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Set intersections are important in computer science. Especially, intersection of inverted lists is a fundamental 

operation in information retrieval for text databases and Web search engines. In this paper, we discuss an efficient 

and effective way to implement this operation in the context of very big data sets. The main idea behind it is to do 

binary search over sorted interval sequences, each of which corresponds to an inverted list and is constructed by 

establishing a trie over the sequences of set identifiers as well as a kind of tree encoding, by which each node in the 

trie is assigned an interval. In many cases, an interval sequence is much shorter than its corresponding inverted list. 

In particular, the lowest common ancestors of intervals in a trie can be utilized to control a binary search to skip 

over useless interval containment checks, which enables us to reach an optimal off-line algorithm to do the task, and 

is theoretically better than any traditional on-line methods (at cost of more space). Experiments have been 

conducted, showing that the trade-off of space for time is worthwhile. 

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and Problem Complexity]: Non-numerical 

Algorithms and Problems Pattern matching; computation on discrete structures 

General Terms: Design, Algorithms, Performance  
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1. INTRODUCTION 
In mathematics, the intersection A ∩ B of two sets A and B is the set that contains all 

elements of A that also belong to B. In practice, however, the problem is typically related to a 

collection of sets S = {S1, S2, …, SM} and we are often asked to evaluate the intersection over 

a sub-collection of S: 

 
1i

S ∩ 
2i

S ∩ … ∩ 
mi

S  

for some m  M. 

This is a key operation in information retrieval, especially for Web search engines and text 

databases, by which each Si (i  {1, …, M} ) is a subset of document identifiers containing a 

certain word, called an inverted list. Then, to find all the documents containing a set of words 

w1, …, wk, a set intersection like the above over all the inverted lists associated with these 

words needs to be conducted. 
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In the past several decades, there is a lot of research on this interesting topic, such as 

adaptive and melding algorithms [5, 6, 7, 8, 9, 23, 24], building additional data structures 

like skipping lists [43], treaps (a kind of balanced trees) [12], indexes [21], hash tables over 

sorted lists [3, 26], and so on. All of them can improve the time complexity at most by a 

constant factor, but none of them is able to bring it down by an order of magnitude. 

In this work, we explore a different way to speed up pair-wise intersections by constructing 

indexes, which are substantially different from any existing strategy. Concretely, our method 

works as follows.  

• Put all the sets: S1, S2, …, SM in a sequence decreasingly sorted by their sizes. Then, 

represent each e  M
i iS1= as a subsequence of set identifiers such that each set in this 

subsequence contains e, denoted as se. 

• Construct a trie T over all se’s. 

• Replace each Sx (x  {1, …, M}) with an interval sequence X, where each interval in X is 

created by applying a kind of tree encoding over T. 

• Associate each interval in X with a subset of Sx. In this way, we decompose Sx into a 

collection of disjoint subsets, and transform the comparison of elements (for doing set 

intersections) to the checking of interval containment. In many cases, an interval sequence 

is much shorter than the corresponding set. Therefore, the search of X can be faster than 

the search of the corresponding set Sx. 

• For each interval sequence X constructed for a certain Sx, we will construct a second 

sequence, x, such that each element in it corresponds to the lowest common ancestor (LCA 

for short) of some nodes in the trie T, whose intervals make up a segment in X. x is used 

to control the binary search of X when a set intersection involving Sx is evaluated.  

Let Sx, Sy be two sets with |Sx| < |Sy|. Up to now, the best on-line algorithm for intersecting 

Sx and Sy requires O(|Sx|log(|Sy|/|Sx|)) time [5, 59]. In contrast, our off-line algorithm 

needs O(|Y|log) time by using indexes, where  < |x|/|Y|, and Y is an interval sequence 

created for Sy. As can be seen later, we always have |Y| ≤ |X| ≤ |Sx| and |x| < |X|. This 

time complexity is significantly better than the traditional on-line methods due to the 

following two key facts: 

1. Each interval corresponds to a subset of some set. Therefore, in many cases, the length of 

an interval sequence created for a set can be much smaller than the corresponding set 

itself. Especially, the larger a set is, the smaller its corresponding interval sequence. Only 

for those very small sets, the sizes of their corresponding interval sequences may be near 

their sizes. 

2. During the binary search of an interval sequence, the relationship between the intervals 

and their LCAs can be used to skip over a lot of useless interval containment checking 

while it is not possible by any comparison-based algorithm no matter how sets are stored 

using different data structures, such as sorted arrays, trees, skipping lists, hash tables, 

and so on.  

The optimal running time of our method is at cost of the space for indexes. Since for each 

inverted list we will create an interval sequence which is not longer than the corresponding 

inverted list, the space requirement for all the interval sequences should be linear in the size 

of all inverted lists. However, since two integers are needed to represent an interval, the 

used space must be larger than the inverted lists. On the other hand, due to the property 

that the longer an inverted list is the shorter the corresponding interval sequence, the 

difference between interval sequences and inverted lists is not so big. For example, for the 

TREC GOV2 corpus, the size of the interval sequences for all those inverted lists of length 

smaller than 10k is 1.5 times the size of the corresponding inverted lists. But the size of all 

the interval sequences together is 1.105 times the size of all inverted lists.     
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The remainder of the paper is organized as follows. In Section 2, we review the related work. 

In Section 3, we present the new index structure in great detail. In Section 4, we discuss our 

algorithms to evaluate conjunctive queries based on this index structure, which are further 

improved by using LCAs in Section 5. In Section 6, we report the test results. Finally, a short 

conclusion is set forth in Section 7. 

2. RELATED WORK 

The evaluation of set intersections is very important in text databases and Web search 

engines [13, 40]. Much research on this topic has been done in the past several decades. Two 

methods have been widely advocated as efficient indexing schemes to handle large volume 

data. One is inverted files [56] and the other is signature files [27]. According to [57], for 

typical applications of full-text indexing, inverted files are superior to signature files in 

almost every respect, including speed, space, and functionality.   

Inverted files 

By the inverted file, each word will be associated with a sorted list of document identifiers 

containing the word, which was first reported as early as mid-1960s [34, 47]. The subsequent 

research on this index structure includes integer coding [3, 29], integer compression [1, 49, 

55], bitmap compression [10, 41], caching [38, 45], parallelism [2, 48], and distributed 

computation [22]. Also, many methods have been proposed to speed up the intersection of 

inverted lists in different ways. 

Adaptive and melding. An adaptive and melding method intersect all the lists in parallel so 

as to compute the intersection according to different measure of difficulty at each step [7, 23]. 

In [23], the galloping search is used to find a matching element in a sorted set while in [7] 

the interpolation is utilized. According to [8], for the intersection of k sets: L1  …  Lk (k  2) 

the lower bound of the problem is O(  =

k

i iL
1

)/|log(|  ), where  is the minimal number of 

intervals which cover a totally ordered space (i.e., all the docIds) such that for each interval I, 

if it covers only a singleton x, then x  ii L , otherwise, there exists at least a Li (i  {1, …, k}) 

with I  Li  = . In the case of k = 2 with |L1| < |L2|,  = O(|L1|) and O(  =

k

i iL
1

)/|log(|  ) = 

O(|L1|log(|L2|/|L1|)). This is exactly the time complexity of Hwang and Lin’s algorithm 

([59], should be modified from doing the set union to the set intersection), and Baeza-Yates’s 

[5], which is in fact a balanced version of the former, by which we choose the median element 

of L1 at the first step and recursively divide L1 and L2 in the subsequent computation. For k > 

2, the algorithm proposed by Barbay and Kenyon [8] reaches this time complexity. 

Hierarchical representation. A set can be represented as a balanced binary search tree, such 

as treaps [12], skip-lists [43], or a compact two-level structure [44]. They also aim at reducing 

the number of comparisons. Especially, using treaps [12], the optimal time complexity 

O(|L1|log(|L2|/|L1|)) can be achieved. However, due to the tree searching process, this 

kind of algorithms not always outperforms the binary search over a sorted list. Their 

advantage mainly consists in the ease of maintenance of balanced data structures. 

Hashing-based. There are various methods based on hash-functions to speed up the 

intersection, such as the algorithms discussed in [11, 26]. In [11], two sets L1 and L2 are 

mapped using a hash-function h to smaller representations h(L1) and h(L2), respectively. 

Then, the intersection is done on h(L1) and h(L2).  Given k sets: L1, …, Lk of total size M, their 

intersection can be computed in time O((Mlog2C)/C + kr) on average, where r = |
k

i iL
1=

|, and 

C is a constant, typically set to be the size of a memory unit. This running time is improved 

by Ding and König [26], who first divide a set into a collection of smaller subsets, and then 

map, using a hash-function, each subset into a bit string which can be packed in a single 

memory unit. In this way, the time complexity can be reduced to O(M/ C + kr). However, we 

should notice that in both their time complexity analyses, the cost of hashing is not taken 
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into account; but in practice each hash-function computation itself needs in fact a constant 

time. 

Index-based. The method discussed in [21] is index-based, by which an unbalanced binary 

tree T is constructed with each node being used to store a matrix M over some sets from a 

database D. M[i, j] = 1 if  lists i and j have a non-empty intersection. Otherwise, M[i, j] = 0. 

The size of M is bounded by |D| (the number of sets in D.) Since the sets handled by two 

different nodes can be repeated, the space overhead of the whole index is bounded by 

O(|T|∙|D|). The query time for evaluating L1  L2 is bounded by O( '|| rD   + r), where r 

= |L1  L2|.  For a database D containing a very large amount of words (like TREC GOV2 

corpus, which contains more than 38 million words), this time complexity is not much better 

than Baeza-Yates’s [5]. 

SIMD-based. The SIMD (single instruction/multiple data) has also been used to reduce the 

running time, as reported in [33, 37, 46]. In [33], a simple algorithm is discussed, which 

extends the merge-based algorithm by reading multiple elements each time, instead of just 

one element, from each of two input arrays to use SIMD instructions. However, its 

theoretical time complexity is bounded by O(b(|L1| +|L2|) – b2), where b is the size of a 

block, i.e., the number of elements taken each time respectively from L1 and L2 for 

comparison. The methods discussed in [37, 46] have the same time complexities as [33]. In 

[46], the SIMD is used for the galloping search while in [37] the so-call STNNI instructions 

(STring and Text processing New Instruction) are used. 

Inverted-list compression. Besides the above mentioned methods, there is quite different 

stream of research on the compression of inverted lists to reduce the space overhead, but not 

sacrificing too much query time, including document reordering, classification, and docId 

compression, such as Rice coding [62], Simple16 coding [62], PForDelata coding [32], and the 

modified PForDelata coding [61]. 

Signature files 

By the signature file, a word is hashed to a bit string (called a signature) and all the words’ 

signatures of a document are superimposed (bit-wise OR operation) into a document 

signature. When a query arrives, its signature will be created using the same hash-function 

and the document signatures are scanned and many nonqualifying documents are discarded. 

The rest are either checked (so that the ‘false drops’ are removed) or they are returned to the 

user as they are [26, 27]. The main disadvantage of this method is the false drop [31, 35], 

which needs extra time to check. Over the years, different ways to store signatures have been 

proposed, such as bit-slice files [35], S-trees [25, 51], and signature trees [15, 16]. By the bit-

slice files, the signatures in the file are vertically stored in a set of files [31]. By the S-trees, a 

signature file is organized into a height balanced multiway tree. The signature tree works in 

a quite different way, which organizes a set of signatures into a binary tree structure and 

replaces a sequential search of signatures with a search of binary trees, improving 

performance by an order of magnitude or more. 

Others 

There are some other interesting methods to improve the efficiency of set intersections [48, 

53, 58]. In [48, 53], the so-called multi-core architecture is utilized to speed up computation, 

which can also be used to parallelize our method. In [58], scoring functions are used to avoid 

computing full intersections. The main difficulty of this method is that a scoring function 

may not be easily established, and the machine-learning techniques have to be employed to 

solve the problem. 

3. TRANSFORMATION OF SORTED LISTS TO SORTED INTERVAL SEQUENCES 
Let  be a sequence of sets: 
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 S1, S2, …, SM 

such that for 1  i < j  M |Si|  |Sj|. 

Denote S = 
M

i iS
1=

. For simplicity, assume that each element in S is an integer > 0. Then, 

each element i  S corresponds to a subsequence of : 

 
1i

S
2i

S  … 
mi

S  

for some m such that for each j  {1, …, m} i  
jiS . Clearly, for k < l, we have |

ki
S |  |

li
S |. 

Assign each Sj an identifier wj. Thus, we can represent i as a sequence i: 

 
1i

w
2i

w  … 
mi

w . 

Over all i’s, a trie structure can be constructed as follows.  

Let D = {1, 2, …, N} be all i’s. Denote by trie(D) the trie constructed over D. 

If |D| = 0, trie(D) is, of course, empty. For |D| = 1, trie(D) is a single node. If |D| > 1, D is 

split into M (possibly empty) subsets D1, D2, …, DM so that a sequence i is in Dj if its first 

element is wj (1 ≤ j ≤ M). The tries trie(D1), trie(D2), …, trie(DM) are constructed in the same 

way except that at the kth step, the splitting of sets is based on the kth words in the 

sequences. They are then connected from their respective roots to a single node to create 

trie(D). 

See Fig. 1 for illustration. 

 

In Fig. 1(a), we show a collection of six sets: S1, …, S6 with each containing one or more 

positive integers.  Fig. 1(b) shows a sequence  of all the sets sorted decreasingly by their 

sizes. Fig. 1(c) is a set of subsequences of , and each subsequence j represents a group of 

sets with each containing j   6
1=i iS . For example, 7 = 1, 2, 6, 5 represents four sets: S1, S2, 

S6, S5, each containing 7. In Fig. 1(d), we show a trie established over all i’s. 

In this trie, v0 is a virtual root, labeled with 0 (representing an empty set) while any other 

node is labeled with a positive integer i, representing a set Si. Hence, all the integers on a 

S1: 

S2: 

S3: 

S4: 

S5: 

S6: (b) 

{3, 5, 6, 7, 8, 9, 10, 11} 

{1, 2, 3, 5, 6, 7, 8} 

{4, 8} 

{5, 6, 9, 11} 

{1, 2, 3, 4, 7, 10} 

{1, 4, 6, 7, 8, 10, 11} (a) 

S1, S2, S6, S5, S4, S3 : 

(c) 

(d) 

Fig. 1: A collection of sets, a sequence  of sets, a set of subsequences of  and a trie. 

1 = 2, 6, 5 

2 = 2, 5 

3 = 1, 2, 5 

4 = 6, 5, 3 

5 = 1, 2, 4 

6 = 1, 2, 6, 4 

7 = 1, 2, 6, 5 

8 = 1, 2, 6, 3 

9 = 1, 4 

10 = 1, 6, 5 

11 = 1, 6, 4 

 

[1, 4] 

v16 

v14 v12 

[1, 1] 
v10 

[1, 20] 

v1 

2 

6 

5 

[1, 2] 

v0 

v4 

0 

5 

[3, 3] 

v2 

[7, 7] 

[14, 14] 

v7 
[5, 11] 

[7, 10] 

[8, 8] [9, 9] 

[6, 6] [5, 5] 

1 [5, 16] 

v11 

4 [12, 12] 2 

v6 

6 [13, 15] 
v8 

4 6 5 5 

[13, 13] 

4 

5 3 4 

v13 

v17 v18 v19 

v9 

6 

5 [17, 18] 

[17, 19] 

v3 

3 
[17, 17] 

v5 

v15 

[5, 16] 

[1, 4][5, 11] 

[9, 9][17, 17] 

[6, 6][7, 7][12, 12][14, 14] 

[1, 1][3, 3][5, 5][8, 8][13, 13][17, 18] 

[1, 2][7, 10][13, 15][17, 19] 

 

L1: 

L2: 

L3: 

L4: 

L5: 

L6: 

(e) 

S2, S6, S5 

S2, S5 

S1, S2, S5 

S6, S5, S2 

S1, S2, S4 

S1, S2, S6, S4 

S1, S2, S6, S5 

S1, S2, S6, S3 

S1, S4 

S1, S6, S5 

S1, S6, S4 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 
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path from the root to a leaf make up a subsequencs of . For instance, the path from v0 to v18 

corresponds to a sequence 7 = 1, 2, 6, 5. Thus, to check whether two sets Si and Sj contain a 

common element, we need only to check whether there exist two nodes v1 and v2 such that v1 

is labeled with i, v2 with j, and v1 and v2 are on the same path. This shows that the 

reachability needs to be checked for this task, by which it is asked whether a node v can 

reach another node u through a path (see [17, 18] for a detailed discussion.) If it is the case, it 

is denoted as v ⇒ u; otherwise, denoted as v ⇏ u. 

It is well-known that the reachability checking can be done efficiently by using a kind of tree 

encoding [4, 17], which labels each node v in a tree with an interval Iv = [αv, βv], where βv 

denotes the rank of v in a post-order traversal of the tree. Here the ranks are assumed to 

begin with 1, and all the children of a node are assumed to be ordered and fixed during the 

traversal. Furthermore, αv denotes the lowest rank for any node u in T[v] (the subtree rooted 

at v, including v). Thus, for any node u in T[v], we have Iu  Iv since the post-order traversal 

visits a node after all of its children have been accessed. In Fig. 1(d), such a tree encoding is 

also exhibited, assuming that the children are ordered from left to right. It is easy to see that 

whether two nodes are on a same path can be checked by interval containment. For example, 

v2 ⇒ v19, since
2vI  = [5, 16],

19vI = [9, 9], and [9, 9]  [5, 16]; but v1 ⇏ v16, since 
1vI = [1, 4], 

16vI = 

[17, 17], and [17, 17]  [1, 4]. 

Let I = [α, β] be an interval. We will refer to α and β as I[1] and I[2], respectively. Then, we 

have the following lemma. 

Lemma 1 For any two intervals I and I generated for two nodes in a trie, one of four 

relations holds: I  I, I  I, I[2] < I [1] (denoted as I ≺ I ), or I [2] < I[1] (denoted as I ≺ I). 

Proof. The lemma can be derived from the post-order traversal process of a tree or a forest.  

Since more than one node in a trie may be labeled with the same number, a number 

(representing a set) may be associated with more than one interval. Thus, to know whether 

two sets share common elements, multiple checks may be needed. For example, to check 

whether S2 and S3 contain common elements, we need to check v1 and v6 each against both 

v16 and v19, by using the node’s intervals. 

For this reason, each number x in a trie will be associated with an interval sequence of the 

form: X = I1, I2, …, In, where n is the number of all those nodes labeled with x and each Ij = 

[Ij[1], Ij[2]] (1  j  n) is an interval associated with a certain node labeled with x. In addition, 

since any two of these intervals are not on a same path, we can sort X so that for 1  k < l  n 

we have Ik ≺ Il (then, Ik[1] < Ik[2] < Il[1]), which will greatly reduce the time for checking 

reachability. We illustrate this in Fig. 1(e), in which each interval sequence corresponds to a 

set in Fig. 1(a). 

Comparing Fig. 1(a) and Fig. 1(e), the following three properties can be easily observed 

i) Any interval sequence cannot be larger than the corresponding set. 

ii) An interval sequence can be much smaller than the corresponding set. 

iii) The longer an inverted sequence is, the smaller the corresponding set. 

For example, S1 = {3, 5, 6, 7, 8, 9, 10, 11} contains 8 elements while L1 = [5, 16] contains only 

one interval. In addition, we can associate each node v in a trie with a subset S such that for 

each i  S, i has a prefix represented by the path from v0 to v. For example, the sequence 

represented by a path: v0 → v2 → v6 → v13 is 0, 1, 2, 6, a common prefix of 6, 7, 8. So the 

subset associated with v13 should be {6, 7, 8}. Procedurally, the subset associated with a node 

v can be constructed as below: 

- If v is a leaf node, the subset assigned to v contains only one document identifier 

corresponding to the word sequence represented by the path from the root to v. 
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- If v is an internal node, the subset assigned to v is the disjoint union of all the subsets 

assigned to its children. 

See Fig. 2(a) for illustration. 

In this way, we also create a correspondence between intervals and subsets as illustrated in 

Fig. 2(b). Let I be an interval associated with a node v in T. We will denote by (I) (also, (v)) 

the corresponding subset. Then, we get a different way to evaluate set intersections Sx ∩ Sy 

with Sy appearing before Sx in : 

1. Let X = I1, I2, …, In and Y = J1, J2, …, Jm be the interval sequences for Sx and Sy, 

respectively.  

2. Find 
1nI , …, 

knI  for some k such that for each 1 ≤ l ≤ k there exists some interval in Y, 

which covers 
lnI . 

3. Return (
1nI ) ⊎ … ⊎ (

knI ) as the result of Sx  Sy, where ⊎ represents disjoint union over 

disjoint sets. 

 

As an example, consider L5 = [1, 1][3, 3][5, 5][8, 8][13, 13][17, 18] (for S5 in Fig. 1(a)) and L2 = 

[1, 4][5, 11] (for S2). To evaluate the intersection S5  S2, we will find a subsequence in L5:  [1, 

1][3, 3][5, 5][8, 8] such that [1, 1]  [1, 4], and  [3, 3]  [1, 4], as well as [5, 5]  [5, 11], and [8, 

8]  [5, 11]. Note that the ([1, 1]) = {1}, ([3, 3]) = {2}, ([5, 5]) = {3}, and ([8, 8]) = {7}. The 

answer is then their (disjoint) union: {1, 2, 3, 7}. 

The correctness of the above algorithm is based on the following two lemmas. 

Lemma 2 Let  = S1, S2, …, SM be a sorted sequence of sets. Let 1, 2,  …, N be all the 

subsequences of  created for all j  S = 
M

i iS
1=

(j = 1, …, N). Let X = I1, I2, …, In be the 

interval sequence for Sx (x  {1, …, M}). Then, ( I1)  (I2)  …  (In) = Sx. 

Proof. For each Sx, we can view x as its identifier. For each y  Sx, we can view it as the 

identifier of another set Qy which contains y. Let v1, …, vn be all the nodes labeled with x in T. 

Then, (v1)  (v2)  …  (vn) must be the identifiers of all those sets containing x, which 

are exactly equal to Sx.  

In a similar way, we can prove Lemma 3. 

Lemma 3 Let u and v be two nodes in a trie T, labeled with two intervals Iu and Iv, 

respectively. If u and v are not on the same path in T, then (Iu) and (Iv) are disjoint, i.e., 

(Iu)   (Iv) = .  

Proposition 1 Let X = I1, I2, …, In be the interval sequence for Sx. Then, (I1) ⊎ (I2) ⊎ … ⊎ 

(In) = Sx. 

v7 

{2} 

Fig. 2: Association of intervals with subsets. 

{1, 2} 

v16 

v14 v12 

{1} 
v10 

[1, 20] 

v1 

2 

6 

5 

{1} 

v0 

v4 

0 

5 

v2 

{6} 

{11} 

{3, 5, 6, 7, 8} 

{6, 7, 8} 

{7} {8} 

{5} {3} 

{3, 5, 6, 7, 8, 9,10, 11} 

v11 

4 {9} 2 

v6 

6 {10, 11} 
v8 

4 6 5 5 

{10} 

4 

5 3 4 

v13 

v17 v18 v19 

v9 

6 

5 {4} 

{4} 

v3 

3 
{4} 

v5 

v15 

[1, 4] - {1, 2} 

[1, 2] – {1} 

[1, 1] - {1} 

[3, 3] – {2} 

[5, 16] – {3, 5, 6, 7, 8, 9, 10, 11} 

[5, 11] -  {3, 5, 6, 7, 8} 

[5, 5] – {3} 

[6, 6] – {5} 

[7, 10] – {6, 7, 8} 

[7, 7] – {6} 

[8, 8] – {7} 

[9, 9] – {8} 

[12, 12] – {9} 

[13, 13] – {10} 

[13, 15] – {10, 11} 

[14, 14] – {11} 

[17, 19] – {4} 

[17, 18] – {4} 

[17, 17] – {4} 

 

(a) (b) 

1 
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Proof. According to Lemma 2, we have (I1)  (I2)  …  (In) = Sx. According to Lemma 3, 

(I1)  (I2)  …  (In) is equal to (I1) ⊎ (I2) ⊎ … ⊎ ( In).  

As an example, consider the nodes v1 and v6 in Fig. 2(a). They are the only nodes labeled with 

2. So S2 is equal to (v1) ⊎ (v6) = {1, 2} ⊎ {3, 5, 6, 7, 8} = {1, 2, 3, 5, 6, 7, 8}. 

4. EVALUATION OF SET INTERSECTIONS 

In this section, we discuss how to efficiently evaluate set intersections by using interval 

sequences. For ease of explanation, we first discuss a method based on a linear search of 

interval sequences in 4.1. Then, in 4.2, we discuss a more interesting and efficient method 

based on a binary search of interval sequences, for which some more new concepts and 

techniques need to be introduced.  

4.1 Evaluation based on linear search 

As mentioned in Section 3, to evaluate the intersection of two sets Sx and Sy with Sy 

appearing before Sx in , we need to search both X and Y to find all those intervals in X such 

that each of them is covered by some interval in Y. Since both X and Y are sorted, a linear 

search process can be arranged to do the task as follows. 

1. Let X = I1, I2, …, In and Y = J1, J2, …, Jm. L  . (*L is used to store the result.*) 

2. Step through X and Y from left to right. Let Ik and Jl be the intervals currently 

encountered. Compare Ik and Jl. We will have one of three possibilities: 

i) If Ik  Jl, append Ik to the end of L. Move to Ik+1 if k < n (then, in a next step, we will 

check Ik+1 against Jl.) If k = n, stop. 

ii) If Ik ≺ Jl, move to Ik+1 if k < n. If k = n, stop. 

iii) If Jl ≺ Ik, move to Jl+1 if l < m (then, in a next step, we will check Ik against Jl+1).  If l = 

m, stop.    

Assume that the result is L = I1, I2, …, Ip (0 ≤ p ≤ n). Then, for each 1 ≤ q ≤ p, there exists an 

interval J  Y such that Iq  J, and we can return (I1) ⊎ (I2) ⊎ … ⊎ (Ip) as the answer. In 

Fig. 3, we illustrate the working process on X = L6 and Y = L2 shown in Fig. 1(e). 

 

In Fig. 3, we first notice that X = L2 = [1, 4][5, 11] and Y = L6 = [1, 2][7, 10][13, 15][17, 19]. In 

the 1st step, we will check I1 = [1, 4] against J1 = [1, 2]. Since [1, 2]  [1, 4], J1 = [1, 2] will be 

added to the result L. In the 2nd step, we will check I1 = [1, 4] against J2 = [7, 10]. Since [1, 4] 

≺ [7, 10], l will be increased by 1 and then we will check I1 = [5, 11] against J2 = [7, 10]. Since 

[7, 10]  [5, 11], J2 = [7, 10] will be added to L and k will be increased by 1. Comparing I2 = 

[5, 11] and J3 = [13, 15], we find [5, 11] ≺ [13, 15]. Since now l is equal to |X|, the process 

stops. The result is ([1, 2]) ⊎ ([7, 10]) = {1} ⊎ {6, 7, 8} = {1, 6, 7, 8}. 

Lemma 4 Let L = I1, …, Ip be the result of the above process when applied to X and Y 

respectively created for Sx and Sy with Sy appearing before Sx in . Then, for each Iq (1 ≤ q ≤ 

1st step: 

Fig. 3: Illustration for the linear search of interval sequences. 

L2: 

L6: 

2nd step: 

l 

k 

 [1, 4][5, 11] 

 [1, 2][7, 10][13, 15][17, 19] 

 [1, 2] L: 

l 

k 

 [1, 4][5, 11] 

 [1, 2][7, 10][13, 15][17, 19] 

 

 [1, 2] 

3rd step: 

l 

k 

 [1, 4][5, 11] 

 [1, 2][7, 10][13, 15][17, 19] 

 [1, 2][7, 10] 

4th step: 

l 

k 

 [1, 4][5, 11] 

 [1, 2][7, 10][13, 15][17, 19] 

 [1, 2][7, 10] 

5th step: 

l 

k 

 [1, 4][5, 11] 

 [1, 2][7, 10][13, 15][17, 19] 

 [1, 2][7, 10] 
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p), there must be an interval J  Y such that Iq  J. For any interval I  X but  L, it is 

definitely not covered by any interval in Y. 

Proof. The correctness of the lemma can be derived from the properties of X and Y, and the 

facts that both X and Y are sorted.   

4.2 Evaluation based on binary search 

The set intersection can also be done by using binary search. However, due to the difference 

between the containment checking of intervals and the comparison of integers, the 

traditional binary searching cannot be simply utilized because the containment of an interval  

I (from Y) in another interval I (from X) will not in general allow us to divide X into two 

parts. Therefore, a more sophisticated technique is needed to achieve an optimal running 

time. Specifically, LCAs (lowest common ancestors) have to be used to speed up the working 

process. In this subsection, we only give a basic algorithm for the binary search of interval 

sequences, while the discussion on how to employ LCAs will be shifted to the next section. 

Before we present the algorithm, we first define two functions which will be used by it as two 

basic operations. 

The first function is search(X, j, J) with three inputs: X – a sorted interval sequence, j – a 

position in X, and J – an interval from some other interval sequence Y, used to find a 

smallest k ≤ j and a largest l ≥ j such that all the intervals in X between k and l (including k, 

l) can be contained in J. See Fig. 4 for illustration. 

 

The second function is binarySearch(X, J, b), also with three inputs: X – a sorted interval 

sequence, J – an interval from some other interval sequence, and b – a Boolean value. If b = 

0, it will try to find an interval in X by the binary search, which can be contained in J; 

otherwise (b = 1), to find an interval which contains J.  

With the above two functions, our basic algorithm to do the binary set intersection can be 

described as follows, which is in essence a modification of the binary set union discussed in 

[59]. 

Let Sx and Sy be two sets. Let X and Y be their interval sequences containing distinct 

intervals of respective lengths n and m:  

 I1 ≺ I2 ≺ … ≺ In, and 

 J1 ≺ J2 ≺ … ≺ Jm. 

Assume that Sy appears before Sx in . Then, we have m  n. 

The binary set intersection process can be mostly easily described recursively. When m = 0 

(i.e., the shorter list is empty) there is no intersection to be done and the procedure 

terminates with empty as the result. Otherwise, we figure out Jm, the last interval in the 

shorter sequence Y, and attempt to find an interval in the longer sequence X, which can be 

contained in Jm. To do this, let l = 








m

n
log . Then, 2l is the largest power of 2 not exceeding

m

n
. 

Let t = n - 2l + 1. Compare Jm and It. See Fig. 5 for illustration.  

Fig. 4: Illustration for Search(X, j, J). 

X: 

Y: 

interval J 

jth interval in X k l 

When we find an interval J in Y, 

which contains an interval I in X, we 

will call Search( ) to find all those 

intervals to the left and to the right of 

I, which can also be contained in J. 



Y. Chen et al. 

 10 

 
We first distinguish among three cases: 

 Case 1: Jm ≺ It, 

 Case 2: It ≺ Jm, and 

 Case 3: Jm  It.  

If Jm ≺ It (case 1), then we will search the intervals to the left of It: I1, …, It in Fig. 5. The 

problem immediately reduces to the situation illustrated in Fig. 6(a). We can finish the set 

intersection by recursively applying the binary set intersection to lists X = I1, …, It, and Y  = 

J1, J2,  …, Jm. 

 

If, on the other hand, It ≺ Jm (case 2), then we will search the intervals to the right of It: L = 

It+1, ..., In in Fig. 5. By calling binarySearch(L, Jm, 0), we try to find, with exactly l more 

comparisons, an interval Ik either containable in Jm (case 2-1), or satisfying Ik-1 ≺ Jm ≺ Ik 

(case 2-2). In case 2-1, we will call search(X, k, Jm) to find k and k such that all the intervals 

in X between k and k (including k, k) can be covered by Jm (then, all these intervals 

should be added to the result R); this information allows us to reduce the problem to the 

situation illustrated in Fig. 6(b). To complete the set intersection it is sufficient to perform 

the set intersection on the lists Y = J1, J2,  …, Jm-1, and X  = I1, …, Ik -1. In case 2-2, the 

problem is reduced to Y = J1, J2,  …, Jm-1 and Lx = I1, …, Ik-1. See Fig. 6(c). Note that X may 

be longer than Y, so that in the recursive calls to the set intersection procedure the roles of X 

and Y may become reversed. 

If Jm  It (case 3), as case 1 above, we will call search(X, t, Jm) to find all the intervals in X  

which can be covered by Jm and insert them into the result R. The set intersection can be 

completed by a recursive call on Y = J1, J2,  …, Jm-1 and X  = I1, …, Ik -1, where k′ is the left-

most position in X which can be covered by Jm, just as case 2-1. 

Finally, due to the possible interchange of rolls played by X and Y, we need yet to consider a 

fourth case: Jm  It. In this case, we simply insert Jm into R and the problem is reduced to 

the set intersection over Y = J1, J2,  …, Jm-1 and X = I1, …, It, also as case 2-1.  

In terms of the above analysis, we give the following algorithm, in which besides search( ) 

and binarySearch( ), another two simple subfunctions B0( ) and B1( ) are also used, 

respectively for b = 0 and b = 1, to handle the result and to determine the interval 

subsequences for a next recursive call. 

The algorithm takes two interval sequences X and Y with |X| ≥ |Y|, and a Boolean variable 

Fig. 6: Outcomes after first comparison. 

(a) 

Y 

X 

(c) It-1 …  … 

J1 …  … 

I1 

Jm 

(b) 

Y 

X 

Ik -1 …  … 

…  … 

I1 

Y 

X 

Ik-1 …  … 

…  … 

I1 

J1 Jm-1 J1 Jm-1 

Fig. 5: First comparison during an interval intersection. 

It It+1 In …  … 
…  … 

J1 …  … 

I1 

Jm Jm-1 
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b as the inputs. 

ALGORITHM setIntersect(X, Y, b) (*Initially, b = 0.*) 

begin 

1. Let X = I1, I2,  …, In and L2 = J1, J2,  …, Jm; 

2. if m = 0 then return;  

3. l  








m

n
lg ; t  n - 2l + 1; I  Jm; 

4. if I ≺ It then {X  X[1 .. t - 1]; Y  Y;} 

5. if It ≺ I 

6. then z  binarySearch(X[t + 1 .. n], I, b); 

7.  if z = 0 then { X   X; Y  Y[1 .. m-1];} 

8.  else if b = 1 then < X , Y>  B1(X, Y, t + z, I, R); 

9.  else <X, Y>  B0(X, Y,  t + z , I, R); 

10. if I  It then <X, Y>  B0(X, Y,  t, I, R);  

11. if I  It then <X, Y>  B1(X, Y,  t, I, R); 

12. if |Y| ≤ |X| then setIntersect(X, Y, b) 

13. else setIntersect(Y, X, b ); 

end 

FUNCTION B0(X, Y, t, I, R) 

Begin 

1. <j, j>  Search(X, t, I); 

2. R  R  {X[j .. j]}; 

3. X  X[1 .. j - 1]; Y  Y[1 .. |Y| - 1]; 

4. return <X, Y>; 

end  

FUNCTION B1(X, Y, t, I, R) 

begin 

1. R  R  {I}; 

2.  X  X[1 .. t]; Y  Y[1 .. |Y| - 1]; 

3. return <X, Y>; 

end  

The algorithm setIntersect(X, Y, b) can be viewed as composed of six parts. 

Part 1 (lines 1 – 3). In this part, we do the initialization work. 

Part 2 (line 4). In this part, we handle the case Jm ≺ It by determining two interval 

sequences X  = X[1  .. t – 1] and Y  = Y, to which the next recursive call will be applied. 

Part 3 (lines 5 – 9). In this part, the most complicated case It ≺ Jm is handled. First, a 

traditional binary search over X[t + 1 .. n] will be carried out to find an interval, which 

contains Jm (if b = 1), or is containable in Jm (if b = 0) (see line 6.) If the corresponding 

interval cannot be found, we will determine two interval sequences X = X and Y = Y[1 .. m – 

1] for the next recursive call (see line 7.) Otherwise, depending on whether b = 1 or b = 0, we 

will respectively call B1(X, Y, t, I, R), or B0(X, Y, t, I, R), where I = Jm (see lines 8 and 9.) In 

B1(X, Y, t, I, R), we will first add I to R and then determine two interval sequences X = X[1 .. 

t] and Y = Y[1 .. |Y| - 1] for the next recursive call. In B0(X, Y, t, I, R), we will first call 

Search(X, t, I) to find a pair <j, j> such that all the intervals between j, j (including j, j ) 

in X are containable in I; and then add all these intervals to R. Afterwards, two interval 

sequences X = X[1 .. j - 1] and Y = Y[1 .. |Y| - 1] will be figured out for the next recursive 

call.  
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Part 4 (line 10). In this part, we call B1(X, Y, t, It, R) to handle the case Jm  It. (This case 

occurs only when b = 0.) 

Part 5 (line 11). In this part, we call B0(X, Y, t, I, R) to handle the case Jm  It. (This case 

occurs only when b = 1.) 

Part 6 (line 12 – 13). In this part, we will apply a recursive call to the interval sequences 

figured out in the previous computation (i.e, in a part i for i  {2, …, 5}). In terms of whether 

|Y| ≤ |X| or |Y| > |X|, the new value of b for the recursive call is set to be the same as 

the old value of b (see line 12) or changed to its negation (see line 13). 

Example 1 Consider L2 = [1, 4][5, 11] and L5 = [1, 1][3, 3][5, 5][8, 8][13, 13][17, 18]. By 

calling setIntersect(L5, L2, 0), the following operations will be conducted: 

Step 1: check L2[2] = [5, 11] against L5. l = 








2

6
log = 1, t = n - 2l + 1= 6 – 2 + 1= 5, L5[5] = [13, 

13]. Since [8, 11] ≺ [13, 13], we will make a recursive call setIntersect(L5[1 .. 4], L2, 0). 

Step 2: In the execution of setIntersect(L5[1 .. 4], L2, 0), check L2[2] = [5, 11] against L5[1 .. 4]. 

l = 








2

4
log = 1, t = n - 2l + 1= 4 – 2 + 1= 3, L5[3] = [5, 5]. Since [5, 5]  [5, 11], we will call 

Search(L5[1 .. 4], 3, [5, 11]), which returns <j, j> = <3, 4>. Then, we will recursively call 

setIntersect(L5[1 .. 2], L2[1 .. 1], 0) in the next step. 

Step 3: check L2[1] = [1, 4] against L5[1 .. 2]. l = 








1

2
lg = 1, t = 3 – 21 + 1 = 2, L5[2] = [3, 3]. 

Since [3, 3]  [1, 4], we will call Search(L5[1 .. 2], 2, [1, 4]) ]), which returns <j, j> = <1, 2>. 

Then, we will recursively call setIntersect(L5[1 .. 0], L2[1 .. 0], 0) in the next step. 

Step 4: |L2[1 .. 0]|= 0. Stop. 

The result R = [1, 1][3, 3][5, 5][8, 8].  

5. IMPROVEMENTS 

In this section, we discuss an improvement of the algorithm discussed in the previous 

section. First, we show how LCAs (least common ancestors) can be used to speed up the 

binary search of a sorted interval sequence in 5.1. Then, in 5.2, we discuss how LCAs can be 

efficiently figured out. 

5.1 Integrating LCAs into binary search 

First of all, we notice that the time complexity of setIntersect(X, Y, b) is bounded by 

O(|Y|log|X|) with |X| ≥ |Y| since in the worst case Search(X, t, I) requires O(log|X|) 

time, where 1  t  |X| and I is an interval in Y. However, by using LCAs, both Search(X, t, 

I) and binarySearch(L, I, b), can be non-trivially improved. 

- LCA sequences 

Denote by Vx all the nodes labeled with x in T. All the LCAs of the nodes in Vx, denoted as Vx′, 

can be efficiently recognized using a way to be discussed in 5.2. For example, for the set of 

nodes labeled with number 5: V5 = {v10, v5, v11, v18, v14, v9}, we can find another set of nodes: 

V5′ = {v1, v6, v2, v0} with v1 being the LCA of {v10, v5}, v6 the LCA of {v11, v18}, v2 the LCA of {v11, 

v18, v14}, and v0 the LCA of { v10, v5, v11, v18, v14, v9}. Now we construct a tree structure, called 

an LCA-tree and denoted as Tx, which contains all the nodes in Vx  Vx′. In Tx, there is an arc 

from v1 to v2 iff there exists a path P from v1 to v2 in T and P does not pass any other node in 

Vx  Vx′. In Fig. 7(a), we show T5 for illustration. 
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Replacing each node in Tx with the corresponding interval, we get another tree, denoted as 

~
xT , in which each internal node v must be an interval that is the smallest interval covering 

all the intervals represented by the leaf nodes in ~
xT [v] (the subtree rooted at v in ~

xT ). See 

~
5T  shown in Fig. 7(b) for illustration. From this, we can see that [1, 4] is the smallest 

interval covering [1, 1] and [3, 3]; [8, 11] is the smallest interval covering [5, 5] and [8, 8]; and 

[5, 16] is the smallest interval covering [5, 5], [8, 8] and [13, 13]. Finally, [1, 20] is the 

smallest interval covering all the intervals in L5: [1, 1], [3, 3], [5, 5], [8, 8], [13, 13], [17, 18]. 

Here, our intention is to associate each interval Ij in X with a second interval, which is the 

parent of  Ij in ~
xT , denoted as c(j). For this purpose, we will keep a sequence x containing all 

the LCA-intervals in the post-order of ~
xT . (This can be obtained by traversing ~

xT in post-

order, but with all the leaf nodes removed). For example, 5 = 1234 = [1, 4][8, 11][5, 16][1, 

20]. Each  in x will be associated with two links, denoted as l() and r(), pointing to two 

intervals in Lx, which are respectively the left-most and right-most leaf nodes in ~
xT [] (the 

subtree rooted at  in ~
xT ). Fig. 8 helps for illustration.  

 

In Fig. 8, 6
5I = [17, 18] is associated with an LCA-interval c(6) = 4 = [1, 20], which is the 

parent of 6
5I  in the corresponding ~

xT shown in Fig. 7(b). In addition, l(4) is a link pointing to 

1
5I  and r(4) is a link pointing to 6

5I . They are respectively the left-most and the right-most 

interval in L5 covered by 4. In the same way, we can check all the other intervals and links 

shown in Fig. 8. 

- Improving search( ) by using LCAs 

By using LCA intervals and the corresponding links, search(X, t, I) should be changed to 

search(X, x, t, I), which can be done more efficiently as follows. 

1. Let X = I1, I2, …, In.  Let x be the corresponding LCA interval sequence. Assume that 1 ≤ t 

≤ n such that It  I in Y. 

2. Compare I and c(t) = i for some i, where c(t) represents the LCA-interval of It. 

i) If i  I, return <t, t>.  

ii) If i = I, return <l(i), r(i)>.  

[3, 3] [13, 13] 

[5, 5] 

[1, 1] 

[17, 18] 

[8, 8] 

v10 v5 

v1 

v12 v18 

v6 

v9 

v14 

v2 

v0 

[1, 4] 

[1, 20] 

[5, 11] 

Fig. 7: Illustration for Tx and ~
xT . 

[5, 16] 

(a) (b) 

T5: ~
5T : 

Fig. 8: Illustration for links associated with intervals in 
~
xT . 

[1, 1]  

[1, 4] 

14]  

[3, 3]  [17, 18]  

[1, 20]  

[5, 5]  

[5, 11]  

[8, 8]  [13, 13]  

[5, 16]  

1  

4  

2  

3  

I5 
1  

I5 
2  

I5 
6  

I5 
3  

I5 
4  

I5 
5  
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iii) If i  I, search the intervals to the right of i in x to find a largest f ≥ i such that f is 

covered by I. Return <l(f),  r(f)>.  

3. In the first two cases of (2) (i.e., in 2-(i) and 2-(ii)), x will be changed to x[1  .. k], which 

will be used for the next recursive execution of setIntersect( ), k is the position just prior to 

i in x. In the third case of (2), x will be changed to x[1  .. g], where g is the position just 

prior to f in x.  

Special attention should be paid to (2). 

In the case of i  I, It must be the unique interval, which can be covered by I. Therefore, <t, 

t> is simply returned. 

In the case of i = I, I can only cover all those intervals between l(i) and r(i) (including l(i), 

r(i)) in X. So <l(i), r(i)> will be returned. 

In the case of i  I, we will try to find a highest interval (in ~
xT ) which can be covered in I. 

This can be found only among those intervals to the right of i (if any) since x is an interval 

sequence in the post-order of ~
xT . (Recall that by using the original search(X, t, I) we may 

need to search the whole X.) 

In this way, the time complexity of Search(X, x, t, I) is dramatically decreased. First, in the 

case of c(t) = i  I or i = I, no search of X is performed at all. Secondly, in the case of t  I, 

only part of x (to the right of i) is explored. Using the traditional binary search, the time for 

this task must be bounded by O(log|X|/|Y|) since we always have |x|  |X|. 

Example 2 To see how the LCAs can be used to skip over useless checks, we check several 

single intervals against L5 in Fig. 8 to demonstrate the working process.  

• Assume that I = [13, 15] is compared with 5
5I  = [13, 13] in L5. We have [13, 13]  [13, 15]. 

Since c(5) = 3 = [5, 16]  I = [13, 15], we immediately know that 5
5I  = [13, 13] is the only 

intervals which can be covered by I = [13, 15] and simply return <5, 5>. 

• Assume that I = [5, 11] is compared with 4
5I  = [8, 8] in L5. We have [8, 8]  [5, 11]. 

However, I = c(4) = 2 = [5, 11]. We will return <l(2), r(2)> = <3, 4>. No further search is 

necessary. 

• Assume that I = [5, 16] is compared with 4
5I  = [8, 8] in L5. We have [8, 8]  [5, 16]. But we 

also have c(4) = 2 = [5, 11]  [5, 16]. So we will search part of 5 to the right of [5, 11] (it is 

a subsequence: [5, 16][1, 20]) to find a largest interval which can covered by I = [5, 16]. It 

is 3 = [5, 16]. So we return <l(3), r(3)> = <3, 5>.  

- Improving binarySearch( ) by using LCAs 

We need further change binarySearch(X, I, b) to binarySearch(X, x, I, b), by which the 

search can also be done more efficiently by using LCA-intervals. 

1. Let X = I1, I2, …, In. Let x = 1, …, j be the corresponding LCA interval sequence. Let t = 

n/2. Compare I and It. 

2. If b = 0 and I  It, return t. 

3. If b = 1 and I  It, return t. 

4. If I ≺ It, compare I and c(t) = i for some 1 ≤ i ≤ |x|, where c(t) represents the LCA-

interval of It. If I  i, we will explore X[1 .. l(i) – 1] in a next step; otherwise, X[l(i) .. t – 

1]. 

5. If It ≺ I, also compare I and c(t) = i for some 1 ≤ i ≤ |x|. If I  i, we will explore X[r(i)  + 

1 .. n] in a next step; otherwise, X[t + 1 .. r(i)]. 
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In the above process, if b = 0 we will check whether I  It (line 2) while if b = 1 we will check 

whether I  It (line 3). However, for the case I ≺ It (line 4) or It ≺ I (line 5), the LCA-intervals 

can be used to control the binary search in the same manner no matter whether b = 0 or b = 

1, due to the following two lemmas. 

Lemma 5 Let I be an interval in an interval sequence L and  its LCA-interval. Let I be 

another interval such that I ≺ I and I  . Then, for any interval I between l() and r() 

(including l() and r()), we have neither I  I , nor I  I. 

Proof. If I  I , we would have I   since I  . This contradicts the fact that I  . If I  

I, we would have I   or   I. Since I  , we would have   I, which contradicts the fact 

that I ≺ I.  

Lemma 6 Let I be an interval in an interval sequence L and  its LCA-interval. Let I be 

another interval such that I ≺ I and I  . Then, for any interval I between l() and r() 

(including l() and r()), we have neither I  I , nor I  I. 

Proof. The lemma can be proved in a way similar to Lemma 5.   

In this way, the time for the binary search of an interval sequence X can be reduced to 

O(log|x| + log), where  is the largest number of intervals in X, which share the same 

LCA. We always have |x|  |X| and    |X|.  Especially, if |x|  2, |x| < |X| and   < 

|X|.   

Finally, part 1 (line 4) in setIntersect( ) should be accordingly slightly changed to use LCA-

intervals to speed up the process as described below. 

 if I ≺ It  then { if I  c(t) then X  X[1 .. l(c(t)) - 1] else X  X[1 .. t - 1]; Y  Y; } 

From the above discussion, we can clearly see that LCAs are quite useful for speeding up the 

operation. However, all of them have to be first efficiently recognized. In the next Subsection, 

we address this issue in great detail. 

5.2 Construction of LCA-trees 

For constructing Tx, the LCAs for all the nodes labeled with x (in T) have to be recognized. A 

simple approach is to search T for each x, which obviously needs O(|S||T|) time, where S = 


M

i iS
1=

. But we will describe an algorithm, whose time complexity is bounded by O(|T|). 

For this purpose, we will search T bottom-up, and the nodes labeled with different x’s and 

the corresponding LCAs will be inserted into different Tx’s. We will attach each node v with 

two links when inserted into a Tx, denoted as parent(v) and left-sibling(v), respectively. 

parent(v) is used to point to the parent of v in Tx while left-sibling(v) points to a node in Tx 

inserted just before v, which is not a descendant of v in T (of course, not in Tx, either). 

Concretely, the following operations will be conducted. 

(i) Let v be the node currently inserted into a Tx. 

(ii) If v is not the first node inserted into Tx, we do the following: 

Let v' be the node inserted into Tx just before v. If v' is not a child (descendant) of v, create 

a link from v to v', denoted as left-sibling(v) = v'. If v' is a child (descendant) of v, we will 

first create a link from v' to v, denoted as parent(v') = v. Then, v must be an LAC of some 

nodes labeled w. We will go along the left-sibling chain starting from v' until we meet a 

node v'' which is not a child (descendant) of v in Tw. For each encountered node u except 

v'', set parent(u)  v. Finally, set left-sibling(v)  v'. 

Fig. 9 is a pictorial illustration of this process. 
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In Fig. 9(a), we show the navigation along a left-sibling chain starting from v when we find 

that v is a child (descendant) of v. This process stops whenever we meet v'', a node that is 

not a child (descendant) of v. Fig. 9(b) shows that the left-sibling link of v is set to point to v'', 

which is previously pointed to by the left-sibling link of v’s left-most child. 

Combining the above process with a bottom-up search of T, we get an efficient algorithm 

find-LCA(T) (see below) for finding all the LCAs. 

ALGORITHM find-LCA(T) 

begin 

1. For each w  S, Tw  .   

2. Let u (labeled with an integer x) be the first node encountered during the bottom-up 

searching of T. Insert u in Tx. 

3. Let v be the currently encountered node in T and labeled with an integer y. Let v' be the 

node visited just before v. Do (4) or (5), depending on whether v is the parent of v' or not. 

4. If v is not the parent of v', then insert v into Ty. 

5. If v is a parent of v', then for each child z of v in T, let K(z) be the set of LCA-trees, into 

which z is inserted. Then, for each z and for each T  K(z), we will go along a left-sibling 

chain starting from z in T  until we meet a node v'' which is not a child (descendant) of v 

in T. If the number of the nodes encountered on this navigation along the left-sibling 

chain is larger than 1, insert v into T, set parent(u)  v for each u on the chain, and set 

left-sibling(v)  v''; otherwise, v will not be inserted into T. 

end  

In the algorithm, special attention should be paid to (5), by which the parent/child 

relationship of the nodes in each LCA-tree T is established. Denote by dT(v) the outdegree of 

a node v in T. Since for each node v added to T as a parent of some other nodes a left-sibling 

chain will be navigated, O(dT(v)) time is required for this task.  Therefore, the time used for 

establishing a single T is bounded by 

 



Tv

T vd )( = O(|T|). 

On the other hand, since for each internal node v in T  we have dT(v) ≥ 2, |T| must be ≤ 

2|leaves(T)|, where leaves(T) represents all the leaf nodes of T and must be exactly all 

those nodes labeled with a same integer in T. Thus, the time complexity for constructing all 

the LCA-trees must be bounded by 

 |)(|O T
Tall




 ≤ 



Tall

Tleaves |)(|2(O = O(2|T|) = O(|T|). 

Example 3 Consider the trie T shown in Fig. 1(d). Applying the above algorithm to T, we 

will generate a series of subtrees as illustrated in Fig. 10. Due to space limitation, only first 7 

steps are traced. 

In step 1, node v10 labeled 5 is met and inserted into T5. In step 2, v4 labeled 6 is encountered 

and inserted into T6. But it is not inserted into T5 since v10 is its unique child. In step 3, we 

meet v3 labeled 5. Since it is not an ancestor of v10, a link left-sibling(v3) = v10 is created. In 

v is not a child 

(descendant) of v. v 

v  v 

v 

 

left-sibling(v’) 

(a) (b) 

Fig. 9. Illustration for the construction of a Tx. 

v v 
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step 4, v1 labeled 2 is met and inserted into T2. At the same time, it is also inserted into T5 

since v3 is a child of v1 and when we navigate along the left-sibling chain starting from v3, we 

will meet v10 which is a descendant of v1. In step 5, we meet v11 labeled with 5. Since it does 

not have any child, it will be inserted into T5, and a link left-sibling(v11) = v1 will also be 

created. In step 6, we will meet v12 labeled 4 and insert it into T4. In step 7, v17 labeled 4 is 

encountered and inserted into T4 with a link left-sibling(v17) = v11 being created.  

 

6. CORRECTNESS AND TIME COMPLEXITY 

In this section, we prove the correctness of setIntersect(Lx, Ly, b) (|Lx| ≥ |Ly|) with LCAs, 

and analyze its time complexity . 

Lemma 7 Let u and v be two nodes in T such that Iu ≺ Iv. Let u and v be their respective 

LCAs. Then, u and v must be in one of three relationships: u and v are identical, Iu ≺ Iv, or 

u is an ancestor of v. 

Proof. Since Iu ≺ Iv, it is possible that u and v are identical, or Iu ≺ Iv. If u and v are not 

identical, nor Iu ≺ Iv holds, u must be an ancestor of v. Otherwise, Iv ≺ Iu (i.e., Iv[2] < Iu[1]). 

This contradicts the fact that Iu  Iu, which implies that Iu[1] < Iu[1] ≤ Iu[2] < Iv[2].  

Corollary 1 Let u and v be two nodes labeled with the same integer x in T such that Iu ≺ Iv. 

Then, if in x the LCA u of u appears after the LCA v of v, u must be an ancestor of v.  

Based on the above Corollary, we can immediately get the correctness of the modified 

Search(X, t, I). We recall that by the original Search(X, t, I), for I  It, we will try to find a 

smallest j ≤ t and a largest j ≥ t such that all the intervals in X between j  and j  (including 

j, j) can be contained in I. By the modified Search(X, t, I), we use the LCA-intervals in x 

and distinguish among three cases: c(t)  I, c(t) = I, and c(t)  I, where c(t) represents the 

LCA of It in x. In the first case, we simply return <t, t> since It is the only interval in X 

which can be contained in I. In the second case, we will return <l(c(t)), r(c(t))>. This is 

obviously correct. In the third case, we will search part of x to the right of c(t) to find the last 

v10 

Fig. 10. Sample trace. 
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search of T 
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interval  which is still containable in I and return <l(), r()>. The correctness of this process 

is guaranteed by the Corollary. Finally, for each case, x is shortened for efficiency. For the 

first two cases, the subsequence starting from c(t)) to the end of x is cut off. For the third 

case, we take away all the intervals starting  to the end from x. This will definitely not 

impact the correctness since we proceed for X and x from right to left. 

Lemma 8 The modified Search(X, x, t, I) (with I  It) will find a smallest j ≤ t and a largest 

j ≥ t such that all the intervals in X between j  and j  (including j, j) can be contained in I.     

Proof. See the above analysis.  

Proposition 2 Let X and Y be two interval sequences with |X| ≥ |Y|. setIntersect(X, Y, b) 

with LCAs will return a correct answer. 

Proof. To prove the correctness of setIntersect(X, Y, b) with LCAs , where |X| ≥ |Y|, we 

simply check all the following four cases one by one. 

Case 1: Jm ≺ It (line 4), 

Case 2: It ≺ Jm (lines 5 – 9), 

Case 3: Jm  It (line 10), and 

Case 4: Jm  It (line 11). 

In Case 1, the problem is reduced. Depending on whether Jm  c(t), it is reduced to X = X[1 .. 

t - 1] and Y = Y; or X = X[1 .. l(c(t)) - 1] and Y = Y. This is obviously correct. 

In Case 2, we first try to find an interval in the part to the right of It in X, which can be 

contained in Jm or contain Jm (depending on whether b = 1 or b = 0), by using the modified 

binarySearch(L, , Jm, b). According to Lemma 4 and 5, it is correct. If such an interval can 

be found, the problem is reduced to X = X and Y = Y[1 .. m-1]. Otherwise, depending on the 

value of b, we call B1( ) or B0( ). B1( ) is simply correct. B0( ) is correct in terms of Lemma 7. 

In Case 3, we call B0( ). In Case 4, we call B1( ). According to the analysis of Case 2, we can 

see that these two cases are also correctly handled. This completes the proof of the 

proposition.  

Lemma 9 Let m = |Y| and n = |X|. Assume that m ≤ n. The time complexity of 

setIntersect(Lx, Ly, b) with LCAs is bounded by O((1 + 2l)m), where l = 








m

n
log .  

Proof. We prove the proposition by induction on h = m + n. 

Basis. When h = 1, 2, the proposition trivially holds. 

Hypothesis. Assume that the proposition holds when h ≤ k. We will prove that when h = k + 

1, the proposition also holds. 

Denote by (m, n) the number of comparisons made by the algorithm. Then, According to the 

four cases checked in the algorithm, we have 

1. Jm ≺ It: (m, n) = 1 +  (m, n – 2l - 1); 

2. It ≺ Jm: (m, n) = 1 +  2l + (m - 1, n),  where 2l is due to the two searches: one in X and 

one in x; 

3. Jm  It: (m, n) = 1 + l + (m - 1, n – 2l - 1), where l is due to the search in x; and 

4. Jm  It: (m, n) = 1 + (m - 1, n), 

where t = n – 2l – 1. 
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(3) and (4) are obviously smaller than (1) or (2). So we need only to solve recursions (1) and 

(2). To solve the recursion (1), we represent n as 2lm +  with 0 ≤  < m. Thus, we have 

  n – 2l – 1 = 2lm +  – 2l – 1. 

If  – 2l – 1 < 0, n – 2l – 1 = 2(l-1)m + , where  = m +  – 2l – 1 < m. By induction, (m, n) = 

1 + (m, n – 2l - 1) = (1 + 2(l – 1))m = (- 1 + 2l)m ≤ (1 + 2l)m. In the case of  – 2l – 1 ≥ 0, we 

must have  – 2l – 1 <  < m. By induction, the proposition still holds. 

For recursion (2), we have  

  1 + 2l + (m - 1, n) = 1 + 2l + (1 + 2l)(m – 1) = (1 + 2l)m, 

which shows that the proposition also holds in this case.  

Finally, we notice that by using the modified binarySearch( ) (see 4.1), the running time to 

search X[t + 1 .. |X|] is actually bounded by O(log|x[c(t) .. |x|]| + log) (instead of 

O( 








m

n
log )), where we use c(t) to represent the position of It’s LCA-interval in x, and  is the 

largest number of intervals in X[t + 1 .. |Lx|], which share the same LCA; and in general we 

have |x[c(t) .. |x|]| and  both smaller than |X[t + 1 .. |X|]| = 
m

n
. So we have the 

following proposition on the time complexity of our algorithm. 

Proposition 3 Let X and Y be two interval sequences with |Y|= m ≤ |X| = n. The time 

complexity of the modified setIntersect(X, Y, b) with LCAs is bounded by O(mlog), where  < 

m

n
.  

Proof. See Lemma 9 and the above analysis.  

Finally, we consider a combined sequence L formed by inserting all the intervals of Y into X 

in such a way that for any two intervals I and I in L if I is to the left of I  or I  I, I appears 

before I in L. Then, there are 






 +

n

nm
 possible placements of the intervals of Y in the 

combined sequence; it follows that 



















 +

n

nm
lg comparisons are necessary to distinguish these 

possible orderings. Since each of such combined sequences corresponds to an intersection of Y 

and X, we can take 



















 +

n

nm
lg =  










m

n
m lg  as a lower bound of the problem. In this sense, our 

algorithm reaches the optimality. 

7. EXPERIMENTS 

In order to show that our method has not only the best theoretical time complexity, but also 

works quite well in practice, we have made a bunch of tests. 

In the experiments, we have tested seven methods: 

• Hwang-Lin’s [57] (HL for short), 

• Baeza-Yates’s [5] (BY for short), 

• Barbay-Ortiz-Lu’s [7] (BOL for short), 

• Hashing-based (RanGroupScan in [26]; Hb for short),  

• Skip-list-based [43] (SkipL for short), 

• setIntersect (discussed in the paper; sI for short), 

• setIntersect with LCAs (discussed in the paper; sIL for short). 

All our experiments are performed on a 64-bit Windows operating system. The processor is 

Intel Core(TM) i5-3210M CPU @ 2.50GHZ with 8GB RAM. All index techniques are 



Y. Chen et al. 

 20 

implemented by C++ and compiled by Microsoft Visual Studio 2010. We use the function 

QueryPerformanceCounter() from the Kernel32.lib library to measure the CPU time, which 

provides a high-precision timing (microsecond precision) on the Windows Platform. For all 

the tests the indexes are put entirely in memory. 

• Data Sets 

To evaluate the algorithms, we use both synthetic and real data. 

For the experiments with synthetic data, we first create a vocabulary containing 3 million 

words (short strings each containing less than 20 characters). Then, we randomly choose 

words to form a document. The length of each document is between 500 and 1000 words. 

For the experiments with real data, we use the TREC GOV2 corpus. The characteristics of 

this collection are shown in Table 2. 

 Table 2: Characteristics of Wikipedia Data 

 TREC GOV2 

Documents (in HTML or PDF) 25,197,000 

Size (gigabytes) 360 

Word occurrences (without markup) 38,515,000 

 

The corpus is associated with a query log containing 100,000 queries. For this test, we 

randomly choose 6000 queries which contain more than one key word. Table 3 shows the 

distribution of the numbers of key words in queries. 

Table 3: Distribution of key word numbers in queries 

#words 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

#queries 1549 1362 1053 873 546 365 89 63 51 24 5 11 2 4 1 1 1 

 

7.1 Test on synthetic data sets 

• Two word queries with varying list sizes 

First, we test two-word queries with varying list sizes. We use the synthetic data. The results 

are shown in Fig. 11, where the time is measured in milliseconds. In Fig. 11(a), we 

demonstrate the results over short lists ranging from 4k/4k (both lists taking parting in the 

operation are of length 4k integers) to 4k/1M (one of the lists contains 4k integers while the 

other 1 million integers). In Fig. 11(b), we show the results over long lists ranging from 

40k/2M to 40k/10M. 
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From these two figures, we can see that our methods uniformly outperform the other 

strategies. Even the binary search of intervals without LCAs works better than the others. 

Especially, as the length of inverted lists increases, the running time of our methods 

decreases. For short inverted lists (Fig. 11(a)), no significant difference among hash-based, 

SkipList, and all the adaptive methods can be observed. However, for large inverted lists (Fig. 

11(b)), we can clearly see that SkipList has the worst performance. We can also see that 

Hwang and Lin’s is slightly worse than Baeza-Yates’s, Barbay-Ortiz-Lu’s, and hash-based 

methods. 

In Fig. 12, we show the ratios of the interval sequence sizes over their corresponding 

inverted lists, which is obtained by dividing all the inverted lists into ten groups according to 

theirs sizes and calculating the average size of each group and the average size of the 

corresponding interval sequences. 
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This figure demonstrates that as the size of inverted lists increases the size of the 

corresponding interval sequences become shorter. Together with the binary search and the 

use of LACs, this property makes our methods superior. 

• Tests on queries with varying number of key words 

In this experiment, we vary the number k of words in a query with k = 2, 3, …, 7. For each 

query, the words are chosen randomly, but with a control being imposed so that the size of 

the inverted lists associated with each word is larger than 100,000 since for short lists all the 

algorithms work fast (as shown in Fig. 11(a), they all run within one millisecond) and no 

significant difference can be observed. 

In Fig. 13, we report the test results on the queries with 2, 3, and 4 key words while in Fig. 

14 on the queries with 5, 6, and 7 key words. 
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Fig. 12: Ratio of intervals sequences over inverted lists. 

Fig. 13: Test results on varying number of words in a query. 
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From these two figures, we can see that the SkipList, and the Hash-based both perform 

poorly. The reason for this it is due to the auxiliary data (such as new hash values) or new 

data structures (such as new skip lists) that have to be established for the intermediate 

results. In the opposite, for all the remaining algorithms, no such a task is required. Even 

though for our algorithm with LCAs extra data structures are used, they are automatically 

changed for the intermediate results and no extra effort is required to reproduce them. 

So both our algorithms work much better than the SkipList and the Hash-based when more 

words are involved in a query. They are also better than all the other three methods since 

much shorter interval sequences are checked.  

7.2 Tests on real data sets  

In this experiment, we use TREC GOV2 corpus. The most important characteristics of this 

text corpus are given in Table 2. Over this database, the same tests are performed as over 

the synthetic database. However, for the tests on the two-word queries, we have evaluated 

queries from the query log, categorized into four groups with each containing 25 queries. In 

the first three groups, both the words are with high appearance frequency, middle 

appearance frequency, and low appearance frequency, respectively; and the ratio |w|/|w | 

for all the queries is set to be between 1.0 and 1.22, where w represents the inverted list 

associated with w. In the fourth group, the appearance frequencies of the two words in a 

query is greatly different with the ratio |w|/|w | ≥ 8. 

For the queries with varying number of words, denoted by wi the ith word in a query and i 

the inverted list associated with wi. In all the queries, the words are ordered such that |i| ≤ 

|i+1|. For all the queries tested, the ratio |i+1|/|i| is between 1.0 and 2.0. But for our 

methods, the words are reordered according to the length of interval sequences. 

In Fig. 15, we show the average time of each strategy on two-word queries. In Fig. 15(a) we 

show the running time of queries over short lists while in Fig. 15(b) we show the average 

time of all the tested queries. 

Number of words k: 

Fig. 14: Test results on varying number of words in a query. 
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In Fig. 16 and 17, we show the test results on the queries with 2, 3, 4 words, and the queries 

with 5, 6, 7 words, respectively.  
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From these figures, we can see that for the two-word queries Hwang and Lin’s is slightly 

worse than Baeza-Yates’s, but Barbay-Ortiz-Lu’s has a comparable performance. They all are 

much better than the Hash-based and the SkipLst. Again, for the queries with more than two 

words, the performance of the Hash-based degrades due to the recalculation of hash values  

for the intermediate results. For a similar reason, the SkipList also works poorly. 

Our algorithms still work best, consistent with our theoretical time analysis.  
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Fig. 15: Two word queries over real data. 

(a) (b) 

Fig. 16: Test results on queries with 2, 3, 4 words. 

Fig. 17: Test results on queries with 5, 6, 7 words. 
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7.3 Space requirements  

The high performance of our methods is at cost of extra space for storing interval sequence. 

However, in comparison with some other methods with auxiliary data structure, like the 

SkipList, and the Hash-based, our method does not impose higher space requirements than 

them. Especially, by using different integer encoding schemes, such as -coding, -coding (p. 

116 in [60]), or Golomb-coding [29] for integers (gaps between consecutive document IDs) in 

inverted lists and interval sequences, the problem can be further mitigated to some extent. 

On the synthetic data sets, we have tested several algorithms with the Golomb-coding being 

used. The results are shown in Fig. 18 and 19. In Fig. 18, we show the space requirements. 

From this, we can see that our method with no LCAs uses a little bit less space than the 

SkipList, more space than the Hash-based and Baeza-Yates’s. Particularly, Baeza-Yates’s 

uses only simple (compressed) inverted list, and therefore has the lowest space requirement. 

Our method with LCAs requires most space. Its storage requirement is between 1.1 and 1.5 

times of the size of the compressed inverted lists and between 1.05 and 1.21 times of the size 

of the Hash-based algorithm. 
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In Fig. 19, we show the running time. Comparing this figure and Fig. 13, we can clearly see 

that more time is required for every algorithm to evaluate the same kind of queries. 
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7.4 Indexes on disk 

In all the above tests, all the indexes are maintained in main memory. However, indexes are 

normally disk-resident. When a query arrives, the corresponding inverted lists or the 

corresponding interval sequences will be taken from hard disk into main memory. This can be 

done quickly by using a hash table. In order to check the impact of space usage on query time, we 

Fig. 18: Space requirements. 

Fig. 19: Running time. 
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have done two more experiments. One is with small buffer sizes, and the other is with large ones. 

Altogether four methods are tested in such an environment: SkipList, Baeza-Yates’s, interval 

sequence with and without LCAs. In the tests, we have run 500 two-word queries (from the 

query log) with each word associated with an inverted list of length larger than 100,000. The 

average running times are shown in Fig. 20(a) and (b). 

 

 

From Fig. 20(a), we can see that the small buffer sizes do not impact much our methods. It is 

because for a long inverted list the corresponding interval sequence tends short. In the 

opposite, the impact of small buffer sizes for Baeza-Yates’s is relatively big due to the way it 

works. By this method, at each step a median element of the shorter list will be figured out to 

do a binary search in the longer list. In a small buffer, however, only part of the lists is 

stored and each time only a locally central element (i.e., the median of the part of the shorter 

list, which is currently stored in the buffer) can be used, which will substantially degrade the 

efficiency of this method. Comparing Fig. 20(a) and Fig. 11(b), we can see that, with large 

buffers, no significant difference between in-memory and on-disk for all the four strategies 

can be observed. 

8. CONCLUSION 

In this paper, a new off-line algorithm for doing set intersections is discussed. Based on the 

transformation of inverted lists to interval sequences by establishing a trie T over the 

sequences of set identifiers, a binary search over interval sequences is designed with their 

least common ancestors being used to skip over useless interval containment checking. In 

this way, an optimal time complexity is achieved. Let X and Y be two interval sequences 

corresponding to two inverted lists created for two words x and y, respectively. Our algorithm 

needs only O(|Y|log(|x|/|Y|)) time, where x is a sequence of nodes with each being the 

least common ancestors of some nodes in T,  whose intervals make up a segment in X.  Since 

in many cases an interval sequence is much shorter than the corresponding inverted list, the 

time complexity is theoretically better than any existing on-line method. Extensive 

Experiments have been conducted, which shows that our method also has optimal 

performance in practice. 
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