
An Efficient Algorithm for Tree Mapping in XML Databases

INTRODUCTION
XML uses a tree-structured model for
representing data. Queries in XML languages
(such as Xpath [13], Xquery [29, 30], XML-QL
[12], and Quilt [5, 6]) also typically specify
selection patterns as a kind of tree-structured
relations. For instance, the XPath expression:
 book[title = ‘Art of Programming’]//author[fn =

‘Donald’ and ln = ‘Knuth’]
matches author elements that (i) have a child
subelement fn with content ‘Donald’, (ii) have a
child subelement ln with content ‘Knuth’, and
are descendants of book elements that have a
child title subelement with content ‘Art of
Programming’. This expression can be
represented as a tree structure as shown in Fig. 1.

In this tree structure, a node v is labeled with an
element name or a string value, denoted label(v).
In addition, there are two kinds of edges: child
edges (c-edges) for parent-child relationships,
and descendant edges (d-edges) for ancestor-
descendant relationships. A c-edge from node v
to node u is denoted by v → u in the text, and
represented by a single arc; u is called a c-child
of v. A d-edge is denoted v ⇒ u in the text, and
represented by a double arc; u is called a d-child
of v. Such a query is often called a twig pattern.

In any DAG (directed acyclic graph), a node u is
said to be a descendant of a node v if there exists
a path (sequence of edges) from v to u. In the
case of a twig pattern, this path could consist of
any sequence of c-edges and/or d-edges. Based
on these concepts, the tree embedding can be
defined as follows.
Definition 1. An embedding of a twig pattern Q
into an XML document T is a mapping f: Q → T,
from the nodes of Q to the nodes of T, which
satisfies the following conditions:
(i) Preserve node label: For each u ∈ Q, u and

f(u) are of the same label (or more generally,
u’s predicate is satisfied by f(u).)

(ii) Preserve c/d-child relationships: If u → v in
Q, then f(v) is a child of f(u) in T; if u ⇒ v in
Q, then f(v) is a descendant of f(u) in T. �

If there exists a mapping from Q into T, we say,
Q can be imbedded into T, or say, T contains Q.
Notice that an embedding could map several
nodes of the query (of the same type) to the same
node of the database. It also allows a tree
mapped to a path. This definition is quite
different from the tree matching defined in [16].
There is much research on how to find such a
mapping efficiently and all the proposed
methods can be categorized into two groups. By
the first group [1, 9, 11, 14, 19, 22, 28, 29, 32,
33, 34], a tree pattern is typically decomposed
into a set of binary relationships between pairs of
nodes, such as parent-child and ancestor-
descendant relations. Then, an index structure is
used to find all the matching pairs that are joined
together to form the final result. By the second
group [4, 7, 8, 10, 18, 20], a query pattern is
decomposed into a set of paths. The final result

book

title author

Art of Programming fn ln

Donald Knuth

Figure 1. A query
tree

Yangjun Chen

University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9

Abstract: In this article, we discuss an efficient algorithm for tree mapping problem in
XML databases. Given a target tree T and a pattern tree Q, the algorithm can find all the
embeddings of Q in T in O(|T||Q|) time while the existing approaches need exponential time
in the worst case.

Key words: Tree mapping, XML databases, Query evaluation, Tree encoding

is constructed by joining all the matching paths
together. For all these methods, the join
operations involved require exponential time in
the worst case. For example, if we decompose a
twig pattern into paths to find all the matching
paths from a database, we need O(pλ) time to
join them together, where p is the largest length
of a matching path and λ is the number of all
such paths.
In this paper, we proposed a new algorithm with
no join operations involved. The algorithm runs
in O(|T|⋅Qleaf) time and O(Tleaf⋅Qleaf) space, where
Tleaf and Qleaf represent the numbers of the leaf
nodes in T and in Q, respectively.
The remainder of the paper is organized as
follows. In Section 2, we restate a kind of tree
encoding [17], which facilitates the recognition
of different relationships among the nodes of
trees. In Section 3, we discuss an algorithm for
simple cases that a twig pattern contains only d-
edges. In Section 4, we extend this algorithm to
general cases. Finally, a short conclusion is set
forth in Section 5.

TREE ENCODING
To facilitate the checking of reachability
(whether a node can be reached from another
node through a path), a tree encoding is used
[17].
Consider a tree T. By traversing T in preorder,
each node v will obtain a number pre(v) to
record the order in which the nodes of the tree
are visited. In a similar way, by traversing T in
postorder, each node v will get another number
post(v). These two numbers can be used to
characterize the ancestor-descendant relation-
ships as follows.
Let v and v’ be two nodes of a tree T. Then, v’ is
a descendant of v iff pre(v’) > pre(v) and post(v’)
< post(v). See Exercise 2.3.2-20 in [17].
As an example, have a look at the pairs
associated with the nodes of the tree shown in
Figure 2. The first element of each pair is the
preorder number of the corresponding node and
the second is its postorder number. Using such
labels, the ancestor-descendant relationships can
be easily checked.

For instance, by checking the label associated
with b against the label for f, we see that b is an
ancestor of f in terms of Proposition 1. Note that
b’s label is (2, 4) and f’s label is (4, 1), and we
have 2 < 4 and 4 > 1. We also see that since the
pairs associated with g and c do not satisfy the
condition given in Proposition 1, g must not be
an ancestor of c and vice versa.
Let (p, q) and (p’, q’) be two pairs associated
with nodes u and v, respectively. We say that (p’,
q’) is subsumed by (p, q), denoted (p’, q’) (p, q),
if p’ > p and q’ < q. Then, u is an ancestor of v if
(p’, q’) is subsumed by (p, q).
In addition, if p’ < p and q’ < q, u is to the left of
v.
Finally, we can associate each node v with a
level number l(v) (the nesting depth of the
element in a document). In conjunction with the
tree encoding, this number can be utilized to tell
whether a node is the parent of another node. For
example, if pre(v’) > pre(v), post(v’) < post(v)
and l(v) = l(v’) + 1, then v’ is a child node of v.

ALGORITHM FOR SIMPLE CASES
In this section, we describe an algorithm for
simple cases that a twig pattern contains only d-
edges. First, we give a basic algorithm to show
the main idea in 3.1. Then, in 3.2, we discuss
how this algorithm can be substantially
improved. In 3.3, we prove the correctness of the
algorithm and analyze its computational
complexities.

Basic algorithm
The basic algorithm to be given works in a
bottom-up way. During the process, two data
structures are maintained and computed to
facilitate the discovery of subtree matchings.
- Each node v in T is associated with a set,

denoted α(v), contains all those nodes q in Q
such that Q[q] can be imbedded into T[v],
where T[v] represents a subtree of T rooted at
v.

- Each q in Q is associated with a value δ(q),
defined as follows.

Initially, for each q ∈ Q, δ(q) is set to φ. During
the tree matching process, δ(q) is dynamically
changed as below.
(i) Let v be a node in T with parent node u.
(ii) If q appears in α(v), change the value of

δ(q) to u.

a (1, 7)

(2, 4) b g (6, 5) h (7, 6)

(3, 2) c e (5, 3)

f (4, 1)

Figure 2. Labeling a tree

Then, each time before we insert q into α(v), we
will do the following checkings:
1. Check whether label(q) = label(v).
2. Let q1, ..., qk be the child nodes of q. For

each qi (i = 1, ..., k), check whether δ(qi) is
equal to v or to a descendent of v.

If both (1) and (2) are satisfied, insert q into
α(v).

Below is a bottom-up algorithm, working in a
recursive way and taking a node v in T as the
input (which represents T[v]). Initially, the input
is the root of T. The algorithm will mark any
node u in T[v] if it finds that T[u] contains Q. In
the process, two functions are called:
 node-check(u, q) - It checks whether T[u]

contains Q[q]. If it is the case, return {q}.
Otherwise, it returns an empty set { }.

 leaf-node-check(u) - It returns a set of leaf
nodes in Q: {q1, ..., qk} such that for each qi (1
≤ i ≤ k) label(u) = label(qi).

Algorithm tree-matching(v)
input: v - a node of tree T.
output: mark any node u in T[v] if T[u] contains

Q.
begin
1. S := ∅; S1 := ∅; S2 := ∅;
2. if v is not a leaf node in T then
3. {let v1, ..., vk be the child nodes of v;
4. for i = 1 to k do call tree-matching(vi);
5. α := α(v1) ∪ ... ∪ α(vk);
6. for each q ∈ α do
7. {δ(q) := v; S := S ∪ {q’s parent};}
8. remove all α(vj) (j = 1, ..., k);
9. for each q in S do
10. S1 := S1 ∪ node-check(v, q);
11. }
12. S2 := leaf-node-check(v);
13. α(v) := α ∪ S1 ∪ S2;
end

Function node-check(u, q)
begin
1. S1 := ∅;
2. if label(q) = label(u) then
3. {let q1, ..., qk be the child nodes of q;
4. if for each qi (i = 1, ..., k) δ(qi) is equal to u
5. or to a descendant of u
6. then {S1 := S1 ∪ {q};
7. if q is root then mark u};}
8. return S1;
end

Function leaf-node-check(u)
begin

1. S2 := ∅;
2. for each leaf node q in Q do
3. {if type(q) = type(u) then {S2 := {q};
4. if q is root then mark u;}
5. return S2;
end
The algorithm tree-matching() searches T
bottom-up in a recursive way (see line 4).
During the process, for each encountered node v
in T, we first check whether it is a leaf node (see
line 2). If it is a leaf node, the function leaf-
node-check() is called (see line 12), by which
all the matching leaf nodes in Q will be stored in
a temporary variable S2 that will be added to
α(v) (see line 13). If v is an internal node, lines 3
- 10 are first conducted and then the function
leaf-node-check() is invoked (see line 12). By
executing line 4, tree-matching() is recursively
called for each child node vi of v. After that, for
each q appearing in α(vi), its δ value is set to be
v (see line 7). In addition, q’s parent is inserted
into S, a temporary valuable to be used in a next
step. Since α(vi)’s will not be used any more
after this step, they are simply removed (see line
8). By executing lines 9 - 10, we check, for each
q’ in S, whether v matches q’ by calling node-
check(), in which the δ values of q’s child nodes
are utilized to facilitate the checkings (see lines 3
- 5 in node-check()).
The following example helps for illustration.
Example 1. Consider T and Q shown in Figure.
3.
The algorithm works in a bottom-up way. First,
v3 in T is visited. It is a leaf node, matching q3 of
the two leaf nodes in Q. Therefore, α(v3) = {q3}
(see lines 12). In the same way, we will set α(v5)
= {q2}.

In a next step, v4 is encountered. It is the parent
of v5. In terms of α(v5) = {q2}, δ(q2) is set to be
v4 (see Fig. 4 for illustration.) After that, node-
check(v4, q1) is invoked. (Note that q1 is the
parent of q2. See lines 9 - 10.) Since label(v4)
≠ label(q1), it returns S1 = ∅. leaf-node-check(v4)
also returns S2 = ∅. So α(v4) = α(v5) ∪ S1 ∪ S2 =

c v3 e v4

b v5

a v1

a v2 c v6

T: a q1

b q2 c q3

Q:

Figure 3. A document tree and a query tree

{q2} (see line 13). When v2 is met, we will first
set δ(q2) = δ(q3) = v2 (in terms of α(v4) = {q2}
and α(v3) = {q3}, respectively). Next, we call
node-check(v2, q1), in which we will check
whether label(v2) = label(q1). It is the case. So
we will further check whether δ(qi) (i = 2, 3) is
equal to v2. Since both δ(q2) and δ(q3) are equal
to v2, we have that T[v2] contains Q[q1].
Therefore, S1 = {q1}. Thus, we set α(v2) = α(v3)
∪ α(v4) ∪ S1 ∪ S2 = α(v3) ∪ α(v4) ∪ {q1} ∪ ∅ =
{q1, q2, q3}

In a next step, we will meet v6. It is a leaf node,
matching q3. Therefore, α(v6) = {q3}. Finally, we
will meet v1 and set δ(q1) = v1 and δ(q3) = v1.
Since label(v1) = label(q1), δ(q2) = δ(q3) = v1, we
have that T[v1] contains Q[q1] and α(v1) = {q1,
q2, q3}.

Improvements
The above algorithm can be substantially
improved by elaborating the construction of
α(v)’s.
First, we notice that in the case that v is a leaf
node in T, α(v) is a set of the leaf nodes in Q,
which match v. Such nodes can be stored in a
linked list as illustrated below:

with the left-most node appearing first and the
right-most node last. Then, for any 1 ≤ i ≤ j ≤ k,
we have pre(qi) < pre(qj) and post(qi) < post(qj).
That is, in α(v), qi’s are sorted according to their
preorder and postorder values.
Now we consider two α-lists α and α’ sorted
according to their nodes’ preorder and postorder
numbers. Define a merging operation over α and
α’, denoted merge(α, α’), as follows.
1. Assume that α = {v1, ..., vp} and α’ = {v1’, ...,

vq’}. We step through both α and α’ from left
to right. Let vi and vj’ be the nodes
encountered. We’ll make the following
checkings.

2. If pre(vi) > pre(vj’) and post(vi) > post(vj’),
insert vj’ into α after vi-1 and before vi and
move to vj+1’ (in α’).

3. If pre(vi) > pre(vj’) and post(vi) < post(vj’),
remove vi from α and move to vi+1. (*vi is
subsumed by vj’.*)

4. If pre(vi) < pre(vj’) and post(vi) > post(vj’),
ignore vj’ and move to vj+1’ (in α’). (*vj’ is
subsumed by vi.*)

5. If pre(vi) < pre(vj’) and post(vi) < post(vj’),
ignore vi and move to vi+1.

6. If pre(vi) = pre(vj’) and post(vi) = post(vj’),
ignore both vi and vj’, and move to vi+1 and
vj+1’ in α and α’, respectively.

The result of merge(α, α’) is stored in α, and α’
remains unchanged. Especially, the changed α is
still sorted according to their nodes’ preorder
and postorder numbers.
In terms of the above discussion, we have the
following algorithm to merge two sorted α-lists
together.
Algorithm merge(α, α’)
Input: α and α’ - sorted α-lists.
Output: modified α, containing all the nodes in α

and α’ with all the subsumed nodes removed.
begin
1. p ← first-element(α);
2. q ← first-element(α’);
3. while p ≠ nil do{
4. while q ≠ nil do{
5. if (pre(p) > pre(q) ∧ post(p) > post(q))
6. then {insert q into α before p;
7. q ← next(q);} (*next(q) represents
 the node next to q in α’.*)
8. else if (pre(p) > pre(q) ∧ post(p) < post(q))
9. then {p’ ← p; (*p is subsumed by q;
 remove p from α.*)
10. remove p from α;
11. p ← next(p’);} (*next(p’) repre-

sents the node next to p’ in α.*)
12. else if (pre(p) < pre(q)
 ∧ post(p) > post(q))
13. then {q ← next(q);} (*q is sub-
 sumed by p; move to the node next to q.*)
14. else if (pre(p) < pre(q)
 ∧ post(p) < post(q))
15. then {p ← next(p);}
16. else if (pre(p) = pre(q)
 ∧ post(p) = post(q))
17. then {p ← next(p);
 q ← next(q);}}}
18.if p = nil ∧ q ≠ nil

c v3 e v4

b v5

a v1

a v2 c v6

T: a q1

b q2 c q3

Q:

Figure 4. Sample trace

α(v3) = {q3}
α(v4) = {q2}

α(v5) = {q2}

α(v5) =
{q1, q2, q3}

δ(q2) = v4

δ(q2) is set to v4

since α(v5) = {q2}.

Figure 5. Linked list to store

q1 qk … …

 then {attach the rest of α’ to the end of α;}
end

We can extend the merging operation over to
more than two sorted α-lists:
 merge(α1, ..., αk-1, αk)
 = merge(merge(α1, ..., αk-1), αk).
Using this operation, the algorithm tree-
matching() is rewritten as follows.
Algorithm tree-matching(v)
input: v - a node of tree T.
output: mark any node u in T[v] if T[u] contains

Q.
begin
1. S := ∅;
2. if v is not a leaf node in T then
3. {let v1, ..., vk be the child nodes of v;
4. for i = 1 to k do call tree-matching(vi);
5. α := merge(α(v1), ..., α(vk));
6. assume that α = {q1, ..., qj };
7. for i = 1 to j do
8. {δ(qi) := v;
9. if (qi’s parent ≠ qi-1’s parent) then
10. S := S ∪ {qi’s parent};}
11. remove all α(vj) (j = 1, ..., k);
12. for each q in S do
13. S1 := S1 ∪ node-check(v, q);
14. }
15. S2 := leaf-node-check(v);
16. α(v) := merge(α, S1, S2);
end

This algorithm is almost the same as the previous
one, but with the merge operation involved,
which effectively reduces the size of each α(v)
from O(|Q|) to O(Qleaf). Special attention should
also be paid to line 7, by which we generate a set
S that contains the parent nodes of all those
nodes appearing in α(vj)’s (j = 1, ..., k), where vj
is a child node of the current node v. Since the
nodes in α (α = merge(α1, ..., αk-1, αk)) are left-
to-right sorted (according to the nodes’ preorder
and postorder numbers), if there are more than
one nodes in α sharing the same parent, they
must appear consecutively in the list. So each
time we insert a parent node q’ (of some q in α)
into S, we need to check whether it is the same
as the previously inserted one. If it is the case, q’
will be ignored. Thus, the size of S is also
bounded by O(Qleaf).

Correctness and computational complexity
In this subsection, we prove the correctness of
the algorithm tree-matching() and analyze its
computational complexities.

Proposition 1. Let v be a node in T. Then, for
each q in α(v) generated by tree-matching(), we
have T[v] contains Q[q].
Proof. We prove the proposition by induction on
the height of Q, height(Q).
Basic step. When height(Q) = 1, the proposition
trivially holds.
Induction step. Assume that the proposition
holds for any query tree Q’ with height(Q’) ≤ h.
We consider a query tree Q of height h + 1. Let
rQ be the root of Q. Let q1, ..., qk be the child
nodes of rQ. Then, we have height(Q[qj]) ≤ h (j =
1, ..., k). In terms of the induction hypothesis, for
each q in Q[qj] (j = 1, ..., k), if it appears in α(vi)
(where vi is a child node of v), we have T[vi]
contains Q[q] and δ(q) will be set to be v.
Especially, if T[vi] contains Q[qj] (j = 1, ..., k),
we have qj ∈ a(vi) and δ(qj) will be set to be v
before v is checked against rQ. Obviously, if
label(v) = label(rQ) and for each qj (j = 1, ..., k),
δ(qj) is equal to v or a descendant of v, Q can be
embedded into T[v]. So rQ is inserted into α(v).
Now we consider the time complexity of the
algorithm, which can be divided into four parts:
1. The first part is the time spent on merging

α(v1), ..., α(vk), where vi (i = 1, ..., k) is a child
node of some node v in T. This part of cost is
bounded by

 O(∑
T

i
leafiQd) = O(|T|Qleaf),

 where di represents the ourdegree of a node vi

in T.
2. The second part is the time used for generating

S from a merged α-list. Since the size of the α-
list is bounded by O(Qleaf), so this part of cost
is also bounded by O(Qleaf).

3. The third part is the time for checking a node
vi in T against each node qj in an S. Denote Si
the set of the nodes in Q, which are checked
against vi. We estimate this part of cost by the
following sum:

 O(∑∑
T

i

S

j
j

i

c) = O(|T|Qleaf),

 where cj represents the ourdegree of a node qj

in Si.

4. The fourth part is the time for checking each
node in T against the leaf nodes in Q.
Obviously, this part of cost is bounded by

 O(∑
T

i
leafQ) = O(|T|Qleaf).

In terms of the above analysis, we have the
following proposition.
Proposition 2. The time complexity of tree-
matching() is bounded by O(|T|Qleaf).
Proof. See the above discussion. �
Since at each time point at most Tleaf nodes in T
are associated with a α-list, the space overhead
is bounded by O(Tleaf⋅Qleaf).

GENERAL CASES
The algorithm discussed in Section 3 can be
easily extended to general cases that a query tree
contains both c-edges and d-edges. We only
need to make the following changes:
 For each child node qi of q that is being

checked against v, if (q, qi) is a c-edge, we will
check whether δ(qi) is equal to v. If (q, qi) is a
d-edge, we simply check whether pre(δ(qi) ≥
pre(v) and post(δ(qi)) ≤ post(v).

Accordingly, the algorithm node-check
described in the previous section should be
slightly modified.

Function general-node-check(u, q)
begin
1. S1 := ∅;
2. if label(q) = label(u) then
3. {let q1, ..., qg be the child nodes of q;
4. flag := true; i := 1;
5. while (i ≤ g ∧ flag) do
6. {if ¬(((q, qi) is a c-edge) ∧ (δ(qi) = v)) ∨
7. ((q, qi) is a d-edge) ∧
8. (pre(δ(qi) ≥ pre(u)) ∧
9. (post(δ(qi) ≤ post(u))))
10. then flag := false;}
11. if i > g then {S1 := S1 ∪ {q};
12. if q is root then mark u;}
13. return S1;
end

This algorithm is similar to the function node-
check(). The only difference is that a general
subsumption checking process is used, by which

c-edges and d-edges are checked in different
ways.
In addition, the lines 5 - 10 in the algorithm tree-
matching() given in 3.2 should be replaced with
the following segment of code:
 for i = 1 to k do {
 for q ∈ α(vi) do {
 let q’ be the parent of q;
 if ((q’, q) is a d-edge) or
 ((q’, q) is a c-edge and q matches vi))
 then {δ(q) := v;
 let q’’ be the last element in S;
 if (q’s parent ≠ q’’)
 then S := S ∪ {q’s parent};}
 else remove q from α(vi);
 }}
 α := merge(α(v1), ..., α(vk));
Concerning the correctness of the algorithm, we
have to answer a question: whether any c-edge in
Q is correctly checked.
First, we note that any c-edge in Q cannot be
matched to any path with length larger than 1 in
T. That is, it can be matched only to a single
edge in T. It is exactly what is done by the
algorithm.
Each time we check a node v in T against some q
in Q, we will first set δ values for any qi
appearing in α(vj)’s, where vj is a child node of
v. When doing this, for some qi’s, their δ values
are changed (to v). Assume that the current
δ value for qi is v’ (i.e., δ(qi) = v’). Then, v’ must
be a descendant of v since the algorithm searches
T in a bottom-up way. However, we need to
change δ(qi) from v’ to v since a c-edge can
match only a single edge in T and the fact that qi
matches vj should be recorded so that the c-edge
matching is not missed.
See Fig. 6 for illustration.

a v

a v1 b v2

T: a q

c q1 b q2

Q:

c

d v’

b v’’

In Fig. 6, v’’ is a descendant of v and matches q2.
So δ(q2) will be set to v’. However, (q, q2) is a c-
edge. Therefore, the fact that v’’ matches q2
makes no contribution to the matching of v with
q. Since q2 also matches v2, δ(q2) will be
changed to v, which enables us to find that T[v]
contains Q[q].
In conjunction with Proposition 1, the above
analysis shows the correctness of the algorithm.
We have the following proposition.
Proposition 3. Let Q be a twig pattern
containing both c-edges and d-edges. Let v be a
node in T. For each q in α(v) generated by tree-
matching() with general-node-check(), we have
T[v] contains Q[q].
Proof. See the above discussion. �
The time and space complexities for the general
cases are the same as for the simple cases.

CONCLUSION
In this paper, a new algorithm is proposed for a
kind of tree matching, the so-called twig pattern
matching. This is a core operation for XML
query processing. The main idea of the algorithm
is to explore both T and Q bottom-up, by which
each node q in Q is associated with a value
(denoted δ(q)) to indicate a node v in T, which
has a child node v’ such that T[v’] contains Q[q].
In this way, the tree embedding can be checked
very efficiently. In addition, by using the tree
encoding, as well as the subsumption checking
mechanism, we are able to minimize the size of
the lists of the matching query nodes associated
with the nodes in T to reduce the space overhead.
The algorithm runs in O(|T|⋅Qleaf) time and O(Tle-

af⋅Qleaf) space, where Tleaf and Qleaf represent the
numbers of the leaf nodes in T and in Q,
respectively. More importantly, no costly join
operation is necessary.

REFERENCES
1 S. Abiteboul, P. Buneman, and D. Suciu,

Data on the web: from relations to
semistructured data and XML, Morgan
Kaufmann Publisher, Los Altos, CA 94022,
USA, 1999.

2 A. Aghili, H. Li, D. Agrawal, and A.E.
Abbadi, TWIX: Twig structure and content
matching of selective queries using binary
labeling, in: INFOSCALE, 2006.

3 S. Al-Khalifa, H.V. Jagadish, N. Koudas,
J.M. Patel, D. Srivastava, and Y. Wu,
Structural Joins: A primitive for efficient
XML query pattern matching, in Proc. of
IEEE Int. Conf. on Data Engineering,
2002.

4 N. Bruno, N. Koudas, and D. Srivastava,
Holistic Twig Hoins: Optimal XML Pattern
Matching, in Proc. SIGMOD Int. Conf. on
Management of Data, Madison, Wisconsin,
June 2002, pp. 310-321.

5 D. D. Chamberlin, J.Clark, D. Florescu and
M. Stefanescu. "XQuery1.0: An XML
Query Language," http:/ /www.w3.org/TR/
query-datamodel/.

6 D. D. Chamberlin, J. Robie and D.
Florescu. “Quilt: An XML Query
Language for Heterogeneous Data
Sources,” WebDB 2000.

7 T. Chen, J. Lu, and T.W. Ling, On
Boosting Holism in XML Twig Pattern
Matching, in: Proc. SIGMOD, 2005, pp.
455-466.

8 B. Choi, M. Mahoui, and D. Wood, On the
optimality of holistic algorithms for twig
queries, in: Proc. DEXA, 2003, pp. 235-
244.

9 C. Chung, J. Min, and K. Shim, APEX: An
adaptive path index for XML data, ACM
SIGMOD, June 2002.

10 S. Chen et al., Twig2Stack: Bottom-up
Processing of Generalized-Tree-Pattern
Queries over XML Documents, in Proc.
VLDB, Seoul, Korea, Sept. 2006, pp. 283-
323.

11 B.F. Cooper, N. Sample, M. Franklin, A.B.
Hialtason, and M. Shadmon, A fast index
for semistructured data, in: Proc. VLDB,
Sept. 2001, pp. 341-350.

12 A. Dutch, M. Fernandez, D. Florescu, A.
Levy, D.Suciu, A Query Language for

Figure 6. Illustration for c-edge checking

XML, in: Proc. 8th World Wide Web Conf.,
May 1999, pp. 77-91.

13 D. Florescu and D. Kossman, Storing and
Querying XML data using an RDMBS,
IEEE Data Engineering Bulletin, 22(3):27-
34, 1999.

14 R. Goldman and J. Widom, DataGuide:
Enable query formulation and optimization
in semistructured databases, in: Proc.
VLDB, Aug. 1997, pp. 436-445.

15 G. Gottlob, C. Koch, and R. Pichler,
Efficient Algorithms for Processing XPath
Queries, ACM Transaction on Database
Systems, Vol. 30, No. 2, June 2005, pp.
444-491.

16 C.M. Hoffmann and M.J. O’Donnell,
Pattern matching in trees, J. ACM,
29(1):68-95, 1982.

17 D.E. Knuth, The Art of Computer
Programming, Vol.1, Addison-Wesley,
Reading, 1969.

18 J. Lu, T.W. Ling, C.Y. Chan, and T. Chan,
From Region Encoding to Extended
Dewey: on Efficient Processing of XML
Twig Pattern Matching, in: Proc. VLDB,
pp. 193 - 204, 2005.

19 J. McHugh, J. Widom, Query optimization
for XML, in Proc. of VLDB, 1999.

20 C. Seo, S. Lee, and H. Kim, An Efficient
Index Technique for XML Documents
Using RDBMS, Information and Software
Technology 45(2003) 11-22, Elsevier
Science B.V.

21 G. Miklau and D. Suciu, Containment and
Equivalence of a Fragment of XPath, J.
ACM, 51(1):2-45, 2004.

22 Q. Li and B. Moon, Indexing and Querying
XML data for regular path expressions, in:
Proc. VLDB, Sept. 2001, pp. 361-370.

23 J. Shanmugasundaram, K. Tufte, C. Zhang,
G. He, D.J. Dewitt, and J.F. Naughton,
Relational databases for querying XML
documents: Limitations and opportunities,
in Proc. of VLDB, 1999.

24 U. of Washington, The Tukwila System,
available from
http://data.cs.washington.edu

 /integration/Tukwila/.
25 U. of Wisconsin, The Niagara System,

available from http://www.cs.wisc.edu
/niagara/.

26 U of Washington XML Repository,
available from http://www.cs.washington.
edu/research/xmldatasets.

27 H. Wang, S. Park, W. Fan, and P.S. Yu,
ViST: A Dynamic Index Method for
Querying XML Data by Tree Structures,
SIGMOD Int. Conf. on Management of
Data, San Diego, CA., June 2003.

28 H. Wang and X. Meng, On the Sequencing
of Tree Structures for XML Indexing, in
Proc. Conf. Data Engineering, Tokyo,
Japan, April, 2005, pp. 372-385.

29 World Wide Web Consortium. XML Path
Language (XPath), W3C Recommendation,
Version 1.0, November 1999. See
http://www.w3.org/TR/xpath.

30 World Wide Web Consortium. XQuery
1.0: An XML Query Language, W3C
Recommendation, Version 1.0, Dec. 2001.
See http://www.w3.org/TR/xquery.

31 XMARK: The XML-benchmark project,
http://monetdb.cwi.nl/xml, 2002.

32 C. Zhang, J. Naughton, D. Dewitt, Q. Luo,
and G. Lohman, on Supporting
containment queries in relational database
management systems, in Proc. of ACM
SIGMOD, 2001.

33 R. Kaushik, P. Bohannon, J. Naughton, and
H. Korth, Covering indexes for branching
path queries, in: ACM SIGMOD, June
2002.

34 A.R. Schmidt, F. Waas, M.L. Kersten, D.
Florescu, I. Manolescu, M.J. Carey, and R.
Busse, The XML benchmark project,
Technical Report INS-Ro1o3, Centrum
voor Wiskunde en Informatica, 2001.

