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Abstract—Emotions play a vital role in connecting and
sharing with others. However, individuals with emotional
disorders face challenges in expressing their emotions, af-
fecting their social lives. Current articial intelligence tools
support this problem by enabling the development of meth-
ods that recognize emotions from electroencephalographic
(EEG) signals. However, the high variability across indi-
viduals poses challenges in developing emotion recogni-
tion methods that generalize well across different subjects.
Previous studies have addressed this issue using domain
adversarial neural networks (DANN), in which differences
in EEG among individuals are minimized. Although DANN
has shown a potential to reduce domain variance, previous
studies have little explored the inclusion of layer-specic
components to further advance towards that goal. This
study addressed this limitation by incorporating bipartite
(BP) graphs in a DANN architecture to reduce variability fur-
ther. We evaluated our model on ve benchmark datasets
for emotion recognition (SEED, SEED-IV, SEED-V, SEED-
FRA, and SEED-GER) comprising a total of 62 individuals.
Our model yielded an accuracy of 82.1%, 77.3%, 85.8%,
90.7%, and 87.6% for the SEED-V, SEED-IV, SEED, SEED-
FRA, and SEED-GER datasets, respectively. Notably, these
accuracies are either higher or comparable to the current
state-of-the-art models. Furthermore, our model identied
that the frontal, temporal, and parietal EEG channels are
crucial for detecting emotions evoked by audiovisual stim-
uli.

Index Terms—Deep Learning, Domain Adaptation, Elec-
troencephalogram (EEG), Emotion Recognition, Graph
Neural Networks

I. INTRODUCTION

Emotions are complex cognitive processes and physiolog-
ical states that arise in response to stimuli, such as experi-
ences, thoughts, or interactions. Emotions encompass personal
feelings, thought processes, behaviors, physical responses, and
methods of expression. Given the relevance of emotion in hu-
man life, recognizing emotions is critical across various elds
[1]. For instance, in healthcare applications, recognizing emo-
tions supports management of sleep disorders [2], depression
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[3], attention and autism disorders [4], and panic disorder [5].
In marketing, emotion recognition can help to reveal consumer
preferences, allowing businesses to rene their strategies [6].
Finally, in human-computer interaction, emotion recognition
enables machines to interpret and replicate human emotional
behavior in various applications [7].

Humans can recognize emotions by observing cues, such
as speech, body gestures, and facial expressions [8]. However,
these external indicators can be easily manipulated, thus rais-
ing concerns about their reliability for accurately identifying
emotions. Since the brain regulates emotions, a more reli-
able method to recognize emotions is through neuroimaging
techniques. Among these techniques, electroencephalography
(EEG) has shown promise, as it can capture electrical activity
associated with neuronal processes by using electrodes placed
on the scalp. This capability supports the development of ma-
chine learning models that associate cortical electrical activity
with emotional states [9].

Although EEG has the potential to support emotion recogni-
tion methods, EEG signals differ widely between individuals.
This condition challenges the usability of EEG-based emotion
recognition systems because, once a model is developed, it
might not be effective for new users. In the machine learning
eld, this problem is known as the domain shift problem,
occurring when the training data distribution does not match
that of the test data [10]. For EEG signals, the signicant
variability between individuals means that the patterns learned
from the training individuals may not fully apply to new
individuals, thereby reducing the predictive performance of
the models.

To address the domain shift problem, researchers have
widely adopted Domain Adversarial Neural Networks
(DANN) [11] due to their efcacy in reducing the variance
between the training data (source domain) and test data (target
domain). DANN aims to generate domain-invariant features
by employing adversarial learning strategies, where a domain
classier works against a feature extractor module to minimize
the discrepancy across the source and target domains [11].

Previous studies have shown the potential of DANN to ad-
dress the domain shift problem inherent in subject-independent
approaches [12]–[14]. The effectiveness of DANN is based on
its ability to generate features that not only support emotion
recognition but also have a similar distribution between the
source and target domains. However, relying only on DANN
to address the domain shift problem limited the exploration
of layer-specic components or unique network architectures
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that could further mitigate this problem. Therefore, the use
of layer-specic components remains unexplored in emotion
recognition for subject-independent approaches, thus provid-
ing an opportunity to enhance subject-independent emotion
recognition approaches.

One way to incorporate layer-specic components into deep
learning architectures is to use bipartite (BP) graphs. The
potential of BP graphs has been shown in video processing
for classication [15], where BP graph has reduced the dis-
crepancies between source and target domains. Specically,
BP graphs represent samples from source and target domains
as nodes and their similarity as edges, thus mapping the source
and target feature distribution to a common feature space, in
which DANN principles can act more suitably.

In this study, we adapt the work proposed in [15] for
video classication, introducing an architecture that integrates
DANN with BP graphs and transformer encoders to address
the domain shift problem in EEG-based emotion recogni-
tion. Our model comprises two modules, one for capturing
spatial relationships between EEG channels and another for
aligning patterns across the temporal dimension. To eval-
uate the effectiveness of our approach in overcoming the
domain shift problem, we test it on ve benchmark datasets
for emotion recognition (SEED, SEED-IV, SEED-V, SEED-
FRA, and SEED-GER), which collectively comprise data from
62 subjects across three nationalities (Chinese, French, and
German).

Our contributions are summarized as follows:

• Introducing a novel architecture incorporating dual-level
BP graphs to extract domain-invariant features, enabling
subject-independent emotion recognition.

• Achieving a performance matching or surpassing that of
current state-of-the-art methods, showing the robustness
of BP graphs in generating domain-invariant features for
subject-independent emotion recognition.

• Identifying key EEG channels for emotion recognition by
analyzing the features extracted by BP graphs across ve
independent datasets.

II. RELATED WORK

A. Strategies to address domain shift problem in
emotion recognition

Previous studies have addressed the domain shift problem
in emotion recognition tasks by using DANN to align fea-
ture distributions across source and target domains through
adversarial training [12]–[14]. To design the feature extractor
of the DANN, transformer-based architectures have gained
prominence due to their ability to capture complex spatial-
temporal dependencies in EEG signals via self-attention mech-
anisms. For example, Liu et al. [16] proposed a transformer-
based DANN framework for emotion recognition that jointly
processes EEG and eye movement data. Similarly, Li et al. [17]
introduced a knowledge distillation-based lightweight DANN
model, in which a transformer-based teacher network guides
a lightweight Bi-LSTM student model to enhance temporal-
spatial feature learning.

Researchers have also used graph neural networks (GNNs)
to enhance the feature extraction of DANN models. GNN
allows learning spatial dependencies between EEG channels,
preserving topological structures and frequency-specic in-
sights critical for emotion decoding. For instance, Chen et
al. [13] showed that including GNN can enhance emotion
recognition on cross-subject approaches. Similarly, Shi et al.
[14] proposed a Functional Connectivity Patterns Learning
network (FCPL) using a GNN to model functional connec-
tivity between brain regions to capture ne-grained emotional
connectivity patterns.

In addition to DANN, previous studies have explored other
strategies to address the domain shift problem in EEG-based
emotion recognition. One of these strategies is to use func-
tional connectivity (FC) analysis, which captures inter-channel
relationships in the temporal and frequency domains. As
reported by [18], [19], FC-derived brain connectivity features
enhanced performance on subject-independent emotion recog-
nition tasks. Another strategy consists of using autoencoders
to dynamically model inter-channel dependencies. This was
explored in [20], where autoencoders were used to learn
latent embedding features that support emotion recognition
across multiple sessions for the same user. Lastly, multi-
modal approaches that integrate EEG signals with eye-tracking
signals have been shown to enhance generalization in subject-
independent approaches [21]. However, these approaches re-
quire access to additional modalities, which may not be
practical for EEG-only applications.

Although DANN, FC, and multimodal strategies have all
shown promise in improving subject-independent emotion
recognition using EEG signals, these strategies primarily focus
on input-level feature alignment, inter-channel EEG correla-
tions, and cross-modal fusion with eye-tracking signals. As
such, previous studies have ignored including layer-specic
components that could further address the domain shift prob-
lem in EEG-based emotion recognition. In other elds, BP
graphs have shown to have the potential to be this layer-
specic component that can help alleviate the domain shift
problem [15]. However, this idea has not been explored in
emotion recognition methods, thus leaving room to explore
using BP graphs to align complex EEG features and enhance
domain-invariant learning.

B. Important EEG channels for emotion recognition

In addition to developing emotion recognition methods with
high predictive performance, it is also important to provide
insight into which EEG channels are more relevant for emo-
tion recognition across subjects. The latter is because using
fewer EEG channels reduces computational requirements and
supports the development of more comfortable EEG caps [9].

Previous studies have identied important EEG channels by
examining energy distribution, based on differential entropy
(DE) features, across the brain cortex [22]–[24]. According
to these analyses, happy stimuli increase activation in the
temporal lobe, fearful stimuli reduce activation in the occipital
region, and neutral stimuli activate the parietal and frontal
lobes [22]. Happy stimuli were also shown to produce stronger
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activation than other emotions, especially in the temporal lobe
[23], as well as in the lateral temporal and prefrontal lobes
[24]. In addition to analyzing DE distribution, other studies
have used feature selection methods to identify signicant
EEG channels for emotion recognition. For instance, Apicella
et al. [25] found that channels Fp1, Fp2, F3, and F4 were
most important for detecting valence, while P3 and P4 were
most informative for arousal.

Despite signicant efforts to identify relevant EEG channels,
previous studies have focused on analyzing DE features prior
to training deep learning models. This limits the capacity
of deep learning to uncover, throughout the training process,
the relevant patterns associated with emotional recognition. In
order to address this limitation, in our study, we analyze the
domain-invariant features learned by the BP graph during the
training process, thus providing information into which EEG
channels were more determinant of the emotion predictions.

III. METHODOLOGY

A. Datasets

In this work, we used ve different datasets. All of these
datasets contained EEG signals collected from subjects while
watching video clips. Each video was aimed to evoke a
specic emotion. The EEG signals were collected using a
62-channel EEG system at a sampling rate of 1,000 Hz. To
enhance computational efciency while preserving relevant
information, the data were downsampled to 200 Hz.

1) SEED: The SEED dataset [26] comprised data from 15
subjects (7 male and 8 female). Each participant underwent
experiments in three sessions, each spaced about a week apart.
In each session, the EEG data was recorded while subjects
reacted to 15 movie clips, intended to elicit negative, neutral,
and positive emotional responses. A total of 15 EEG signals
were collected for each stimulus, totaling 45 EEG signals for
each subject.

2) SEED-IV: The SEED-IV dataset [27] contained EEG
signals evoked with video clips from four emotions: happy,
sad, fear, and neutral. The dataset included data from 15
subjects (6 male and 9 female), each participating in three
separate sessions on different days. Each session comprised
24 trials, at which participants watched six lm clips for each
emotion. As a result, 72 EEG signals were collected for each
subject.

3) SEED-V: The SEED-V dataset [28] contained EEG sig-
nals associated with ve emotions: happy, sad, fear, disgust,
and neutral. A total of 16 subjects (6 male and 10 female)
participated in this study. Each subject participated in three
sessions, watching a total of three movie clips per emotion at
each session (i.e., 15 movie clips per session). As a result, 45
EEG signals were collected for each subject.

4) SEED-FRA: The SEED-FRA dataset [29] includes EEG
signals recorded from eight native French subjects. Each
subject participated in three experimental sessions. During
each session, the participant watched 21 video clips, each rep-
resenting one of three emotional categories: positive, neutral,
or negative. Consequently, a total of 63 EEG signals were
collected per subject.

5) SEED-GER: The SEED-GER dataset [29] consists of
EEG signals from eight native German subjects. Each subject
participated in three sessions. Each of these sessions included
a total of 18 video clips, corresponding to three emotional
stimuli: positive, neutral, and negative. Consequently, a total
of 54 EEG signals were recorded for each subject.

B. EEG preprocessing
To remove noise and artifacts from raw EEG signals, a

bandpass lter from 0.5 to 50 Hz was applied. This range
satised the Nyquist frequency (100 Hz) and preserves the
key brain wave frequencies: delta (δ : 0.5−4 Hz), theta
(θ : 4−8 Hz), alpha (α : 8−12 Hz), beta (β : 12−30 Hz),
and gamma (γ : 30−50 Hz).

To further remove noise and artifacts from the EEG signals,
the signals were modeled as a linear dynamic system as:

xt = zt + wt, zt = Azt−1 + vt, (1)

where xt was the observed EEG signal at time t, zt was the
latent component corresponding to the actual neural activity,
wt was the white noise of the observation (wt ∼ N (w̄, Q)),
A was the state transition matrix, and vt was the white noise
associated with neural sources (vt ∼ N (v̄, R)). To solve
these equations, they can be expressed in terms of Gaussian
conditional distributions, as follows:

p(xtzt) = N (xtzt + w̄, Q),

p(ztzt−1) = N (ztAzt−1 + v̄, R).
(2)

To solve Eq. 2, the initial state was dened as p(z1) =
N (z1π0, S0), leading to the parametrization of the model as
ω = w̄, Q,A, v̄, R,π0, S0. This model was solved using
the Expectation-Maximization (EM) algorithm, as described
in [30].

C. EEG segmentation
The EEG signals were segmented using a four-second

window, providing a frequency resolution of 0.25 Hz ( 14 ). This
resolution allowed each segment to capture two full cycles of
the lowest frequency, ensuring an accurate representation of
the slowest brain wave activity.

D. Differential Entropy
At each 4-second, spectral characteristics were calculated

from the EEG signal using differential entropy (DE) in the
frequency bands δ, θ, α, β, and γ. The DE is an extension
of Shannon entropy for continuous random variables, which
measures the uncertainty or randomness as:

DE = −
 ∞

−∞
P (x) ln(P (x)) dx, (3)

where P (x) is the probability density function.
Assuming that EEG signals obey a Gaussian distribution

x ∼ N(µ,σ), the DE can be approximated as follows:

DE = −
 ∞

−∞

1√
2πσ

exp


− (x− µ)2

2σ2


ln


1√
2πσ

exp


− (x− µ)2

2σ2


dx

≈ 1

2
ln(2πeσ2),

(4)
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where σ2 denotes the variance of the segment.
DE was calculated for each channel, resulting in 5 values per

channel (one for each frequency band), totaling 310 features
per 4-second segment (62 channels × 5 frequency bands =
310).

E. Preprocessed dataset dimensions
After calculating the DE for each four-second segment, the

features corresponding to the same video clip were concate-
nated, forming a three-dimensional structure for each clip with
dimensions (W,C,F). Here, W represented the number of 4-
second segments, C was the number of EEG channels, and F
was the dimensionality of the feature vector F , where F was
a vector containing the ve DE features corresponding to the
frequency bands (F = [fδ, fθ, fα, fβ , fγ ]). Since the durations
of the video clips varied, the number of 4-second segments,
W , differed across videos. To standardize the input dimen-
sions, W was set to match the longest video. The maximum
values for W were 66, 64, 74, 75, and 105 for SEED, SEED-
IV, SEED-V, SEED-FRA, and SEED-GER, respectively.

The three-dimensional structures were then stacked to create
four-dimensional input of shape (N,W,C,F), whereN denotes
the number of samples (subjects × video clips per subject).
For SEED, SEED-IV, SEED-V, SEED-FRA, and SEED-GER
these shapes were: (675, 66, 62, 5), (1080, 64, 62, 5),
(720, 74, 62, 5), (945, 75, 62, 5), (810, 74, 105, 5), re-
spectively.

F. Network Architecture
Figure 1 shows the architecture used for emotion prediction.

The model was structured with two modules to process the
EEG features. The rst module, known as the spatial module,
captures the relationships between EEG channels based on
their DE features. The second module, known as the tem-
poral module, captured temporal dependencies by modeling
variations in feature representations across the 4-second EEG
segments.

Both spatial and temporal modules have a transformer
encoder with a BP graph. The transformer captured complex
dependencies between the elements: the EEG channels for the
spatial module, and the 4-second segments for the temporal
module. The BP graph post-processed the embedding features
given by the transformer to align features across source and
target domains.

1) Spatial Module: To process the relationships between
EEG channels, we rst reshaped the dimensions of the input
data (B, W, C, F) into (B × W, C, F), where B is the batch
size, W the number of 4-second segments per video, C the
number of channels, and F the DE features.

a) Spatial Transformer Encoder: The reshaped data was fed
into a transformer encoder, which used an attention mechanism
to capture complex patterns between EEG channels. This
attention mechanism was implemented using multi-head atten-
tion layer, where each attention head computed its attention
weights using the scaled dot-product attention mechanism:

Attention(Q,K, V ) = softmax

QK⊤
√
dk


V, (5)

The query (Q), key (K), and value (V ) matrices corre-
sponded to the transformer inputs with dimensions (B × W, C,
F). The matrix QKT measured the similarities between EEG
channels based on the DE feature values, while the softmax
function normalized these values, ensuring they sum to 1
across each EEG channel. This correlation weight shows how
strongly the activity in one channel relates to another, allowing
the model to focus on interactions or dependencies across
EEG channels. The nal multiplication with the matrix V
generated new DE features for each EEG channel by linearly
combining the DE features of other EEG channels, weighted
by the correlations given by QKT .

The outputs from all attention heads were then concatenated
and projected back into the original feature space using the
multi-head attention mechanism:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO, (6)

where WO was the output projection matrix.
The output of the multi-head layer was then added to the

input using a residual connection, followed by layer normal-
ization for stability and improved convergence. The nal step
of the transformer encoder was a feed-forward layer with an
expansion factor of 2 and a dropout rate of 0.2.

b) Spatial bipartite graph: The output of the transformer
encoder was inputted into a BP graph. This BP graph was used
to align features from the source and target domains in order to
bridge the domain gap and improve the model’s ability to make
cross-domain predictions. Specically, we dened a bipartite
graph Gs = (Vs, Vt, Est), where Vs and Vt were the output
of the spatial transformer for the source and target samples.
The edge set Est represented the connections between the
source and target nodes, measuring their similarity between
the corresponding EEG features.

To calculate the similarity between the DE features of the
source and target nodes, we rst permuted the dimensions of
the node features Vs and Vt, from (B × W, C, F ) to (C , B
× W, F ). This permutation allowed us to measure similarities
between nodes for each EEG channel independently. To com-
pute the similarity between the DE features of the source and
target nodes, we calculated the pairwise absolute differences
between the feature vectors. Given a source node xi and a
target node xj , the difference was computed as:

xij = xi − xj .

This procedure resulted in a structure of dimensions (C , B ×
W, B × W, F ).

To learn similarity scores between the node pairs, the
computed differences were processed through a convolutional
neural network (CNN), yielding the normalized edge weights,
A, as:

A = σ (F (xi − xj ;ω)) ,

where F (·;ω) was a two-layer CNN parameterized by ω. The
rst layer of the CNN consisted of κ lters, while the second
layer had a single lter. Both layers employed a kernel size
and stride of 1. The activation function, σ, was the sigmoid
function to constrain the values of A between 0 and 1.
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Fig. 1: Proposed DANN architecture incorporating BP graphs. The feature extractor comprises spatial and temporal modules,
each utilizing transformers and BP graphs. Extracted features were fed into the domain and label classiers, with four distinct
loss functions applied to align the source and target domains. The shapes at the bottom of each block illustrate the reshaping
operations performed at each layer. Here, B is the batch size, W is the number of 4-second window segments, C is the number
of EEG channels, and F  is the set of DE features from ve frequency bands.

The resulting edge weights A were further normalized using
L1 normalization across both rows and columns to ensure that
each source node’s edge weights sum up to 1:

Ãi =
Ai

∥Ai∥1
, Est =

Ãj

∥Ãj∥1
Once the edge weights were computed, the source and target

features were aggregated using edge matrix Est as:

Ṽs = EstVt, Ṽt = (Est)
TVs

The aggregated features were then concatenated with the
original node features, and processed through another CNN
to update the node embeddings:

Vs ← H([Vs; Ṽs];ϕ), Vt ← H([Vt; Ṽt];ϕ),

where H(·;ϕ) was a CNN of two layers parameterized by ϕ,
responsible for performing the feature fusion. The rst layer of
G consists of κ lters, and the second layer has F lters. Both
layers use a kernel size and stride of 1. After computing the
spatial alignment of the source and target features, the output
of the spatial BP was permuted to (B × W, C, F ).

2) Temporal Module: The spatial features were input into
the temporal module to capture variations across the 4-second
segments. To achieve this, we rst reshaped the input from
(B × W, C, F) to (B, W, C × F). This reshaping organized
the temporal information, W windows, along the second
dimension, a requirement for input to the transformer encoder.

a) Temporal transformer encoder: Before inputting the
three-dimensional input into the Transformer encoder, we
applied positional encoding across the temporal dimension to
help the model understand the sequential order of the 4-second
segments. The output of the positional encoder was then fed
into a transformer encoder composed of a multi-head attention
layer and a feed-forward layer.

For the temporal transformers, the attention multiplica-
tion QKT measured the similarities between the 4-second

segments based on the spatial features extracted from each
segment. The nal multiplication with the matrix V then
updated the spatial features of each 4-second segment by
incorporating the spatial features of other segments, weighted
by the correlation scores.

b) Temporal bipartite graph : Analogous to the spatial
module, the output of the temporal transformer was passed
through a BP graph, Gt = (Ps, Pt, Ast), where Ps and Pt

were the output of the temporal transformers for the source and
target samples, respectively, and Ast were the edges measuring
similarities between the nodes. To perform the alignment of
the features across each temporal segment independently, Ps

and Pt were permuted to dimensions (W , B, C × F ).
The similarity computation and fusion of temporal features
followed the same procedure as described for the spatial BP
graph. The output of the temporal BP was reshaped back to
its original dimension, namely (B , W, C × F ).

c) Temporal average pooling: In the nal step of the tempo-
ral module, we applied average pooling across the window di-
mension. This process reduced the output to a two-dimensional
structure with dimensions (B, C × F ).

3) Domain-Adversarial Neural Networks (DANN) : To further
enhance the model’s performance across different domains
and ensure the generation of domain-invariant features, we
trained our model using a DANN strategy. Thus, the spatial
and temporal modules were established as the feature extractor.
The output of the feature extractor was fed into the label
classier and the domain classier.

The label classier consisted of a dropout layer and a fully
connected (FCN) layer with a number of outputs equal to the
number of emotions: 3 for SEED, SEED-FRA, and SEED-
GER; 4 for SEED-IV, and 5 units for SEED-V. Similarly, the
domain classier also included a dropout layer, and a FCN
with 2 outputs (‘0’: source, ‘1’:target).

4) Loss functions: To train our model, we employed three
different loss functions. The rst loss function corresponded to
the losses of the label and domain classiers. The second loss

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3570187

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

function focused on avoiding an even distribution of the target
outputs. Finally, the third loss function aimed to minimize the
discrepancy between the feature distributions of the source and
target domains.

a) DANN loss functions: For the DANN, we used categor-
ical cross-entropy loss for the label prediction as:

Lcce = − 1

Bs

Bs

i=1

yi log(Cy(xsi)), (7)

where Bs was the batch size for the source data, yi was the
true labels, xsi represented the i-th data sample in the source
batch, and Cy was the classier’s output function.

Similarly, for the domain classier, the binary cross-entropy
was calculated as:

Ldomain = − 1

B

B

k=1

dk log(Cd(xk)), (8)

where B was the combined batch size of source and target
data, dk were the domain labels, xk was the k-th data sample,
and Cd was the domain classier’s output function.

b) Soft entropy loss function: To reduce ambiguity or evenly
situation in the target output, we employed a soft entropy loss
function by applying Shannon’s entropy on the target output
as:

Lsoft = − 1

Bt

Bt

j=1

Cy(ntj ) log(Cy(ntj )), (9)

where Bt was the batch size for the target data, ntj was the
j-th data sample in the target batch, and Cy represents the
classier’s output for the target samples.

c) Domain Discrepancy Reduction: Additionally, we applied
the maximum mean discrepancy (MMD) loss function to min-
imize the domain discrepancy between the source and target
domains. The MMD loss was calculated using Radial Basis
Function (RBF) kernels with different σ values (specically,
1, 2, 3, 4, and 16), which was essential for capturing multi-
scale structure in the data distribution:

LMMD =


1

Ns

Ns

i=1

ψ(xs
i )−

1

Nt

Nt

j=1

ψ(xt
j)



2

Hk

(10)

where ψ(·) represented the feature map into a space induced
by the RBF kernel, xs

i and xt
j were the samples from the

source and target domains, respectively.
d) Overall Loss Function: The total loss function for train-

ing the model was a weighted sum of the categorical cross-
entropy for task and domain classication, soft entropy, and
MMD losses, with the weights for the soft entropy loss and
the MMD loss each set to 0.1:

Ltotal = Lcce + Ldomain + 0.1 · Lsoft + 0.1 · LMMD (11)

IV. EXPERIMENT DETAILS

A. Execution Environment
Our method was implemented using PyTorch with Python

version 3.10.10. The model was trained on an NVIDIA RTX
A6000 GPU. We set the epochs to 60, batch size to 32 and used
weighted Adam optimizer (AdamW) as the network optimizer.

B. Model Evaluation

To evaluate the performance of our proposed model, we
used the Leave-One-Subject-Out Cross-Validation (LOSOCV),
thus evaluating our model under the subject-independent ap-
proach. For each subject, we calculated the accuracy for each
emotion class. We also calculated the overall accuracy by
taking the average across the emotions.

To optimize each model’s hyperparameters, at each iteration
of the LOSOCV, a grid search using 20 epochs was performed
on a validation set composed by samples of two subjects
different from the test subject. The grid search space was
dened as follows:

• Learning rate: 10−4, 5× 10−4, 10−3
• Weight decay: 10−4, 10−3, 10−2, 10−1
• Number of heads for the spatial multi-head attention

layer: 1, 5 (embedding dimension: 5)
• Number of heads for the temporal multi-head attention

layer: 2, 5 (embedding dimension: 310)
• Number of lters, κ, used in the CNN to compute the

edge matrix and perform feature fusion within the BP
graphs: 8, 16, 32, 64

• Dropout rate for the label and domain classiers:
0.3, 0.5, 0.7

C. Feature Visualization with t-SNE

To qualitatively assess the discriminative capability of
the learned representations, we used t-distributed Stochas-
tic Neighbor Embedding (t-SNE) to visualize the high-
dimensional feature space in two dimensions. Thus, we applied
t-SNE with a perplexity of 30 to the features outputting the
temporal module, as these were the features used for emotion
and domain prediction. This visualization was performed for
each dataset (SEED, SEED-IV, SEED-V, SEED-FRA, and
SEED-GER) to examine the degree of class separability and
the impact of different model components.

D. Feature distribution across cortical areas

To identify the relevant EEG channels, we analyzed the
features produced by the feature extractor after passing the
input through the spatial and temporal modules. Given that the
data input had dimensions (N,W, 62, 5), the feature extractor
outputted an element with dimensions (N, 62 × 5), where N
denoted the number of samples (subjects × video clips per
subject), 62 corresponded to the EEG channels and 5 to the
frequency bands.

To visualize common activation patterns associated with
each emotion and frequency band, the extracted feature outputs
were reshaped to a tensor of dimensions (S,M, 62, 5), where
S was the number of subjects in each dataset (SEED: 15,
SEED-IV: 15, SEED-V: 16, SEED-FRA: 8, SEED-GER: 8),
and M was the number of video samples per subject (SEED:
45, SEED-IV: 72, SEED-V: 45, SEED-FRA: 63, SEED-GER:
54). To ensure consistency across subjects, features were
normalized individually for each subject. Subsequently, for
each emotion category, the mean feature values were computed
across all subjects for each EEG channel and frequency band
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pair. These average values were then visualized using topo-
graphic maps (topomaps) to identify cortical regions exhibiting
stronger feature values across different emotional states.

E. Finding relevant channels for emotion recognition
To identify the relevant EEG channels for distinguishing

among emotions, we applied the Friedman test [31] at a
signicance level of 0.05 to evaluate whether the features
extracted from each EEG channel and frequency band signif-
icantly differed across emotions. We performed the Friedman
test individually for each of the ve datasets.

To determine the relevant EEG electrodes across the ve
data sets, we identied the EEG channels for each frequency
band that resulted in statistically signicant emotional differ-
ences for at least three datasets. Finally, to derive an overall
group of relevant EEG channels across frequency bands, we
identied those that were signicant in at least three of the
ve frequency bands.

F. Ablation Study
To evaluate the contribution of each component to emotion

prediction, we conducted an ablation study by systematically
removing key modules from the proposed architecture. A
total of six ablation experiments were performed. In the rst
experiment, both BP graphs were removed, and the model was
trained using only the features extracted by the transformer
modules. The second and third experiments assessed the role
of spatial components: the second excluded only the spatial BP
graph, while the third removed the entire spatial module. Sim-
ilarly, the fourth and fth experiments examined the temporal
components by rst removing only the temporal BP graph
and then omitting the entire temporal module. Finally, in the
sixth experiment, the model was trained without the DANN
component to assess the impact of excluding the domain loss.

V. RESULTS

A. Model performance
Table I presents the model performance on the SEED-V

dataset. The model achieved an overall accuracy of 82.1%
and a standard deviation of 5.5%, indicating stable and con-
sistent performance across subjects. The class with the lowest
performance was sad emotion, with an accuracy of 73.6% and
a standard deviation of 10.5. In particular, as shown in Figure
2a, the model misclassied sad emotion with ‘neutral’ 11.8%
of the time. In contrast, the highest accuracy was achieved for
disgust, with an accuracy of 93.8% and a standard deviation
of 7.0%.

For SEED-IV, the accuracy was lower than that of SEED-V,
resulting in an overall 77.3% (Table II). However, the stan-
dard deviation was also low (3.2%), suggesting that although
accuracy declined, the model produced a stable performance
across all subjects. Similarly to SEED-V results, the lowest
performance was for a negative emotion: fear, with an accuracy
of 72.7% and a standard deviation of 7.9%. On the other hand,
the highest performing class was happy, achieving 85.9% accu-
racy with a standard deviation of 3.6%. The confusion matrix

TABLE I: Emotion performance for the 16 subjects in the
SEED-V dataset. The last column displays the average per-
formance across all emotions. The last two rows present the
mean and standard deviation for each emotion across subjects,
along with the 95% condence interval.

Subject Disgust (%) Fear (%) Sad (%) Neutral (%) Happy (%) Overall (%)

1 100.0 88.9 88.9 88.9 88.9 91.1
2 88.9 77.8 100.0 77.8 77.8 84.4
3 100.0 88.9 66.7 88.9 77.8 84.4
4 100.0 77.8 66.7 88.9 77.8 82.2
5 100.0 88.9 77.8 88.9 77.8 86.7
6 88.9 77.8 66.7 77.8 55.6 73.3
7 88.9 88.9 88.9 88.9 77.8 86.7
8 100.0 77.8 88.9 66.7 77.8 82.2
9 88.9 100.0 66.7 66.7 77.8 80.0
10 88.9 66.7 55.6 66.7 88.9 73.3
11 88.9 77.8 66.7 77.8 88.9 80.0
12 100.0 88.9 55.6 88.9 88.9 84.4
13 100.0 88.9 77.8 100.0 55.6 84.4
14 77.8 77.8 66.7 66.7 77.8 73.3
15 100.0 88.9 77.8 88.9 88.9 88.9
16 88.9 77.8 66.7 77.8 77.8 77.8

Mean ± SD 93.8 (7.0) 83.3 (12.7) 73.6 (10.5) 81.3 (10.3) 78.5 (9.9) 82.1 (5.5)
95% CI 90.0-97.5 79.0-87.7 66.8-80.4 75.6-86.9 73.0-84.0 79.2-85.0

for SEED-IV (Figure 2b) showed a similar trend to SEED-V,
where the least performing class, fear, was misclassied as
neutral 17.4% of the time.

TABLE II: Emotion performance for the 15 subjects in the
SEED-IV dataset. The last column displays the average per-
formance across all emotions. The last two rows present the
mean and standard deviation for each emotion across subjects,
along with the 95% condence interval.

Subject Neutral (%) Sad (%) Fear (%) Happy (%) Overall (%)

1 61.1 77.8 72.2 88.9 75.0
2 77.8 72.2 72.2 88.9 77.8
3 72.2 83.3 66.7 83.3 76.4
4 77.8 83.3 66.7 83.3 77.8
5 72.2 72.2 66.7 88.9 75.0
6 72.2 72.2 72.2 83.3 75.0
7 66.7 88.9 66.7 94.4 79.2
8 77.8 83.3 66.7 83.3 77.8
9 72.2 88.9 77.8 83.3 80.6
10 72.2 72.2 94.4 88.9 81.9
11 55.6 66.7 66.7 88.9 69.4
12 88.9 83.3 72.2 83.3 81.9
13 61.1 72.2 83.3 83.3 75.0
14 88.9 72.2 72.2 83.3 79.2
15 83.3 77.8 66.7 83.3 77.8

Mean ± SD 73.3 (9.7) 77.8 (7.0) 72.2 (7.9) 85.9 (3.6) 77.3 (3.2)
95% CI 68.0-78.7 73.9-81.6 67.9-76.6 84.0-87.9 75.5-79.1

Finally, Table III, IV, and V show the performance of the
model for the SEED, SEED-FRA, and SEED-GER datasets,
respectively. These datasets resulted in the highest accuracy
rates across the ve, yielding an overall accuracy of 85.4%
for SEED, 90.7% for SEED-FRA, and 87.6% for SEED-
GER. As shown in Figures 2c, 2d, and 2e, the distributions
among the classes varied between these three datasets. SEED
achieved the highest accuracy for the neutral class and the
lowest for the negative class, which was consistent with the
pattern observed in SEED-V and SEED-V. In contrast, SEED-
FRA achieved the highest accuracy rate for the negative
class (100%) and the lowest for the positive class (85%).
For the SEED-GER, the positive class also resulted in the
lowest accuracy (80.8%), whereas the neutral class obtained
the highest accuracy (98.3%).
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TABLE III: Emotion performance for the 15 subjects in the
SEED dataset. The last column displays the average perfor-
mance across all emotions. The last two rows present the mean
and standard deviation for each emotion across subjects, along
with the 95% condence interval.

Subject Neutral (%) Positive (%) Negative (%) Overall (%)

1 80.0 100.0 93.3 91.1
2 73.3 93.3 93.3 86.7
3 80.0 93.3 66.7 80.0
4 80.0 86.7 93.3 86.7
5 73.3 100.0 80.0 84.4
6 86.7 93.3 93.3 91.1
7 66.7 86.7 86.7 80.0
8 66.7 93.3 86.7 82.2
9 73.3 100.0 100.0 91.1
10 60.0 80.0 86.7 75.6
11 73.3 93.3 86.7 84.4
12 80.0 100.0 80.0 86.7
13 80.0 93.3 93.3 88.9
14 73.3 100.0 93.3 88.9
15 80.0 100.0 86.7 88.9

Mean ± SD 75.1 (6.9) 94.2 (6.1) 88.0 (8.0) 85.8 (4.7)
95% CI 71.3-78.9 90.8-97.6 83.5-92.5 83.2-8.4

TABLE IV: Emotion performance for the 8 subjects in the
SEED-FRA dataset. The last column displays the average
performance across all emotions. The last two rows present the
mean and standard deviation for each emotion across subjects,
along with the 95% condence interval.

Subject Neutral (%) Positive (%) Negative (%) Overall (%)

1 100.0 76.2 85.7 87.3
2 100.0 71.4 81.0 84.1
3 100.0 95.2 71.4 88.9
4 100.0 90.5 85.7 92.1
5 100.0 85.7 85.7 90.5
6 100.0 100.0 90.5 96.8
7 100.0 85.7 90.5 92.1
8 100.0 90.5 90.5 93.7

Mean ± SD 100.0 (0.0) 86.9 (9.4) 85.1 (6.5) 90.7 (3.9)
95% CI 100.0-100.0 79.0-94.8 79.7-90.5 87.4-94.0

TABLE V: Emotion performance for the 8 subjects in the
SEED-GER dataset. The last column displays the average
performance across all emotions. The last two rows present the
mean and standard deviation for each emotion across subjects,
along with the 95% condence interval.

Subject Neutral (%) Positive (%) Negative (%) Overall (%)

1 77.8 100.0 83.3 87.0
2 83.3 100.0 88.9 90.7
3 94.4 100.0 83.3 92.6
4 94.4 94.4 77.8 88.9
5 75.0 100.0 75.0 83.3
6 83.3 100.0 83.3 88.9
7 83.3 91.7 66.7 80.6
8 83.3 100.0 83.3 88.9

Mean ± SD 84.4 (7.0) 98.3 (3.3) 80.2 (6.9) 87.6 (3.9)
95% CI 78.6-90.2 95.5-100.0 74.5-92.5 83.2-8.4

B. Comparison with previous studies

Table VI presents a comparison of our model’s performance
with previous studies. On the SEED-V dataset, our model
yielded a higher accuracy than the current state-of-the-art
(SOTA) model. For the SEED-IV and SEED datasets, our
model produced results that were comparable to those of
the SOTA models, falling short by less than 2%. While our
model did not outperform the SOTA models, it achieved a
lower standard deviation than the SOTA models, indicating
its ability to maintain better consistent performance across
different subjects.

(a) (b)

(c) (d) (e)

Fig. 2: Average confusion matrices across subjects for: (a)
SEED-V, (b) SEED-IV, (c) SEED, (d) SEED-FRA, (e)
SEED-GER datasets.

TABLE VI: Models comparison between previous emotion
recognition methods and our approach (last row) on SEED,
SEED-IV, SEED-V, SEED-FRA, and SEED-GER datasets.
Performance is reported as accuracy mean/standard deviation.

Models SEED SEED-IV SEED-V SEED-FRA SEED-GER

SVM [32] 56.7/16.2 37.9/12.5 23.7/8.2 50.1/10.3 55.6/12.1
BiDANN [33] 83.2/9.6 65.6/10.4 – – –
BDGLS [34] – – 59.6/4.8 – –
DGCNN [35] 79.9/9.0 52.8/9.2 41.9/6.7 – –
A-LSTM [36] 72.1/10.8 55.0/9.3 40.3/8.7 – –
P-GCNN [37] – – 64.8/9.8 – –
IAG [38] 86.3/6.9 – 59.7/9.4 – –
RGNN [39] 85.3/6.7 73.8/8.0 66.3/16.7 – –
BiHDM [40] 85.4/7.5 69.0/8.7 – – –
GECNN [41] 82.4/– – 66.8/8.2 – –
BiHDM w/o DA [42] 81.5/9.7 67.4/8.2 – – –
PGCN [43] – 76.9/7.1 71.4/9.4 – –
GMSS [42] 86.5/6.2 73.5/7.4 – – –
ResNet-18 [44] – 76.7 78.1 75.0 81.3
DNN [29] 79.4/5.3 70.8/9.2 58.0/8.5 64.2/7.5 65.9/10.0
Graph-LSTM-DANN [45] 79.3/5.8 69.5/9.6 60.7/15.3 – –
Stacked Graph-LSTM [46] 81.5/7.8 74.6/8.3 78.1/13.7 73.0/5.0 65.6/6.0

Ours 85.8/4.7 77.3/3.2 82.1/5.5 90.7/3.9 87.6/3.9

C. Feature Visualization with t-SNE
Figure 3 shows the two-dimensional t-SNE representations

of the features obtained after processing the input through
both the spatial and temporal modules. The extracted features
formed distinct clusters for each emotion class across the
datasets. However, for some emotion classes, there was an
overlap in the clusters. In SEED-V, the sad class exhibited
signicant overlap, with some samples misclassied as neutral
or fear. A similar pattern was observed in SEED-IV, where
sad, fear, and neutral showed some degree of misclassi-
cation among these emotions. In SEED, the highest cluster
overlap occurred between negative and neutral. In contrast,
SEED-FRA and SEED-GER exhibited more distinct and well-
separated clusters, with minimal overlap among the three
emotion classes.
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(a) SEED-V (b) SEED-IV (c) SEED

(d) SEED-FRA (e) SEED-GER

Fig. 3: t-SNE visualization of feature embeddings for the (a) SEED-V, (b) SEED-IV, (c) SEED, (d) SEED-FRA, and (e)
SEED-GER datasets.

TABLE VII: Ablation study evaluating the effect of removing different components from the deep learning model shown in
Figure 1. The last two columns show the average impact of component removal across the ve datasets, along with the rank
position among all ablation experiments.

Experiments
SEED-V SEED-IV SEED SEED-FRA SEED-GER

Average RankingAcc./Std.
(%)

Var.
(%)

Acc./Std.
(%)

Var.
(%)

Acc./Std.
(%)

Var.
(%)

Acc./Std.
(%)

Var.
(%)

Acc./Std.
(%)

Var.
(%)

BP+DANN 82.1/5.5 77.3/3.2 85.8/4.7 90.7/3.9 87.6/3.9
w/o BP 44.9/6.7 -45.3 57.5/3.8 -25.6 77.8/6.1 -9.3 79.4/5.6 -12.5 61.0/7.2 -30.4 -24.6 2
w/o spatial BP 44.9/8.3 -45.3 55.6/6.8 -28.1 81.8/6.9 -4.7 81.5/6.3 -10.1 83.0/6.0 -5.3 -18.7 3
w/o spatial module 64.6/5.4 -21.3 56.0/5.4 -27.5 68.1/12.4 -20.6 86.9/5.7 -4.2 88.5/4.0 1.1 -14.5 4
w/o temporal BP 79.2/4.7 -3.6 71.4/3.6 -7.7 82.4/5.9 -4.0 87.1/3.1 -3.9 87.1/3.1 -0.6 -3.9 5
w/o temporal module 60.6/14.9 -26.2 45.6/6.0 -41.1 61.0/7.4 -28.8 64.7/6.0 -28.7 49.8/9.1 -43.2 -33.6 1
w/o DANN 79.6/6.0 -3.0 75.7/5.6 -2.0 83.7/3.0 -2.4 89.5/4.5 -1.3 90.0/3.1 2.8 -1.2 6

D. Feature distribution across cortical areas

Figure 4 shows the distribution across cortical areas gener-
ated by the feature extractor composed of spatial and temporal
modules. In general, there was no cortex area that dominated
over the other ones. However, lower values (indicated by blue
tones) were predominantly observed in the central regions,
while higher values (represented by red tones) were more
prominent in areas closer to the head circumference.

Regarding emotions, in SEED-V, disgust showed the highest
feature values (more intense red), while sad and neutral had
the lowest. In SEED-IV, the happy class exhibited the highest
values, whereas fear had the lowest. For SEED, both neutral
and positive emotions yielded high values, while negative ones
resulted in the lowest. Finally, in SEED-FRA and SEED-
GER, the highest feature values were observed for negative
and neutral, respectively.

E. Most relevant EEG channels
Figure 5 highlights the EEG channels whose features sig-

nicantly differed among emotions in at least three datasets
(p value < 0.05, Friedman test). Channels in cyan indicate
less signicant p-values, while those in magenta represent the
most signicant values.

Among the features extracted across the ve frequency
bands, the most pronounced differences in emotion-related
neural activity were observed primarily in the frontal, tem-
poral, and parietal lobes. In the frontal region, signicant
differences were predominantly detected in electrodes cov-
ering the prefrontal (FP1, FP2, FPz) and frontal (F1, F2,
Fz) areas. For the temporal lobe, lateral EEG channels along
the head circumference, including T7, F8, TP7, TP8, P7,
and P8, were found to be particularly discriminative for
emotion classication. Regarding the parietal lobe, signicant
differences were consistently observed in both central (C3, C2,
CP3, CP4) and parietal (P7, P5, P3, P1, Pz , P2, P4, P6, and
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(a) SEED-V (b) SEED-IV

(c) SEED (d) SEED-FRA (e) SEED-GER

Fig. 4: Feature distribution across frequency bands for the model on the (a) SEED-V, (b) SEED-IV, (c) SEED, (d) SEED-
FRA, and (e) SEED-GER datasets. Higher feature values, extracted from the corresponding EEG channels, are indicated by
more intense red tones, while lower values are indicated in blue.
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Fig. 5: EEG channels whose features values signicantly differed across emotions (p-value < 0.05; Friedman test) in at least
three datasets. The colors represent the average p-value for the EEG across the datasets, with cyan indicating lower signicance
and magenta indicating higher signicance. Greater signicance suggests a higher potential of the EEG channel to discriminate
between emotions.

Fig. 6: Common signicant EEG channels across three (ma-
genta), four (blue), and ve (red) frequency bands. The fea-
tures extracted from these channels exhibited signicant dif-
ferences, highlighting their potential to discriminate between
emotions.

P8) electrode sites.
To further identify crucial EEG channels, Figure 6 presents

the channels that were signicant across three, four, or ve fre-
quency bands. Channels demonstrating signicant differences
in at least four frequency bands included FZ , P2, P4, C3,
and CB2. The parietal region exhibited the most signicant
differences across emotions and frequency bands, with ten
signicant channels (P7, P5, P3, P1, Pz , P2, P4, P6, POz , and
CP6). The frontal area was also among the most inuential,
with eight signicant channels (FT7, FPZ , AF4, F1, FZ , F2,
FC6, FC3, and FC2).

F. Ablation Study
Table VII shows the results of the ablation experiments.

Removing the temporal module (temporal transformer and
BP graph) caused the largest performance drop, with an
average reduction of 33.6% across the ve datasets. Another
experiment that led to a signicant accuracy decrease was
the removal of both BP graphs, which resulted in a 24.5%
reduction in emotion prediction accuracy. The spatial com-
ponents also played a crucial role, with accuracy dropping by
18.7% when the spatial BP graph was removed, and by 14.5%
when both the spatial transformer and BP graph were removed.
The removal of the temporal BP graph had a minor impact,
reducing the average accuracy by 3.9%. The component with
the least impact on performance was the removal of the DANN
strategy, which only reduced accuracy by 1.2%.

VI. DISCUSSION

A. Effect of BP graphs on emotion prediction

Our results indicate that including BP graphs in DANN
models can enhance the extraction of invariant-domain features
that support the prediction of emotion under the subject-
independence approach. Specically, our proposed model pre-
dicted emotions with a higher accuracy rate than those pro-
vided by the SOTA model for the SEED-V, SEED-IV, SEED-
FRA, and SEED-GER datasets and achieved comparable re-
sults for the SEED dataset. Moreover, our model achieved a
lower standard deviation than the previous model, highlighting
its capacity to generalize predictions across different subjects
and datasets.

The capacity of the model to predict emotions is reected
in tSNE visualization derived from the features extracted via
BP graphs. For most emotion classes, the t-SNE plots revealed
well-dened clusters, suggesting that the FCN label classier
could effectively establish non-linear boundaries to distinguish
between different emotional states. Moreover, the t-SNE repre-
sentations provide insight into why certain emotions resulted
in higher misclassication rates than others (see Figure 2).
Specically, the overlap among negative emotions (e.g., sad
and fear) and neutral in the SEED-V, SEED-IV, and SEED
datasets suggests a high degree of feature similarity, poten-
tially reducing the model’s ability to discriminate between
these classes. In contrast, higher classication accuracy was
achieved for emotions with more distinct clusters and less
overlap, such as disgust in SEED-V, happy in SEED-IV, and
positive emotions in SEED. For SEED-FRA and SEED-GER,
the clusters exhibited greater inter-class separability, which
contributed to improved classication performance and higher
accuracy in the corresponding confusion matrices.

B. Impact of cultural background on emotion recognition

Besides the t-SNE feature overlap, cultural background may
explain why the prediction of negative emotions resulted in
lower accuracy for SEED-V, SEED-IV, and SEED compared
to SEED-FRA and SEED-GER. The SEED-V, SEED-IV, and
SEED datasets comprise data from Chinese subjects, whereas
SEED-FRA and SEED-GER include data from Western Euro-
pean subjects. Prior research suggests that cultural values in-
uence emotion processing, shaping how individuals respond
to stimuli [47], [48]. According to previous studies [49], [50],
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individuals from interdependent cultures, such as Chinese, tend
to suppress negative emotions to maintain a balanced (neutral)
and harmonious social environment, whereas individuals from
independent cultures, such as Europeans, are more likely to
express their emotions openly. This cultural distinction may
explain why negative emotions were more misclassied as
neutral in SEED-V, SEED-IV, and SEED. Additionally, Liu
et al. [29], after analyzing the cross-culture effect on emotion
recognition using the SEED, SEED-FRA, and SEED-GER,
found that the patterns extracted by deep learning models are
more similar between German and French subjects than those
from Chinese subjects. These ndings suggest that distinct
neural patterns, shaped by cultural backgrounds, inuence
emotion recognition.

In relation to previous studies, to the best of our knowl-
edge, this study is the rst to adapt strategies used in the
video processing eld to deal with domain-shift problems
for emotion recognition. In detail, the proposed use of BP
graphs at both spatial and temporal levels facilitates the
extraction of domain-invariant features by effectively aligning
feature distributions between source and target domains. Our
ndings indicate that BP graphs are viable and effective for
addressing domain-shift among individuals. The effectiveness
of BP graphs lies in their use of similarity measures to relate
source and target samples. These similarities are then used to
construct a learnable adjacency matrix that linearly transforms
domain-specic features into a shared representation space,
thereby enhancing generalization across different subjects.

C. Most relevant EEG channels

The features extracted from the spatial and temporal BP
graphs also highlight the EEG channels most relevant for
distinguishing between emotional states (see Figures 4, 5, and
6). Specically, across frequency bands, the EEG channels
exhibiting the most signicant feature differences were pre-
dominantly located in the parietal, frontal, and temporal areas.
The consistent differences observed across these channels
suggest that they play a critical role in facilitating emotion
prediction. Therefore, their inclusion in emotion recognition
systems is crucial to enhance emotion recognition under
subject-independent settings.

The relevance of EEG channels located in the frontal,
temporal, and parietal regions for emotion recognition may
be attributed to the underlying physiology of emotional pro-
cessing. Emotion processing is a complex neural function
that involves interactions between the prefrontal cortex (PFC)
and limbic system structures, particularly the amygdala and
hippocampus [51]. When an individual is exposed to an
emotional stimulus, these regions collaborate to associate
the stimulus with past experiences, evaluate its signicance,
and generate an appropriate response. However, EEG cannot
directly measure the activity of deep structures such as the
PFC, amygdala, or hippocampus. Instead, it captures cor-
tical electrical activity that reects their interactions with
other brain regions. Previous studies have indicated that the
amygdala-PFC interactions are observable in frontal and tem-
poral cortex areas, such as the Fp1, Fp2, T7, T8, FT7, and

FT8 EEG channels [52]. Likewise, amygdala-hippocampus
synchrony is observed more on the central and parietal lobes
[53]. Therefore, the involvement of frontal, frontotemporal,
temporal, temporoparietal, and parietal regions suggests that
the proposed model can capture the subcortical dynamics
involved in emotion processing.

Additionally, the involvement of the parietal and central
regions, which are associated with visual perception, can
be linked to the use of movement-related stimuli. As noted
in [54], [55], the central region is particularly signicant
for emotional responses to movement-based stimuli (e.g., a
needle piercing a thumb). Thus, the activation observed in
central and parietal areas, such as Pz and POz in Figure
6, indicates that these regions are critical during the early
stages of visual processing, highlighting their importance in
emotional processing.

The relevant identied EEG channels align with previous
research that highlights the pivotal role of the frontal lobe in
emotional processing [22]–[25]. However, unlike these previ-
ous studies, which determined the importance of these areas
by analyzing differential entropy features without considering
the patterns learned by the deep learning models, our study
identies these regions by directly analyzing the features
learned by the model for emotion prediction. Therefore, our
approach provides stronger evidence for the relevance of these
brain areas in emotion regulation and processing.

Our ndings also support our previous research [45], [56],
which highlighted EEG channels in the frontal, temporal, and
parietal regions as crucial for emotion processing. Since the
EEG signals in this study were elicited by audiovisual stimuli,
the temporal and parietal regions are likely involved in sensory
processing, while the frontal region is more closely linked to
the interpretation of the captured sensory information [57]–
[59].

D. Ablation study

The ablation study revealed that the average accuracy
across the evaluated datasets signicantly decreased when BP
graphs were excluded. This indicates that both the spatial
and temporal modules are crucial for extracting meaningful
features. By incorporating BP graphs, the predictive model can
effectively align features between the source (training subjects)
and the target (testing subjects) domains. Further evidence of
the effectiveness of BP graphs in addressing the domain shift
problem is seen in the fact that removing the DANN strategy
resulted in only a minor decrease in performance. These results
suggest that the proposed method relies more on the feature
integration performed by BP graphs than on the adversarial
training between the label and domain classiers.

E. Technical and Clinical Implications

By comparing the identied EEG channels with commercial
EEG systems to monitor emotions, such as the EMOTIV
EPOC X 14-channel wireless headset [60], it is notable that
there is an intersection between the channels. From the 14
EEG channels included in the EPOC X system, our approach
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matches ve channels: P7, O1, AF4, FC6, and T8. Addi-
tionally, other seven channels were closed located nearby:
FT7 close to T7, F1 close to F3, FC3 close to FC5, F2

close to F4, FC2 close to F4, P6 close to P8, and CB2

close to O2. Therefore, our study provides evidence of the
reliability of these lower-density EEG channel systems for
emotion applications.

Using a lower-density EEG channel system enhances their
suitability for individuals with neurological diseases or older
adults, as caps with fewer channels are more comfortable and
easier to use. Thus, identifying a subset of EEG channels
capable of reliably predicting emotions across individuals
facilitates the development of emotion recognition systems.
These systems hold potential for early diagnosis, intervention,
and treatment of disorders such as depression, anxiety, and
neurodegenerative diseases.

F. Limitations and Future Work

We note that the individuals included in this study were
mentally healthy and that we did not test our method with
subjects with emotional disorders. Nevertheless, our approach
achieved strong prediction performance across three datasets,
surpassing or matching SOTA models, demonstrating its abil-
ity to address the domain-shift problem inherent in EEG-based
emotion recognition. Future research should validate these
results in more diverse populations, including individuals with
different backgrounds and emotional disorders, to assess the
broader applicability of the method.

Future research also should focus on validating the effective-
ness of the identied EEG channels for emotion recognition
tasks. Demonstrating the effectiveness of using fewer EEG
channels will improve the computational efciency of EEG-
based methods and improve user comfort, particularly for older
adults or individuals with cognitive impairments.

Finally, given the demonstrated potential of BP graphs
in mitigating domain shift, future research should explore
their applicability to other EEG-based classication tasks. In
particular, BP graphs may serve as a viable transfer learn-
ing framework for detecting neurological conditions such as
Alzheimer’s disease and epilepsy.

VII. CONCLUSION

This study proposed a deep learning approach that utilizes
BP graphs to tackle the challenges of the domain-shift prob-
lem in subject-independent emotion recognition. The method
demonstrated predictive performance that either matched or
exceeded SOTA models, highlighting its effectiveness in man-
aging cross-subject variability. Additionally, the results em-
phasized the signicance of EEG channels in the frontal,
temporal, and parietal regions for emotion recognition. These
ndings emphasize the need to incorporate these regions when
designing EEG-based systems for predicting emotions elicited
by audiovisual stimuli, thus enhancing the effectiveness of
subject-independent approaches.
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