
Information Processing Letters 98 (2006) 253–262

www.elsevier.com/locate/ipl

A new tree inclusion algorithm

Yangjun Chen ∗,1, Yibin Chen

Department of Applied Computer Science, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9

Received 9 September 2005; accepted 28 November 2005

Available online 30 March 2006

Communicated by L. Boasson

Abstract

We consider the following tree-matching problem: Given labeled, ordered trees P and T , can P be obtained from T by
deleting nodes? Deleting a node v entails removing all edges incident to v and, if v has a parent u, replacing the edges
from u to v by edges from u to the children of v. The existing algorithm for this problem needs O(|T || leaves(P)|) time and
O(| leaves(P)|min{DT , | leaves(T)|}) space, where leaves(P) (leaves(T)) stands for the number of the leaves of P(T), and DT

for the height of T . In this paper, we present a new algorithm that requires O(|T |min{DP , | leaves(P)|}) time and no extra space,
where DP represents the height of P .
© 2006 Elsevier B.V. All rights reserved.
1. Introduction

Let T be a tree and v be a node in T with parent
node u. Denote by delete(T , v) the tree obtained from
T by removing the node v. The children of v becomes
children of u as illustrated in Fig. 1.

Given two ordered labeled trees P and T , called the
pattern and the target, respectively. An interesting prob-
lem is: Can we obtain pattern P by deleting some nodes
from target T ? That is, is there a sequence v1, . . . , vk of
nodes such that for

T0 = T and

Ti+1 = delete(Ti, vi+1) for i = 0, . . . , k − 1,

* Corresponding author.
E-mail addresses: ychen2@uwinnipeg.ca (Y. Chen),

chenyibin@hotmail.com (Y. Chen).
1 The author is supported by NSERC 239074-01 (242523) (Natural

Sciences and Engineering Council of Canada).
0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2005.11.022
Fig. 1. The effect of removing a node from a tree.

we have Tk = P . If this is the case, we say, P is included
in T , or say, T covers P . Such a problem is called
the tree inclusion problem. Ordered labeled trees ap-
pear in various research fields, including programming
language implementation, natural language processing,
document databases, and molecular biology.

As an example, consider querying grammatical struc-
tures as shown in Fig. 2, which is the parse tree of a
natural language sentence.

One might want to locate, say, those sentences that
include a verb phrase containing the verb “reads” and
after it a noun “book” followed by any adverb. This is
exactly the sentences whose parse tree can be obtained

254 Y. Chen, Y. Chen / Information Processing Letters 98 (2006) 253–262
Fig. 2. The parse tree of a sentence.

Fig. 3. An included tree of the parse tree.

by deleting some nodes from the tree shown in Fig. 2.
(See Fig. 3 for illustration.)

The ordered tree inclusion problem was initially in-
troduced by Knuth [5], where only a sufficient condi-
tion for this problem is given. The tree inclusion has
been suggested as an important primitive for expressing
queries on structured document databases [3]. A struc-
tured document database is considered as a collection of
parse trees that represent the structure of the stored texts
and tree inclusion is used as a means of retrieving infor-
mation from them. This problem has been the attention
of much research. Kilpelainen and Mannila [4] pre-
sented the first polynomial time algorithm using O(|T | ·
|P |) time and space. Most of the later improvements are
refinements of this algorithm. In [6], Richter gave an
algorithm using O(|α(P)| · |T | + m(P,T) · DT) time,
where α(P) is the alphabet of the labels of P , m(P,T)

is the size of a set called matches, defined as all the pairs
(v,w) ∈ P × T such that label(v) = label(w), and DT

is the depth of T . Hence, if the number of matches is
small, the time complexity of this algorithm is better
than O(T | · |P |). The space complexity of the algorithm
is O(|α(P)| · |T |+m(P,T)). In [2], a more complex al-
gorithm was presented using O(|T | · | leaves(P)|) time
and O(| leaves(P)| · min{DT , | leaves(T)|}) space. In
[1], an efficient average case algorithm was discussed.
Its average time complexity is O(|T | + C(S,T) · |P |),
where C(P,T) represents the number of T ’s nodes that
have been examined during the inclusion search. How-
ever, its worst time complexity is still O(|T | · |P |).

All the above algorithms work in a bottom-up way.
In this paper, we propose a new algorithm by integrat-
ing a top-down process into a bottom-up computation. It
needs only O(|T | · min{DP , | leaves(P)|}) time and no
extra space, where DP represents the height of P .

2. Orderings and embeddings

We concentrate on labeled trees that are ordered, i.e.,
the order between siblings is significant. Technically,
it is convenient to consider a slight generalization of
trees, namely forests. A forest is a finite ordered se-
quence of disjoint finite trees. A tree T consists of a
specially designated node root(T) called the root of the
tree, and a forest 〈T1, . . . , Tk〉, where k � 0. The trees
T1, . . . , Tk are the subtrees of the root of T or the im-
mediate subtrees of tree T , and k is the out-degree of
the root of T . A tree with the root t and the subtrees
T1, . . . , Tk is denoted by 〈t;T1, . . . , Tk〉. The roots of the
trees T1, . . . , Tk are the children of t and siblings of each
other. Also, we call T1, . . . , Tk the sibling trees of each
other. In addition, T1, . . . , Ti−1 are called the left sib-
ling trees of Ti , and Ti−1 the direct left sibling tree of
Ti . The root is an ancestor of all the nodes in its sub-
trees, and the nodes in the subtrees are descendants of
the root. The set of descendants of a node v is denoted
by desc(v). A leaf is a node with an empty set of de-
scendants.

Sometimes we treat a tree T as the forest 〈T 〉. We
may also denote the set of nodes in a forest F by V (F).
For example, if we speak of functions from a forest F

to a forest G, we mean functions mapping the nodes of
F onto the nodes of G. The size of a forest F , denoted
by |F |, is the number of the nodes in F . The restriction
of a forest F to a node v with its descendants is called a
subtree of F rooted at v, denoted by F [v].

Let F = 〈T1, . . . , Tk〉 be a forest. The preorder of
a forest F is the order of the nodes visited during
a preorder traversal. A preorder traversal of a forest
〈T1, . . . , Tk〉 is as follows. Traverse the trees T1, . . . , Tk

in ascending order of the indices in preorder. To traverse
a tree in preorder, first visit the root and then traverse
the forest of its subtrees in preorder. The postorder is
defined similarly, except that in a postorder traversal the
root is visited after traversing the forest of its subtrees
in postorder. We denote the preorder and postorder num-
bers of a node v by pre(v) and post(v), respectively.

Using preorder and postorder numbers, the ancestor-
ship can be checked as follows.

Lemma 1. Let v and u be nodes in a forest F . Then, v

is an ancestor of u if and only if pre(v) < pre(u) and
post(u) < post(v).

Proof. See Exercise 2.3.2-2 in [5]. �

Y. Chen, Y. Chen / Information Processing Letters 98 (2006) 253–262 255
Fig. 4. (a) The tree on the left can be included in the tree on the right by deleting the nodes labeled: d, e and b. (b) The embedding corresponding
to (a).
Similarly, we check the left-to-right ordering as fol-
lows.

Lemma 2. Let v and u be nodes in a forest F . Then,
v appears on the left side of u if and only if pre(v) <

pre(u) and post(v) < post(u).

Proof. The proof is trivial. �
Definition 1. Let F and G be labeled ordered forests.
We define an ordered embedding (φ,G,F) as an injec-
tive function φ :V (G) → V (F) such that for all nodes
v,u ∈ V (G),

(i) label(v) = label(φ(v)) (label preservation condi-
tion);

(ii) v is an ancestor of u iff φ(v) is an ancestor of
φ(u), i.e., pre(v) < pre(u) and post(u) < post(v)

iff pre(φ(v)) < pre(φ(u)) and post(φ(u)) <

post(φ(v)) (ancestor condition);
(iii) v is to the left of u iff φ(v) is to the left of

φ(u), i.e., pre(v) < pre(u) and post(v) < post(u)

iff pre(φ(v)) < pre(φ(u)) and post(φ(v)) <

post(φ(u)) (Sibling condition).

Fig. 4 shows an example of an ordered inclusion.
Now we give two concepts that are useful to explain

the main idea of our algorithm. Throughout the rest of
the paper, we refer to the labeled ordered trees simply
as trees.

Definition 2. Let P and T be trees. A root-preserving
embedding of P in T is an embedding φ of P in T such
that φ(root(P)) = root(T). If there is a root-preserving
embedding of P in T , we say that the root of T is an
occurrence of P .

Fig. 4(b) shows an example of a root preserving em-
bedding. According to [4], restricting to root-preserving
embedding does not lose generality.

Obviously, to find a root-preserving embedding, we
have to work in a top-down fashion.

In the following, we use the postorder numbers to
define an ordering of the nodes of a forest F given by
v ≺ v′ iff post(v) < post(v′). Also, v 	 v′ iff v ≺ v′ or
v = v′. Furthermore, we extend this ordering with two
special nodes ⊥ ≺ v ≺ �. The left relatives, lr(v), of a
node v ∈ V (F) is the set of nodes that are to the left of
v and similarly the right relatives, rr(v), are the set of
nodes that are to the right of v.

The next definition gives a name for the embeddings
that are searched for by the bottom-up procedure dis-
cussed in [4].

Definition 3. Let G = 〈P1, . . . ,Pk〉 and F be a forests,
and E be a collection of embeddings of G in F . An
embedding φ ∈ E is a left embedding of E if for every
γ ∈ E, we have

post
(
φ
(
root(Pk)

))
� post

(
γ
(
root(Pk)

))
.

A left embedding of the set of all embeddings of G

in F is a left embedding of G in F . Obviously, if G is
included in F , there must exist a left embedding of G

in F .

3. Algorithm

The algorithm to be presented attempts to find the
number of subtrees j (� 0) within an ordered forest G =
〈P1, . . . ,Pq〉 (q � 1), which are embedded in a target
tree T . If j = q , we say that G is embedded in T . If
j < q , then only the trees P1, . . . , and Pj are embedded
in T . Let p1, . . . , pq and t be the roots of P1, . . . ,Pq and
T , respectively. Since a forest does not have a root, we
use a virtual node pv to serve as a substitute for root(G).
Thus, root(G) will return pv if G = 〈P1, . . . ,Pq〉 with
q > 1, and will return p1 if q = 1.

There are three cases that need to be considered when
designing an algorithm to check the tree embedding:

Case 1: root(G) �= pv (i.e., G = 〈P1〉 and root(G) =
p1), and label(p1) �= label(t). If G is embedded in T ,
then there must exist a subtree Ti of t such that it con-
tains the whole G. The algorithm should return 1 if an
embedding can be found and 0 if it cannot. (See Fig. 5
for illustration.)

Case 2: root(G) �= pv (i.e., G = 〈P1〉 and root(G) =
p1), and label(p1) = label(t). Let 〈P11, . . . ,P1l〉 (l � 0)

256 Y. Chen, Y. Chen / Information Processing Letters 98 (2006) 253–262
be the forest of subtrees of p1 and 〈T1, . . . , Tk〉 the for-
est of subtrees of t . If G is embedded in T , there must
exist two sequences of integers: k1, . . . , kg and l1, . . . , lg
(g � l) such that Tki

includes 〈P1(li−1+1), . . . ,P1li 〉 (i =
1, . . . , g, l0 = 0, lg = l), where 〈P1(li−1+1), . . . ,P1li 〉
represents a forest containing subtrees P1(li−1+1), . . . ,

and P1li . Thus, if lg = l, the algorithm should return 1
since we have a root preserving inclusion of G in T .
Otherwise, it should return 0. (See Fig. 6 for illustra-
tion.)

Case 3: root(G) = pv and there exists an integer j

(0 � j � q) such that 〈P1, . . . ,Pj 〉 is included in T . If
j = q , then the whole G is embedded in T . There are
two possibilities to be considered when looking for j .
The first possibility is similar to Case 2, where there
are two sequences of integers: k1, . . . , kg and l1, . . . , lg
(g � q) that represent the order, in which the subtrees of
root(G) are embedded in the subtrees of root(T). j =
lg . The second possibility is that there exists a root pre-
serving inclusion of P1 in T , i.e., label(p1) = label(t)
and the subtrees of p1 are included in the subtrees of t .
In this case, j = 1. (See Fig. 7 for illustration.)

Fig. 5. Illustration for Case 1.
In order to understand how to arrive at a tree in-
clusion algorithm based on the checking of these three
cases, we first consider the trivial case that G contains
only one single node p. In such a case, we have only
Cases 1 and 2 to be encountered, and the problem can
be easily solved using a preorder tree traversal start-
ing at root(T). Thus, if label(p) �= label(t), the sub-
sequent operations are to compare all child nodes of t

with p. Once the algorithm finds a node t ′ such that
label(p) = label(t ′), it returns the result to the original
caller of the algorithm.

Now we need to consider the case of attempting
to find an embedding of an order forest G consisting
of a list of single nodes p1, . . . , pq into a tree T of
height 2 with root t and child nodes t1, . . . , tk (Case 3).
Since the nodes are ordered, it is simple to scan from
t1 to tk to find k1, . . . , ks and l1, . . . , ls (s � l) such
that label(tki

) = label(pli). If after this scan we have
j = ls = 0, then the remaining possibility is that label(t)
= label(p1). If it is the case, we have j = 1.

If the height of T is greater than two, a more com-
plicated bottom-up process is required to handle Case 3.
Let ts be a node in T with subtrees Ts1, . . . , Tsk . Let Gs

be a subset of single nodes 〈pf , . . . ,pq〉 of G, which
have not been found in the part left to any ancestor
of ts in T . Denote jreturn the number of the subtrees
that are found in the tree rooted at ts . Then, in order
to find jreturn, we first need to search Ts1, and find the
number of the nodes jf , which are included in Ts1.
If jf > 0, then Gs is reduced to 〈pr, . . . ,pq〉, where
r = jf + f . This process is then repeated for Ts2, . . . ,

Tsk to find jf +1, jf +2, . . . , jf +k−1 until either all sub-
Fig. 6. Illustration for Case 2.

Fig. 7. Illustration for Case 3.

Y. Chen, Y. Chen / Information Processing Letters 98 (2006) 253–262 257
trees of ts are traversed or Gs becomes empty. If after
all the subtrees are searched and jtotal = jf + jf +1 +
· · · + jf +k−1 = 0, an additional check for comparing
label(pf) and label(ts) is required to ensure that all
possible match patterns are considered. Therefore, for
G = 〈p1, . . . , pq〉, which is a forest containing a list of
single nodes, the result should be

if jtotal > 0, j = f − 1 + jreturn = f − 1 + jtotal

else if label(pf) = label(ts),

j = f − 1 + jreturn = f − 1 + 1 = f

else j = f − 1 + jreturn = f − 1.

In the general Case 3, G is a list of subtrees 〈P1, . . . ,Pq〉
with roots 〈p1, . . . , pq〉, the same analysis as above ap-
plies. That is, we will first check 〈T1, . . . , Tk〉 against
〈P1, . . . ,Pq〉. If the return value g is larger than 0, we
set j equal to g. If g = 0, we will check label(p1)

against label(ts) and 〈T1, . . . , Tk〉 against the subtrees
〈P11, . . . ,P1l〉 of p1. It is exactly Case 2. If label(p1) =
label(ts) and 〈T1, . . . , Tk〉 includes 〈P11, . . . ,P1l〉, we
set j = 1, which shows a root preserving inclusion.
Otherwise, j = 0. Obviously, we have height(P1x) <

height(P1) for 1 � x � l. Since for each label match
found, the height of the sub-pattern is effectively re-
duced by at least 1, we are guaranteed to eventually
arrive at a pattern forest consisting of only single nodes
(trivial case).

In the general Case 2, G is a non-trivial tree 〈p;P1,

. . . ,Pq〉 and root(t) = p. We need to check 〈T1, . . . , Tk〉
against 〈P1, . . . ,Pq〉. To do that, we will check Ti in
turn against 〈Pli−1+1, . . . ,Pq〉 (i = 1, . . . , j , l0 = 0). So
the control will be switched over to Case 3. This emer-
gence of Case 3 within Case 2, as well as Case 2 within
Case 3 (see the above discussion), hints a recursive so-
lution using two functions that interleavingly call each
other.

Finally, we notice that Case 1 always ends up with
Case 2 unless the whole tree T is searched and no nodes
are found matching p1.

An observation shows that we can arrange the com-
putation in such a way that Case 2 is always handled as
early as possible by the size checking as follows:

when we check T against a forest 〈P1, . . . ,Pq〉, if
|P1| � |T | < |P1| + |P2|, the control is switched over
to Case 2 immediately to check T against P1.

In fact, Case 2 is handled in a top-down way, which
effectively restrict the searching range of the subsequent
bottom-up computation.

The following Algorithm 1 consists of two functions:
top-down-process(T ,G) and bottom-up-process(T ′,
Fig. 8. Two trees.

G′), where T and T ′ are trees, G′ is a forest, and G

can be a tree or a forest. In the algorithm, a tree is al-
ways handled as a tree with a virtual root.

Intuitively, top-down-process(T ,G) is designed to
handle Cases (i), (ii), and the second possibility in
Case (iii) while bottom-up-process(T ′,G′) is for the
first possibility in Case (iii).

In top-down-process(T ,G), we will first check wheth-
er root(G) is virtual (line 1). If it is the case, we will
further check whether |T | < |P1| + |P2| or p has only
one child (line 2). If both do not hold, we will try to find
a j such that 〈P1, . . . ,Pj 〉 is covered by the subtrees of t

by invoking bottom-up-process(T ,G) (line 4). If j = 0,
we will check whether the subtrees of t covers the sub-
trees of P1’s root by invoking bottom-up-process(T ,P1)

if label(t) = label(P1’s root) (see lines 6–7). If |T | <

|P1| + |P2| or p has only one child, we will directly
check whether T includes P1. This is done by assign-
ing P1 to G (see line 3) and then going to line 9. In
line 10, we compare label(t) and label(root(G)). If
label(t) = label(root(G)), we will check whether all
the subtrees of root(G) are covered by the subtrees of
t by changing root(G) to a virtual node and then in-
voking bottom-up-process(T ,G) (see lines 10–13). If
label(t) �= label(root(G)), we attempt to find an i such
that Ti includes the whole G (see lines 15–19).

In bottom-up-process(T ,G), we try to find two se-
quences of integers: k1, . . . , kj and l1, . . . , lj (j �
l) such that Tki

includes 〈P1(li−1+1), . . . ,P1li 〉 (i =
1, . . . , j , l0 = 0).

Example 1. Consider two ordered, labeled trees T and
P shown in Fig. 8, where each node in T is identified
with ti , such as t0, t1, t11, and so on; and each node in P

is identified with pj . In addition, each subtree rooted at
ti (pj) is represented by Ti(Pj).

In the following step-by-step trace (given in Table 1),
we use jdown

x to represent the return value of a call top-
down-process(Tx,G

′) for some sub-forest G′ in P and
j

up
y the return value of a call bottom-up-process(Ty,G

′′)
for some sub-forest G′′ in P . In addition, we use p to
represent a virtual node.

258 Y. Chen, Y. Chen / Information Processing Letters 98 (2006) 253–262
function top-down-process(T ,G)

input: T = 〈t;T1, . . . , Tk〉, G = 〈p;P1, . . . ,Pq 〉 (* p may or may not be a virtual node *)
output: if root(G) is virtual, returns j � 0; else returns 1 if T includes G; otherwise returns 0.
begin

1. if root(G) is virtual
2. then {if (|T | < |P1| + |P2| or p has only one child)
3. then G := P1;
4. else {j := bottom-up-process(T ,G);
5. if (j = 0 and label(t) = label(P1’s root)) (* second possibility in Case 3 *)
6. then {change P1’s root to a virtual node; x := bottom-up-process(T ,P1);
7. if (x = the number of the children of P ′

1s root) then j := 1 else j := 0;}
8. return j ; }}
9. if |T | < |G| return 0;

10. else {if (label(t) = label(p)) (* handling Case 2 *)
11. then {p := virtual node;
12. j := bottom-up-process(T ,G);
13. if (j = l) then return 1 else 0;}
14. else { if t is a leaf then return 0; (* handling Case 1 *)
15. i := 1;
16. while (i � k) do
17. { if top-down-process(Ti ,G) > 0 then return 1;
18. i := i + 1;}
19. return 0;}}
end

function bottom-up-process(T ,G)

input: T = 〈t;T1, . . . , Tk〉, G = 〈p;P1, . . . ,Pq 〉
output: j—an integer
begin
1. j := 0; i := 1; (* first possibility in Case 3 *)
2. while (j < q and i � k) do
3. { x := top-down-process(Ti ,G);
4. j := j + x; G := 〈p;Pj+1, . . . ,Pq 〉; i := i + 1; }
end

Algorithm 1.
4. Correctness and computational complexities

In this section, we prove the correctness of the algo-
rithm and analyze its computational complexities.

4.1. Correctness

Proposition 1. Let T = 〈t;T1, . . . , Tk〉 and G = 〈p;P1,

. . . ,Pq〉. If p is a real node (i.e., not virtual), Algorithm
top-down-process(T ,G) returns 1 if T includes G; oth-
erwise 0. If p is a virtual node, it returns an integer i,
indicating that T includes 〈P1, . . . ,Pi〉.

Proof. We prove the proposition by induction on the
sum of the heights of T and G,h. Without loss of gen-
erality, assume that height(T) � 1 and height(G) � 1.

Basic step. When h = 2, we consider two cases.

(i) Both T and G are singulars: r1 and r2.
(ii) T is a singular; but G is a set of nodes.
In Case (i), if r1 and r2 have the same label, the algo-
rithm returns 1 (see lines 10–13); otherwise returns 0
(see line 14). In Case (ii), a virtual root p will be con-
structed for G. Then, lines 2–3 will be executed, leading
to lines 9–14. According to the above discussion, the re-
sult must be correct.

When h = 3, we need to consider the following two
cases.

(iii) T is a tree of height 2 and G is a set of nodes.
(iv) T is a singular; but G is a set of trees of height 2.

In Case (iii), a virtual root will be constructed for
G. Then, line 4 will be executed to invoke bottom-
up-process(T ,G). Let T = 〈t; t1, . . . , tk〉 and G = 〈p;
p1, . . . , pq〉, where ti (1 � i � k) and pj (1 � j �
q) are single nodes and p is virtual. In the execu-
tion of bottom-up-process(T ,G), we will have a series
of calls of the form top-down-process(ti ,Gj), where
Gj = 〈p;pj , . . . ,pq〉 (1 � j) and p1, . . . , pj−1 are as-
sumed to be covered by t1, . . . , ti−1. Each of such calls

Y. Chen, Y. Chen / Information Processing Letters 98 (2006) 253–262 259
Table 1
Trace of Algorithm 1

Step-by-step trace: Explanation:
top-down-process(T ,P) top-down-process(T ,P) begins.

p is a real node since p is a real node, go to line 9 to check T against P (line 1).
|T | > |〈P 〉| compare the size of T and 〈P 〉 (line 9).
label(t0) = label(p0) check t0 against p0 (line 10).
bottom-up-process(T , 〈p;P1,P2〉) call bottom-up-process(T , 〈p;P1,P2〉) (line 12).

top-down-process(T1, 〈p;P1,P2〉) in the bottom-up process, call the top-down process.
|T1| = |〈P1,P2〉| compare the size of T1 and 〈P1,P2〉 (line 2).
bottom-up-process(T1, 〈p;P1,P2〉) in the top-down process, call the bottom-up process (line 4).

top-down-process(T11, 〈p;P1,P2〉) in the bottom-up process, call the top-down process.
|T11| < |〈P1,P2〉| compare the size of T11 and 〈P1,P2〉 (line 2).
|T11| < |〈P1〉| compare the size of T11 and 〈P1〉 (line 9).

return jdown
11 = 0 since |T11| < |〈P1〉|, top-down-process(T11, 〈p;P1,P2〉) returns 0.

top-down-process(T12, 〈p;P1,P2〉) in the bottom-up process, call the top-down process.
|T12| < |〈P1,P2〉| compare the size of T12 and 〈P1,P2〉 (line 2).
|T12| < |〈P1〉| compare the size of T12 and 〈P1〉 (line 9).

return jdown
12 = 0 since |T12| < |〈P1〉|, top-down-process(T12, 〈p;P1,P2〉) returns 0.

return j
up
1 = 0 bottom-up-process(T1, 〈p;P1,P2〉) returns 0, which shows that the subtrees of T1’s root do

not cover any subtree in 〈P1,P2〉.
label(t1) = label(p1) = c since label(t1) = label(p1), it is possible for T1 itself to include P1 (line 5).
bottom-up-process(T1, 〈p;P1〉) p1 is replaced with the virtual node p, call the bottom-up process.

top-down-process(T11, 〈p;P11〉) in the bottom-up process, call the top-down process.
p has only one child since p has only one child, check T11 against P11 immediately (line 2).
|T11| = |〈P11〉| compare the size of T11 and 〈P11〉 (line 9).
label(t11) �= label(p11) check t11 against p11 (line 10).

return jdown
11 = 0 since label(t11) �= label(p11), top-down-process(T11, 〈p;P11〉) returns 0.

top-down-process(T12, 〈p;P11〉) in the bottom-up process, call the top-down process.
p has only one child since p has only one child, check T12 against P11 immediately (line 2).
|T12| = |〈P11〉| compare the size of T12 and 〈P11〉 (line 9).
label(t12) = label(p11) = e check t12 against p11 (line 10).

return jdown
12 = 1 since label(t12) = label(p11), top-down-process(T12, 〈p;P11〉) returns 1.

return j
up
1 = 1 bottom-up-process(T1, 〈p;P1〉) returns 1.

return jdown
1 = 1 since label(t1) = label(p1) and T12 includes 〈P11〉, top-down-process(T1, 〈p;P1,P2〉)

returns 1 (line 7).
top-down-process(T2, 〈p;P2〉) in the bottom-up process, call the top-down process.

p has only one child since p has only one child, check T2 against P2 immediately (line 2).
|T2| > |〈P2〉| compare the size of T2 and 〈P2〉 (line 9).
label(t2) �= label(p2) check t2 against p2 (line 10).
top-down-process(T21, 〈p;P2〉) since label(t2) �= label(p2), we check top-down-process(T21, 〈p;P2〉) and

top-down-process(T22, 〈p;P2〉) in turn (line 17).
p has only one child since p has only one child, check T21 against P2 immediately (line 2).
|T21| = |〈P2〉| compare the size of T21 and 〈P2〉 (line 9).
label(t21) �= label(p2) check t21 against p2 (line 10).

return jdown
21 = 0 since label(t21) �= label(p2), top-down-process(T21, 〈p;P2〉) return 0 (line 14).

top-down-process(T22, 〈p;P2〉) call top-down-process(T22, 〈p;P2〉) (line 17).
p has only one child since p has only one child, check T22 against P2 immediately (line 2).
|T22| = |〈P2〉| compare the size of T22 and 〈P2〉 (line 9).
label(t22) = label(p2) check t22 against p2 (line 10).

return jdown
22 = 1 since label(t22) = label(p2), top-down-process(T22, 〈p;P2〉) returns 1.

return jdown
2 = 1 top-down-process(T2, 〈p;P2〉) returns 1 (line 17).

return jup = 2 bottom-up-process(T , 〈p;P1,P2〉) return 2.
return jdown = 1 top-down-process(T ,P) returns 1 (line 13).
is exactly Case (ii). Then, the result must be correct
(see line 4 in bottom-up-process()). Case (iv) is triv-
ial. In this case, the algorithm returns 0 by executing
line 8.
Induction hypothesis. Assume that when h = l, the
proposition holds.

Consider T = 〈t;T1, . . . , Tk〉 and G = 〈p;P1, . . . ,

Pq〉 with height(T) + height(G) = l + 1. First, we

260 Y. Chen, Y. Chen / Information Processing Letters 98 (2006) 253–262
assume that p is a real node. Obviously, we have
height(Ti) + height(G) � l and height(T) + height(Pj)

� l. If label(t) = label(p), the algorithm partitions the
integer sequence: 1, . . . , q into some subsequences:
{j0 + 1, . . . , j1}, {j1 + 1, . . . , j2}, . . . , {jm−1 + 1, . . . ,

jm}, where j0 = 0 and jm � q , such that each Ti

(i = 1, . . . ,m; m � k) includes 〈Pji−1+1, . . . ,Pji
〉 but

not 〈Pji−1+1, . . . ,Pji
,Pji+1〉. This is done by invok-

ing bottom-up-process(T ,G′), where G′ is a forest
obtained by replacing the root of G with a virtual
node p′ (see line 12). During the execution of bottom-
up-process(T ,G′), a series of calls of the form top-
down-process(Ti,Gj) will be performed, where Gj =
〈p′;Pj , . . . ,Pq〉 (1 � j) and P1, . . . ,Pj−1 are covered
by T1, . . . , Ti−1. In terms of the induction hypothesis,
the partition is correct. Thus, the algorithm will return
1 if jm = q , indicating that T includes G; otherwise 0
(see line 13). If label(t) �= label(p), algorithm will try to
find the first Ti such that it includes the whole G. (See
lines 14–19.) In terms of the induction hypothesis, the
return value must be correct.

Now we assume that p is a virtual node. In terms
of the induction hypothesis, the algorithm will find the
correct integer i such that T includes 〈P1, . . . ,Pi〉 (see
lines 4 and 8). It completes the proof. �
4.2. Computational complexities

For a node v in T , denote G(v) a list of nodes in G:
[u1, u2, . . . , us] such that each ui (1 � i � s) is checked
against v, and for any i and j , if 1 � i < j � s, we
have ui checked before uj . We will prove that ui �= uj

if i �= j and all ui ’s in G(v) are on a same path.

Proposition 2. Let G(v) = [u1, u2, . . . , us]. Then, ui �=
uj if i �= j and all ui ’s are on a same path.

Proof. Let G = 〈p;P1, . . . ,Pq〉, where p may or may
not be a virtual node. Let v1, v2, . . . , vc−1, vc = v be a
path in T such that v is checked against u1. Assume
that u1 appears in Pi for some i. According to the al-
gorithm, v will be checked for a second time only when
the following condition is satisfied:

bottom-up-process(T [vc−1], 〈p′;Pi[u1], . . .〉) returns 0,
where p′ is a virtual node; and label(vc−1) = label(u1).
(See lines 4–5 in top-down-process().)

In this case, bottom-up-process(T [vc−1],Pi[u]) will
be invoked (see line 6), where u is a virtual node and
Pi[u] is a subtree obtained by replacing u1 with u.
Thus, v = vc may be checked for a second time. How-
ever, vc cannot be checked against u1; but a node in
Pi[u1]. Therefore, u2 must be different from u1 but a
descendant of u1. In the same way, we can show that
ui+1 is different from ui but a descendant of ui for
i = 1, . . . , s − 1. �
Proposition 3. The time complexity of the algorithm is
bounded by O(|T | · height(G)).

Proof. It can be easily derived from Proposition 2. �
Now we show that the time complexity of the al-

gorithm with redundancy removing is also bounded by
O(|T | · | leaves(P)|). To see this, we note that the re-
peated checking of a node in T is caused by the ex-
ecution of line 6 in top-down-process(). A necessary
condition of this line’s execution is that the function call
bottom-up-process(T ,G) in line 4 returns 0. However,
to have this function call invoked, G must be a sub-
forest; otherwise, the control switches over to line 9.
Obviously, each sub-forest corresponds to a node in P ,
whose outdegree is larger than 1. Therefore, each re-
peated checking of a node in T corresponds to such
a node. Denote A the set containing all those nodes
in P , whose outdegree is larger than 1. Then, |A| �
| leaves(P)|.

Proposition 4. The time complexity of the algorithm
with redundancy removing is bounded by O(|T | ·
| leaves(P)|).

Proof. See the above analysis. �
Finally, we notice that during the execution of the

algorithm, no data structures are created. Thus, the al-
gorithm needs no extra space.

5. Experiments

We have compared our algorithm with the algorithm
proposed by Kilpelainen and Mannila [4], and the al-
gorithm by Chen [2] experimentally. All the algorithms
are coded in Java 1.4 and tested on Pentium 4 1.6 GHz
machine with 1 GB of RAM.

The target tree is generated from an XML document
of Shakespeare’s play—The Tragedy of Antony and
Cleopatra. The tree generated contains 11 500 nodes
and is of height 7.

We have tested two groups of pattern trees. For the
first group, we generate pattern trees by randomly se-
lecting nodes from the target tree. For the second group,
each time we randomly select 2000 nodes, but with dif-
ferent heights. We record the numbers of label compar-

Y. Chen, Y. Chen / Information Processing Letters 98 (2006) 253–262 261
Fig. 9. Test results of the first group.

Fig. 10. Test results of the second group.
isons and elapsed times. For each execution, an average
of 20 measurements is taken.

In Fig. 9(a) and (b), we show the numbers of label
comparisons and the times spent on different execu-
tions, respectively.

From Fig. 9(a), we can see that our method outper-
forms Kilpelainen’s and Chen’s algorithms uniformly.
In addition, we see that the number of label compar-
isons made by Kilpelainen’s is not much higher than
Chen’s. However, as shown in Fig. 9(b), the time used
by Kilpelainen’s is much worse than Chen’s. It is be-
cause by Kilpelainen’s algorithm, a huge (n×m) matrix
has to be created and initialized, where n stands for the
number of the nodes in the target tree and m for the
number of the nodes in the pattern tree. This dominates
the execution time.

In Fig. 10(a) and (b), we demonstrate the result of
the second group test. From Fig. 10(a), we can see that
the number of label comparisons made by our method
linearly depends on the height of pattern trees. But the
number of label comparisons made by Chen’s algorithm
decreases as the height increases. Kilpelainen’s algo-
rithm is not sensitive to the height of patterns trees.
Again, the time spent by Kilpelainen’s algorithm is
much worse than Chen’s and ours.

6. Conclusion

In this paper, a new algorithm for checking the in-
clusion of a pattern tree P in a target tree T is dis-
cussed. The main idea of this is to integrate the top-
down searching into a bottom-up computation. The al-
gorithm needs O(|T | · min{DP , | leaves(P)|}) time and
no extra space, where DP represents the height of P .

References

[1] L. Alonso, R. Schott, On the tree inclusion problem, in: Proceed-
ings of Mathematical Foundations of Computer Science, 1993,
pp. 211–221.

[2] W. Chen, More efficient algorithm for ordered tree inclusion,
J. Algorithms 26 (1998) 370–385.

[3] H. Mannila, K.-J. Raiha, On Query Languages for the p-string
data model, in: H. Kangassalo, S. Ohsuga, H. Jaakola (Eds.), In-
formation Modelling and Knowledge Bases, IOS Press, Amster-
dam, 1990, pp. 469–482.

262 Y. Chen, Y. Chen / Information Processing Letters 98 (2006) 253–262
[4] P. Kilpelainen, H. Mannila, Ordered and unordered tree inclusion,
SIAM J. Comput. 24 (1995) 340–356.

[5] D.E. Knuth, The Art of Computer Programming, vol. 1, Addison-
Wesley, Reading, MA, 1969.

[6] T. Richter, A new algorithm for the ordered tree inclusion prob-
lem, in: Proc. 8th Annual Symp. on Combinatorial Pattern Match-
ing (CPM), in: Lecture Notes in Comput. Sci. (LNCS), vol. 1264,
Springer, Berlin, 1997, pp. 150–166.

Further reading

[7] H. Andre-Joesson, D. Badal, Using signature files for querying
time-series data, in: Proc. 1st European Symp. on Principles of
Data Mining and Knowledge Discovery, 1997.

[8] Y. Chen, On the signature trees and balanced signatures, in: 22nd
Int. Conf. on Data Engineering, Tokyo, Japan, April 5–8, 2005.

[9] S. Christodoulakis, C. Faloutsos, Design consideration for a mes-
sage file server, IEEE Trans. Software Engrg. 10 (2) (1984) 201–
210.

[10] R. Cole, R. Hariharan, P. Indyk, Tree pattern matching and sub-
set matching in deterministic O(n log3 m) time, in: Proceedings
of the Tenth Annual ACM–SIAM Symposium on Discrete Algo-
rithms (SODA), 1999, pp. 245–254.

[11] W.W. Chang, H.J. Schek, A signature access method for the
STARBURST database system, in: Proc. 19th VLDB Conf.,
1989, pp. 145–153.
[12] S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, A. Pathria,
Multimedia document presentation, information extraction and
document formation in MINOS—A model and a system, ACM
Trans. Office Inform. Systems 4 (4) (1986) 345–386.

[13] C. Faloutsos, Access methods for text, ACM Comput.
Surv. 17 (1) (1985) 49–74.

[14] C. Faloutsos, Signature files, in: W.B. Frakes, R. Baeza-Yates
(Eds.), Information Retrieval: Data Structures & Algorithms,
Prentice-Hall, New Jersey, 1992, pp. 44–65.

[15] C. Faloutsos, R. Lee, C. Plaisant, B. Shneiderman, Incorporating
string search in hypertext system: User interface and signature
file design issues, HyperMedia 2 (3) (1990) 183–200.

[16] Y. Ishikawa, H. Kitagawa, N. Ohbo, Evaluation of signature files
as set access facilities in OODBs, in: Proc. of ACM SIGMOD
Int. Conf. on Management of Data, Washington D.C., May 1993,
pp. 247–256.

[17] W. Lee, D.L. Lee, Signature file methods for indexing object-
oriented database systems, in: Proc. ICIC’92—2nd Int. Conf.
on Data and Knowledge Engineering: Theory and Application,
Hongkong, Dec. 1992, pp. 616–622.

[18] R. Sacks-Davis, A. Kent, K. Ramamohanarao, J. Thom, J. Zobel,
Atlas: A nested relational database system for text application,
IEEE Trans. Knowledge Data Engrg. 7 (3) (1995) 454–470.

[19] H.S. Yong, S. Lee, H.J. Kim, Applying signatures for forward
traversal query processing in object-oriented databases, in: Proc.
of 10th Internat. Conf. on Data Engineering, Houston, TX, Feb.
1994, pp. 518–525.

