) repre-

sents the node next to p’ in α.*) 
12. else if (pre(p) < pre(q)  
   ∧ post(p) > post(q)) 
13. then {q ← next(q);} (*q is sub- 
  sumed by p; move to the node next to q.*) 
14. else if (pre(p) < pre(q) 
  ∧ post(p) < post(q)) 
15. then {p ← next(p);} 
16.  else if (pre(p) = pre(q) 
   ∧ post(p) = post(q))  
17. then {p ← next(p); 
   q ← next(q);}}} 
18.if p = nil ∧ q ≠ nil 
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Figure 4. Sample trace 
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 then {attach the rest of α’ to the end of α;} 
end 

We can extend the merging operation over to 
more than two sorted α-lists: 
 merge(α1, ..., αk-1, αk) 
 = merge(merge(α1, ..., αk-1), αk). 
Using this operation, the algorithm tree-
matching( ) is rewritten as follows. 
Algorithm tree-matching(v) 
input: v - a node of tree T. 
output: mark any node u in T[v] if T[u] contains 

Q. 
begin 
1. S := ∅; 
2. if v is not a leaf node in T then  
3. {let v1, ..., vk be the child nodes of v; 
4. for i = 1 to k do call tree-matching(vi); 
5. α := merge(α(v1), ..., α(vk)); 
6. assume that α = {q1, ..., qj }; 
7. for i = 1 to j do  
8. {δ(qi) := v; 
9. if (qi’s parent ≠ qi-1’s parent) then 
10. S := S ∪ {qi’s parent};} 
11. remove all α(vj) (j = 1, ..., k);  
12. for each q in S do 
13. S1 := S1 ∪ node-check(v, q); 
14. } 
15. S2 := leaf-node-check(v); 
16. α(v) := merge(α, S1, S2); 
end 

This algorithm is almost the same as the previous 
one, but with the merge operation involved, 
which effectively reduces the size of each α(v) 
from O(|Q|) to O(Qleaf). Special attention should 
also be paid to line 7, by which we generate a set 
S that contains the parent nodes of all those 
nodes appearing in α(vj)’s (j = 1, ..., k), where vj 
is a child node of the current node v. Since the 
nodes in α (α = merge(α1, ..., αk-1, αk)) are left-
to-right sorted (according to the nodes’ preorder 
and postorder numbers), if there are more than 
one nodes in α sharing the same parent, they 
must appear consecutively in the list. So each 
time we insert a parent node q’ (of some q in α) 
into S, we need to check whether it is the same 
as the previously inserted one. If it is the case, q’ 
will be ignored. Thus, the size of S is also 
bounded by O(Qleaf).  

Correctness and computational complexity 
In this subsection, we prove the correctness of 
the algorithm tree-matching( ) and analyze its 
computational complexities. 

Proposition 1. Let v be a node in T. Then, for 
each q in α(v) generated by tree-matching( ), we 
have T[v] contains Q[q]. 
Proof. We prove the proposition by induction on 
the height of Q, height(Q). 
Basic step. When height(Q) = 1, the proposition 
trivially holds.  
Induction step. Assume that the proposition 
holds for any query tree Q’ with height(Q’) ≤ h. 
We consider a query tree Q of height h + 1. Let 
rQ be the root of Q. Let q1, ..., qk be the child 
nodes of rQ. Then, we have height(Q[qj]) ≤ h (j = 
1, ..., k). In terms of the induction hypothesis, for 
each q in Q[qj] (j = 1, ..., k), if it appears in α(vi) 
(where vi is a child node of v), we have T[vi] 
contains Q[q] and δ(q) will be set to be v. 
Especially, if T[vi] contains Q[qj] (j = 1, ..., k), 
we have qj ∈ a(vi) and δ(qj) will be set to be v 
before v is checked against rQ. Obviously, if 
label(v) = label(rQ) and for each qj (j = 1, ..., k), 
δ(qj) is equal to v or a descendant of v, Q can be 
embedded into T[v]. So rQ is inserted into α(v). 
Now we consider the time complexity of the 
algorithm, which can be divided into four parts: 
1. The first part is the time spent on merging 

α(v1), ..., α(vk), where vi (i = 1, ..., k) is a child 
node of some node v in T. This part of cost is 
bounded by  

  O( ∑
T

i
leafiQd ) = O(|T|Qleaf), 

 where di represents the ourdegree of a node vi 

in T. 
2. The second part is the time used for generating 

S from a merged α-list. Since the size of the α-
list is bounded by O(Qleaf), so this part of cost 
is also bounded by O(Qleaf). 

3. The third part is the time for checking a node 
vi in T against each node qj in an S. Denote Si 
the set of the nodes in Q, which are checked 
against vi. We estimate this part of cost by the 
following sum: 

  O( ∑∑
T

i

S

j
j

i

c ) = O(|T|Qleaf), 

 where cj represents the ourdegree of a node qj 

in Si. 



4. The fourth part is the time for checking each 
node in T against the leaf nodes in Q. 
Obviously, this part of cost is bounded by 

  O( ∑
T

i
leafQ ) = O(|T|Qleaf). 

In terms of the above analysis, we have the 
following proposition. 
Proposition 2. The time complexity of tree-
matching( ) is bounded by O(|T|Qleaf). 
Proof. See the above discussion.   � 
Since at each time point at most Tleaf nodes in T 
are associated with a α-list, the space overhead 
is bounded by O(Tleaf⋅Qleaf). 

GENERAL CASES 
The algorithm discussed in Section 3 can be 
easily extended to general cases that a query tree 
contains both c-edges and d-edges. We only 
need to make the following changes: 
 For each child node qi of q that is being 

checked against v, if (q, qi) is a c-edge, we will 
check whether δ(qi) is equal to v. If (q, qi) is a 
d-edge, we simply check whether pre(δ(qi) ≥ 
pre(v) and post(δ(qi)) ≤ post(v). 

Accordingly, the algorithm node-check 
described in the previous section should be 
slightly modified. 

Function general-node-check(u, q) 
begin 
1. S1 := ∅; 
2. if label(q) = label(u) then 
3. {let q1, ..., qg be the child nodes of q; 
4. flag := true; i := 1; 
5. while (i ≤ g ∧ flag) do 
6. {if ¬(((q, qi) is a c-edge) ∧ (δ(qi) = v)) ∨  
7. ((q, qi) is a d-edge) ∧ 
8. (pre(δ(qi) ≥ pre(u)) ∧ 
9. (post(δ(qi) ≤ post(u)))) 
10. then flag := false;} 
11. if i > g then {S1 := S1 ∪ {q};  
12.  if q is root then mark u;} 
13. return S1; 
end 

This algorithm is similar to the function node-
check( ). The only difference is that a general 
subsumption checking process is used, by which 

c-edges and d-edges are checked in different 
ways. 
In addition, the lines 5 - 10 in the algorithm tree-
matching( ) given in 3.2 should be replaced with 
the following segment of code: 
 for i = 1 to k do { 
  for q ∈ α(vi) do { 
   let q’ be the parent of q; 
  if ((q’, q) is a d-edge) or  
  ((q’, q) is a c-edge and q matches vi)) 
  then {δ(q) := v; 
    let q’’ be the last element in S; 
  if (q’s parent ≠ q’’) 
  then S := S ∪ {q’s parent};} 
  else remove q from α(vi); 
  }} 
 α := merge(α(v1), ..., α(vk)); 
Concerning the correctness of the algorithm, we 
have to answer a question: whether any c-edge in 
Q is correctly checked. 
First, we note that any c-edge in Q cannot be 
matched to any path with length larger than 1 in 
T. That is, it can be matched only to a single 
edge in T. It is exactly what is done by the 
algorithm. 
Each time we check a node v in T against some q 
in Q, we will first set δ values for any qi 
appearing in α(vj)’s, where vj is a child node of 
v. When doing this, for some qi’s, their δ values 
are changed (to v). Assume that the current 
δ value for qi is v’ (i.e., δ(qi) = v’). Then, v’ must 
be a descendant of v since the algorithm searches 
T in a bottom-up way. However, we need to 
change δ(qi) from v’ to v since a c-edge can 
match only a single edge in T and the fact that qi 
matches vj should be recorded so that the c-edge 
matching is not missed. 
See Fig. 6 for illustration. 
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In Fig. 6, v’’ is a descendant of v and matches q2. 
So δ(q2) will be set to v’. However, (q, q2) is a c-
edge. Therefore, the fact that v’’ matches q2 
makes no contribution to the matching of v with 
q. Since q2 also matches v2, δ(q2) will be 
changed to v, which enables us to find that T[v] 
contains Q[q]. 
In conjunction with Proposition 1, the above 
analysis shows the correctness of the algorithm. 
We have the following proposition. 
Proposition 3. Let Q be a twig pattern 
containing both c-edges and d-edges. Let v be a 
node in T. For each q in α(v) generated by tree-
matching( ) with general-node-check( ), we have 
T[v] contains Q[q].  
Proof. See the above discussion.   � 
The time and space complexities for the general 
cases are the same as for the simple cases. 

CONCLUSION 
In this paper, a new algorithm is proposed for a 
kind of tree matching, the so-called twig pattern 
matching. This is a core operation for XML 
query processing. The main idea of the algorithm 
is to explore both T and Q bottom-up, by which 
each node q in Q is associated with a value 
(denoted δ(q)) to indicate a node v in T, which 
has a child node v’ such that T[v’] contains Q[q]. 
In this way, the tree embedding can be checked 
very efficiently. In addition, by using the tree 
encoding, as well as the subsumption checking 
mechanism, we are able to minimize the size of 
the lists of the matching query nodes associated 
with the nodes in T to reduce the space overhead. 
The algorithm runs in O(|T|⋅Qleaf) time and O(Tle-

af⋅Qleaf) space, where Tleaf and Qleaf represent the 
numbers of the leaf nodes in T and in Q, 
respectively. More importantly, no costly join 
operation is necessary. 
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