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This article considers the efficient bottom–up query evaluation for stratified databases.
We investigate the applicability of magic-set method to stratified databases containing
negative body literals and show that culprit cycles cause unstratification. Based on the
analysis, we present a labeling algorithm to distinguish the context for constructing magic
sets, which is simpler and more efficient than the algorithms proposed by Balbin et al.
[J. Logic Programming, 295–344 (1991)].  1997 John Wiley & Sons, Inc.

I. INTRODUCTION

There has been much recent research into query evaluation procedures for
deductive databases. Most of this research has concentrated on the class of
definite queries and databases. A good survey of this research is given by Bancil-
hon and Ramakerishnan in Ref. 1. There they classified query evaluation proce-
dures as either top–down or bottom–up, interpreted or compiled, and recursive
or iterative.

In evaluating answers to a query on a database, a bottom–up computation
can naturally employ the existing optimization techniques developed for rela-
tional databases, which operate on a set at a time and always terminate on finite
problems. As a consequence, bottom–up methods are the focus of much research
into deductive databases.2–8 However, bottom–up methods do not use the query
to restrict the computation in the same ‘‘goal-driven’’ way that a top–down
computation does. Therefore, many irrelevant tuples may be generated during
a bottom–up computation. Research is currently concerned with methods for
transforming databases so that bottom–up evaluation of the resulting database
does use the query to restrict the computation. Two examples of these methods
are magic sets2,3,8 and the less general counting sets.2,4,8 In this article, we confine
ourselves to the use of magic-set transformation on (function-free) deductive
databases that contain negative body literals. The magic set algorithms on these
databases are based on a sideways information-passing strategy (SIPS).

Two important properties that databases should have are stratification and
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domain independence, which enable answers to queries to be evaluated both
correctly and efficiently. A stratified database contains no recursion ‘‘through
negation’’ as in

p r ¬q,

q r p.

The perfect model semantics for a stratified database is given by Ref. 10, which
gives a declarative description of the desired output for a query with respect to
the database. A domain independent database is one for which the set of correct
answers to an atomic query is independent of the domains of variables in the
database statement, i.e., the semantics of the database does not change when
new constants are added to its language. Allowedness is a sufficient syntactic
characterization of domain independency.11 In addition, it leads to certain effi-
ciencies during the computation, and so we restrict attention here only to al-
lowed databases.

Many researchers have tried to use the magic-set method for stratified
databases.12,13 However, an observation shows that when we apply the generalized
magic sets3 to a stratified database, the resultant database may be unstratified.14

Therefore, a different approach to database transformation is required to underlie
the bottom–up computation. Here, we present a method to solve the problem,
which is simpler and more efficient than the algorithms proposed by Balbin et al.14

In particular, our scheme differs from the published ones in the following respects:

(1) A concept of culprit cycles is introduced in this article to manifest the causes of
unstratification. This concept provides a deep insight into the problem and allows
us to derive new algorithms. In contrast, Balbin et al.’s method is based on an
incomplete analysis of such abnormal behaviors and thus the corresponding
algorithms are more complicated, and somewhat misleading as well.

(2) In Balbin et al.’s method, no magic rules for negative body literals are ‘‘physically’’
constructed. Instead, a program segment is constructed for each negative body
literal, which is evaluated by a function call when the corresponding negative body
literal is encountered during the main process. This means that the bottom–up
evaluation is done in a structured approach and an extra control mechanism is
needed. Our method does not distinguish between the magic rules for positive and
negative body literals and the transform of a program is done in a uniform manner.

(3) Our algorithm requires less time. If a stratified program consisting of n levels
contains e predicates, the time complexity of our algorithm is O(n ? e), whereas
the time complexity of Balbin et al.’s method is O(n2 ? e).

The remainder of the article is organized as follows. Notations and preliminary
definitions are presented in Section II. In Section III, we briefly describe the
magic-sets computation of a deductive database which does not contain any
negative body literals. In Section IV, we analyze the factors that contribute to
the unstratification when the generalized magic-set method is applied to a data-
base which contains negative body literals. Further, we present a labeling algo-
rithm that can be used to remove the causes of the unstratification. In Section
V, we prove the correctness of the labeling algorithm. Section VI analyzes the
time complexity. Section VII is a brief summary.
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II. BASIC CONCEPTS

The language of a deductive database consists of the variables, constants,
and predicate names in the database. We adopt some informal notational conven-
tions for them. Variables will normally be denoted by the letters u, v, x, y, and
z (possibly subscripted). Constants will normally be denoted by the letters a, b,
and c (possibly subscripted). Predicate names will normally be denoted by the
letters p, q, r, s, and t (possibly subscripted). In the absence of function symbols,
a term is either a constant or a variable. Occasionally, it will be convenient not
to apply these conventions rigorously. In such a case, possible confusion will be
avoided by the context.

An atom is an n-ary predicate, p(t1 , t2 , . . . , tn), n $ 0, where p is a predicate
name and t1 , t2 , . . . , tn are terms. A literal is an atom or the negation of an
atom. A positive literal is just an atom. A negative literal is the negation of
an atom.

A rule is a first-order formula of the form

q r p1 , p2 , . . . , pm , m $ 0.

q is called the head and the conjunction p1 , p2 , . . . , pm is called the body of
the rule. Each pi is a body literal. When m 5 0, the rule is of the form

q r

and is known as a unit clause.
An atom p(t1 , t2 , . . . , tn), n $ 0 is ground when all of its terms t1 , t2 , . . . ,

tn , are constants. A ground rule is one in which each atom in the rule is ground.
A fact is a ground unit clause. The definition of a predicate p is the set of rules
which have p as the head predicate. A base predicate is defined solely by facts.
The set of facts in the database is also known as the extensional database. A rule
that is not a fact is known as a derivation rule. A derived predicate is a predicate
which is defined solely by derivation rules. A derived (base) literal is one whose
predicate is derived (base). The set of derivation rules is also known as the
intensional database or program.

A deductive database D is a finite set of rules consisting of a program P
and a set of facts F, which may contain negative information. We differentiate
between two types of databases: when the rules in the database do not contain
any negative body literals, we refer to it as a positive database and to the program
as a positive program; when this is not the case, we refer to a normal database
and a normal program.

For a program P, we construct a dependency graph G10 representing a refers
to relationship between the predicates. This is a directed graph where there is
a node for each predicate and an arc from node q to node p iff the predicate q
occurs positively or negatively in the body of a rule whose head predicate is p.
When this literal is negative, the arc is a negative arc and is marked with a ‘‘¬’’
sign; otherwise it is a positive arc and is unmarked. A predicate p depends on a
predicate q if there is a path of length greater than or equal to one from q to
p. We denote the relation p depends on q by p r q, where depends on is the
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Figure 1. Dependency graph.

transitive closure of the refers to relation. If any arc in the path from q to p is
negative, then we may also denote the dependency by p r- q. A predicate p is
recursive if p r p. Two predicates p and q are mutually recursive if p r q and
q r p.

Example 2.1. The dependency graph corresponding to the program:

p(x, y) r q(x, y),

p(x, y) r p(x, z), q(z, y),

r(x, y) r s(x, z), ¬p(z, y),

is shown in Figure 1.

DEFINITION 2.1. A path in G is a negative path if at least one arc in the path is
negative. A cycle in G is a negative cycle if at least one arc in the cycle is negative.

DEFINITION 2.2. A logic program, P, is stratified if its predicates can be partitioned
into levels so that, in every program clause, q r p1 , p2 , . . . , pm , the level of
every predicate in a positive literal in the body is less than or equal to the level of
q and the level of every predicate in a negative literal is strictly less than the level
of q.

Throughout this article, we assume also, as in Ref. 15, that the levels of a
stratified program are 0, 1, . . . , n for some integer n, where n is the minimum
number satisfying the above definition. In this case, P is said to have the maximum
level n and is denoted P 5 L0 < . . . < Ln , where Li is a set of clauses whose
head predicates have level i. The partitioning of P into the sets L0 , . . . , Ln is
called stratification, and each set Li is called a stratum.

PROPOSITION 2.1. P is stratified if and only if there does not exist a negative cycle
in G of P.

Proof. See Ref. 10. j

Consider any stratification L0 , . . . , Ln of a program P. Let M denote a set
of ground atoms. Define Ti , i 5 0, . . . , k, to be the operator on M as follows.
For every M and every ground atom p, p [ Ti (M) if and only if p [ M or for
some rule q r p1 , p2 , . . . , pm in Li , there is a substitution u of constants for
variables such that p 5 qu and for each body literal pi , if piu is positive then it
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is in M, otherwise it is not in M. The sets M0 , . . . , Mk of ground atoms are
defined by the equations

M0 5 B,

Mi 5 T j
i(Mi21) (i 5 0, . . . , k),

where T j
i is Ti applied j times until the fixpoint is reached for some value of

j $ 0. Then, the semantics of P is Mk , which does not depend on the choice of
stratification of P and is identical to the perfect model.10

III. MAGIC SETS METHOD

In this section, we consider the magic sets method for positive database.
This method is based on the idea of the sideways information-passing strategy
and improves efficiency by restricting the computation to tuples that are related
to the query. Essentially, the magic-set transformation does two things:3 it creates
new magic rules, and it introduces new body literals into the original rules to
form modified rules. The modified database enable a bottom–up computation
to generate fewer irrelevant tuples.

A. Sideways Information-Passing Strategy

A sideways information-passing strategy (SIPS) is an inherent component
of any query evaluation strategy. Informally, for a rule of a program, a SIPS
represents a decision about the order in which the predicates of the rule will be
evaluated, and the variables for which the values are passed from predicates to
other predicates during evaluation. Intuitively, a SIPS describes how bindings
passed to a rule’s head by unification are used to evaluate the predicates in the
rule’s body. Thus, a SIPS describes how we evaluate a rule when a given set of
head arguments are bound to constants. Consider, for example, the familiar
ancestor predicate where ancestor(x, y) is true if y is an ancestor of x, and where
parent is a base predicate, such that parent(x, y) is true if y is a parent of x:

(1) ancestor(x, y) r parent(x, y),
(2) ancestor(x, y) r parent(x, z), ancestor(z, y).

The query r ancestor( john, y) retrieves all the ancestors of john. By unification,
the variable x in the second rule is bound to john. We can evaluate parent(x, z)
using this binding, and obtain a set of bindings for z. These are passed to ancestor
to generate subgoals, which in this case have the same binding pattern. The
values for z can then be said to be passed sideways from parent to ancestor.

Generalizing from this example, we may say that the basic step of sideways
information passing is to evaluate a set of predicates (possibly with some argu-
ments bound to constants), and to use the results to bind variables appearing in
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another predicate. It is important to stress that SIPS do not say how this informa-
tion is passed. Indeed, there may be more than one way to pass the information
for given SIPS. For example, SIPS do not specify whether the information is
passed on a tuple-at-a-time basis, or as a set of tuples. SIPS describe only the
flow of information with respect to a rule with a given set of head arguments
bound to constants, which will be generated when a top–down strategy like
Prolog evaluates the rule. In general, SIPS are associated with a rule according
to the query form. Different query forms, such as ancestor bf(x, y) and ancestor fb

(x, y) (see below), usually have different SIPS for the same set of defining rules.
The choice of one SIPS over another is guided by factors such as the current
and expected size of different relations and the indexing mechanism employed.

The following definition of allowed SIPS is borrowed from.14 It is the refining
of the definition given by Ref. 3 and preserves the allowedness under the magic-
set transformation.14 In a given rule, two literals are called connected if they
share a common argument. This is extended in the obvious way to connection
through a chain of predicates, where each adjacent pair shares an argument.

DEFINITION 3.1 Let B(R) denote the set of body literals for a rule R, and let p a

be a special literal, denoting head literal restricted to its bound arguments. An
allowed SIPS for a rule R is a labeled bipartite graph G(V1 , V2), where V1 is the
set of subsets of B(R) < h paj and V2 5 B(R), and which satisfies the following
two conditions:

(1) Each arc is of the form N R x p, where N [ V1 , p [ V2 . The label x stands for
a nonempty set of variables which satisfies the following restrictions:

(i) each variable in x appears in a member (a predicate) of N and in p;
(ii) each literal in N is connected to p;

(iii) each variable appearing in N appears in a positive literal in N, or in a
bound argument position of pa in N.

(2) There exists a total order of B(R) < h paj in which:
(i) pa precedes all member of B(R);

(ii) any literal which is not in the graph follows every literal that is in the graph;
and

(iii) for every arc N Rx p, if the literal p9 [ N, then p9 precedes p.

Example 3.1. Consider the above program defining ancester

(1) ancester(x, y) r parent(x, y),
(2) ancestor(x, y) r parent(x, z), ancestor(z, y).

Let the query be r ancestor( john, y) and ancestor1 be a special predicate,
denoting ancestor(x, y) restricted to its first bound argument. An arc for the first
rule might be

hancestor1(x)j Rhxj parent(x, y).
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The SIPS for the second rule is

hancestor1(x)j Rhxj parent(x, y),

hancestor1(x), parent(x, z)j Rhzh ancestor(z, y).

B. The Adorned Program

In terms of the SIPS for a program, we can adorn the program. This is done
by annotating predicates with a character string, which is called adornment. An
adornment for an m-ary predicate p(t1 , t2 , . . . , tm) is a string of length m made
up of the letters b and f, where b stands for bound and f stands for free. We
obtain an adornment for a predicate as follows. During a computation, each
argument, ti , 1 # i # m, of the literal p(t1 , t2 , . . . , tm) is expected to be bound
or free, depending on the information flow (SIPS). If ti is expected to be bound
(free), it acquires a b( f ) annotation, and so the length of the adornment string
is m. Note that the adornment is attached to the predicate and becomes part of it.

Example 3.2. The following is the adorned rule set corresponding to the familiar
ancestor predicate for the SIPS of Example 3.1:

(1) ancestor bf (x, y) r parent(x, y),
(2) ancestor bf (x, y) r parent(x, z), ancestor bf (z, y).

C. The Magic-Set Algorithm

Now we consider the magic-set transformation of a program which does not
contain any negative body literals. Magic-set algorithms are program transforma-
tions that take an initial adorned program and query and return a modified
program which gives the same answers for a particular query as the initial pro-
gram. Using the bottom–up method, the transformed program generates fewer
irrelevant tuples than the initial program. There have been several magic-set
algorithms reported in the literature.2,3,16

A common trait among these algorithms is that, based on the adornment
of the head and body literals, some new positive literals are introduced into the
body of rules, and new rules are added to the program which define these literals.
The new literals are called magic literals and are related to the existing literals
of the program as follows. For a positive adorned predicate p a with l bound
argument positions where l . 0, define the magic predicate of p a to be the
predicate whose name is the predicate name of p a prefixed with ‘‘Magic–’’ and
whose arity is l. The new rules defining the magic predicates are called magic rules.

The following is a magic-set algorithm.14 The input of the algorithm consists
of the adorned query, q a(v), the adorned program, Pa, and the corresponding
set of SIPS, Sa. The output of the algorithm is the modified version of the adorned
program plus the magic rules, Pam, and the seed, magic–qa(vd), where vd is the
vector of arguments which are bound in the adornment a of q. In the algorithm,
the following definitions are used:
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bodyLit(N) denotes the conjunction of body literals of a rule Ra in N, where
N is the tail of an arc N Rx p in the SIPS for Ra;
magic(r a(v)) returns a literal magic–r a(vd).

function magic-set-transformation (qa(v), Pa, Sa)
Pam :5 B
for each rule Ra in Pa of the form p r p1, p2, . . . , pm do
add the rule p r magic(p), p1, p2, . . . , pm to Pam

for each arc N Rx r in the SIPS associated with Ra do
if p is in N then

add the rule magic(r) r magic(p), bodyLit(N) to Pam

else add the rule magic(r) r bodyLit(N) to Pam

return (magic qa(vd), Pam)

Example 3.2. Consider the adorned query r ancestor bj ( john, y) to the program

ancestor(x, y) r parent(x, y),

ancestor(x, y) r parent(x, z), ancestor(z, y).

If the chosen SIPS is like that of Example 3.1, we will have the following
adorned program:

ancestor bf(x, y) r parent(x, y),

ancestor bf (x, y) r parent(x, z), ancestor bf (z, y).

Then, the magic rules and modified rules are:

ancester bf (x, y) r magic–ancestor bf (x), parent(x, y),

ancestor bf (x, y) r magic–ancestor bf (x), parent(x, z), ancestor bf (z, y),

magic–ancestor bf (z) r magic–ancestor bf (x), parent(x, z),

magic–ancestor bf ( john).

IV. A LABELING ALGORITHM

The magic-set transformation does not always preserve stratification and
allowedness when we use it for a stratified and allowed normal database. There-
fore, it is necessary to develop a different approach to database transformation.
To solve these problems, Balbin et al.14 proposed a structured bottom–up method
and a modification of SIPS (which is called allowed SIPS). The method employs
a labeling algorithm to distinguish the context for constructing magic sets and
preserves stratification when magic sets constructed for negative literals are not
taken into account. For the allowed SIPS the magic-set transformation preserves
allowedness. Since the magic rules for negative literals are not constructed in
the structured bottom–up method, a duplication of rules is required to deal
with the negative literals. Here, we present a new labeling algorithm which can
distinguish the context for the magic sets constructed for both positive and
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Figure 2. Dependency graph of transformed program of Example 4.1.

negative literals. We assume that our SIPS are allowed. We have already given
the extract definition of allowed SIPS in the last section.

A. Causes of Unstratification

We differentiate among three cases of unstratification:

(1) A literal occurs both positively and negatively in the body of a rule.
(2) A negative literal occurs multiply in the body of a rule.
(3) A negative literal occurs in a recursive rule.

Case 1. Mixing occurrence of a literal. In the following, we omit explicit SIPS
for simplicity of exposition, and assume default SIPS where the tail of the arc
for each body literal p includes all literals to the left of p in the rule (including
the head).

Example 4.1. Consider the following program:

q(x) r p1(x), ¬r(x), p2(x, y), r( y),

r(x) r p(x, y), r(y),

where p, p1 , and p2 are base predicates. For the query r q b(a) the magic rules
and modified rules are

qb(x) r magic–qb(x), p1(x), ¬r b(x), p2(x, y), r b(y),

magic–qb(a),

r b(x) r magic–r b(x), p(x, y), r b( y),

magic–r b(x) r magic–qb(x), p1(x),

magic–r b( y) r magic–qb(x), p1(x), ¬r b(x), p2(x, y),

magic–r b( y) r magic–r b(x), p(x, y).

The dependency graph is shown in Figure 2 and contains the negative cycle:
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Figure 3. Dependency graph of transformed program of the modification of Example 4.1.

r b r magic–r b r- r b.

Let us examine the source of the unstratification. This can be done by simulating
a top–down computation of the rules. Consider, for example, the query r qb(x).
A top–down computation will evaluate the subquery r b(x) with the value for x
which satisfies p1(x). The negative literal ¬r b(x) succeeds if this subquery fails.
This value for x satisfies q provided that p2(x, y) is proven and a value for y
satisfies the query rb(y). It is important to note that the two queries to r, the
negative subquery and the positive subquery, are independent of each other.
That is, they are evaluated in two different contexts. At the time that r b(y) is
asked, ¬r b(x) has already been satisfied. However, the construction of the magic
rules for r does not separate the two contexts. The magic rules for a positive
literal and a negative literal are treated as one, when they should be separated
and used in accordance with the corresponding contexts. The mixing of contexts
causes the unstratification problem.

Now we consider a modification of Example 4.1:

q(x) r p1(x), ¬s(x), p2(x, y), r(y),

s(x) r p(x, y), r( y),

r(x) r p(x, y), r( y),

and give the same query as above. We have the transformed rules as follows:

qb(x) r magic–qb(x), p1(x), ¬s b(x), p2(x, y), r b( y),

magic–qb(a),

s b(x) r magic–sb(x), p(x, y), r b(y),

r b(x) r magic–r b(x), p(x, y), r b( y),

magic–s b(x) r magic–qb(x), p1(x),

magic–r b( y) r magic–qb(x), p1(x), ¬sb(x), p2(x, y),

magic–rb( y) r magic–sb(x), p(x, y),

magic–r b( y) r magic–r b(x), p(x, y).

From the dependency graph of the transformed rules (shown in Fig. 3), we can
see that
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sb r r b r magic–r b r- s b

constructs a negative cycle.
The cause of the unstratification is the same as that of Example 4.1, which

can be seen, if we evaluate the query r q b(x) top–down and expand the subquery
¬s by substituting s with the body of the rule defining s. In such a way, we will
have the following subgoal during the process:

r ¬(p(x, y0) ` r(y0)), p2(x, y), r(y),

which is logically equivalent to

r ¬r(y0), p2(x, y ), r( y),

r ¬p(x, y0), p2(x, y), r( y).

As analyzed above, ¬r( y0) and r( y) in the first rule (in bold) are independent
of each other. However, when we transform the above rules and construct magic
rules for r, we will lose the separation of the contexts for r, which underlies the
unstratification.

Case 2. Multi-occurrence of a negative literal.

Example 4.2. We modify the program of Example 4.1 by negating the second
occurrence of r

q(x) r p1(x), ¬r(x), p2(x, y), ¬r(y),

r(x) r p(x, y), r(y),

and give the query r qb(a). The transformed rules are

q b(x) r magic–q b(x), p1(x), ¬r b(x), p2(x, y), ¬r b(y),

magic–q b(a),

r b(x) r magic–r b(x), p(x, y), r b( y),

magic–r b(x) r magic–q b(x), p1(x)

magic–r b(y) r magic–qb(x), p1(x), ¬r b(x), p2(x, y),

magic–r b(y) r magic–r b(x), p(x, y).

There is a negative cycle:

r b r magic–r b r- r b.

This negative cycle is the same as that of Example 4.1. The source of the unstrati-
fication is also the losing of the separation of contexts. If the program is evaluated
top–down, the query to ¬r(x) and the query to ¬r(y) are independent of each
other. That is, at the time that ¬r(y) is asked, ¬r(x) has already been satisfied.
Note that in answering a negative literal ¬r we first compute the entire extension
for r and then compare the extension of r with the extension of the remaining
body literals and perform the negation operation using set difference. Therefore,
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it is necessary, by a bottom–up computation, to separate the contexts for ¬r(x)
and ¬r(y) considering the way of evaluating a negative literal. However, the
magic-set transformation mixes the contexts and gives rise to the unstratifica-
tion problem.

Case 3. Occurrence of negative literals in a recursive rule.

Example 4.3. Consider the following program:

q(x) r ¬r(x), p1(x, y), q(y),

q(x) r p2(x),

r(x) r p3(x),

where p1 , p2 , and p3 are base predicates. For the query r qb(a) the magic rules
and modified rules are

qb(x) r magic–qb(x), ¬r b(x), p1(x, y), qb(y),

magic–qb(a),

qb(x) r magic–qb(x), p2(x),

r b(x) r magic–r b(x), p3(x),

magic–r b(x) r magic–q b(x),

magic–qb(x) r magic–qb(x), ¬r b(x), p1(x, y).

The negative cycle is

r b r magic–r b r magic–q b r- r b.

To show the source of unstratification, we expand the recursive predicate q(y)
in the first rule of the program. Then we have

q(x) r ¬r(x), p1(x, y), ¬r(y), p1(y, y0), q(y0).

From this we can see that the source of the unstratification is the same as that
of Case 2.

B. The Labeling Algorithm

The idea behind the labeling algorithm is to distinguish the context for
constructing magic sets. In terms of the three cases of unstratification, three
different labeling strategies are employed. For the first case, we explicitly label
p when it appears after a negative body literal ¬q in a rule (here we assume
that the information passing strategy is from left to right.) and simultaneously
appears in the defining rules for q or there exists a path in the dependency graph
from p to q. For the second case, we number the different occurrence of a
negative body literal in a rule. For the third case, we give each negative body
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literal in a recursive rule a dynamic subscript which will be changed with each
application step of the T operation.17

The input to the labeling algorithm consists of Pa and the corresponding set
of SIPS Sa. The program Pa is first arranged into a stratification so that Pa 5
<i51Li and associated SIPS are Sa 5 <i51Si , where each set of Li is a stratum and
Si is associated with the rules in Li . The output of the algorithm is the labeled
program P l 5 <i51hL9i < Iij, where L9i is the labeled version of Li and Ii is an
associated set of newly constructed rules, and associated SIPS S l.

In the algorithm, there are three stages with each handling a different case
of unstratification. In the first stage, we number the different occurrence for each
negative body literal in a rule. In the second stage, we give each negative body
literal a dynamic subscript when it appears in a recursive rule. Finally, we label
each body literal p when there exists a sequence of paths connecting it to a
negative body literal ¬q in the same rule, or there exists a sequence of paths
with at least one path being negative connecting it to a positive body literal q
in the same rule and there is an arc of the form N R r in the SIPS such that
q [ N and p 5 r. (Note that these paths are not necessarily in the same direction;
see below.)

procedure negnumber()
begin
for j :5 1 to n do
for each q [ negBodyList(j) do

number the different occurrence of q in a rule of Lj;
for each k such that q–k is a new numbered predicate do

let m be the number of the stratum in which q is defined;
copy the rules defining q to Im;
copy the corresponding SIPS to Sl

m;
replace each q in Im and Sl

m with q–k;
end

The first stage of the algorithm calls negnumber. The procedure performs two
actions. First, it examines each stratum and numbers the different occurrence of
each negative body literal. Secondly, for each numbered predicate q–k, it creates
a new version of the rules defining q–k. In the algorithm, we make use of the
following set:

negBodyList( j) is the set of predicates that appear as negative body literals
in the straum Lj .

After negnumber has been executed we call the dynlabel procedure. The purpose
of dynlabel is to subscript those negative body literals which appear in recursive
rules. In addition, for each subscripted predicate pi a new version of the rules
defining pi is created. Because the subscript will be changed with each application
step of the T operation, we remove the unstratification caused by these negative
literals. In the algorithm, negBodyListn( j) is the set of predicates that appear as
numbered and unnumbered negative body literals in the stratum Lj and Ij .
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procedure dynlabel()
begin
for j :5 1 to n do

for each p [ negBodyListn(j) do
if p appears in a recursive rule then

begin
replace each p in all Lm, Im and Sl

m with pi;
end

end

At last we call the label procedure, the third stage of the algorithm. In the
procedure, each body literal p is labeled when there is an arc of the form N R
r in the SIPS such that p 5 r and q [ N for some q and either of the following
conditions holds:

(1) There exists a sequence of paths

e 5 (e1 , e2 , . . . , eh)

connecting it to a negative body literal ¬q in the same rule.
(2) There exists a sequence of paths with at least one path being negative connecting

it to a positive body literal q in the same rule.

Note that the paths in e are not necessarily in the same direction. Each path
ek , where 1 , k , h, has one endpoint in common with the perceding path ek21 ,
and the other endpoint in common with the succeeding path ek11 . Assume ek

and ek11 are not in the same direction and have the same node as the terminal
node. If the last edges of ek and ek11 are a R b and a9 R b, respectively, and
in the SIPS there is an arc of the form N R r such that a9 [ N and a 5 r, in
terms of the algorithm of magic-set transformation, we will have a path consisting
of only magic predicates in the dependency graph of the transformed version,
which has one endpoint in common with ek11 and in the same direction as ek11 .
The same analysis applies to the case where ek and ek11 are not in the same
direction and have the same node as the initial node. Therefore, for the paths
whose directions are not the same, we need to check the existence of the associ-
ated SIPS. But in the description of the algorithm, we omit the detail for simplicity.
The following new functions are used by label.

pathConn(r, p) returns true if r and p are both body literals in the same
rule, r is negative and there exists a sequence of paths connecting r and p
in the dependency graph, or r is positive but at least one path in the sequence
of the paths is negative; otherwise it returns false.

labeled(p) returns the labeled counterpart of p.

procedure label()
begin
Plabel :5 B
for j :5 n downto 1 do
for each unlabeled derived literal p appears in Lj

if pathConn(r, p) and N R c such that r [ N and p 5 c then
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If p [ Plabel then replace p with labeled(p)
else

begin
replace p by label–p–j;
let m be the number of the stratum in which p is defined;
copy the rules defining p to Im;
copy the corresponding SIPS to Sl

m;
replace each p in Im and Sl

m with label–p–j;
Plabel:5 Plabe < hpj

end
end

C. Sample Trace

In this subsection, we trace the steps of the algorithm for a particular exam-
ple. We omit variables and SIPS for simplicity.

Example 4.4. Consider the following program:

L3 p r s, ¬r, t, ¬r, q, p,

L2 r r q,

L1 q r q0 .

Here s, t, and q0 are base predicates. The Li form the stratification. After the
magic transformation the rules are

p r magic–p, s, ¬r, t, ¬r, q, p,

r r magic–r, q,

q r magic–q, q0 ,

magic–r r magic–p, s,

magic–r r magic–p, s, ¬r, t,

magic–q r magic–p, s, ¬r, t, ¬r,

magic–p r magic–p, s, ¬r, t, ¬r, q,

magic–q r magic–r.

The dependency graph with three negative cycles is shown in Figure 4. The three
negative cycles are: r r magic–r r magic–p r- r, r r q r magic–q r- r and
r r magic–r r- r.
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Figure 4. Dependency graph of transformed program of Example 4.4.

First, we execute negnumber. The resultant strata are:

L3 p r s, ¬r, t, ¬r, q, p; I3 p r s, ¬r–1, t, ¬r–2, q, p;

L2 r r q; I2 r–1 r q, r–2 r q;

L1 q r q0 ; I1 B;

Before we perform dynlabel, note that the dependency graph of the relevant
magic transformed program of the resultant strata still contains the cycles:
r–1 r magic–r–1 r magic–p r- r–1, r–2 r magic–r–2 r magic–p r- r–2,
r–1 r q r magic–q r- r–1, and r–2 r q r magic–q r- r–2.

After the application of dynlabel, the resultant program is

L3 p r s, ¬r, t, ¬r, q, p; I3 p r s, ¬r–1i , t, ¬r–2i , q, p;

L2 r r q; I2 r–1i r q, r–2i r q;

L1 q r q0 ; I1 B;

The dependency graph of the resultant strata contains the negative cycles: r–1i

r q r magic–q r- r–1i and r–2i r q r magic–q r- r–2i .
At this point we execute the label procedure. That is, we label a literal p

when there exists a sequence of paths connecting it to another body literal q in
the same rule, with at least one path being negative and there is an arc of the
form N R r in the SIPS such that q [ N and p 5 r. The resultant program is

L3 p r s, ¬r, t, ¬r, q, p; I3 p r s, ¬r–1i , t, ¬r–2i , label–q–3, p;

L2 r r q; I2 r–1i r q, r–2i r q;

L1 q r q0 ; I1 label–q–3 r q0 ;

The relevant program is

L1 q r q0 I3 p r s, ¬r–1i , t, ¬r–2i , label–q–3, p;

I2 r–1i r q, r–2i r q;

I1 label–q–3 r q0 ;

The magic-transformed program is
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Figure 5. Dependency graph of labeled and transformed program of Example 4.4.

p r magic–p, s, ¬r–1i , t, ¬r–2i , label–q–3, p,

r–1i r magic–r–1i , q, r–2i r magic–r–2i , q,

q r magic–q, q0 , label–q–3 r magic–label–q–3, q0 ,

magic–r–1i r magic–p, s, magic–r–2i r magic–p, s, ¬r–1i , t,

magic–label–q–3 r magic–p, s, ¬r–1i , t, ¬r–2i ,

magic–p r magic–p, s, ¬r–1i , t, ¬r–2i , label–q–3,
magic–q r magic–r–2i .magic–q r magic–r–1i ,

The dependency graph of the relevant predicates is shown in Figure 5 and all
negative cycles are removed.

V. CORRECTNESS OF THE LABELING ALGORITHM

In this section, we prove the preserving of stratification of the magic-set-
based transformation on a labeled database. For this purpose, the following
definition is necessary.

DEFINITION 5.1. A directed graph is called a culprit cycle if its underlying
undirected graph (The underlying undirected graph of a directed graph is defined
as the undirected graph resulting from ignoring the directions in the edges) is a
cycle and at least one edge in the graph is negative.

As an example, consider the graph shown in Figure 6. In the graph, there are
two negative edges: from q to p and from t to s. Especially, the graph shown in

Figure 6. Culprit cycle.
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Figure 7. Culprit cycles.

Figure 7(a) is also a culprit cycle since we can take it as the graph shown in Figure
7(b) and there is a negative edge: p r- q in the graph.

PROPOSITION 5.1. Let Pa be a stratified adorned program and Pam the resultant
program after applying the algorithm of magic-set transformation to Pa. If Pam is
unstratified, then the dependency graph corresponding to Pa contains necessarily
culprit cycles.

Proof. Suppose that Pa is stratified but Pam is unstratified. Let p and q be
two nodes (not the nodes representing magic predicates) in a negative cycle of
Pam and G be the negative path from p to q. Without loss of generality, we assume
that on G there is no node which represents a magic predicate. Thus, G is also
a negative path in the directed graph corresponding to Pa. Consider the path G9
in the negative cycle from q to p. Because Pa is stratified, we know that on G9
there is at least one node which represents a magic predicate. Let l0 be the first
node representing a magic predicate, say, magic–r0 . Now consider the succeeding
node of l0 , l1 . In terms of the algorithm of the magic-set transformation, l1 is
a node which represents either r0 or another magic predicate. If l1 represents a
magic predicate, we further examine its succeeding node. In this way, we can
finally find a sequence

l0 , l1 , . . . , lm

with li representing magic–ri (0 # i , m) and lm representing rm21 . If rm21 is p, then

p 5 rm21 R rm22 R ? ? ? ? ? ?, R r1 R r0 R q9

is a path from p to q9 in the dependency graph corresponding to Pa. Therefore,
the graph consisting of the path from p to q, the path from q to q9, and the path
from p to q9 constitutes a culprit cycle in the dependency graph corresponding
to Pa. The proposition is proved. If rm21 is not p, we consider rm21’s successor. If
this successor is neither p nor the node representing a magic predicate, we further
check its successor. In this way, we can find p or another c0 which is the first
node, after rm21 , representing a magic predicate, say, magic–s0 . As above, we
can find another sequence c0 , c1 , . . . , cn with ci representing magic–si (0 #
i , n) and cn representing sn21 such that

sn21 R ? ? ? , R s0

is a path in the dependency graph corresponding to Pa. Because the dependency
graph is finite, we can finally find a node t in a finite number of steps such that
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Figure 8. Culprit cycle.

t 5 p. Hence, the graph consisting of the sequence of paths which we have found
is a culprit cycle in the dependency graph corresponding to Pa. j

However, the culprit cycle is not sufficient for unstratification. As a counter
example, consider the graph shown in Figure 8. If in the SIPS for the program
there is no arc being of the form N R r such that s0 [ N and q0 5 r, then in the
dependency graph corresponding to the transformed version of the program
there is no negative cycle which is introduced from the culprit cycle and the
newly produced magic rules. The reason for that is no magic rule of the form
magic–q0 r ? ? ? s0 ? ? ? is derived. Therefore, we lack an edge for a negative
cycle.

PROPOSITION 5.2. For a stratified adorned program Pa, if Pal is the resultant program
after applying the labeling algorithm to Pa, and Palm is the resultant program after
applying the magic-set transformation to Pal then Palm is stratified.

Proof. From Proposition 5.1, we know that if a transformed program is
unstratified, the dependency graph corresponding to the original program con-
tains at least one culprit cycle. Therefore, we need only to prove that the depen-
dency graph corresponding to the labeled version of a stratified program contains
no culprit cycle or only those from which no negative cycles can be introduced.
After applying the first procedure of the labeling algorithm, the graph as shown
in Figure 9(a) will be changed into the graph as shown in Figure 9(b). Therefore,
the unstratification caused by the graph will be eliminated.

Figure 9. Removing culprit cycles by using negnumber.
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Figure 10. Culprit cycles.

After applying the second procedure of the labeling algorithm, any culprit
cycles like that of Figure 10(a) becomes the graph shown in Figure 10(b). Since
the subscript i will be changed with each iteration of the T operation,17 this
subgraph is in effect identical to the graph shown in Figure 11. Thus, the unstrati-
fication caused by the graph shown in Figure 10(a) will also be removed.

After applying the third procedure of the labeling algorithm, any culprit
cycle like that of Figure 12(a) will be changed into the graph shown in Figure
12(b) if in the SIPS for the program there is an arc being of the form N R r
such that s0 [ N and q0 5 r. Only those culprit cycles, which do not have the
associated SIPS, are left unlabeled because they cannot introduce negative cycles
at all. By Proposition 5.1, the Palm is stratified. j

PROPOSITION 5.3. Let D 5 P < F be a stratified database and Dalm 5 Palm < F be
the resultant database after applying the magic set transformation to the labeled
database Pal. Let A be the set of answers to a query on Dalm. If A is evaluated
using a bottom–up computation, then A is sound and complete with respect to
the perfect model.

Proof. See Appendix. j

VI. TIME COMPLEXITY

In order to analyze the time complexity of the labeling algorithms, we
distinguish two kinds of elementary costs: the cost of labeling a rule and the cost
of copying a rule. Since in practice a rule contains only a limited number of
literals, both the time spent for labeling a rule and the time for copying a rule

Figure 11. Expansion of graph of Figure 10(b).



MAGIC SETS AND STRATIFIED DATABASES 223

Figure 12. Removing culprit cycles by using label.

can be taken as a constant. We denote them by clabel and ccopy , respectively. In
addition, we assume that the rule set contained in the system is partitioned into
n strata such that

(1) each stratum Li , 1 # i # n, contains exactly the rules defining a predicate p if
p is not recursive, or

(2) Li contains exactly the rules defining p and (any) other predicates in the same
strongly connected component (in the associated dependency graph) as p if p is
recursive; and

(3) L0 contains all the base facts.

Using the above assumption, we know that the time requirement of negnumber()
is k1 ? clabel 1 k2 . ccopy for some integers k1 , k2 # n, since in each stratum there are
only a constant number of negated predicates. For the same reason, the cost of
dynlabel() is k ? clabel for some k # n. In order to show that the (third) algorithm
label() requires O(n ? e) time, where e represents the number of the predicates
involved in the rule set, we demonstrate that for each pair of the form (r, p),
where p is an unlabeled (positive) body literal and r is a body literal in the same
rule, the function pathConn(r, p) can be evaluated in linear time. To this end,
we consider the underlying undirected graph G 9 of the corresponding depen-
dency graph G. Then, the computation of pathConn(r, p) is reduced to the
problem of checking whether there exists an (undirected) path connecting r and
p in G9. Obviously, this can be done in O(e) time. Considering that there is only
one for loop in label() and every iteration step has cost O(e) in the worst case,
we know that label() requires only O(n ? e) time.

In contrast, the algorithm proposed in Ref. 14 requires O(n2 ? e) time, because
its ‘‘positive labeling procedure’’ consists of two loops. On the one hand, the
outer loop will be performed n times. On the other hand, for every iteration of
the outer loop (say for the ith iteration), a function depends(i, j), i . j , which
is used to determine whether there exists a path in G from a predicate defined
in Lj to a predicate defined in Li , will be computed for i strata through the inner
loop. In addition, two elementary operations: labeling a rule and copying a rule,
will be carried out for these i strata in the worst case. Since the cost of depends(i,
j) is O(e), the total cost of the algorithm proposed in Ref. 14 is

O SOn

i51
i ? (clabel 1 ccopy 1 e)D5 O(n2 ? e).
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VII. SUMMARY

In this article, a labeling algorithm for stratified databases is presented. The
algorithm which is performed prior to the magic-set algorithm can be used to
distinguish the context for constructing magic sets. We have shown that the
culprit cycles give rise to the unstratification of a database. Based on the analysis,
three subprocedures are developed to remove the different kinds of culprit cycles.
The negnumber procedure numbers the different occurrences of a negative literal
in a rule. The dynlabel procedure gives each negative body literal a dynamic
subscript when it appears in a recursive rule. Finally, the label procedure labels
each body literal p when there exists a sequence of paths connecting it to a
negative body literal ¬q in the same rule, or a sequence of paths with at least
one path being negative connecting it to a positive body literal q in the same
rule and there is an arc of the form N R r in the SIPS such that q [ N and
p 5 r.

VIII. APPENDIX

Here we prove Proposition 5.3. To this end, we have to first clarify that the
labeling algorithm given in Section IV will not change the semantics of the
original program. That is, we need to show that if A is the set of answers to a
query on D 5 P < F and A9 is the set of answers to the query on D l 5 P l <
F l, where P l and F l are the labeled versions of P and F, respectively, then we
will have A 5 A9. For this purpose, we prove five lemmas to confirm this claim.
Then we show a sixth lemma which completes the total proof.

Let F be a set of facts. A binding u is a set of pairs hx1/t1 , . . . , xn/tnj, where
x1 , . . . , xn are variables, and t1 , . . . , tn are elements in F. If p is a predicate
with variables x1 , . . . , xn and u a binding, then pu denotes the simultaneous
replacement of all the variables of p by the corresponding elements in u. Let r
be a rule:

q r p1 , . . . , pm .

A binding u is applicable w.r.t. r and the fact set F if for each body literal pi ,

(1) piu [ F if pi is positive, or
(2) piu Ó F if pi is negative.

The application of r to F denoted r(F), is defined as:

r(F) 5 hquuu is applicable w.r.t. r and F and q is the head of rule rj.

For a set R of rules R(F), the application of R to F, is defined as:

R0(F) 5 F,

Ri11(F) 5 <
r[R

r(Ri(F)) < Ri(F),
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R(F) 5 <
y

i50

Ri(F).

Interpretation I9 is a subinterpretation of an interpretation I, denoted I9 # I, if
I and I9 are identical except perhaps in some predicates p such that I9(p) , I(p).
(For an interpretation I, I(p) denotes the interpretation of p under I.) We say
that an interpretation G is a minimal model of R w.r.t. a set of facts F if

● F # G, and
● G is a model of R and
● There does not exist a model G9 of R different from G such that G . G9.

Note that the above description is identical in spirit to the definition of the perfect
model. For the purpose of proofs, however, we put stress on the application
of a single rule, which may facilitate the clarification of the main idea of the
following lemmas.

LEMMA 1. Let P be a program (i.e., a set of rules) with a stratification consisting
of a single level and let F be a set of facts. Then P(F) is a minimal model of P
w.r.t. F.

Proof. The proof is identical to Lemma 3.2.2 in Ref. 18. j

In the remainder of the appendix, we will use D1 5 Pnegn < Fnegn , D2 5 Pdyn

< Fdyn and D3 5 Plab < Flab to denote the databases obtained by applying the
labeling procedures ‘‘negnumber,’’ ‘‘dynlabel,’’ and ‘‘label’’ to D 5 P < F, respec-
tively.

LEMMA 2. Let P be a program with a stratification consisting of a single level and
F be the set of facts. Let Vnegn be the set of those facts with the newly generated
predicate symbols when the labeling procedure ‘‘negnumber’’ is applied to P <
F. Then we have P(F) 5 Pnegn(Fnegn)/Vnegn .

Proof. Without loss of generality, assume that only one rule r in P contains
multiple appearance of a negative literal in its body. In terms of the procedure
‘‘negnumber,’’ the different occurrence of this negative literal will be numbered.
Thus, the proof of the lemma is reduced to the proof of the equation r(F) 5
rnegn(Fnegn)/Vnegn , where rnegn is the labeled rule obtained by applying the procedure
‘‘negnumber’’ to r.

Assume r(F) ,/ rnegn(Fnegn). Then there exists at least an element e [ r(F)
but e Ó rnegn(Fnegn). Suppose that r is of the form:

q r p1 , . . . ¬s, . . . , ¬s, . . . , pm ,
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and there is a binding u such that qu 5 e. Then p1u, . . . , pmu [ F and all su Ó
F. Let S , F be the set of all s facts in F. In terms of the algorithm ‘‘negnumber,’’
r will be transformed to rnegn :

q r p1 , . . . ¬s1 , . . . , ¬si , . . . , pm ,

and accordingly F will be augmented to Fnegn 5 F < <
i

j51

Sj , where each Sj ( j 5

1, . . . , i) is a copy of S and each element in Sj has the predicate name sj . Since
all su Ó F and thus all su [ S, we have sj Ó Sj ( j 5 1, . . . , i). Therefore, sj Ó
Fnegn ( j 5 1, . . . , i). Obviously, p1u, . . . , pmu [ Fnegn . Thus, qu 5 e [ rnegn(Fnegn).
Contradiction. Then, we have r(F) # rnegn(Fnegn). Trivially, we have r(F) #
rnegn(Fnegn)/Vnegn . In a similar way, we can prove r(F) $ rnegn(Fnegn)/Vnegn . This
completes the proof of the lemma. j

Note that in a practical implementation, we will not label a base literal
because no magic rule will be constructed for it. Therefore, in practice, ¬s in
the above rule will never be labeled. However, for the theoretical purpose, we
prove this situation to provide the basic step for an induction proof.

LEMMA 3. Let P be a program with a stratification consisting of a single level and
F be the set of facts. Let Vdyn be the set of those facts with the newly generated
predicate symbols when the labeling algorithms ‘‘dynlabel’’ is applied to P < F.
Then we have P(F) 5 Pdyn(Fdyn)/Vdyn .

Proof. The proof is similar to Lemma 2. j

LEMMA 4. Let P be a program with a stratification consisting of a single level and
F be the set of facts. Let Vlab be the set of those facts with the newly generated
predicate symbols when the labeling algorithms ‘‘label’’ is applied to P < F. Then
we have P(F) 5 Plab(Flab)/Vlab .

Proof. The proof is similar to Lemma 2. j

Based on the above lemmas, we can demonstrate another important claim
that the labeling algorithm will not change the semantics of the original (stra-
tified) databases.

Given a stratified database D 5 P < F with P being partitioned into levels
L1 , . . . , Ln . Let F1 5 L1(F), F2 5 L2(F1), . . . , Fi 5 L2(Fi21), . . . , Fn 5 Ln(Fn21).
Then Fn is the perfect model for D. If the labeled version of D is denoted as
D l 5 P l < F l, then P l can also be partitioned into n levels Ll

1 5 L91 < I1 , . . . ,
Ll

n 5 L9n < In , where each L9i (i 5 1, . . . , n) is the labeled version of Li and
F l

n each Ii is an associated set of newly constructed rules in terms of Li . Let
Fl

1 5 L l
i(F l), . . . , F l

i 5 Ll
i (Fl

i21), . . . , F l
n 5 Ll

n(F l
n21). Then F l

n is the perfect
model for Dl.
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LEMMA 5. Let Vi (i 5 1, . . . , n) be the set of those facts with the newly generated
predicate symbols in Ll

i . Then Fn 5 F l
n/Vn .

Proof. We show by induction that Fn 5 F l
n/Vn .

Basis: In terms of Lemma 2, Lemma 3, and Lemma 4, we have

(1) L1(F) 5 L1.negn(Fnegn)/Vnegn ,
(2) L1(F) 5 L1.dyn(Fdyn)/Vdyn ,
(3) L1(F) 5 L1.lab(Flab)/Vlab .

Replace L1 and F in (2) with L1.negn and Fnegn , respectively. We then have

L1.negn(Fnegn) 5 L1.negn.dyn(Fnegn.dyn)/Vdyn .

Similarly, by replacing L1 and F in (3) with L1.negn.dyn and Fnegn.dyn , respectively, we
will have

L1.negn.dyn(Fnegn.dyn) 5 L1.negn.dyn.lab(Fnegn.dyn.lab)/Vlab .

Therefore, the following equations hold:

L1(F) 5 L1.negn(Fnegn)/Vnegn

L1.negn(Fnegn)/Vnegn 5 L1.negn.dyn(Fnegn.dyn)/Vnegn/Vdyn

L1.negn.dyn(Fnegn.dyn)/Vnegn/Vdyn 5 L1.negn.dyn.lab(Fnegn.dyn.lab)/Vnegn/Vdyn/Vlab .

By the definitions, (Vnegn < Vdyn < Vlab) 5 V1 and L1.negn.dyn.lab(Fnegn.dyn.lab) 5 Ll
1(F l).

Thus, L1(F) 5 Ll
1(F l)/V1 holds.

Induction step: Assume that, for k # i, Fk 5 F l
k/Vk holds. We show that Fi11 5

F l
i11 . Assume that only one rule r in the (i 1 1)th level Li11 contains multiple

appearance of a negative literals in its body and is of the form:

q r p1 , . . . ¬s, . . . , ¬s, . . . , pm ,

then the proof of Fi11 5 F l
i11/Vi11 is reduced to the proof of r(Fi) 5 rnegn(F l

k)/Vi .
By the definition of strata, there exists some j # i such that s predicate is defined
in the j th level. In terms of the algorithm ‘‘negnumber,’’ rnegn is of the form:

q r p1 , . . . , ¬s1 , . . . , ¬sh , . . . , pm ,

and s1 , . . . , sh are defined in L l
j . Let S , Fj be the set of s facts and Su (u 5 1,

. . . , h) be the set of su facts. Then each Su , Vj (u 5 1, . . . , h). If there exists
a binding u such that qu [ r(Fi), then p1u, . . . , pmu [ Fi and all su Ó Fi . By
induction hypothesis, F l

i 5 Fi < Vi . Then p1u, . . . , pmu [ F l
i . Since all su Ó Fi

and thus su Ó S, we know that su Ó Su and thus su Ó Vj . This explains that qu
[ rnegn(F l

i). Therefore, r(Fi) # rnegn(F l
i). Trivially, we have r(Fi) # rnegn(F l

j)/Vi . In
a similar way, we can show that rnegn(F l

i)/Vi # r(Fi). Therefore, r(Fi) 5 rnegn(F l
i )/Vi .

If there exists a copy of r in the (i 1 1)th level L l
i11 :

q9 r p1 , . . . ¬s, . . . , ¬s, . . . , pm ,
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all facts of the form q9u will not be in Fi11 but in F l
i11 . Denote all such facts as

di11 . Then Vi11 5 Vi < di11 and Fi11 5 F l
i11/Vi11 .

In a similar way, we can prove the other two cases. The correctness of the
consecutive applications of ‘‘negnumber,’’ ‘‘dynlabel,’’ and ‘‘label’’ to a stratified
database can be derived using the technique for showing the basic step. j

From Lemma 5, we see that the labeling algorithms do not change the
semantics of a stratified database and the labeled version remains stratified.
Therefore, to complete the proof of Proposition 5.3, we need only to show that
for a query q issued to a stratified database P, the answers obtained by running
P is the same as that by running its magic version.

LEMMA 6. For an adorned stratified database Da 5 Pa < F and adorned query
?-qa(t), let Pam be the program transformed by magic-set transformation, so that
Dam 5 Pam < hmagic(qa)j < F. Then Pa and Pam are equivalent with respects to ?-
qa(t). That is, an instance qa(c) [ Fi for some i if and only if there exists some j
such that qa(c) [ Lam

j (F m
j21), where Lam

j represents the jth level of Pam and Fam
j21 5

Lam
j21(Lam

j22(. . . (Lam
1 (F)) . . . )).

Proof. We prove this lemma by induction on the level of qa. (The level
of a query ?-qa is defined to be the level of those rules defining qa in the
adorned program.)

Basis. Assume l(qa) 5 1. In this case, only the first level of Da is involved in the
computation. For a predicate symbol p [ L1 such that ¬p(. . .) occurs in the
body of some rule of L1 , introduce a new predicate symbol p. Let

D 5 hp(t1 , t2 , . . . , tn)up is a n-any predicate symbol in L1 , and p(t1 , t2 , . . . , tn) Ó Fj.

Replacing each ¬p with the corresponding p, we obtain a positive subdata-
base which contains the rules corresponding to the first level of Pa and all facts.
Then the proof is identical to Proposition 4.2 of Ref. 3.

Induction step. Suppose that for some n, for all i , n, and for any query qa of
level i, the lemma holds. We prove that an instance qa(c) (of qa(t)) [ Fn if and
only if there exists some integer u such that qa(c) [ Lam

u (Fam
u21). Since qa(t) [ Ln

and n . 1, there must be a rule r in Ln with head q and body

p1 , . . . ¬s1 , . . . ¬sh , . . . , pk ,

and a binding u such that qu 5 qa(c). In terms of the magic-set transformation,
there is a rule of the following form in Lam

u for some u:

(1) qa r magic–qa, p1 , . . . ¬s1 , . . . ¬sh , . . . , pk .

For qa(c) to be in Lam
u (Fam

u21),

(2) qau r magic–qau, p1u, . . . ¬s1u, . . . ¬shu, . . . , pku



MAGIC SETS AND STRATIFIED DATABASES 229

must be a ground instance of the above rule. Since magic–qau is generated by
the magic-set transformation, all we need to show is that all sgu (g 5 1, . . . ,
h) are not in Fam

u21 and thus not in Lam
u (Fam

u21) and all pj ( j 5 1, . . . , k) are in
Lam

u (Fam
u21). First, we prove that sgu are not in Fam

u21 . By the definition of levels,
each sg is of level i such that i , n 2 1. If sgu is in Fam

u21 and thus sgu is in Fi11 ,
by the induction hypothesis, we know that sgu is in Fi11 and thus it is also in Fn21 .
From this, we have qa(c) Ó Ln . Contradiction. Second, we prove that all pj ( j 5
1, . . . , k) are in Lam

u (Fam
u21). To this end, we require to prove that magic(pj )

( j 5 1, . . . , k) is also in Lam
u (Fam

u21), if pj is a derived predicate. Consider the
derived body literals in the total order induced by the SIPS associated with r.
Let p1 be the first derived literal in the body. There is an arc N R p1 from the
SIPS, in which N consists of base literals and possibly q. So there is a magic rule
with head magic–p1 and body consisting of the base literal in N and possibly
magic(qa). Since the facts defining the base predicate in Da are included in
Fam

u21 and magic(qa) is generated by the magic transformation, then magic(p1)u
is in Lam

u (Fam
u21). Consider the next derived literal p2 in the SIPS-induced order.

The head of the SIPS arc N entering p2 may include p1 , and the corresponding
magic rule would include p1 in the body. Since p1u is in Lam

u (Fam
u21), using a similar

argument to the above we can show that magic(p2)u is in Lam
u (Fam

u21). Repeating
this for all such derived body literals, we see that each magic(pj)u ( j 5
1, . . . , k) is in Lam

u (Fam
u21). If p1 is defined in the vth level of Pa and n , n,

then by induction hypothesis p1u is in Lam
t (Fam

t21) for some t , u, and thus p1u is
in Lam

u (Fam
u21). If p1 is defined in the nth level of Pa with a rule of the form:

(3) p1 r p11 , . . . , p1w ,

there exists some binding c such that

(4) p1c r p11c, . . . , p1wc,

is an instance of (3) and p1c 5 p1u. (This is due to the fact that qau r p1u, . . .
¬s1u, . . . ¬shu, . . . , pku is an instance of r in Ln.) From this, we know that
magic(p1)c 5 magic(p1)u. In terms of the magic set transformation, the rule:

(5) p1 r magic(p1), p11 , . . . , p1w ,

is in Lam
d for some d # u. Due to the equation magic(p1)c 5 magic(p1)u, p1c, r

magic(p1)c, p11c, . . . , p1wc is an instance of (5). Therefore, p1u 5 p1c is in
Lam

u (Fam
u21). In the same way, we can show that each pju ( j 5 1, . . . , k) is in

Lam
u (Fam

u21) and thus qa(c) is in Lam
u (Fam

u21).
In order to complete the induction step, we have to show that if qa(c) [

Lam
u (Fam

u21) for some integer u, then qa(c) [ Fn for some n. The proof in this
direction simply follows from the fact that rules in Lam

u , which are derived from
rules in Ln, are more restrictive in that an extra positive body literal (magic
predicate) is inserted into the body. j
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PROPOSITION 5.4. Let D 5 P < F be a stratified database and Dalm 5 Palm < F be
the resultant database after applying the magic set transformation to the labeled
database Pa. Let A be the set of answers to a query on Dalm. If A is evaluated
using a bottom–up computation, then A is sound and complete with respect to
the perfect model.

Proof. By Lemma 5, we know that a labeling algorithm will not change the
semantics of the original program. By Lemma 6, we know that a transformed
labeled program is equivalent to the original labeled program in the sense that
the set of answers (to the corresponding adorned query) obtained by running
the former is the same as that by running the latter. This completes the proof. j
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