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1 Evaluation of Reachability Queries Based
2 on Recursive DAG Decomposition
3 Yangjun Chen , Yibin Chen, and Yifeng Zhang

4 Abstract—LetG(V,E) be a digraph (directed graph)with n nodes and e arcs. DigraphG� ¼ (V,E�) is the reflexive, transitive closure if v! u

5 2E� iff there is a path from v to u inG. Efficient storage ofG� is important for supporting reachability querieswhich are not only common in

6 graph databases, but also serve as fundamental operations used inmany graph algorithms. A lot of strategies have been proposed based

7 on the graph labeling, by which each node is assignedwith certain labels such that the reachability of any two nodes through a path can be

8 determined by their labels. Among themare interval labeling, chain decomposition, 2-hop labeling, and path-trees, aswell as partial index

9 basedmethods. However, due to the very large size ofmany real world graphs, the computational cost and size of labels using existing

10 methodswould prove too expensive to be practical. In this paper, we propose a new approach to deduct and decompose a graph into a

11 series of spanning trees and transform a query q to a series of subqueries each evaluated against a spanning tree. Using the so-called tree

12 labeling, each subquery needs onlyO(1) time. More importantly, the number of such subqueries is� n. Thus, q can be evaluated very

13 efficiently.We demonstrate both analytically and empirically the efficiency and effectiveness of our method.While the query time of our

14 method is orders of magnitude better than almost all the existing strategies, its indexing time and index sizes are comparable to them.

15 Index Terms—Reachability, spanning trees, graph decomposition, recursive graph decomposition, random graph analysis

Ç

16 1 INTRODUCTION

17 GIVEN two nodes u and v in a directed graph G(V, E), we
18 want to know if there is a path from u to v, denoted as
19 u ) v. The problem is known as graph reachability. In many
20 applications, such as evaluation of recursive queries in
21 deductive databases, type checking in object-oriented data-
22 bases, XML query processing, social network, transporta-
23 tion network, internet traffic analyzing, semantic web, trace
24 of infectious diseases, and metabolic network [24], graph
25 reachability is one of the most basic operations, and there-
26 fore needs to be efficiently supported.
27 A naive method is to precompute the reachability
28 between every pair of nodes – in other words, to compute
29 and store the transitive closure (TC for short) of a graph as a
30 Boolean matrixM such thatM[i, j] ¼ 1 if there is a path from
31 i to j; otherwise, M[i, j] ¼ 0. Then, a reachability query can
32 be answered in constant time. However, this requires O(n2)
33 space, which makes it impractical for massive graphs,
34 where n ¼ jV j . Another method is to compute the shortest
35 path from u to v over a graph on demand. Therefore, it
36 needs only O(e) space, but at very high query processing
37 cost - O(e) time in the worst case, where e ¼ jE j .

38There is much research on this issue to reduce space
39overhead but still keep a short query time, such as those dis-
40cussed in [1], [2], [4], [5], [7], [10], [11]. All of them reduce
41the space requirement to some extent. However, the worst
42space overhead is yet in the order of O(n2), or in the order of
43O(e), but with the query time near to O(e). In the case of
44large graphs, they cannot be efficient.
45In this paper, we investigate the problem from a different
46angle: to deduct and decompose G into several components
47such that the existing labeling techniques can be utilized for
48each smaller graph without sacrificing too much query time.
49Specifically, we will decompose G into a series of sub-
50graphs G ¼ G0, G1, . . ., Gk-1 (k � 1) and find their respective
51spanning trees (forests) T0, T1, . . .., Tk-1. Accordingly,
52we will associate each node u with two node sequences:
53Au ¼ a0, . . ., al and Bu¼ b0, . . ., bl (l � k - 1) with a0 ¼ b0 ¼ u, aj
54) ajþ1 and bj ( bjþ1 for j ¼ 0, . . ., l - 1. Au is used to check
55reachabilty from u to any other node while Bu is used to
56check reachabilty from any other node to u. Thus, to check
57whether a node v is reachable from u, we will decompose
58the query into a series of subqueries as described below:

59� Assume that the two node sequences associated with
60v are Av ¼ a0

0, . . ., ar0 and Bv ¼ b0
0, . . ., br0 (r � k).

61� To answer query q: u) v?, we will evaluate a series
62of subqueries qj (j ¼ 0, . . ., s, s � min{l, r}), by which
63we will test whether aj) bj

0 within Tj.
64� We evaluate these subqueries in turn, starting from
65q0, until some qj returns true, or all the subqueries
66are exhausted with each evaluating to false. In the
67former case, the answer is true. In the latter case, false.
68Besides, we will also associate each u with an extra pair
69of integers (ku, mu), used as a filter. They are in fact two topo-
70logical numbers with a very nice property [31]: If another
71node v, associated with (kv, mv), is reachable from u, we
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72 must have kv � ku and mv � mu. Thus, kv ? ku or mv ? mu

73 indicates a negation, and then in this case the scanning of
74 the A- and B-sequences is unnecessary to provide a negative
75 answer to the reachability query from u to v.
76 We decompose a query in this way since the evaluation
77 of each qj (checking whether aj ) bj

0 within Tj) can be done
78 in constant time. Hence, the time complexity of a query
79 evaluation is bounded by O(k) with O(kn) space require-
80 ment. Theoretically, k ¼ O(

ffiffiffi
n
p

). However, our experiments
81 show that k� ffiffiffi

n
p

for all the tested graphs.
82 The remainder of the paper is organized as follows. In Sec-
83 tion 2, we summarize the symbols and notations used in this
84 paper. In Section 3, we review the related work. In Section 4,
85 we discuss themainworking process of ourmethod to reduce
86 and decompose a directed acyclic graph (DAG), based on
87 which a transitive closure can be effectively compressed. In
88 Section 5, we present some important technical details used
89 by the main algorithm, such as recognition of critical nodes,
90 and an efficient approach to find spanning trees of a DAG
91 withmore forward arcs to reduce the depth of recursive graph
92 decomposition. Section 6 is devoted to the experiments.
93 Finally, a short conclusion is set forth in Section 7.

94 2 NOTATIONS

95 In this section, we summarize all the symbols and notations
96 used throughout the paper, in Table 1.

97 3 RELATED WORK

98 In the past three decades, many interesting labeling-based
99 strategies have been proposed to reduce both the

100precomputation time and storage cost with reasonable
101answering time. In general, all those methods can be catego-
102rized into two groups: full indexing and partial indexing. By
103full indexing, for both positive queries (reachability check-
104ing) and negative queries (non-reachability checking), the cre-
105ated index can be fully used. By partial indexing, however,
106only for some negative queries the index can be employed
107while for any positive query, as well as a large part of nega-
108tive queries the index can be used only for doing some
109kinds of pruning of space when searching G, or totally use-
110less. So the worst-case querying time complexity of all the
111partial index based methods is bounded by O(n þ e).
112In the following, we will review some of these two kinds
113of methods.
114Full indexing
115Chain decomposition methods. In [10], Jagadish suggested a
116method to decompose a DAG into node-disjoint chains. On
117a chain, if node v appears above node u, there is a path from
118v to u in G. Then, each node v is assigned an index (i, j),
119where i is a chain number, on which v appears, and j indi-
120cates v’s position on the chain. These indexes can be used to
121check reachability efficiently with O(1) query time and O
122(mn) space overhead, where m is the number of chains.
123However, to find a minimum set of chains for a graph,
124Jagadish’s algorithm needs O(n3) time (see page 566 in [10]),
125and in the worst case, m is O(n).
126The method discussed in [5] greatly improves Jagadish’s
127method. It needs only O(n2 þ v1.5n) time to decompose a
128DAG into a minimum set of node-disjoint chains, where v

129represents G’s width. Its space overhead is O(vn) and its
130query time is bounded by a constant. In [7], the concept of
131the so-called general spanning tree is introduced, in which
132each arc corresponds to a path in G. Based on this data
133structure, the real space requirement becomes smaller than
134O(vn), but the query time increases to log v.
135Interval based methods. In [1], Agrawal et al. proposed a
136method based on interval labeling. This method first fig-
137ures out a spanning tree T and assigns to each node v in T
138an interval (a, b), where b is v’s postorder number (which
139reflects v’s relative position in a postorder traversal of T);
140and a is the smallest postorder number among v and v’s
141descendants with respect to T (i.e., all the nodes in T[v],
142the subtree rooted at v). Another node u labeled (a0, b0) is a
143descendant of v (with respect to T) iff a � b0 < b. This idea
144originates from Schubert et al. [19]. In a next step, each
145node v in G will be assigned a sequence L(v) of intervals
146such that another node u in G with interval (x, y) is a
147descendant of v (with respect to G) iff there exists an inter-
148val (a, b) in L(v) such that a � y < b. The length of such a
149sequence (associated with a node in G) is bounded by O
150(l), where l is the number of the leaf nodes in T. So the
151time and space complexities are bounded by O(le) and O
152(ln), respectively. The querying time is bounded by O(log
153l). In the worst case, l ¼ O(n).
154The method discussed in [24] can be considered as a vari-
155ant of the interval based method, and called Dual-I, specifi-
156cally designed for sparse graphs G(V, E). As with Agrawal
157et al.’s, it first finds a spanning tree T, and then assigns to
158each node v a dual label: [av, bv) and (xv, yv, zv). In addition,
159a t � tmatrix N (called a TLC matrix) is maintained, where t
160is the number of non-tree arcs (arcs not appearing in T).

TABLE 1
Symbols and Notations

G a directed graph
u) v representing that v is reachable form u
T a spanning tree of G
T[v] subtree of T rooted at v
[av, bv) interval associated with v, where av is v’s preorder

number (denoted as pre(v)) and bv - 1 is equal to the
largest preorder number among all the nodes in T
[v]

{av, bv} cross range of node v
Vstart set of all the start nodes of cross arcs
Vend set of all the end nodes of cross arcs
Vcritical set of all the critical nodes
Tc critical tree of G (with respect to T), which contains

all the nodes in Vcritical [ Vstart [ Vend

Gc summary graph of G. G is decomposed into T and
Gc. But in general, G 6¼ T [ Gc.

T i
c critical tree of Gi

Gi
c summary graph of Gi

v� v’s anchor node of the first kind
v�� v’s anchor node of the second kind
vv interval sequence associated with node v
$v sequence of anchor node pairs associate with node

v
Av node sequence associated with v, used to check

reachability from node v
Bv node sequence associated with v, used to check

reachability to node v
parent(v) link pointing to parent of v in T
left-sibling
(v)

link pointing to the left sibling of v in T

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
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161 Another node uwith [au, bu) and (xu, yu, zu) is reachable from
162 v iff au 2 [av, bv), or N(xv, zu) – N(yv, zu) > 0. The size of all
163 labels is bounded by O(n þ t2) and can be produced in O(n
164 þ e þ t3) time. The query time is O(1). As an improvement
165 of Dual-I, Dual-II can reduce the space overhead from a
166 practical viewpoint, but increases the query time to log t.
167 2-hop labeling. The method proposed by Cohen et al. [4]
168 labels a graph based on the so-called 2-hop covers. It is also
169 designed for sparse graphs. A hop is a pair (h, v), where h
170 is a path in G and v is one of the endpoints of h. A 2-hop
171 cover is a collection of hops H such that if there are some
172 paths from v to u, there must exist (h1, v) 2 H and (h2, u) 2
173 H and one of the paths between v and u is the concatena-
174 tion h1h2. Using this method to label a graph, the worst
175 space overhead is in the order of O(n). The main theoretical
176 barrier of this method is that finding a 2-hop cover of mini-
177 mum size is an NP-hard problem. So a heuristic method is
178 suggested in [4], by which the overall label size is bounded
179 by O(n

ffiffiffi
e
p

log n), and the query time by O(
ffiffiffi
e
p

) since the
180 average size of each label is above O(

ffiffiffi
e
p

). The time for gen-
181 erating labels is O(n4). The 2-hop labeling is improved by
182 the so-called 3-hop labeling [37] and path-hop labeling [38].
183 The path-hop labeling is slightly better than the 3-hop
184 labeling with its indexing time and index size bounded by
185 O(ne) and O(ln), respectively. Its query time is in the order
186 of O(log2 l).
187 Path-tree decomposition. In 2011, Jin et al. [11], [12] dis-
188 cussed a method, by which a DAG G is decomposed into a
189 set of node-disjoint paths. Then, a weighted directed graph
190 Gw (called path-graph in [11]) is constructed, in which each
191 node represents a path and there is an arc i! j if on path i
192 there is a node connected to a node on path j. The weight
193 associated with i ! j is the number of such connections.
194 Then, find a maximum spanning tree Tw (called a path-tree)
195 of Gw and label the nodes in Tw with an interval in a way
196 similar to Agrawal et al.’s. Together with the labels assigned
197 to the nodes on all the paths, the intervals can be utilized to
198 check part of reachability. To be a complete strategy, each
199 node v has to be associated with a set, denoted Rc(v), such
200 that all the descendants of v, which appear on a path are
201 dominated by a node in Rc(v). In the worst case, the size of
202 Rc(v) is bounded by l. Therefore, the space complexity of
203 this method is O(ln). The query time and the labeling time
204 are bounded by O(log2 l) and O(le), respectively (see the
205 analysis of [12]). As mentioned above, l is bounded by O(n)
206 in the worst case. Thus, theoretically, both the space require-
207 ment and the query time of this method are worse than
208 Agrawal’s [1].
209 SCARAB. In [29], a different method is discussed, in
210 which a deducted TC over a subset V� of nodes, called a
211 backbone and denoted as TC(V�), is created. Then, for any
212 pair (u, v), if u can reach v but through at least d þ 1 interme-
213 diate nodes (where d is a pre-determined constant), i.e., their
214 distance is greater than d, there must exist two nodes u� and
215 v� in V� such that u can reach u�, v� can reach v within d

216 steps, and u� can reach v� in TC(V�). To find TC(V�), an
217 approximative algorithm is proposed in [29], which is based
218 on the set-cover algorithm [32] and needs O(

P
v2V ðNdðvÞ þ

219 EdðvÞÞ time, where Nd(v) and Ed(v) denote the nodes and the
220 arcs in v’s forward d-neighborhood, respectively. In the
221 worst case, it is O(ndd), where d is the maximum out-degree

222of a node in G. This running time is slightly improved by
223using the so-called one-side condition, by which V� is
224defined to be a subset covering any pair (u, v) with distance
225(u, v) ¼ d, where distance(u, v) is the length of a shortest path
226from u to v. The index size is obviously bounded by O(n þ e
227þ jV� j 2), but with a very high query time O(ddd/2e þ
228d2dlog jV� j ). This method is further improved by Jin et al.
229[34]. Two new strategies are proposed. One is called hierar-
230chical-labeling (HL) and the other is called distribution-labeling
231(DL). They are in fact two variants of backbones. By the HL,
232a node hierarchy is defined as V0 ¼ V 6� V1 6� V2 6� 			 6� Vh,
233with corresponding arc sets E0, E1, E2, 			, Eh, such that
234Gi ¼ (Vi, Ei) is the (one-side) reachability backbone of
235Gi
1 ¼ (Vi
1, Ei
1), where 0 < i � h. Its theoretical labeling
236time is slightly better than SCARAB since Gi is constructed
237from Gi-1 and for the whole working process some time can
238be saved. However, the backbone is used in the same way
239as SCARAB. So it has almost the same index size and query
240time as SCARAB. By the DL, each single node makes up a
241layer, but with very high labeling time O(n(n þ e)L), where
242L is the maximal labeling size. Also, its index size and query
243time are comparable to SCARAB.
244PWAH. The method discussed in [28] works in two
245phases. In the first phase, a deducted transitive closure of G
246will be created, by which for each node a bit vector is used
247to represent all those nodes reachable from it. In the second
248phase, each of such vectors will be compressed using the
249PWAH-8 encoding. In this way, the size of TC can be effec-
250tively reduced at cost of more query time since to check
251reachability the relevant compressed bit vectors have to be
252partially decompressed.
253Partial labeling
254GRAIL. The first partial labeling method proposed by Yil-
255dirim et al. [25] is a light-weight indexing structure. It tra-
256verses G for several times to create an interval sequence for
257each node, used as a filter. The interval for a node u, gener-
258ated by a traversal, is of the form Lu ¼ [rx, ru], where ru
259denotes the rank of the node u in a post-order traversal of
260the DFS tree of G (the tree created by exploring G in the
261depth-first fashion.) Here, the ranks are assumed to begin at
2621, and all the children of a node are assumed to be ordered
263and fixed for that traversal. Further, rx denotes the lowest
264rank for any node x in the subgraph rooted at u (i.e., includ-
265ing u.) For illustration, Fig. 1a shows an interval labeling on
266a DAG, assuming a left to right ordering of the children. In
267the figure, the solid arrows stand for the DFS tree while the
268dashed arrows for non-tree edges. As one can see, interval
269containment of nodes in a DAG is not exactly equivalent to
270reachability. For example, Lh ¼ [1], [8] 6� [1], [4] ¼ Lc, but h
271; c.
272However, Lu 6� Lv implies v ; u. This shows that the
273intervals generated in this way can be used only as a filter.

Fig. 1. Illustration for Grail labeling.
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274 For this reason, GRAIL employs multiple intervals that are
275 obtained via random graph traversals to get stronger filter-
276 ing power, as illustrated in Fig. 1b.
277 Let Lu ¼L1

u , . . ., Lk
u and Lv ¼L1

v , . . ., Lk
v be the interval

278 sequences of u and v, respectively. If there exists i (i 2 {1, . . .,
279 k}) such that Li

u 6� Li
v, u is definitely not a descendant of v.

280 But if for all i 2 {1, . . ., k} Li
u � Li

v, it cannot be determined
281 whether u is a descendant of v, or vice versa. In this case, the
282 whole G will be searched in the depth-first manner, but
283 with the label sequences used to prune the search space.
284 The labeling time of this method is bounded by O(k(n þ e)).
285 If k is chosen as a constant, the index size is proportional to
286 O(n) and can be established very fast. But in the worst case,
287 the query time is O(e) as if no index is established at all.
288 Feline. The method discussed in [31] is inspired by Domi-
289 nance Graph Drawing, and uses two topological orders to
290 label every node. Similar to GRAIL, each node v is labeled,
291 but associated with a single pair of integers (x, y). If v is
292 reachable from another node u, associated with (x0, y0), we
293 must have x � x0 and y � y0. Thus, x ? x0 or y ? y0 indicates
294 a negation, and then no traversal of G is needed to nega-
295 tively answer the reachability query from u to v. Otherwise,
296 Gwill be searched in the DFS fashion.
297 Ferrari. The approach discussed in [36] uses up to k inter-
298 vals for every node of G. Unlike GRAIL, some intervals are
299 exact. But some are approximate, generated by merging sev-
300 eral adjacent intervals to save space. It can be considered as
301 a variant of GRAIL, but with no theoretical evidence that it
302 is more pruning effective than GRAIL. Like GRAIL, part of
303 G has to be searched when some approximate intervals are
304 involved in a positive checking of reachability.
305 IP. The method discussed in [30] improves GRAIL by using
306 k-min-wise independent permutation, by which each node u is
307 associatedwith two labels: Lout(u) and Lin(u). Lout(u) keeps up to
308 k smallest numbers by the permutation p for Out(u), denoted
309 as Lout(u)¼mink{p(Out(u))}, whereas Lin(u) keeps up to k small-
310 est number by the same permutation p for In(u), denoted as
311 Lin(u)¼mink{p(In(u))}, whereOut(u) stands for a set containing
312 all those nodes reachable from u, and In(u) for a set containing
313 all those nodes reachable to u. Together with this kind of per-
314 mutation, it also uses two additional labels: the level label and
315 the huge-node label, where the level label is used to stop DFS
316 early as used in GRAIL while the huge-node label is used,
317 together with the topological folding label discussed in [37], to
318 handle high out-degree nodes. The size of a huge-node label is
319 limited by the largest out-degree of nodes in G. Again, G may
320 be searched to answer positive queries and some negative
321 queries.
322 BFL. This method [35] works in a similar way to IP [30].
323 The only difference is that Lout(u) and Lin(u) are stored as
324 two subsets of {1, . . ., s}, generated by using a hash function
325 applied over Out(u) and In(u), respectively, where s is a
326 user-given number. It improves IP by the so-called ‘bit-
327 pruning’ using the ‘signatures’ created by applying the
328 hash function. The disadvantage of this method is the false
329 positives caused by the signatures generated by the used
330 hash function and a lot of time is needed to remove them.
331 As with IP, the whole G may be searched whenever the
332 index is useless for a query.
333 In Table 2, we compare our labeling method with all the
334 other representative approaches.

335In Table 2, the first 10methods and ours are full index based
336methods while all the others are partial index based. In the
337table, m is the number of chains by the Jagadish’s method [10].
338v is the width of a digraph while l is the number of leaf nodes
339of the spanning tree of a digraph. For Dual-I and Dual-II [24], t
340is in the order of O(e) in the worst case. t is the length of a com-
341pressed bit string using the PWAH-8 encoding [28]. k is the
342number of intervals associated with a node in a partial labeling
343method. In the worst case, k ¼ O(n). For SCRAB [29] and HL
344[34], n0 is anwith a� 1 being a constant and d is the largest out-
345degree of nodes in G. S is the time complexity to find the top s
346largest degree nodes in Ferrari [36]. r is the false positive rate in
347BFL [35]. Finally, k is the depth of recursive graph decomposi-
348tion by our method (i.e., when we will stop the recursive
349decomposition.)

3504 MAIN ALGORITHM

351In this section, we discuss a new graph decomposition
352approach to compress transitive closures. First, we give
353some basic definitions related to spanning trees in Sec-
354tion 4.1. Then, in Section 4.2, we demonstrate our basic
355graph decomposition based on the concept of critical nodes,
356as well as a method for checking the reachability based on
357such a graph decomposition. Finally, we show how a graph
358can be recursively decomposed in Section 4.3.

3594.1 Basic Definition

360Without loss of generality, we assume that G is acyclic (i.e., G
361is a DAG), as assumed in the existing work [1], [2], [4], [5],
362[6], [10]. However, if G contains cycles, we can find all the
363strongly connected components (SCCs) of G by using Tarjan’s
364algorithm in O(e) time [20] and collapse each of them into a
365representative node, transforming G to a DAG [16]. Clearly,
366each node in an SCC is equivalent to its representative node
367as far as reachability is concerned.

TABLE 2
Comparison of Strategies

Query time Labeling time Space overhead

Graph traversal O(e) 0 O(e)
Matrix-based [27] O(1) O(n3) O(n2)
Jagadish [10] O(1) O(n3) O(m n)
Chen [5] O(1) O(n2 þ v1.5n) O(vn)
Interval-based [1] O(log n) O(ne) O(�n)
Dual-I [24] O(1) O(n þ e þ t3) O(n þ t2)
Dual-II [24] O(log t) O(n þ e þ t3) O(n þ t2)

2-hop [4] O(e1/2) O(n4) O(ne log n)
Path-tree [11] O(log2 �) O(�e) O(�n)

SCARAB [29] O(ddd/2e þ d2d

log n0)
O(ndd) O(n þ e þ n02)

PWAH [28] O(t) O(n3) O(nt)
GRAIL [25] O(e) O(ke) O(kn)
HL [34] O(ddd/2e þ d2d

log n0)
O(ndd) O(n þ e þ n02)

Feline [31] O(n þ e) O(n log n þ e) O(n)
Ferrari [36] O(n þ e) O(k2e þ S) O((k þ s)n)
IP [30] O((k þ d)

(e þ n))
O((k þ d)n)

BFL [35] O(sn þ e) O(s(e þ n)) O(sn)
ours O(k) O(kn) O(kn)

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
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368 We also use u ! v to stand for an arc from u to v in a
369 directed graph.
370 It is well known that the preorder traversal of G introdu-
371 ces a spanning tree (forest) T. With respect to T, E(G) can be
372 classified into four groups:

373 � tree arcs (Etree): arcs appearing in T.
374 � cross arcs (Ecross): any arc u! v such that u and v are
375 not on the same path in T.
376 � forward arcs (Eforward): any arc u! v not appearing in
377 T, but there exists a path from u to v in T
378 � back arcs (Eback): any arc u! v not appearing in T, but
379 there exists a path from v to u in T.
380 All cross, forward, and back arcs are referred to as non-
381 tree arcs. (But in a DAG, we do not have back arcs since a
382 back arc implies a cycle.) For illustration, consider the DAG
383 shown in Fig. 2. For it, we may find a spanning tree as
384 shown by the solid arrows in the figure (in which each non-
385 tree arc is represented by a dashed arrow.)
386 As in [24], we can assign each node v in T an interval [av,
387 bv), where av is v’s preorder number (denoted pre(v)) and bv
388 - 1 is equal to the largest preorder number among all the
389 nodes in T[v]. So another node u labeled [au, bu) is a descen-
390 dant of v (with respect to T) iff au 2 [av, bv) [24], as illus-
391 trated in Fig. 2. If au 2 [av, bv), we say, [au, bu) is subsumed
392 by [av, bv). This method is called the tree labeling.
393 Note that we may not be able to find a spanning tree,
394 instead, a spanning forest T. In this case, we can always con-
395 struct a spanning tree by creating a virtual root and connect
396 it to the root of every tree in T with an arc. Therefore, we
397 will not distinguish between spanning trees and spanning
398 forests and always assume that there is a virtual root if what
399 is found is a spanning forest.

400 4.2 Graph Decomposition and Reachability
401 Checking

402 In this subsection, we discuss a kind of decomposition of G(V,
403 E): a spanning tree T and a summary graph Gc such that jV
404 (Gc) j < jV j . What we want is to transform the reachability
405 checking of any two nodes in G to a checking over T and a
406 checking over Gc. In general, Gc will contain Ecross. But some
407 arcs fromT are also included inGc to transfer reachability infor-
408 mation. For this purpose, we introduce some new concepts.
409 Denote by V’ the set of all the endpoints of the cross arcs.
410 Then, we have V’ ¼ Vstart [ Vend, where Vstart contains all the
411 start nodes while Vend contains all the end nodes of cross
412 arcs. For example, for the graph shown in Fig. 2, we have
413 Vstart ¼ {h, g, f, d} and Vend ¼ {e, g, c, d, k}. No attention is paid
414 to the forward arc (a, e) in the graph since it can be simply
415 removedwithout impacting the checking of reachability.
416 The first concept is the so-called crossing range, which is
417 a second pair of integers associated with each node v 2 V,
418 defined below.

419

427427427427Definition 1. (crossing range) Let T be a spanning tree (for-
428est) ofG. Let v be a nodewith the children v1, . . ., vj inG. Let
429[ai, bi) (i¼ 1, . . ., j) be the interval of vi. Set av¼ mini{ai} and
430bv¼maxi{ai}. Then, {av, bv} is called the crossing range of v.

431For technical convenience, for any node v without child
432nodes in G, both its av and bv are set to be av itself.
433For example, with respect to the spanning tree shown in
434Fig. 2, the crossing ranges of the nodes in G can be easily
435computed, as shown in Fig. 3.
436We notice that the crossing range of node f in T shown in
437Fig. 3 is {5, 5}. It is because f has only one child d in G, whose
438interval is (5, 6). But node g’s crossing range is {2, 5} since it
439has two children c and d with intervals (2, 5) and (5, 6),
440respectively. The purpose of crossing ranges is to define the
441so-called critical nodes, which are used to determine all those
442nodes =2 Vstart [ Vend, but should be included in Gc.

443Definition 2. (critical nodes) A node v in a spanning tree T of
444G is critical if the following conditions are satisfied:

4451) There is a subset U of Vstart with jU j > 1 such
446that for any two nodes u1, u2 2 U they are not
447related by the ancestor/descendant relationship
448and v is the lowest common ancestor (LCA) of all
449the nodes in U.
4502) For each u 2 U, its crossing range {au, bu} is not
451within T[v]. That is, au or bu is a preorder number
452not appearing in T[v].

453All the critical nodes with respect to T are denoted by
454Vcritical. For example, in the spanning tree shown in Fig. 2,
455node e is the lowest common ancestor of {f, g} and both f
456and g are in Vstart. In addition, the crossing ranges of f and g
457are not within T[e] (see Fig. 3). So e is a critical node. We
458also notice that node a is the lowest common ancestor of {d,
459f, g, h}. But the crossing ranges of all these four nodes are in
460T[a]. Thus, a is not a critical node. In the same way, we can
461check all the other nodes and find that Vcritical ¼ {e}.
462All the critical nodes can be recognized in linear time by
463using an algorithm to find LCAs. But we shift the discussion
464on this algorithm to Section 5.1.
465The reason for imposing condition (2) in the above defini-
466tion is that if any cross arc going out of a node in T[v]
467reaches only a node in T[v], then the reachability between v
468and any other node in G can be checked by the tree labeling.
469So it is not necessary to include v in Gc if v =2 Vstart [ Vend.
470Now we consider a tree (forest) structure Tc, called a criti-
471cal tree of G (with respect to T), which contains all the nodes
472in Vcritical [ Vstart [ Vend. In Tc, there is an arc from u to v iff
473there is a path P from u to v in T and P contains no other
474node in Vcritical [ Vstart [ Vend, as illustrated in Fig. 4a.
475Denote Tc [ Ecross by Gc (see Fig. 4b.) Then, T and Gc make
476up a decomposition of G. Here, we notice that Gc is in

Fig. 3. Start nodes, end nodes, and crossing ranges.Fig. 2. A spanning tree and intervals.

CHEN ETAL.: EVALUATION OF REACHABILITY QUERIES BASED ON RECURSIVE DAG DECOMPOSITION 5



IE
EE P

ro
of

477 general not a proper subgraph of G since in Tc some arcs
478 each correspond to a path in T. We will, however, use the
479 word ‘decomposition’ to refer to the transformation of G
480 into T and Gc without causing confusion.
481 It can be seen that V(Gc) (all the nodes in Gc) is much
482 smaller than V.
483 For any two nodes u, v appearing on a path in T, their
484 reachability can be checked using their associated intervals.
485 However, our question is, if they are not on a same path in
486 T, can we check their reachability by using Gc?
487 To answer this question, we need another concept, the
488 so-called anchor nodes.
489 First, for any critical node v, we slightly change its cross-
490 ing range as follows.

491 � Assume that U is a subset of Vstart such that v is the
492 LCA of all the nodes in it and satisfies condition (1)
493 and (2) in Definition 2.
494 � Set av min{minu2U {au}, av}; bv max{maxu2U {bu}, bv}.
495 For instance, node e’s original crossing range is {8, 9} (see
496 Fig. 3). The crossing ranges of node f and g are {5, 5} and {2, 5},
497 respectively. So e’s original range will be changed to {2, 9}. In
498 this way, we can quickly check whether there is any cross arc
499 starting froma node inT[v], which reaches out ofT[v].
500 Next, we denote by S1 all the critical nodes in T[v], and by
501 S2 all those start nodes of the cross arcs which appear in T[v].
502 Let C(v) ¼ S1 [ S2. We consider a maximal subset Cs(v) of C
503 (v) such that each node in it does not have an ancestor in C
504 (v). It can be immediately seen that in Cs(v) there is at most
505 one node u such that its crossing range is not within T[v].
506 Otherwise, a new critical node in T[v] can be recognized (see
507 Definition 2), which is an ancestor of u in C(v), contradicting
508 the fact that u2 Cs(v) and thus has no ancestor inC(v).

509 Definition 3. (anchor nodes) Let G be a DAG and T a span-
510 ning tree of G. Let v be a node in T. We associate two
511 nodes with v as below.

512 i) A node x 2 Cs(v) is called an anchor node (of the
513 first kind) of v if its crossing range is not within T
514 [v], denoted by v�. If such a node does not exist, v�

515 is set to be the special symbol “-”.
516 ii) A node y is called an anchor node (of the second
517 kind) of v if it is the lowest ancestor of v (in T),
518 which has a cross incoming arc. y is denoted by
519 v��. If such a node does not exist, v�� is set to be “-”.

520 For example, in the graph shown in Fig. 2, r� ¼ e. It is
521 because node e is a critical node in Cs(r) and its crossing
522 range {2, 9} (note that the crossing range of a critical node is
523 changed) is not within T[r]. But r�� does not exist since it
524 does not have an ancestor which has a cross incoming arc.
525 In the same way, we find that e� ¼ e�� ¼ e. That is, both the
526 first and second kinds of anchor nodes of e are e itself. We
527 can easily recognize the anchor nodes for all the other nodes
528 in that graph.

530

530

531

532

533

534

535

536

537538The following two lemmas are critical to the reachability
539checking using Gc.

540Lemma 1. Let u be a node,which is not a descendant of v in

541T; but u is reachable from v via some cross arcs. Then,
542any way for v to reach umust be through v�.

543Proof. According to Definition 3, v� is the only node in
544Cs(v) such that its crossing range is not within T[v]. It
545indicates that any start node in T[v] such that its cross-
546ing range is outside of T[v] must be a descendant of v�

547or v� itself in T. So any node that is not a descendant
548of v but reachable from v via some cross arcs must be
549through v�.

550Lemma 2. Let u be a node, which is not an ancestor of v in T;
551but v is reachable from u via some cross arcs. Then, any
552way for u to reach vmust be through v��.
553Proof. This can be seen from the fact that any node
554which reaches v via some cross arcs is through v�� to
555reach v.

556In terms of the above discussion, we associate each v 2 G
557with a triplet <x, y, z>:

558� x¼ [a, b), an interval created by labeling the nodes in
559T;
560� y ¼ v�; and
561� z ¼ v��.
562In <x, y, z>, y and z together are referred to as non-tree
563labels.

564Proposition 1. Let u and v be two nodes in G, labeled ([au,
565bu), yu, zu) and ([av, bv), yv, zv), respectively. Node u is
566reachable from v iff one of the following conditions holds:

567i) [au, bu) is subsumed by [av, bv) (i.e., au 2 [av, bu)),
568or
569ii) zu is reachable from yv through a path in Gc.
570Proof. The proposition can be derived from the follow-
571ing two facts:

5721) u is reachable from v through tree arcs iff [au, bu)
573is subsumed by [av, bv).
5742) In terms of Lemmas 1 and 2, u is reachable from v
575via cross arcs iff zu ¼ u�� and yv ¼ v� exist and u��

576is reachable from v� through a path in Gc.

577Example 1. Consider G and T shown in Fig. 2 once again.
578The non-tree labels of the nodes are shown in Fig. 5.

579In this figure, we can see that the non-tree label of node r
580is <e, -> because (1) r� ¼ e; and (2) r�� does not exist. Simi-
581larly, the non-tree label of node f is <f, e>. It is because f� is f
582itself; but f�� is e.

Fig. 5. Non-tree labels.

Fig. 4. Illustration for Tc and Gc..
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583 Especially, we notice that node r and node d are not on the
584 same path in T. But d is a descendant of r. Such reachability
585 has to be checked by using their anchor nodes. In fact, we
586 have a path: e ! f ! d in Gc. But d

�� ¼ d and r� ¼ e, which
587 shows that d is reachable from r by Proposition 1.
588 In order to check the reachability in Gc, we can use any
589 existing method. For example, we can employ Chen’s algo-
590 rithm [5] to do this task.
591 Obviously, the smaller Gc is, the better. But we know that
592 the larger the number of forward edges is, the smaller Gc.
593 Thus, we want to be able to find a spanning tree such that
594 the number of forward edges is increased (and then the
595 number of cross edges is decreased), which will eventually
596 lead to a smaller Gc. In Section 4.2, we will discuss this issue
597 in great detail.
598 Lastly, we notice that Gc itself can be very large. In this
599 case, we need to decompose Gc again, leading to an elegant
600 recursive graph decomposition, as discussed in the next
601 subsection.

602 4.3 Recursive Graph Deduction

603 Let G0 be a DAG. Denote by T0 a spanning tree of G0. Denote
604 by E0

cross the set of all the cross arcs with respect to T0. Then,
605 as discussed before, T0 and G0

c ¼ T 0
c [ E0

cross make up a
606 decomposition of G0, where T 0

c is the critical tree of G0.
607 Denote G0

c as G1. Recursively decomposing G1, we will
608 figure out a sequence of tree structures:

T 0; T 1; . . . ; T k
1; ðk � 1Þ
610610

611 with each Ti being a spanning tree of the subgraph

Gi ¼ Gi
1
c ¼ Ti
1

c [ Ei
1
cross; (1)

613613

614 where Gi
1
c is the summary graph of Gi-1, T

i
1
c is the critical

615 tree of Gi-1, and Ei
1
crossis the set of all the cross arcs with

616 respect to Ti-1.
617 In this way, we are able to associate each node v in G0

618 with two sequences: an interval sequence vv and an anchor
619 node sequence$v to check reachability:

620 1) vv: [a
v
0, b

v
0), . . ., [a

v
j , b

v
j ), (j � k - 1)

621 where each [av
i , b

v
i ) is an interval generated by labeling Ti;

622 2) $v: (v
�
0, v
��
0 ), . . ., (v�j , v

��
j ),

623 where each v�i is the anchor node (of the first kind) of v in Ti

624 (0 � i � j) while v��i is the anchor node (of the second
625 kind) of v in Ti, as discussed in Section 3.2.
626 The following example helps for illustration.

627 Example 2. Denote by G0 the graph shown in Fig. 2. Denote
628 by T0 the spanning tree represented by the solid arrows
629 in the graph. With respect to T0, E

0
cross is all the cross arcs

630 as shown by the dashed arrows (except the unique for-
631 ward arc a ! e) in the same figure, andT 0

c is a forest as
632 shown in Fig. 4a. Then, G1 ¼ T 0

c [E0
cross is a graph as

633 shown in Fig. 4b.

634 One of its spanning tree T1 is shown by the solid arrows
635 in Fig. 6a. With respect to this spanning tree, h! g and h!
636 k are two forward arcs and can be removed. So E1

cross is a

637

638

639

640

641

642

643644subgraph as shown in Fig. 6b, containing only two discon-
645nected arcs. Their respective start nodes are g and c.
646Accordingly, T 1

c is also a subgraph containing two dis-
647connected arcs, as shown in Fig. 6c.
648G2 will be constructed in the same way as G1. That is, G2

649is equal toT 1
c [E1

cross , as shown in Fig. 7a.
650A spanning tree T2 of G2 is shown in Fig. 7b. With respect
651to T2, E

2
crossis a subgraph containing only one arc, and T 2

c

652contains only two single nodes, as shown in Figs. 7c and 7d,
653respectively. So, we have G3 ¼ T 2

c [ E2
cross¼E2

cross , as shown
654in Fig. 7e. We notice that G3 is a tree. So, T3 is the same as G3.
655By creating intervals for the nodes in T0, T1, T2 and T3

656(see Fig. 2, Fig. 6a, Figs. 7b and 7e, respectively), we will
657generate an interval sequence for each node as shown in
658Fig. 8a.
659Fig. 8b shows all anchor node sequences, which are cre-
660ated by the non-tree labeling of the nodes in G0 (see Fig. 2),
661G1 (see Fig. 9a), and G2 (see Fig. 9b). G3 is a tree itself and no
662non-tree labels are established.

Fig. 6. Illustration for recursive graph decomposition.

Fig. 7. Illustration for recursive graph decomposition.

Fig. 8. Non-tree labels and sequences associated with nodes.

Fig. 9. Non-tree labels and sequences associated with nodes.
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664 sequences$v, we can generate Av and Bv for node v:
665 Av ¼ x0, x1, . . ., xl,
666 Bv ¼ y0, y1, . . ., yl, where x0 ¼ y0 ¼ v, x1 ¼ (x0Þ�1 , . . ., xl ¼
667 (. . . (x0 Þ�1 . . .Þ�l , and y0 ¼ y1 ¼ (y0 Þ��1 , . . ., yl ¼ (. . . (y0 Þ��1
668 . . .Þ��l .
669 In Fig. 10, we show the A and B sequences for all the
670 nodes of the graph shown in Fig. 2.
671 Now, we give the following algorithm to evaluate reach-
672 ability queries.

673 Algorithm 1. queryEval(u, v) (�to check u) v?�)

674 begin
675 1. if kv ? ku or mv ? mv then return false;
676 2. i: ¼ 0; x: ¼ u; y: ¼ v;
677 3. while x 6¼ f and y 6¼ f do {
678 4. use [ai

x, b
i
x) and [ai

y, b
i
y) to check whether y is reachable

679 from x in Ti. If it is the case, return true.
680 5. x: ¼ x�. y: ¼ y��. i: ¼ i þ 1;
681 6. }
682 7. Return false;
683 end

684 In the above algorithm, in line 1 ku and mu are two topo-
685 logical numbers associated with u while kv and mv are two
686 topological numbers for v, generated by using the algorithm
687 discussed in [31]. If kv ? ku or mv ? mu, v is definitely not
688 reachable from u and the algorithm returns false. Otherwise,
689 we will go into a while-loop (see lines 3 - 6), in which two
690 node sequences Au and Bv are searched.
691 For each pair of xi (in Au) and yi (in Bv), we will check
692 whether yi is reachable from xi within Ti by using their inter-
693 vals, which obviously requires only O(1) time.
694 Example 3 Continued with Example 2. To test whether h
695 ) p in G ¼ G0 shown in Fig. 2, we will first check their topo-
696 logical numbers (see line 1). Since p is reachable from h, we
697 must have kp � kh and mp � mh. Thus, the while-loop will be
698 executed, by which we will first check whether h ) p in T0

699 (the spanning tree shown by the solid arrows in G0.) Since h

700; p in T0, we will check whether h� ¼ h) p�� ¼ c in T1 (see
701Fig. 10). It is the case and the query returns true.
702By this query evaluation, the A-sequence associated with
703h and the B-sequence with p are demonstrated in Fig. 11a.
704To test whether h) k, we will also scan two sequences as
705shown in Fig. 11b. Along the two sequences, the following
706tests will be carried out: h ; k in T0, (h Þ�0 ¼ h ; (kÞ��0 ¼ k in
707T1, (hÞ�1¼ g ; (kÞ��1 ¼ k in T2, but (gÞ��2 ¼ d) (kÞ��2 ¼ k in T3.
708The query returns true.

7095. TECHNICAL DETAILS

710In the previous section, the main working process is
711described, but with some technique descriptions ignored. In
712this section, we get back to them. First, we discuss how to
713recognize critical nodes efficiently in Section 4.1. Then, how
714to find a better spanning tree with more forward arcs in Sec-
715tion 4.2. In Section 4.3, we give a probabilistic analysis of the
716algorithm discussed in Section 4.2.

7175.1 Recognizing Critical Nodes

718In order to recognize critical nodes efficiently, we will
719search T bottom-up to produce a subtree T’ of T such that
720only the critical nodes and the nodes from Vstart are
721included. Initially, T’ is set to ;, and all the nodes in Vstart

722are marked. Then, during the traversal of T, any node
723belonging to Vstart or any critical node, once it is recognized,
724will be inserted into T’. To this end, each node v inserted
725into T’ will be associated with two links, denoted parent(v)
726and left-sibling(v), respectively. parent(v) is used to point to
727the parent of v in T’ while left-sibling(v) points to a node in
728T’ created just before v, which is not a descendant of v in T.
729Concretely, parent(v) and left-sibling(v) will be created as
730below.

731i) Let v be the node currently inserted into T’.
732ii) If v is the first node inserted into T’, nothing will be
733done.
734iii) If v is not the first node inserted into T’, we do the
735following:
736Let v’ be the node inserted just before v. If v’ is not a child
737(descendant) of v, create a left-sibling link from v to v’, denoted
738as left-sibling(v) ¼ v’. If v’ is a child (descendant) of v, we will
739first create a parent link from v’ to v, denoted as parent(v’) ¼ v.
740Then, we will go along the left-sibling chain starting from v’
741until we meet a node v”which is not a child (descendant) of v.
742For each encountered node u except v”, set parent(u)  v.
743Finally, set left-sibling(v) v”.
744Fig. 12 is a pictorial illustration of this process.
745In Fig. 12a, we show the navigation along a left-sibling chain
746starting from v’ when we find that v’ is a child (descendant) of
747v. This process stops whenever wemeet v”, a node that is not a
748child (descendant) of v. Fig. 12b shows that the left-sibling link
749of v is set to point to v”, which is previously pointed to by the
750left-sibling link of v’s left-most child.

752

752

753

754

755

756Fig. 11. A-sequences and B-sequences. Fig. 12. Illustration for the construction of T’.

Fig. 10. A- and B-sequences.
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757758 This is in essence a process to recognize LCAs, but more
759 general than the algorithm discussed in [39] since we need
760 to recognize the LCAs of any subsets of Vstart, which con-
761 tains two or more than two nodes not related by the ances-
762 tor/descendant relationship.
763 Extending the above process with the recognition of criti-
764 cal nodes and the computation of crossing ranges, we get an
765 efficient algorithm for finding all the critical nodes.

766 Algorithm 2. Find-Critical(T)

767 begin
768 1. T’ ;. Mark any node in T, which belongs to Vstart.
769 2. Let v be the first marked node encountered during the bot-
770 tom-up searching of T. Insert v in T’.
771 3. Let u be the currently encountered node in T. Let u’ be the
772 node inserted into T’ just before u. Do (4) or (5), depending
773 on whether u is a marked node or not.
774 4. If u is marked, then insert u into T’ and do the following.
775 (a) If u’ is not a child (descendant) of u, set left-sibling(u) ¼ u’
776 (i.e., a link from u to u’).
777 (b) If u’ is a child (descendant) of u, we will first set parent(u’)
778 ¼ u. Then, we will go along a left-sibling chain starting
779 from u’ until we meet a node u” which is not a child
780 (descendant) of u. For each encountered node w except
781 u”, set parent(w)  u. Also, set left-sibling(u)  u”. (See
782 Fig. 11b for illustration.) Calculate initial au and bu accord-
783 ing to Definition 1. Let W be the set of all the encountered
784 nodes during the navigation along the left-sibling chain
785 (not including u”). Set au min{minw2W {aw}, au} and bu 
786 max{maxw2W {bw}, bu}.
787 5. If u is a non-marked node, then do the following.
788 (c) If u’ is not a child (descendant) of u, u is ignored.
789 (d) If u’ is a child (descendant) of u, we will go along a left-
790 sibling chain starting from u’ until we meet a node u”
791 which is not a child (descendant) of u. If there are more
792 than one node in W such that their crossing ranges not
793 within T[u], insert u into T’, and compute au and bu as (4.
794 b). Otherwise, u is ignored.
795 end

796 In the algorithm, each node v belonging to Vstart is simply
797 inserted into T’, by which its cross range {av, bv} is computed.
798 (See 4.a and 4.b in the algorithm.) For a node not belonging to
799 Vstart, we will check whether it satisfies the conditions given in
800 Definition 2. If it is the case, it will be inserted into T’. At the
801 same time, its crossing range will be calculated. Otherwise, it
802 will be ignored. (See 5.c and 5.d in the algorithm.)
803 Obviously, the algorithm requires only O(e) time since
804 each node in T is accessed at most two times and for each
805 node v only out-degree(v) arcs are visited. Thus, we have

X
v2V

out-degree ðvÞ ¼ e:
807807

808

809Example 4. Consider the spanning tree T shown in Fig. 2
810again. Applying the above algorithm to T, we will gener-
811ate a series of data structures as shown in Fig. 13.

812First of all, the nodes d, f, g, and h in T are marked. Dur-
813ing the bottom-up search of T the first node created for T’ is
814node d (see Fig. 13a.) In a next step, node b is met. But no
815node for b in T’ is created since b is not marked and has only
816one child in the current T’ (see 5.d in Algorithm find-critical
817()). In the third step, node f is encountered. It is a marked
818node and to the right of node d. So a link left-sibling(f) ¼ d is
819created (see Fig. 13b.) In the fourth step, node g is encoun-
820tered and a second left-sibling link is generated (see
821Fig. 13c.) In the fifth step, node e is met. It is not marked.
822But it is the parent of node g. So the left-sibling chain start-
823ing from node g will be searched to find all the children
824(descendants) of e along the chain, which appear in T’. Fur-
825thermore, the number of such nodes is 2 and the crossing
826ranges of both nodes f and g are outside of T[e]. Thus, node
827e is inserted into T’ (see Fig. 13d.) Here, special attention
828should be paid to the replacement of left-sibling(f) ¼ d with
829left-sibling(e) ¼ d, which enables us to easily find the lowest
830common ancestor of d and some other nodes from Vstart if
831any. In the next two steps, we will meet node i and j. But no
832nodes will be created for them. Fig. 13e demonstrates the
833last step of the whole process. Especially, the tree shown in
834Fig. 13e is T’, which contains all the critical nodes and the
835nodes from Vstart.
836From T’, Tc and Gc can be easily constructed as shown in
837Fig. 4.
838The following proposition shows the correctness of the
839algorithm.

840Proposition 2. Let G¼ (V, E) be a DAG. Let T be a spanning
841tree (or a spanning forest) of G. Algorithm find-critical()
842generates T’ of Gwith respect to T correctly.
843Proof. To show the correctness of the algorithm, we
844should prove the following: (1) each node in T’ is a criti-
845cal node or a node from Vstart; (2) any node not in T’ is
846neither a critical node nor a node from Vstart; (3) for each
847arc u ! v in T’ there is a path from u to v in T, which
848does not contain a critical node or a node from Vstart

849(except the two endpoints).

850First, we prove (1) by induction on the height h of T’. The
851height of a node v in T’ is defined to be the longest path
852from v to a leaf node in T’.
853Basis step. When h ¼ 0, each leaf node in T’ is a node in
854Vstart. So it is correct.
855Induction hypothesis. Assume that every node appearing at
856height h ¼ k in T’ is a critical node or a node from Vstart. We
857prove that every node v at height k þ 1 in T’ is also a critical
858node or a node from Vstart. If v 2 Vstart, the proof is trivial.
859Assume that v =2 Vstart. According to the algorithm, v has at
860least two children with their crossing ranges not within T[v]
861(see 5.d in Algorithm find-critical()). Assume that v1 and v2 are
862two such nodes. If these two children belong toVstart, the claim
863holds. Now we assume that v1 does not belong to Vstart. Then,
864its heightmust be the same as or lower than k. According to the
865induction hypothesis, it is a critical node. Therefore, theremust
866exist a subset S�Vstart such that v1 is the lowest commonances-
867tor of all the nodes in S. Therefore, v is an ancestor of all the

Fig. 13. A sample trace.
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868 nodes in S, which contains at least one node whose crossing
869 range is outside of T[v]. Let v3 be such a node. Thus, v is the
870 lowest common ancestor of v2 and v3. (Here, we assume that v2
871 is from Vstart. If v2 does not belong to Vstart, repeating the above
872 argument for v2will prove the claim.)
873 In order to prove (2), we notice that only in two cases no
874 node is generated in T’ for a node v =2 Vstart: (i) v is to the
875 right of a node, for which a node in T’ is created just before
876 v is encountered (see 5.c in Algorithm find-critical()); (ii) v is
877 the parent (ancestor) of a node u, for which a node in T’ is
878 generated; but u is the only node encountered when navi-
879 gating the corresponding left-sibling chain (see 5.d in Algo-
880 rithm find-critical()) or there are not more than one child
881 such that their crossing ranges are outside of v’s interval.
882 Obviously, in both cases, v cannot be a critical node.
883 (3) can be seen from the fact that each parent link corre-
884 sponds to a path in T and such a path cannot contain any
885 critical node (except the two end points) since the nodes in
886 T are checked level by level bottom-up.
887 In the following, we show that for any DAG G(V, E) we
888 always have:

V criticalj j < Vj j 
 jV start [ V endj: (2)
890890

891

892 Since G is a DAG, it has at least one node whose in-
893 degree is 0. Using this node as the starting point to search G
894 in preorder, we get a spanning tree (forest) T. Then, with
895 respect to T, this node cannot be a critical node. Also, it
896 does not belong to Vstart [ Vend. Thus, the above inequality
897 holds, which implies the following proposition.

898 Proposition 3. The number of nodes in G is strictly larger
899 than the number of nodes in Gc.
900 Proof. Remember that Gc ¼ Tc [ Ecross. So the node set
901 of Gc is Vcritical [ Vstart [ Vend. We notice that Vcritical \
902 (Vstart [ Vend) ¼ ;, which indicates that jVcritical [ Vstart [
903 Vend j ¼ jVcritical j þ jVstart [ Vend j < jV j according to
904 the above discussion.

905 The proposition implies that the length of the A- and B-
906 sequences of any node must be � n.

907 5.2 Find Better Spanning Trees

908 It is obvious that the graph decomposition is definitely use-
909 ful for sparse graphs. However, in practice, it can also be
910 very useful for some dense graphs, but somehow related to
911 what a spanning tree is found. To see this, let us have a look
912 at a ‘complete graph’ shown in Fig. 14a. For this graph, we
913 can find a spanning tree as shown by the solid arrows in
914 Fig. 14b. It is in fact a single path: a! e! d! c! b while
915 all the other arcs are just forward arcs and therefore can be

916simply removed (leading to an empty Gc.) Obviously, the
917reachability over this kind of graphs can be done in just one
918single checking by using the intervals created over such a
919spanning tree (which is simply a path.)
920Searching the graph in a different way, we may find a
921different spanning tree as shown by the solid arrows in
922Fig. 14c, for which we have three forward arcs: a! c, a! d,
923and e! c, as well as three cross arcs: e! b, d! b, and c!
924b. So the corresponding Gc cannot be empty and for evaluat-
925ing reachability queries some more checks have to be
926performed.
927Clearly, what we want is to find a spanning tree so that
928Gc is minimized. But, how to find such a spanning tree?
929In the following, we address this issue.
930Let G be a DAG. Let =(G) be the family including all the
931spanning trees of G. For T 2 =(G), denote by fT and cT the
932number of forward arcs and cross arcs, respectively.
933Intuitively, the larger fT is, the smaller cT and then the
934size of Gc. So our optimization problem is to find a T
935such that fT with respect to it is maximum. Unfortu-
936nately, there are exponentially many spanning trees for a
937given DAG. Thus, it is unlikely to find an optimal one in
938polynomial time. In fact, the problem itself is NP-com-
939plete. But we can devise a linear-time algorithm to find a
940spanning tree of G with fewer cross arcs than a tradi-
941tional depth-first search.

9425.2.1 NP-Completeness

943We first prove the NP-completeness of the problem.
944Let P be a path in T. Let u, v be two nodes on P. We call
945the forward arc from u to v an attached arc of P. Obviously,
946to maximize fT, we need to maximize the number of
947attached arcs of each path in T. However, even the problem
948to find a spanning tree, which contains a path with the max-
949imal number of attached arcs, is difficult. We will show that
950even this easier problem is NP-complete by itself. For this
951purpose, we define the following decision problem:
952Input: A DAG G and a positive integer k � n.
953Question: Is there a spanning tree T such that it contains a
954path P of length q with the number of attached arcs of P
955equal to (q – 1)(q – 2)/2.
956We refer to this problem as a maximum attachment
957problem.

958Proposition 4. The problem to find a maximum attachment
959is NP-complete.
960Proof. We can design an algorithm to generate all
961spanning trees (forests) T of G and check each T to see
962whether it has a path with the maximum attachment.
963Since the number of such T’s is bounded by O((n – 1)!),
964the problem is in NP.

965Next, we reduce the basic NP-complete problem satisfi-
966ability [9] to the maximum attachment problem. To this end,
967we consider an instance of satisfiability with a collection of
968clauses C ¼ {c1, . . ., cx}. Each ci is of the form ci1 _ ci2 _ . . . _
969cixi , where each cij (1 � j � xi) is a literal. For C, we con-
970struct a DAG G as follows.

9711. Generate an undirected graph G’, whose nodes are
972pairs of integers [i, j], for 1 � i � x and 1 � j � xi. AFig. 14. Illustration for spanning trees.
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973 node [i, j] is connected to another node [k, l] if both of
974 the following hold:
975 � i 6¼ k, and
976 � cij 6¼ :ckl.
977 2. Explore G’ in depth-first manner to change it to G as
978 below:
979 � If an edge (u, v) in G’ is explored from u to v, cre-
980 ate an arc u! v in G.
981 � In G, reverse the direction of any back arc. (Then,
982 the resulting Gmust be a DAG.)
983 It is easy to see that G can be constructed in polynomial
984 time. Furthermore, if there exists a satisfying assignment of
985 Boolean values for C there must be a spanning tree of G con-
986 taining a path P of length q such that the number of the
987 attached arcs of P equal to (q – 1)(q – 2)/2. It is because if C is
988 satisfiable, there must be a clique of size q in G’, which is a
989 subset of nodes S such that if u, v 2 S then (u, v) in G’.
990 Exploring the clique in DFS and then reverse any back arc,
991 we will get a path of length q with the number of the
992 attached arcs equal to (q – 1)(q – 2)/2.
993 Now we assume that T is a spanning tree of G, which
994 contains a path P of length q, and the number of the attached
995 arcs is equal to (q – 1)(q – 2)/2. Then, we assign a value to the
996 variable in each literal x corresponding to a node on P such
997 that x is truewhile a value to the variable in any other literal
998 x0 (not corresponding to any node on P) such that x0 is false.
999 Then, C evaluates to true under such an assignment since

1000 each node represents a literal appearing in a clause different
1001 from any clause represented by others, and for each two lit-
1002 erals represented by two nodes on the path, their values are
1003 definitely not negative to each other.

1004 5.2.2 A Top-Down Algorithm

1005 From the above discussion, we can see that it is not possible
1006 for us to find an ‘optimal’ spanning tree for a given G in
1007 polynomial time. But we still want to find a relatively good
1008 solution to the problem in time linear in the number of arcs
1009 in G. In the following, we present an algorithm to explore G
1010 top-down, which is able to find a spanning tree Twith more
1011 forward arcs than a traditional DFS (depth-first search). The
1012 main idea behind this algorithm is to recognize a kind of
1013 “triangles” as illustrated in Fig. 15a, during a DFS search.
1014 In Fig. 15a, assume that node v is the current node along
1015 a path from u to v, and w is one of v’s children, but has been
1016 visited before (along an arc from u to w). We can remove the
1017 tree arc u ! w and make v ! w a tree arc. Then, u ! w is
1018 changed to a forward arc as illustrated in Fig. 15b.
1019 In order to find such kind of transformations, we main-
1020 tain a Boolean array H such that H[v] ¼ 1 indicates that
1021 node v is on the current path during the depth-first search.

1022Otherwise, H[v] ¼ 0. By the current path, we mean the path
1023from the root to the currently encountered node. Let v be
1024the currently encountered node. Let v1! v2! . . .! vk ¼ v
1025be the current path. Then, when we check a child w, we will
1026first examine whether w has already been accessed some
1027time earlier. If it the case, we will call a function: triangle(v,
1028u, w), where u is the parent of w in T. If H[u] ¼ 1, triangle(v,
1029u, w), returns true; otherwise, false.
1030In the following algorithm, two data structures are also
1031used:
1032S – a stack to control the depth-first search;
1033CT(v) – a list containing all the children of v in T.
1034In addition, for simplicity, we assume that G is a rooted
1035graph.

1036Algorithm 3. mDFS(G)

1037begin
10381. Each entry of H is set 0; add root to T;
10392. push(root, S); mark root; H[root]: ¼ 1;
10403. while (S 6¼ f) do {
10414. v: ¼ pop(S);
10425. for each child w do {
10436. if w is marked then {
10447. Let u be the parent of w in T;
10458. if triangle(v, u, w) ¼ true then {
10469. remove w from CT(u);
104710 add w to CT(v);
104811. }
104912. }
105013. else {add w to CT(v);
105114. push(w, S); mark w; B[w]: ¼ 1;}
105215. }
105316. B[v]: ¼ 0;
105417. }
1055end

1056The above algorithm works almost in the same way as
1057DFS. The only difference consists in the use of array H.
1058Besides, each accessed node is marked. At an iteration of
1059the while-loop (lines 3 - 16), the current node v is popped out
1060from stack S. Then, each of it’s children w will be accessed
1061in turn. If w has already been visited before, triangle(v, u, w)
1062will be executed (see line 8), where u is the parent of w in T,
1063part of the spanning tree constructed up to now. If triangle
1064(v, u, w) returns true, we must have H[u] ¼ 1 and we will
1065remove w from CT(u) and add it to CT(v). Note that w is not
1066pushed into stack S and thus will not be accessed once
1067again. If w is not marked, it will be added to CT(v), pushed
1068into S, and marked (see lines 13 - 14). Finally, we will set H
1069[w] ¼ 1 since w becomes the current node (see line 14). After
1070all the nodes in T[v] are accessed, a backtracking happens
1071and we will reset H[v] to 0 since it does not belong to the
1072current path anymore (see line 16).
1073The time complexity of the algorithm is obviously O(e).

1074Example 5. Consider the graph shown in Fig. 13a again. If
1075we use the traditional depth-first search to explore the
1076graph, we may create a spanning tree as shown by the
1077solid arrows in Fig. 13c.

1078But if we use mDFS to explore G, a series of triangle
1079transformations will be performed as illustrated in Fig. 16,Fig. 15. Illustration for “triangles” encountered during a DFS.
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1081 Fig. 14b.
1082 In Fig. 16a, we show part of a spanning tree containing
1083 two arcs: a! b and a! e. When we meet b again (along arc
1084 e ! b), a transformation will be carried out as shown in
1085 Fig. 16a. In the subsequent steps, we may meet another two
1086 triangles of the forms as shown in Fig. 16b and 16c, respec-
1087 tively, which will also be transformed in turn.

1088 Proposition 5. Let T and T0 be spanning trees created by
1089 exploring G using DFS and mDFS, respectively. Then, fT
1090 � fT‘.
1091 Proof. Let Du,w,v be a triangle met during the DFS, in
1092 which u! w is a tree arc, v! w is a cross arc, and there
1093 is a tree path from u to v. As discussed above, mDFS will
1094 transform this triangle to make v! w a tree arc and u!
1095 w a forward arc. By this transformation, any forward arc
1096 from u or an ancestor of u to w or a descendant of w in T
1097 [w] is still a forward arc with respect to T0. This shows
1098 that fT � fT0.

1099 The time spent for doing a transformation is bounded by
1100 a constant. Thus, the time complexity of mDFS() is still
1101 bounded by O(n þ e).

1102 5.3 About the Value of k

1103 By Proposition 3, we know that Gc is strictly smaller than G
1104 and thus k � n.
1105 In the following, to show the effectiveness of Algorithm
1106 mDFS(), we will make a probabilistic analysis of Gc (pro-
1107 duced by using mDFS()) to show that the expected number
1108 of arcs in Gc is bounded by O(n1.5).
1109 Let u be a node in G.With respect to u, for any node v, we
1110 define a random variable jv as below:

�v ¼ 1 if u! v 2 Gc

0 Otherwise:

�
(3)

11121112

1113

1114 Then, the expected out-degree of node u in Gc is
1115 EðPv �vÞ ¼

P
v Eð�vÞwhere E(mv) represents the mathe-

1116 matical expectation of mv.
1117 We can estimate

P
v Eð�v) as follows.

1118 If jv ¼ 1, then u! v 2 Gc and for any w 2 G, either u! w
1119 =2 Gc, or w! v =2 Gc. Otherwise, we would have a triangle
1120 Duwv and mDFS() would change u! v to a forward arc (and
1121 then remove it.) For the same reason, if jv ¼ 1, we will defi-
1122 nitely not have any path of length > 2 from u to v.
1123 Denote by p the probability that an arc appearing in Gc.

1124Denote by g ¼ t(u, v) the number of nodes between u and
1125v in a topological order of Gc. Then, we can see that the
1126probability that Gc has an arc u ! v, but does not contain
1127any triangle Duwv is

pð1
 p2Þgð1
 p3Þ 1
 p3
� � g

2

� �
	 	 	 1
 pgþ1

� � g

g

� �
: (4) 11291129

1130

1131Thus, we have

Eð�vÞ � pð1
 p2Þg : (5)
11331133

1134

1135Therefore, we can show that the expected out-degree of a
1136node in Gc is � (1 – (1 – p2)nþ1)/p � ffiffiffi

n
p þ 1/

ffiffiffi
n
p

. (See [33]
1137for a detailed discussion.) Then, the expected number of
1138arcs in Gc is bounded by

n� ffiffiffi
n
p ¼ n1:5 (6)

11401140

1141

1142We also notice that mFDs() reduces not only the number
1143of cross arcs, but also the number of nodes in Gc since in Gc

1144any nodes =2 Vcritical [ Vstart [ Vend will be discarded. To see
1145this, let us have a look at Fig. 15a once again. After the tree
1146arc u! w is transformed to a forward arc (see Fig. 15b), we
1147can not only discard it, but also node w if w =2 Vcritical [ Vstart

1148[ Vend.
1149Assume that the average number of the removed nodes
1150by each graph deduction is d and we stop the graph decom-
1151position process whenever we meet a deducted graph with
1152less than n arcs since in this case we may have a tree (with
1153high probability). We need to solve the following inequality
1154to estimate the value of k:

ðn
 kdÞ1:5 � n: (7) 11561156

1157

1158So, we have

k � ðn
 n2=3Þ=d: (8) 11601160

1161

1162To estimate d, we further assume that jE j ¼ O(n2). Then,
1163the expected number of removed arcs is in the order of

Oðn2
n1:5Þ ¼ Oððn
 ffiffiffi
n
p ÞnÞ:

11651165

1166

1167From this, we infer that the number of eliminated nodes
1168is in the order of O(n -

ffiffiffi
n
p

) since the out-degree of any node
1169in G is bounded by O(n).
1170However, the number of arcs of a graph is normally
1171smaller than n2, and for n � 4, we always have n -

ffiffiffi
n
p � ffiffiffi

n
p

.
1172So, we set d ¼ ffiffiffi

n
p

. Then, from (8), we get

k � ðn
 n2=3Þ= ffiffiffi
n
p ¼ ffiffiffi

n
p 
 ffiffiffi

n6
p

: (9)
11741174

1175

1176This shows that the expected value of k is around
ffiffiffi
n
p

.
1177Finally, we point out that the above analysis is suitable
1178only for very dense graphs. In practice, however, the num-
1179ber of arcs of a graph is normally� O(n2); and k should be
1180much smaller than this expected value. In fact, in our
1181experiments, for all the tested graphs, k is much smaller
1182than

ffiffiffi
n
p

.

Fig. 16. Illustration for triangle transformation.
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1183 6. EXPERIMENTS

1184 In this section, we report the test results.
1185 We conducted our experiments on a Linux machine with
1186 128GB of memory and a 2.9GHz 64-core processor. The pro-
1187 grams are compiled using Microsoft virtual Cþþ compiler
1188 version 6.0, running standalone.

1189 6.1 Tested Methods

1190 In the experiments, we have tested altogether 12 methods:

1191 � DFS (depth-first search)
1192 � Tree encoding by Agrawal et al. (TE for short) [1],
1193 � Chain decomposition by Chen et al. (CD for short) [5],
1194 � Dual-II by Wang et al. [24],
1195 � Path-tree by Jin et al. (PTree for short) []11,
1196 � PWAH by Schaik et al. [28],
1197 � GRAIL by Yildirim et al. [25],
1198 � SCARAB by Jin et al. [29],
1199 � HL by Jin and Wang [34]
1200 � FELINE by Velosol et al. [31],
1201 � BFL by Su et al. [35], and
1202 � Recursive DAG decomposition (discussed in this
1203 paper, RDD for short).
1204 All their theoretical computational complexities are listed
1205 in Table 1 (in Section 3).
1206 Among all these methods, the source code of CD, PTree,
1207 SCARAB, PWAH, GRAIL, and FELINE are either down-
1208 loaded from authors’ websites or provided by the authors
1209 directly while all the other methods are implemented by
1210 ourselves.
1211 All the tests are organized into two groups on real data
1212 and synthetical data, respectively.

1213 6.2 Query Generation

1214 First of all, we distinguish between positive and negative
1215 queries. A positive query evaluates to true while a nega-
1216 tive query evaluates to false. For partial index based
1217 methods, however, we need to further differentiate two
1218 kinds of negative queries. By the first kind of negative
1219 queries, the answers can be determined by checking
1220 indexes. By the second kind of negative queries, the
1221 answers are determined only after the whole G is
1222 searched. Besides, for the creation of positive queries,
1223 the trivial cases that the checked nodes v and u are not
1224 far away from each other should be carefully avoided.
1225 To this end, we use a function dis(u, v) to compute the
1226 ‘distance’ between u and v, defined to be the number of
1227 nodes visited by the BFS (breadth-first search) from u
1228 to v.
1229 For a fair comparison, we have designed a procedure to
1230 create queries for each dataset G, which takes altogether six
1231 parameters:

1232 G – dataset;
1233 q – number of queries to be generated;
1234 r1 – rate of positive queries;
1235 r2 – rate of negative queries of the first kind;
1236 r3 – rate of negative queries of the second kind;
1237 strategy – name of the method to be tested.
1238 In this algorithm, we use three sets Qt, Qf-1, and Qf-2 to
1239 store generated positive queries, negative queries of the first

1240kind, and the second kind, respectively; and use r to accom-
1241modate the threshold over dis(u, v) for any positive queries.
1242In addition, a hash function h(u, v) is used to create a
1243hash value for each produced pair of nodes (u, v) (represent-
1244ing a query: u) v?) and store it in a hash table to avoid gen-
1245erating repeated queries. However, for simplicity, this
1246technique detail is not presented in the algorithm.
1247For the tested 100000 queries, we set r1 ¼ 40%, r2 ¼ 30%,
1248and r3 ¼ 30%.

1249Algorithm 4. GenerationQ(G, q, r1, r2, r3, strategy)

1250begin
12511. Qt: ¼ f; Qf-1: ¼ f; Qf-2: ¼ f; r: ¼ 20% � jG j ;
12522. while jQt j þ jQf-1 j þ jQf-2 j � q do {
12533. choose two random nodes u and v from G;
12544. run BFS to find whether u) v;
12555. if u) v then {if dis(u, v) > r and jQt j < q � r1;
12566 then Qt: ¼ Qt [ {(u, v);}
12576. else {if strategy is full index-based and jQf-1 j < q � r2;
12587. then Qf-1: ¼ Qf-1 [ {(u, v)}
12598. else {if u ; v can be checked by using the index and
1260jQf-1 j < q � r2;
12619. then Qf-1: ¼ Qf-1 [ {(u, v)};}
126210. else if Qf-1 j < q � r2
126311. then Qf-2: ¼ Qf-2 [ {(u, v)};
126412. }
1265end

TABLE 3
Small Real Datasets

dataset jV j jE j Avg. deg. jV� j jE� j
AgroCyc 13969 17694 1.27 12684 13408
Amaze 11877 28700 2.41 3710 3734
Anthra 13736 17307 1.25 12499 13104
Ecoo 13800 17308 1.25 12620 13350
arXiv 6000 66707 11.12 6000 66707
Human 40051 43879 1.09 38811 39576
Kegg 14271 35170 2.46 3617 3908
Mtbrv 10697 13922 1.31 9602 10245
Nasa 5704 7939 1.39 5605 7735
go 6973 13361 1.92 6973 13361
VchoCyc 10694 14, 207 1.32 9491 10143
PubMed 9000 40028 4.48 9000 40028
Yago 9000 42392 4.71 9000 40028
Xmark 6483 7954 1.23 6080 7072

TABLE 4
Large Real Datasets

dataset jV j jE j Avg. deg. jV� j jE� j
Successor 1095062 1145304 1.06 542235 564890
Pagelinks 137830 2949220 21.39 47242 48435
Interproc 3532298 4716476 1.33 353748 431599
Uniprot22m 1595444 1595442 0.99 1595444 1595442
Uniprot100m 16087295 16087293 0.99 16087295 16087293
Uniprot150m 25037600 25037598 1.00 25037600 25037598
cit-Patents 3774768 16518947 4.37 3774768 16518947
citeseerx 6540399 15011, 259 2.29 6540399 16518,94
go_uniprot 6967956 34770235 4.99 6967956 34770235
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1266 6.3 Tests on Real Data

1267 In Tables 3 and 4, we show a collection of small and
1268 large real data, respectively, which have been used as
1269 the standard benchmarks in the recent studies on reach-
1270 ability indexes [10], [17], [18], [24], [25], [28], [29], [31],
1271 [34]. In the tables, for each graph, besides the numbers
1272 of nodes and arcs in the original graphs, the numbers of
1273 nodes and arcs after each SCC is coalesced to a single
1274 node, represented respectively by V� and E�, are also
1275 given.
1276 In Tables 5 and 6, the query time of our method is given
1277 in microseconds while for all the other methods the query
1278 time is given in millisecond due to the fact that our method
1279 is several orders of magnitude better than the others.
1280 First, when compared with the other full index based
1281 methods, the size of our indexes is quite small, i.e., the A-
1282 and B-sequences associated with a node by our method is
1283 very short. To see this, let us have a look at Tables 6 and 7,
1284 from which we can see that after the first three steps of
1285 recursive graph decomposition almost all graphs, except
1286 arXiv, PubMet, and Yago, are quickly shrunk to a very small
1287 graph. Even for arXiv, PubMet, and Yago, the size of the
1288 graphs are also significantly reduced.
1289 For a residue graph (i.e., the remaining graph after sev-
1290 eral steps of graph deduction and decomposition), we can
1291 establish a matrix M as discussed in [5], [6] if it becomes
1292 small. Therefore, the time complexity for evaluating a query

1293should be O(k) plus the time to access an entry in M, where
1294k is the maximum length of A- and B-sequences.
1295Since k is often quite small, our method works better than
1296the others.
1297In addition, although the theoretical query time of the
1298method CD (chain decomposition [5]) is O(1) (better than
1299all the other tested methods), its index size is very large
1300and normally cannot be completely kept in main memory,
1301which leads to longer query time than expected. It is com-
1302parable to the others, but with more indexing time.
1303Secondly, when compared with all the partial index based
1304methods, ourmethod has the following two advantages:

13051. For a negative query of the first kind, our method has
1306almost the same performance as a partial index
1307method, by using the two topological numbers asso-
1308ciated with each node, working as a filter to answer
1309negatively this part of queries [31].
13102. For a positive query or a negative query of the sec-
1311ond kind, the running time of our method is always
1312bounded by O(k), no search of G at all. But by each
1313partial index based method, such as GRAIL, HL,
1314FELINE, and BFL, the whole graph or a large part of
1315the graph has to be searched since for such queries
1316their indexes are almost useless.
1317In Figs. 17 and 18, we show the indexing time and
1318index sizes for all the tested small graphs. From these, we

TABLE 5
Query Time Over Small Graphs

dataset DFS
(ms)

TE
(ms)

CD
(ms)

DUAL-II
(ms)

PTree
(ms)

PWAH
(ms)

GRAIL
(ms)

SCARAB
(ms)

HL
(ms)

FELINE
(ms)

BFL
(ms)

RDD
(ms)

AgroCyc 23.69 3.31 2.03 2.40 1.35 1.57 19.38 2.64 4.3 25.78 38.11 31
Amaze 41,53 5.0 3.43 3.67 2.01 3.89 25.76 4.05 2.9 30.45 43.67 6
Anthra 21.4 2.67 1.07 1.78 1.36 1.39 17.16 2.57 3.9 19.08 21.79 6
ecoo 27.75 2.82 2.85 2.7 1.3 1.46 25.63 2.62 4.4 26.03 34.12 35
arXiv 416,23 6.09 4.23 4.32 4.36 30.46 165.82 136.61 101.8 206.32 178.06 15
human 399.0 29.54 18.74 30.2 14.91 67.11 252.77 201.45 152.5 245.96 267.56 45
kegg 133,52 3.27 1.65 3.01 1.96 4.97 100.14 6.99 3.4 111.09 98.23 37
mtbrv 30.31 3.33 1.74 2.03 1.3 1.5 21.94 2.51 5.1 26.71 26.34 23
nasa 20.94 2.0 1.45 2.09 1.66 4.18 17.94 3.22 4.1 19.01 21.89 9
go 19.0 13.02 12.35 43.0 2.44 5.69 14.4 3.78 3.21 16.01 26.45 15
vchocyc 30.83 2.11 1.31 1.65 1.34 6.69 20.67 2.49 3.8 24.33 34.45 26
pubmed 234.15 8.78 6.70 10.05 3.34 37.11 136.35 8.31 2.9 167.21 156.41 22
yago 173.75 5.93 3.32 6.78 2.88 6.69 73.75 4.24 3.21 83.24 78.37 24
xmark 16.4 2.01 1.56 1.98 1.77 13.34 12.08 8.85 6.5 14.35 20.67 17

TABLE 6
Query Time Over Large Graphs

dataset DFS
(ms)

TE
(ms)

CD
(ms)

DUAL-II
(ms)

PTree
(ms)

PWAH
(ms)

GRAIL
(ms)

SCARAB
(ms)

HL
(ms)

FELINE
(ms)

BFL
(ms)

RDD
(ms)

Successor 243.55 31.95 26.78 - - 35.86 89.51 20.54 22.87 15.72 57.21 102
Pagelinks 387.51 36.77 30.51 - 23.88 43.0 72.0 18.9 10.07 70.25 43.78 157
Interproc 782.01 121.03 51.23 - - 167.93 136.71 98.67 46.73 100.93 98.25 301
Uniprot22m 261.24 23.12 14.78 - 9.1 21.9 40.5 25.6 5.9 35.7 100.56 310
Uniprot100m 390.99 25.66 20.45 - - 28.3 53.0 33.6 7.5 46.03 57.32 463
Uniprot150m 437.97 27.91 23.47 - - 29.1 56.6 33.0 10.7 49.32 49.07 452
cit-Patents 1588.81 112.34 67.88 - - 176.3 501.5 517.2 - 479.27 543.98 655
citeseerx 7412.43 40.97 25.65 - - 39.8 2585.6 719.1 23.7 2341.58 210.67 2001
go_uniprot 252.83 32.15 25.32 - - 52.5 47.6 29.8 12.0 41.65 78.45 2516
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TABLE 7
Small Graph Deduction Process With Modified DFS

dataset Level 1 Level 2 Level 3 Level 4 Level 5

AgroCyc jV j 12684 46 24 6 0
jE j 13408 57 25 4 0

Amaze jV j 1422 1369 1259 1208 1206
jE j 1447 1394 1316 1315 1314

Anthra jV j 361 340 337 335 334
jE j 645 618 614 611 610

Ecoo jV j 434 403 388 384 383
jE j 835 797 764 759 758

arXiv jV j 5108 3384 2832 2736 2090
jE j 58243 18631 17833 17646 5456

Human jV j 412 397 394 392 391
jE j 720 704 701 698 697

Kegg jV j 1230 1208 1188 1186 1185
jE j 1348 1325 1301 1299 1298

Mtbrv jV j 364 341 337 334 333
jE j 681 651 644 641 640

Nasa jV j 381 204 88 20 0
jE j 425 256 78 19 0

go jV j 2346 1296 1067 943 417
jE j 4765 2355 2122 1920 808

VchoCyc jV j 386 370 351 345 344
jE j 731 665 665 658 657

PubMed jV j 2656 2515 2334 2143 2093
jE j 9514 9359 7072 6778 4404

Yago jV j 5357 5226 4917 4415 4001
jE j 33647 24168 14389 11147 9328

Xmark jV j 385 178 160 142 135
jE j 444 257 226 198 190

Fig. 17. Indexing time (ms) for small graphs.

Fig. 18. Index space (� 1000 bytes) for small graphs.

Fig. 19. Indexing time (ms) for large graphs.

Fig. 20. Index size (�Mbytes) for large graphs.
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1319 can see that our method is just a little bit worse than
1320 FELINE, by which only one search of graphs is con-
1321 ducted, and each node in a graph is associated with a
1322 pair of integers. By our method, besides the generation of
1323 two topological numbers for each node, G and its
1324 deduced graphs will be searched up to 5 or more than 5
1325 times and each node will then be attached with two
1326 sequences each containing 10 or more integers. Therefore,
1327 our method is in general worse than FELINE. Notice that
1328 by GRAIL, each graph is also searched exactly 5 times as
1329 ours. However, by our method, except for the first time of
1330 the graph search, a quite smaller graph will be navigated

1331by any of the subsequent graph searches. Thus, our
1332method is generally comparable to GRAIL.
1333In addition, by SCARAB, a GRAIL-like index is built over
1334the backbone of a graph. This is much smaller than the origi-
1335nal graphs. However, some more time is spent for handling
1336relationships between the nodes outside and inside of back-
1337bones. Thus, the total indexing time and the index size of
1338SCARAB are higher than GRAIL.
1339For the large graphs, we only show the results of seven
1340strategies in Figs. 19 and 20, SCARAB, GRAIL, HL, FELINE,
1341BFL, TE and RDD while all the other methods fail to handle
1342any of them, or one or two of them. From these two figures,

TABLE 8
Large Graph Deduction Process With Modified DFS

dataset Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10

Successor jV j 13442 1739 1102 794 642 0 0 0 0 0
jE j 16845 1846 957 795 641 0 0 0 0 0

Pagelinks jV j 17285 17242 17189 17118 17070 15981 15940 15932 15784 15617
jE j 28918 27869 26195 25668 24357 23874 22830 22801 22789 22356

Interproc jV j 34442 29018 21117 17888 15810 15808 15800 15606 15406 14806
jE j 64736 55057 44379 30003 24042 24031 24021 23926 23026 22031

Uniprot22m jV j 19668 14948 12085 10311 9143 6979 0 0 0 0
jE j 16260 12849 10749 9412 8512 6497 0 0 0 0

Uniprot100m jV j 198408 151456 115615 88255 67370 51427 39257 29967 22876 17462
jE j 164159 130284 103400 82063 65129 54274 43075 34186 27132 21533

Uniprot150m jV j 309106 234214 180164 137530 105792 80145 61650 47061 35924 27215
jE j 255485 204388 127742 100584 79200 82880 72304 56436 40981 36016

cit-Patents jV j 37007 27211 18766 14325 11019 7346 6121 5.655 5013 5010
jE j 226289 113147 89797 68547 52325 41528 13842 10253 7826 7811

citeseerx jV j 64121 48576 37950 29192 22629 18103 13510 10638 10003 9068
jE j 148626 87427 69386 52966 42037 31138 17299 13307 10300 10042

go_uniprot jV j 66999 51537 40263 30272 25227 18549 14721 11238 8711 6599
jE j 463603 264919 189227 150181 115523 60802 33778 16889 12991 9842

TABLE 9
Large Graph Deduction Process With Traditional DFS

dataset Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10

Successor jV j 93056 72675 67154 30004 9875 8903 7695 7654 7611 6789
jE j 205723 141552 14268 74502 16221 16764 16124 15800 14235 13678

Pagelinks jV j 92341 83634 67264 55004 51786 45432 42111 41257 41112 39342
jE j 281918 257869 202195 118564 101278 96657 90981 89766 88453 76546

Uniprot22m jV j 121452 86732 65724 54980 45333 41777 39667 30665 0 0
jE j 136666 100312 87256 67005 55886 51432 42367 30664 0 0

Fig. 21. Query time (ms) for SF graphs. Fig. 22. Indexing time (ms) for SF graphs.
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1343 we can see that the same analysis for the small graphs can
1344 be applied to the large ones.
1345 Finally, we show the graph deduction process with the
1346 traditional DFS being used in Table 9. In comparison with
1347 Table 8, we can see that the graph deduction is much slower
1348 by using the traditional DFS than by using mDFS.

1349 6.4 Tests on Synthetical Data

1350 Two types of synthetical datasets are used in our experiments.
1351 One is the Erdos Renyi Model (ER). It is a random graph of
1352 jV j vertices and jE j edges. To create sets of arcs, we ran-
1353 domly select node u and node v from the corresponding node
1354 sets. When creating arcs, it is guaranteed that an edge is not
1355 repeatedly generated. This method simulates many real-
1356 world problems and may contains many large SCCs. The sec-
1357 ond dataset is the Scale FreeModel (SF). It is another random
1358 graph satisfying the power law distribution of node outde-
1359 grees d: P(d)¼ ad-l, where a and l are two constants. This data-
1360 set is created by the graph generator gengraphwin (http://
1361 fabien.viger.free.fr/liafa/generation/). For the SF graphs, we
1362 fix a to 1. To study the scalability in these two kinds of graphs,
1363 we vary graph size from 5k to 250K vertices. For ER graphs,
1364 we also vary node degree d from 2 to 5; and for SF graphs, we
1365 change l from 2.2 to 2.8. Thus, the largest graph generated
1366 may have more than one million arcs. Note that the smaller l
1367 is, the denser the corresponding graph. The goal of this test is
1368 to understand the impact of graph density on performance,
1369 for both different synthetical graph generation models. We
1370 expect that all the parameters for all the tested methods will
1371 increase as the graphs become denser.

1372It is because the number of possible paths to explore
1373between nodes, as well as the index sizes, increases with
1374density. Figs. 21, 22, and 23 summarize the results for the
1375ER graphs and Figs. 24, 25, ands 26 for the SF graphs.
1376In addition, for the purpose of comparison, we have also
1377tested some other methods on the two synthetical graphs.
1378The results are summarized in two tables: Table 10 shows
1379the query time of some strategies on an SF graph while
1380Table 11 shows the query time on an ER graph. Both the SF
1381and ER graphs contain 250k nodes. Comparing these two
1382tables respectively with Figs. 21 and 24, we can see that all
1383of them are much worse than ours.

13847. CONCLUSION

1385In this paper, a new method is proposed to compress transi-
1386tive closures to support reachability queries. The main idea
1387behind it is to decompose G into a series of spanning trees:
1388T0, . . ., Tk-1 (for some k � 1), which enables us to associate
1389two sequences with each node u in G, denoted as A-
1390sequence and B-sequence, respectively. The A-sequence is
1391utilized to check reachability from u to any other node while
1392the B-sequence is for checking the reachability from any
1393other node to u. In this way, the query time can be reduced
1394to O(k) and the space requirement to O(kn), where k is the
1395number of the decomposed spanning trees. Theoretically,
1396we have k � ffiffiffi

n
p

, where n is the number of nodes in G.
1397Extensive experiments are conducted to test different
1398strategies over different kinds of graphs and real graphs,
1399which shows that our method is promising. Our method is
1400also a flexible strategy. For different applications, k can be

Fig. 23. Index size (Mbytes) for SF graphs.

Fig. 24. Query time (ms) for ER graphs.

Fig. 25. Indexing time (ms) for ER graphs.

Fig. 26. Index size (Mbytes) for ER graphs.

TABLE 10
Query Time on SF Graphs (ms)

TE GRAIL SCARAB FELINE HL BFL

l ¼ 2.2 41.57 79.83 27.09 65.09 77.31 51.75
l ¼ 2.4 29.12 72.34 23.80 72.78 69.45 47.76
l ¼ 2.6 24.65 61.67 19.45 51.72 56.98 41.43
l ¼ 2.8 23.56 57.98 16.05 64.07 51.65 35.74

TABLE 11
Query Time on ER Graphs (ms)

TE GRAIL SCARAB FELINE HL BFL

d ¼ 2 27.65 41.34 16.87 47.23 40.54 29.12
d ¼ 3 35,12 49.34 21.43 49.13 45.87 45.87
d ¼ 4 40,37 58.67 24.09 62.34 67.89 49.11
d ¼ 5 46,87 76.38 31.24 69.56 75.67 56.77

CHEN ETAL.: EVALUATION OF REACHABILITY QUERIES BASED ON RECURSIVE DAG DECOMPOSITION 17
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1401 set to different constants to reduce space overhead. But the
1402 query time is still bounded by a constant.
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