
Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

An Efficient Method to Evaluate Intersections on Big Data Sets

YANGJUN CHEN and WEIXIN SHEN

The University of Winnipeg

Set intersections are important in computer science. Especially, intersection of inverted lists is a fundamental

operation in information retrieval for text databases and Web search engines. In this paper, we discuss an efficient

and effective way to implement this operation in the context of very big data sets. The main idea behind it is to do

binary search over sorted interval sequences, each of which corresponds to an inverted list and is constructed by

establishing a trie over the sequences of set identifiers as well as a kind of tree encoding, by which each node in the

trie is assigned an interval. In many cases, an interval sequence is much shorter than its corresponding inverted list.

In particular, the lowest common ancestors of intervals in a trie can be utilized to control a binary search to skip

over useless interval containment checks, which enables us to reach an optimal off-line algorithm to do the task, and

is theoretically better than any traditional on-line methods (at cost of more space). Experiments have been

conducted, showing that the trade-off of space for time is worthwhile.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and Problem Complexity]: Non-numerical

Algorithms and Problems Pattern matching; computation on discrete structures

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Set intersection, inverted files, interval sequences, search engines.

1. INTRODUCTION
In mathematics, the intersection A ∩ B of two sets A and B is the set that contains all

elements of A that also belong to B. In practice, however, the problem is typically related to a

collection of sets S = {S1, S2, …, SM} and we are often asked to evaluate the intersection over

a sub-collection of S:

1i

S ∩
2i

S ∩ … ∩
mi

S

for some m M.

This is a key operation in information retrieval, especially for Web search engines and text

databases, by which each Si (i {1, …, M}) is a subset of document identifiers containing a

certain word, called an inverted list. Then, to find all the documents containing a set of words

w1, …, wk, a set intersection like the above over all the inverted lists associated with these

words needs to be conducted.

This work is supported by NSERC, Canada, 239074-01 (242523). This is a modification and extension of two papers

respectively published in Int. Conf. on Advances in Big Data Analytics, IEEE, July 21-24, 2014, USA [19]; and the

11th Int. Conf. on Foundations of Computer Science, IEEE, July 26-30, 2015, USA [20].

Author’s addresses: Dept. of Applied Computer Science, University of Winnipeg, 515 Portage Ave. Winnipeg,

Manitoba, Canada R3B 2E9.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this

notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this

work owned by others than ACM must be honored. Abstracting with credits permitted. To copy otherwise, to

republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires

prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.

© 2015 ACM 1539-9087/2010/03-ART39 $15.00

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Set_(mathematics)

Y. Chen et al.

 2

In the past several decades, there is a lot of research on this interesting topic, such as

adaptive and melding algorithms [5, 6, 7, 8, 9, 23, 24], building additional data structures

like skipping lists [43], treaps (a kind of balanced trees) [12], indexes [21], hash tables over

sorted lists [3, 26], and so on. All of them can improve the time complexity at most by a

constant factor, but none of them is able to bring it down by an order of magnitude.

In this work, we explore a different way to speed up pair-wise intersections by constructing

indexes, which are substantially different from any existing strategy. Concretely, our method

works as follows.

• Put all the sets: S1, S2, …, SM in a sequence decreasingly sorted by their sizes. Then,

represent each e M
i iS1= as a subsequence of set identifiers such that each set in this

subsequence contains e, denoted as se.

• Construct a trie T over all se’s.

• Replace each Sx (x {1, …, M}) with an interval sequence X, where each interval in X is

created by applying a kind of tree encoding over T.

• Associate each interval in X with a subset of Sx. In this way, we decompose Sx into a

collection of disjoint subsets, and transform the comparison of elements (for doing set

intersections) to the checking of interval containment. In many cases, an interval sequence

is much shorter than the corresponding set. Therefore, the search of X can be faster than

the search of the corresponding set Sx.

• For each interval sequence X constructed for a certain Sx, we will construct a second

sequence, x, such that each element in it corresponds to the lowest common ancestor (LCA

for short) of some nodes in the trie T, whose intervals make up a segment in X. x is used

to control the binary search of X when a set intersection involving Sx is evaluated.

Let Sx, Sy be two sets with |Sx| < |Sy|. Up to now, the best on-line algorithm for intersecting

Sx and Sy requires O(|Sx|log(|Sy|/|Sx|)) time [5, 59]. In contrast, our off-line algorithm

needs O(|Y|log) time by using indexes, where < |x|/|Y|, and Y is an interval sequence

created for Sy. As can be seen later, we always have |Y| ≤ |X| ≤ |Sx| and |x| < |X|. This

time complexity is significantly better than the traditional on-line methods due to the

following two key facts:

1. Each interval corresponds to a subset of some set. Therefore, in many cases, the length of

an interval sequence created for a set can be much smaller than the corresponding set

itself. Especially, the larger a set is, the smaller its corresponding interval sequence. Only

for those very small sets, the sizes of their corresponding interval sequences may be near

their sizes.

2. During the binary search of an interval sequence, the relationship between the intervals

and their LCAs can be used to skip over a lot of useless interval containment checking

while it is not possible by any comparison-based algorithm no matter how sets are stored

using different data structures, such as sorted arrays, trees, skipping lists, hash tables,

and so on.

The optimal running time of our method is at cost of the space for indexes. Since for each

inverted list we will create an interval sequence which is not longer than the corresponding

inverted list, the space requirement for all the interval sequences should be linear in the size

of all inverted lists. However, since two integers are needed to represent an interval, the

used space must be larger than the inverted lists. On the other hand, due to the property

that the longer an inverted list is the shorter the corresponding interval sequence, the

difference between interval sequences and inverted lists is not so big. For example, for the

TREC GOV2 corpus, the size of the interval sequences for all those inverted lists of length

smaller than 10k is 1.5 times the size of the corresponding inverted lists. But the size of all

the interval sequences together is 1.105 times the size of all inverted lists.

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

The remainder of the paper is organized as follows. In Section 2, we review the related work.

In Section 3, we present the new index structure in great detail. In Section 4, we discuss our

algorithms to evaluate conjunctive queries based on this index structure, which are further

improved by using LCAs in Section 5. In Section 6, we report the test results. Finally, a short

conclusion is set forth in Section 7.

2. RELATED WORK

The evaluation of set intersections is very important in text databases and Web search

engines [13, 40]. Much research on this topic has been done in the past several decades. Two

methods have been widely advocated as efficient indexing schemes to handle large volume

data. One is inverted files [56] and the other is signature files [27]. According to [57], for

typical applications of full-text indexing, inverted files are superior to signature files in

almost every respect, including speed, space, and functionality.

Inverted files

By the inverted file, each word will be associated with a sorted list of document identifiers

containing the word, which was first reported as early as mid-1960s [34, 47]. The subsequent

research on this index structure includes integer coding [3, 29], integer compression [1, 49,

55], bitmap compression [10, 41], caching [38, 45], parallelism [2, 48], and distributed

computation [22]. Also, many methods have been proposed to speed up the intersection of

inverted lists in different ways.

Adaptive and melding. An adaptive and melding method intersect all the lists in parallel so

as to compute the intersection according to different measure of difficulty at each step [7, 23].

In [23], the galloping search is used to find a matching element in a sorted set while in [7]

the interpolation is utilized. According to [8], for the intersection of k sets: L1 … Lk (k 2)

the lower bound of the problem is O(=

k

i iL
1

)/|log(|), where is the minimal number of

intervals which cover a totally ordered space (i.e., all the docIds) such that for each interval I,

if it covers only a singleton x, then x ii L , otherwise, there exists at least a Li (i {1, …, k})

with I Li = . In the case of k = 2 with |L1| < |L2|, = O(|L1|) and O(=

k

i iL
1

)/|log(|) =

O(|L1|log(|L2|/|L1|)). This is exactly the time complexity of Hwang and Lin’s algorithm

([59], should be modified from doing the set union to the set intersection), and Baeza-Yates’s

[5], which is in fact a balanced version of the former, by which we choose the median element

of L1 at the first step and recursively divide L1 and L2 in the subsequent computation. For k >

2, the algorithm proposed by Barbay and Kenyon [8] reaches this time complexity.

Hierarchical representation. A set can be represented as a balanced binary search tree, such

as treaps [12], skip-lists [43], or a compact two-level structure [44]. They also aim at reducing

the number of comparisons. Especially, using treaps [12], the optimal time complexity

O(|L1|log(|L2|/|L1|)) can be achieved. However, due to the tree searching process, this

kind of algorithms not always outperforms the binary search over a sorted list. Their

advantage mainly consists in the ease of maintenance of balanced data structures.

Hashing-based. There are various methods based on hash-functions to speed up the

intersection, such as the algorithms discussed in [11, 26]. In [11], two sets L1 and L2 are

mapped using a hash-function h to smaller representations h(L1) and h(L2), respectively.

Then, the intersection is done on h(L1) and h(L2). Given k sets: L1, …, Lk of total size M, their

intersection can be computed in time O((Mlog2C)/C + kr) on average, where r = |
k

i iL
1=

|, and

C is a constant, typically set to be the size of a memory unit. This running time is improved

by Ding and König [26], who first divide a set into a collection of smaller subsets, and then

map, using a hash-function, each subset into a bit string which can be packed in a single

memory unit. In this way, the time complexity can be reduced to O(M/ C + kr). However, we

should notice that in both their time complexity analyses, the cost of hashing is not taken

Y. Chen et al.

 4

into account; but in practice each hash-function computation itself needs in fact a constant

time.

Index-based. The method discussed in [21] is index-based, by which an unbalanced binary

tree T is constructed with each node being used to store a matrix M over some sets from a

database D. M[i, j] = 1 if lists i and j have a non-empty intersection. Otherwise, M[i, j] = 0.

The size of M is bounded by |D| (the number of sets in D.) Since the sets handled by two

different nodes can be repeated, the space overhead of the whole index is bounded by

O(|T|∙|D|). The query time for evaluating L1 L2 is bounded by O('|| rD + r), where r

= |L1 L2|. For a database D containing a very large amount of words (like TREC GOV2

corpus, which contains more than 38 million words), this time complexity is not much better

than Baeza-Yates’s [5].

SIMD-based. The SIMD (single instruction/multiple data) has also been used to reduce the

running time, as reported in [33, 37, 46]. In [33], a simple algorithm is discussed, which

extends the merge-based algorithm by reading multiple elements each time, instead of just

one element, from each of two input arrays to use SIMD instructions. However, its

theoretical time complexity is bounded by O(b(|L1| +|L2|) – b2), where b is the size of a

block, i.e., the number of elements taken each time respectively from L1 and L2 for

comparison. The methods discussed in [37, 46] have the same time complexities as [33]. In

[46], the SIMD is used for the galloping search while in [37] the so-call STNNI instructions

(STring and Text processing New Instruction) are used.

Inverted-list compression. Besides the above mentioned methods, there is quite different

stream of research on the compression of inverted lists to reduce the space overhead, but not

sacrificing too much query time, including document reordering, classification, and docId

compression, such as Rice coding [62], Simple16 coding [62], PForDelata coding [32], and the

modified PForDelata coding [61].

Signature files

By the signature file, a word is hashed to a bit string (called a signature) and all the words’

signatures of a document are superimposed (bit-wise OR operation) into a document

signature. When a query arrives, its signature will be created using the same hash-function

and the document signatures are scanned and many nonqualifying documents are discarded.

The rest are either checked (so that the ‘false drops’ are removed) or they are returned to the

user as they are [26, 27]. The main disadvantage of this method is the false drop [31, 35],

which needs extra time to check. Over the years, different ways to store signatures have been

proposed, such as bit-slice files [35], S-trees [25, 51], and signature trees [15, 16]. By the bit-

slice files, the signatures in the file are vertically stored in a set of files [31]. By the S-trees, a

signature file is organized into a height balanced multiway tree. The signature tree works in

a quite different way, which organizes a set of signatures into a binary tree structure and

replaces a sequential search of signatures with a search of binary trees, improving

performance by an order of magnitude or more.

Others

There are some other interesting methods to improve the efficiency of set intersections [48,

53, 58]. In [48, 53], the so-called multi-core architecture is utilized to speed up computation,

which can also be used to parallelize our method. In [58], scoring functions are used to avoid

computing full intersections. The main difficulty of this method is that a scoring function

may not be easily established, and the machine-learning techniques have to be employed to

solve the problem.

3. TRANSFORMATION OF SORTED LISTS TO SORTED INTERVAL SEQUENCES
Let be a sequence of sets:

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

 S1, S2, …, SM

such that for 1 i < j M |Si| |Sj|.

Denote S =
M

i iS
1=

. For simplicity, assume that each element in S is an integer > 0. Then,

each element i S corresponds to a subsequence of :

1i

S
2i

S …
mi

S

for some m such that for each j {1, …, m} i
jiS . Clearly, for k < l, we have |

ki
S | |

li
S |.

Assign each Sj an identifier wj. Thus, we can represent i as a sequence i:

1i

w
2i

w …
mi

w .

Over all i’s, a trie structure can be constructed as follows.

Let D = {1, 2, …, N} be all i’s. Denote by trie(D) the trie constructed over D.

If |D| = 0, trie(D) is, of course, empty. For |D| = 1, trie(D) is a single node. If |D| > 1, D is

split into M (possibly empty) subsets D1, D2, …, DM so that a sequence i is in Dj if its first

element is wj (1 ≤ j ≤ M). The tries trie(D1), trie(D2), …, trie(DM) are constructed in the same

way except that at the kth step, the splitting of sets is based on the kth words in the

sequences. They are then connected from their respective roots to a single node to create

trie(D).

See Fig. 1 for illustration.

In Fig. 1(a), we show a collection of six sets: S1, …, S6 with each containing one or more

positive integers. Fig. 1(b) shows a sequence of all the sets sorted decreasingly by their

sizes. Fig. 1(c) is a set of subsequences of , and each subsequence j represents a group of

sets with each containing j 6
1=i iS . For example, 7 = 1, 2, 6, 5 represents four sets: S1, S2,

S6, S5, each containing 7. In Fig. 1(d), we show a trie established over all i’s.

In this trie, v0 is a virtual root, labeled with 0 (representing an empty set) while any other

node is labeled with a positive integer i, representing a set Si. Hence, all the integers on a

S1:

S2:

S3:

S4:

S5:

S6: (b)

{3, 5, 6, 7, 8, 9, 10, 11}

{1, 2, 3, 5, 6, 7, 8}

{4, 8}

{5, 6, 9, 11}

{1, 2, 3, 4, 7, 10}

{1, 4, 6, 7, 8, 10, 11} (a)

S1, S2, S6, S5, S4, S3 :

(c)

(d)

Fig. 1: A collection of sets, a sequence of sets, a set of subsequences of and a trie.

1 = 2, 6, 5

2 = 2, 5

3 = 1, 2, 5

4 = 6, 5, 3

5 = 1, 2, 4

6 = 1, 2, 6, 4

7 = 1, 2, 6, 5

8 = 1, 2, 6, 3

9 = 1, 4

10 = 1, 6, 5

11 = 1, 6, 4

[1, 4]

v16

v14 v12

[1, 1]
v10

[1, 20]

v1

2

6

5

[1, 2]

v0

v4

0

5

[3, 3]

v2

[7, 7]

[14, 14]

v7
[5, 11]

[7, 10]

[8, 8] [9, 9]

[6, 6] [5, 5]

1 [5, 16]

v11

4 [12, 12] 2

v6

6 [13, 15]
v8

4 6 5 5

[13, 13]

4

5 3 4

v13

v17 v18 v19

v9

6

5 [17, 18]

[17, 19]

v3

3
[17, 17]

v5

v15

[5, 16]

[1, 4][5, 11]

[9, 9][17, 17]

[6, 6][7, 7][12, 12][14, 14]

[1, 1][3, 3][5, 5][8, 8][13, 13][17, 18]

[1, 2][7, 10][13, 15][17, 19]

L1:

L2:

L3:

L4:

L5:

L6:

(e)

S2, S6, S5

S2, S5

S1, S2, S5

S6, S5, S2

S1, S2, S4

S1, S2, S6, S4

S1, S2, S6, S5

S1, S2, S6, S3

S1, S4

S1, S6, S5

S1, S6, S4

-

-

-

-

-

-

-

-

-

-

-

Y. Chen et al.

 6

path from the root to a leaf make up a subsequencs of . For instance, the path from v0 to v18

corresponds to a sequence 7 = 1, 2, 6, 5. Thus, to check whether two sets Si and Sj contain a

common element, we need only to check whether there exist two nodes v1 and v2 such that v1

is labeled with i, v2 with j, and v1 and v2 are on the same path. This shows that the

reachability needs to be checked for this task, by which it is asked whether a node v can

reach another node u through a path (see [17, 18] for a detailed discussion.) If it is the case, it

is denoted as v ⇒ u; otherwise, denoted as v ⇏ u.

It is well-known that the reachability checking can be done efficiently by using a kind of tree

encoding [4, 17], which labels each node v in a tree with an interval Iv = [αv, βv], where βv

denotes the rank of v in a post-order traversal of the tree. Here the ranks are assumed to

begin with 1, and all the children of a node are assumed to be ordered and fixed during the

traversal. Furthermore, αv denotes the lowest rank for any node u in T[v] (the subtree rooted

at v, including v). Thus, for any node u in T[v], we have Iu Iv since the post-order traversal

visits a node after all of its children have been accessed. In Fig. 1(d), such a tree encoding is

also exhibited, assuming that the children are ordered from left to right. It is easy to see that

whether two nodes are on a same path can be checked by interval containment. For example,

v2 ⇒ v19, since
2vI = [5, 16],

19vI = [9, 9], and [9, 9] [5, 16]; but v1 ⇏ v16, since
1vI = [1, 4],

16vI =

[17, 17], and [17, 17] [1, 4].

Let I = [α, β] be an interval. We will refer to α and β as I[1] and I[2], respectively. Then, we

have the following lemma.

Lemma 1 For any two intervals I and I generated for two nodes in a trie, one of four

relations holds: I I, I I, I[2] < I [1] (denoted as I ≺ I), or I [2] < I[1] (denoted as I ≺ I).

Proof. The lemma can be derived from the post-order traversal process of a tree or a forest.

Since more than one node in a trie may be labeled with the same number, a number

(representing a set) may be associated with more than one interval. Thus, to know whether

two sets share common elements, multiple checks may be needed. For example, to check

whether S2 and S3 contain common elements, we need to check v1 and v6 each against both

v16 and v19, by using the node’s intervals.

For this reason, each number x in a trie will be associated with an interval sequence of the

form: X = I1, I2, …, In, where n is the number of all those nodes labeled with x and each Ij =

[Ij[1], Ij[2]] (1 j n) is an interval associated with a certain node labeled with x. In addition,

since any two of these intervals are not on a same path, we can sort X so that for 1 k < l n

we have Ik ≺ Il (then, Ik[1] < Ik[2] < Il[1]), which will greatly reduce the time for checking

reachability. We illustrate this in Fig. 1(e), in which each interval sequence corresponds to a

set in Fig. 1(a).

Comparing Fig. 1(a) and Fig. 1(e), the following three properties can be easily observed

i) Any interval sequence cannot be larger than the corresponding set.

ii) An interval sequence can be much smaller than the corresponding set.

iii) The longer an inverted sequence is, the smaller the corresponding set.

For example, S1 = {3, 5, 6, 7, 8, 9, 10, 11} contains 8 elements while L1 = [5, 16] contains only

one interval. In addition, we can associate each node v in a trie with a subset S such that for

each i S, i has a prefix represented by the path from v0 to v. For example, the sequence

represented by a path: v0 → v2 → v6 → v13 is 0, 1, 2, 6, a common prefix of 6, 7, 8. So the

subset associated with v13 should be {6, 7, 8}. Procedurally, the subset associated with a node

v can be constructed as below:

- If v is a leaf node, the subset assigned to v contains only one document identifier

corresponding to the word sequence represented by the path from the root to v.

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

- If v is an internal node, the subset assigned to v is the disjoint union of all the subsets

assigned to its children.

See Fig. 2(a) for illustration.

In this way, we also create a correspondence between intervals and subsets as illustrated in

Fig. 2(b). Let I be an interval associated with a node v in T. We will denote by (I) (also, (v))

the corresponding subset. Then, we get a different way to evaluate set intersections Sx ∩ Sy

with Sy appearing before Sx in :

1. Let X = I1, I2, …, In and Y = J1, J2, …, Jm be the interval sequences for Sx and Sy,

respectively.

2. Find
1nI , …,

knI for some k such that for each 1 ≤ l ≤ k there exists some interval in Y,

which covers
lnI .

3. Return (
1nI) ⊎ … ⊎ (

knI) as the result of Sx Sy, where ⊎ represents disjoint union over

disjoint sets.

As an example, consider L5 = [1, 1][3, 3][5, 5][8, 8][13, 13][17, 18] (for S5 in Fig. 1(a)) and L2 =

[1, 4][5, 11] (for S2). To evaluate the intersection S5 S2, we will find a subsequence in L5: [1,

1][3, 3][5, 5][8, 8] such that [1, 1] [1, 4], and [3, 3] [1, 4], as well as [5, 5] [5, 11], and [8,

8] [5, 11]. Note that the ([1, 1]) = {1}, ([3, 3]) = {2}, ([5, 5]) = {3}, and ([8, 8]) = {7}. The

answer is then their (disjoint) union: {1, 2, 3, 7}.

The correctness of the above algorithm is based on the following two lemmas.

Lemma 2 Let = S1, S2, …, SM be a sorted sequence of sets. Let 1, 2, …, N be all the

subsequences of created for all j S =
M

i iS
1=

(j = 1, …, N). Let X = I1, I2, …, In be the

interval sequence for Sx (x {1, …, M}). Then, (I1) (I2) … (In) = Sx.

Proof. For each Sx, we can view x as its identifier. For each y Sx, we can view it as the

identifier of another set Qy which contains y. Let v1, …, vn be all the nodes labeled with x in T.

Then, (v1) (v2) … (vn) must be the identifiers of all those sets containing x, which

are exactly equal to Sx.

In a similar way, we can prove Lemma 3.

Lemma 3 Let u and v be two nodes in a trie T, labeled with two intervals Iu and Iv,

respectively. If u and v are not on the same path in T, then (Iu) and (Iv) are disjoint, i.e.,

(Iu) (Iv) = .

Proposition 1 Let X = I1, I2, …, In be the interval sequence for Sx. Then, (I1) ⊎ (I2) ⊎ … ⊎

(In) = Sx.

v7

{2}

Fig. 2: Association of intervals with subsets.

{1, 2}

v16

v14 v12

{1}
v10

[1, 20]

v1

2

6

5

{1}

v0

v4

0

5

v2

{6}

{11}

{3, 5, 6, 7, 8}

{6, 7, 8}

{7} {8}

{5} {3}

{3, 5, 6, 7, 8, 9,10, 11}

v11

4 {9} 2

v6

6 {10, 11}
v8

4 6 5 5

{10}

4

5 3 4

v13

v17 v18 v19

v9

6

5 {4}

{4}

v3

3
{4}

v5

v15

[1, 4] - {1, 2}

[1, 2] – {1}

[1, 1] - {1}

[3, 3] – {2}

[5, 16] – {3, 5, 6, 7, 8, 9, 10, 11}

[5, 11] - {3, 5, 6, 7, 8}

[5, 5] – {3}

[6, 6] – {5}

[7, 10] – {6, 7, 8}

[7, 7] – {6}

[8, 8] – {7}

[9, 9] – {8}

[12, 12] – {9}

[13, 13] – {10}

[13, 15] – {10, 11}

[14, 14] – {11}

[17, 19] – {4}

[17, 18] – {4}

[17, 17] – {4}

(a) (b)

1

Y. Chen et al.

 8

Proof. According to Lemma 2, we have (I1) (I2) … (In) = Sx. According to Lemma 3,

(I1) (I2) … (In) is equal to (I1) ⊎ (I2) ⊎ … ⊎ (In).

As an example, consider the nodes v1 and v6 in Fig. 2(a). They are the only nodes labeled with

2. So S2 is equal to (v1) ⊎ (v6) = {1, 2} ⊎ {3, 5, 6, 7, 8} = {1, 2, 3, 5, 6, 7, 8}.

4. EVALUATION OF SET INTERSECTIONS

In this section, we discuss how to efficiently evaluate set intersections by using interval

sequences. For ease of explanation, we first discuss a method based on a linear search of

interval sequences in 4.1. Then, in 4.2, we discuss a more interesting and efficient method

based on a binary search of interval sequences, for which some more new concepts and

techniques need to be introduced.

4.1 Evaluation based on linear search

As mentioned in Section 3, to evaluate the intersection of two sets Sx and Sy with Sy

appearing before Sx in , we need to search both X and Y to find all those intervals in X such

that each of them is covered by some interval in Y. Since both X and Y are sorted, a linear

search process can be arranged to do the task as follows.

1. Let X = I1, I2, …, In and Y = J1, J2, …, Jm. L . (*L is used to store the result.*)

2. Step through X and Y from left to right. Let Ik and Jl be the intervals currently

encountered. Compare Ik and Jl. We will have one of three possibilities:

i) If Ik Jl, append Ik to the end of L. Move to Ik+1 if k < n (then, in a next step, we will

check Ik+1 against Jl.) If k = n, stop.

ii) If Ik ≺ Jl, move to Ik+1 if k < n. If k = n, stop.

iii) If Jl ≺ Ik, move to Jl+1 if l < m (then, in a next step, we will check Ik against Jl+1). If l =

m, stop.

Assume that the result is L = I1, I2, …, Ip (0 ≤ p ≤ n). Then, for each 1 ≤ q ≤ p, there exists an

interval J Y such that Iq J, and we can return (I1) ⊎ (I2) ⊎ … ⊎ (Ip) as the answer. In

Fig. 3, we illustrate the working process on X = L6 and Y = L2 shown in Fig. 1(e).

In Fig. 3, we first notice that X = L2 = [1, 4][5, 11] and Y = L6 = [1, 2][7, 10][13, 15][17, 19]. In

the 1st step, we will check I1 = [1, 4] against J1 = [1, 2]. Since [1, 2] [1, 4], J1 = [1, 2] will be

added to the result L. In the 2nd step, we will check I1 = [1, 4] against J2 = [7, 10]. Since [1, 4]

≺ [7, 10], l will be increased by 1 and then we will check I1 = [5, 11] against J2 = [7, 10]. Since

[7, 10] [5, 11], J2 = [7, 10] will be added to L and k will be increased by 1. Comparing I2 =

[5, 11] and J3 = [13, 15], we find [5, 11] ≺ [13, 15]. Since now l is equal to |X|, the process

stops. The result is ([1, 2]) ⊎ ([7, 10]) = {1} ⊎ {6, 7, 8} = {1, 6, 7, 8}.

Lemma 4 Let L = I1, …, Ip be the result of the above process when applied to X and Y

respectively created for Sx and Sy with Sy appearing before Sx in . Then, for each Iq (1 ≤ q ≤

1st step:

Fig. 3: Illustration for the linear search of interval sequences.

L2:

L6:

2nd step:

l

k

 [1, 4][5, 11]

 [1, 2][7, 10][13, 15][17, 19]

 [1, 2] L:

l

k

 [1, 4][5, 11]

 [1, 2][7, 10][13, 15][17, 19]

 [1, 2]

3rd step:

l

k

 [1, 4][5, 11]

 [1, 2][7, 10][13, 15][17, 19]

 [1, 2][7, 10]

4th step:

l

k

 [1, 4][5, 11]

 [1, 2][7, 10][13, 15][17, 19]

 [1, 2][7, 10]

5th step:

l

k

 [1, 4][5, 11]

 [1, 2][7, 10][13, 15][17, 19]

 [1, 2][7, 10]

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

p), there must be an interval J Y such that Iq J. For any interval I X but L, it is

definitely not covered by any interval in Y.

Proof. The correctness of the lemma can be derived from the properties of X and Y, and the

facts that both X and Y are sorted.

4.2 Evaluation based on binary search

The set intersection can also be done by using binary search. However, due to the difference

between the containment checking of intervals and the comparison of integers, the

traditional binary searching cannot be simply utilized because the containment of an interval

I (from Y) in another interval I (from X) will not in general allow us to divide X into two

parts. Therefore, a more sophisticated technique is needed to achieve an optimal running

time. Specifically, LCAs (lowest common ancestors) have to be used to speed up the working

process. In this subsection, we only give a basic algorithm for the binary search of interval

sequences, while the discussion on how to employ LCAs will be shifted to the next section.

Before we present the algorithm, we first define two functions which will be used by it as two

basic operations.

The first function is search(X, j, J) with three inputs: X – a sorted interval sequence, j – a

position in X, and J – an interval from some other interval sequence Y, used to find a

smallest k ≤ j and a largest l ≥ j such that all the intervals in X between k and l (including k,

l) can be contained in J. See Fig. 4 for illustration.

The second function is binarySearch(X, J, b), also with three inputs: X – a sorted interval

sequence, J – an interval from some other interval sequence, and b – a Boolean value. If b =

0, it will try to find an interval in X by the binary search, which can be contained in J;

otherwise (b = 1), to find an interval which contains J.

With the above two functions, our basic algorithm to do the binary set intersection can be

described as follows, which is in essence a modification of the binary set union discussed in

[59].

Let Sx and Sy be two sets. Let X and Y be their interval sequences containing distinct

intervals of respective lengths n and m:

 I1 ≺ I2 ≺ … ≺ In, and

 J1 ≺ J2 ≺ … ≺ Jm.

Assume that Sy appears before Sx in . Then, we have m n.

The binary set intersection process can be mostly easily described recursively. When m = 0

(i.e., the shorter list is empty) there is no intersection to be done and the procedure

terminates with empty as the result. Otherwise, we figure out Jm, the last interval in the

shorter sequence Y, and attempt to find an interval in the longer sequence X, which can be

contained in Jm. To do this, let l =

m

n
log . Then, 2l is the largest power of 2 not exceeding

m

n
.

Let t = n - 2l + 1. Compare Jm and It. See Fig. 5 for illustration.

Fig. 4: Illustration for Search(X, j, J).

X:

Y:

interval J

jth interval in X k l

When we find an interval J in Y,

which contains an interval I in X, we

will call Search() to find all those

intervals to the left and to the right of

I, which can also be contained in J.

Y. Chen et al.

 10

We first distinguish among three cases:

 Case 1: Jm ≺ It,

 Case 2: It ≺ Jm, and

 Case 3: Jm It.

If Jm ≺ It (case 1), then we will search the intervals to the left of It: I1, …, It in Fig. 5. The

problem immediately reduces to the situation illustrated in Fig. 6(a). We can finish the set

intersection by recursively applying the binary set intersection to lists X = I1, …, It, and Y =

J1, J2, …, Jm.

If, on the other hand, It ≺ Jm (case 2), then we will search the intervals to the right of It: L =

It+1, ..., In in Fig. 5. By calling binarySearch(L, Jm, 0), we try to find, with exactly l more

comparisons, an interval Ik either containable in Jm (case 2-1), or satisfying Ik-1 ≺ Jm ≺ Ik

(case 2-2). In case 2-1, we will call search(X, k, Jm) to find k and k such that all the intervals

in X between k and k (including k, k) can be covered by Jm (then, all these intervals

should be added to the result R); this information allows us to reduce the problem to the

situation illustrated in Fig. 6(b). To complete the set intersection it is sufficient to perform

the set intersection on the lists Y = J1, J2, …, Jm-1, and X = I1, …, Ik -1. In case 2-2, the

problem is reduced to Y = J1, J2, …, Jm-1 and Lx = I1, …, Ik-1. See Fig. 6(c). Note that X may

be longer than Y, so that in the recursive calls to the set intersection procedure the roles of X

and Y may become reversed.

If Jm It (case 3), as case 1 above, we will call search(X, t, Jm) to find all the intervals in X

which can be covered by Jm and insert them into the result R. The set intersection can be

completed by a recursive call on Y = J1, J2, …, Jm-1 and X = I1, …, Ik -1, where k′ is the left-

most position in X which can be covered by Jm, just as case 2-1.

Finally, due to the possible interchange of rolls played by X and Y, we need yet to consider a

fourth case: Jm It. In this case, we simply insert Jm into R and the problem is reduced to

the set intersection over Y = J1, J2, …, Jm-1 and X = I1, …, It, also as case 2-1.

In terms of the above analysis, we give the following algorithm, in which besides search()

and binarySearch(), another two simple subfunctions B0() and B1() are also used,

respectively for b = 0 and b = 1, to handle the result and to determine the interval

subsequences for a next recursive call.

The algorithm takes two interval sequences X and Y with |X| ≥ |Y|, and a Boolean variable

Fig. 6: Outcomes after first comparison.

(a)

Y

X

(c) It-1 … …

J1 … …

I1

Jm

(b)

Y

X

Ik -1 … …

… …

I1

Y

X

Ik-1 … …

… …

I1

J1 Jm-1 J1 Jm-1

Fig. 5: First comparison during an interval intersection.

It It+1 In … …
… …

J1 … …

I1

Jm Jm-1

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

b as the inputs.

ALGORITHM setIntersect(X, Y, b) (*Initially, b = 0.*)

begin

1. Let X = I1, I2, …, In and L2 = J1, J2, …, Jm;

2. if m = 0 then return;

3. l

m

n
lg ; t n - 2l + 1; I Jm;

4. if I ≺ It then {X X[1 .. t - 1]; Y Y;}

5. if It ≺ I

6. then z binarySearch(X[t + 1 .. n], I, b);

7. if z = 0 then { X X; Y Y[1 .. m-1];}

8. else if b = 1 then < X , Y> B1(X, Y, t + z, I, R);

9. else <X, Y> B0(X, Y, t + z , I, R);

10. if I It then <X, Y> B0(X, Y, t, I, R);

11. if I It then <X, Y> B1(X, Y, t, I, R);

12. if |Y| ≤ |X| then setIntersect(X, Y, b)

13. else setIntersect(Y, X, b);

end

FUNCTION B0(X, Y, t, I, R)

Begin

1. <j, j> Search(X, t, I);

2. R R {X[j .. j]};

3. X X[1 .. j - 1]; Y Y[1 .. |Y| - 1];

4. return <X, Y>;

end

FUNCTION B1(X, Y, t, I, R)

begin

1. R R {I};

2. X X[1 .. t]; Y Y[1 .. |Y| - 1];

3. return <X, Y>;

end

The algorithm setIntersect(X, Y, b) can be viewed as composed of six parts.

Part 1 (lines 1 – 3). In this part, we do the initialization work.

Part 2 (line 4). In this part, we handle the case Jm ≺ It by determining two interval

sequences X = X[1 .. t – 1] and Y = Y, to which the next recursive call will be applied.

Part 3 (lines 5 – 9). In this part, the most complicated case It ≺ Jm is handled. First, a

traditional binary search over X[t + 1 .. n] will be carried out to find an interval, which

contains Jm (if b = 1), or is containable in Jm (if b = 0) (see line 6.) If the corresponding

interval cannot be found, we will determine two interval sequences X = X and Y = Y[1 .. m –

1] for the next recursive call (see line 7.) Otherwise, depending on whether b = 1 or b = 0, we

will respectively call B1(X, Y, t, I, R), or B0(X, Y, t, I, R), where I = Jm (see lines 8 and 9.) In

B1(X, Y, t, I, R), we will first add I to R and then determine two interval sequences X = X[1 ..

t] and Y = Y[1 .. |Y| - 1] for the next recursive call. In B0(X, Y, t, I, R), we will first call

Search(X, t, I) to find a pair <j, j> such that all the intervals between j, j (including j, j)

in X are containable in I; and then add all these intervals to R. Afterwards, two interval

sequences X = X[1 .. j - 1] and Y = Y[1 .. |Y| - 1] will be figured out for the next recursive

call.

Y. Chen et al.

 12

Part 4 (line 10). In this part, we call B1(X, Y, t, It, R) to handle the case Jm It. (This case

occurs only when b = 0.)

Part 5 (line 11). In this part, we call B0(X, Y, t, I, R) to handle the case Jm It. (This case

occurs only when b = 1.)

Part 6 (line 12 – 13). In this part, we will apply a recursive call to the interval sequences

figured out in the previous computation (i.e, in a part i for i {2, …, 5}). In terms of whether

|Y| ≤ |X| or |Y| > |X|, the new value of b for the recursive call is set to be the same as

the old value of b (see line 12) or changed to its negation (see line 13).

Example 1 Consider L2 = [1, 4][5, 11] and L5 = [1, 1][3, 3][5, 5][8, 8][13, 13][17, 18]. By

calling setIntersect(L5, L2, 0), the following operations will be conducted:

Step 1: check L2[2] = [5, 11] against L5. l =

2

6
log = 1, t = n - 2l + 1= 6 – 2 + 1= 5, L5[5] = [13,

13]. Since [8, 11] ≺ [13, 13], we will make a recursive call setIntersect(L5[1 .. 4], L2, 0).

Step 2: In the execution of setIntersect(L5[1 .. 4], L2, 0), check L2[2] = [5, 11] against L5[1 .. 4].

l =

2

4
log = 1, t = n - 2l + 1= 4 – 2 + 1= 3, L5[3] = [5, 5]. Since [5, 5] [5, 11], we will call

Search(L5[1 .. 4], 3, [5, 11]), which returns <j, j> = <3, 4>. Then, we will recursively call

setIntersect(L5[1 .. 2], L2[1 .. 1], 0) in the next step.

Step 3: check L2[1] = [1, 4] against L5[1 .. 2]. l =

1

2
lg = 1, t = 3 – 21 + 1 = 2, L5[2] = [3, 3].

Since [3, 3] [1, 4], we will call Search(L5[1 .. 2], 2, [1, 4])]), which returns <j, j> = <1, 2>.

Then, we will recursively call setIntersect(L5[1 .. 0], L2[1 .. 0], 0) in the next step.

Step 4: |L2[1 .. 0]|= 0. Stop.

The result R = [1, 1][3, 3][5, 5][8, 8].

5. IMPROVEMENTS

In this section, we discuss an improvement of the algorithm discussed in the previous

section. First, we show how LCAs (least common ancestors) can be used to speed up the

binary search of a sorted interval sequence in 5.1. Then, in 5.2, we discuss how LCAs can be

efficiently figured out.

5.1 Integrating LCAs into binary search

First of all, we notice that the time complexity of setIntersect(X, Y, b) is bounded by

O(|Y|log|X|) with |X| ≥ |Y| since in the worst case Search(X, t, I) requires O(log|X|)

time, where 1 t |X| and I is an interval in Y. However, by using LCAs, both Search(X, t,

I) and binarySearch(L, I, b), can be non-trivially improved.

- LCA sequences

Denote by Vx all the nodes labeled with x in T. All the LCAs of the nodes in Vx, denoted as Vx′,

can be efficiently recognized using a way to be discussed in 5.2. For example, for the set of

nodes labeled with number 5: V5 = {v10, v5, v11, v18, v14, v9}, we can find another set of nodes:

V5′ = {v1, v6, v2, v0} with v1 being the LCA of {v10, v5}, v6 the LCA of {v11, v18}, v2 the LCA of {v11,

v18, v14}, and v0 the LCA of { v10, v5, v11, v18, v14, v9}. Now we construct a tree structure, called

an LCA-tree and denoted as Tx, which contains all the nodes in Vx Vx′. In Tx, there is an arc

from v1 to v2 iff there exists a path P from v1 to v2 in T and P does not pass any other node in

Vx Vx′. In Fig. 7(a), we show T5 for illustration.

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

Replacing each node in Tx with the corresponding interval, we get another tree, denoted as

~
xT , in which each internal node v must be an interval that is the smallest interval covering

all the intervals represented by the leaf nodes in ~
xT [v] (the subtree rooted at v in ~

xT). See

~
5T shown in Fig. 7(b) for illustration. From this, we can see that [1, 4] is the smallest

interval covering [1, 1] and [3, 3]; [8, 11] is the smallest interval covering [5, 5] and [8, 8]; and

[5, 16] is the smallest interval covering [5, 5], [8, 8] and [13, 13]. Finally, [1, 20] is the

smallest interval covering all the intervals in L5: [1, 1], [3, 3], [5, 5], [8, 8], [13, 13], [17, 18].

Here, our intention is to associate each interval Ij in X with a second interval, which is the

parent of Ij in ~
xT , denoted as c(j). For this purpose, we will keep a sequence x containing all

the LCA-intervals in the post-order of ~
xT . (This can be obtained by traversing ~

xT in post-

order, but with all the leaf nodes removed). For example, 5 = 1234 = [1, 4][8, 11][5, 16][1,

20]. Each in x will be associated with two links, denoted as l() and r(), pointing to two

intervals in Lx, which are respectively the left-most and right-most leaf nodes in ~
xT [] (the

subtree rooted at in ~
xT). Fig. 8 helps for illustration.

In Fig. 8, 6
5I = [17, 18] is associated with an LCA-interval c(6) = 4 = [1, 20], which is the

parent of 6
5I in the corresponding ~

xT shown in Fig. 7(b). In addition, l(4) is a link pointing to

1
5I and r(4) is a link pointing to 6

5I . They are respectively the left-most and the right-most

interval in L5 covered by 4. In the same way, we can check all the other intervals and links

shown in Fig. 8.

- Improving search() by using LCAs

By using LCA intervals and the corresponding links, search(X, t, I) should be changed to

search(X, x, t, I), which can be done more efficiently as follows.

1. Let X = I1, I2, …, In. Let x be the corresponding LCA interval sequence. Assume that 1 ≤ t

≤ n such that It I in Y.

2. Compare I and c(t) = i for some i, where c(t) represents the LCA-interval of It.

i) If i I, return <t, t>.

ii) If i = I, return <l(i), r(i)>.

[3, 3] [13, 13]

[5, 5]

[1, 1]

[17, 18]

[8, 8]

v10 v5

v1

v12 v18

v6

v9

v14

v2

v0

[1, 4]

[1, 20]

[5, 11]

Fig. 7: Illustration for Tx and ~
xT .

[5, 16]

(a) (b)

T5: ~
5T :

Fig. 8: Illustration for links associated with intervals in
~
xT .

[1, 1]

[1, 4]

14]

[3, 3] [17, 18]

[1, 20]

[5, 5]

[5, 11]

[8, 8] [13, 13]

[5, 16]

1

4

2

3

I5
1

I5
2

I5
6

I5
3

I5
4

I5
5

Y. Chen et al.

 14

iii) If i I, search the intervals to the right of i in x to find a largest f ≥ i such that f is

covered by I. Return <l(f), r(f)>.

3. In the first two cases of (2) (i.e., in 2-(i) and 2-(ii)), x will be changed to x[1 .. k], which

will be used for the next recursive execution of setIntersect(), k is the position just prior to

i in x. In the third case of (2), x will be changed to x[1 .. g], where g is the position just

prior to f in x.

Special attention should be paid to (2).

In the case of i I, It must be the unique interval, which can be covered by I. Therefore, <t,

t> is simply returned.

In the case of i = I, I can only cover all those intervals between l(i) and r(i) (including l(i),

r(i)) in X. So <l(i), r(i)> will be returned.

In the case of i I, we will try to find a highest interval (in ~
xT) which can be covered in I.

This can be found only among those intervals to the right of i (if any) since x is an interval

sequence in the post-order of ~
xT . (Recall that by using the original search(X, t, I) we may

need to search the whole X.)

In this way, the time complexity of Search(X, x, t, I) is dramatically decreased. First, in the

case of c(t) = i I or i = I, no search of X is performed at all. Secondly, in the case of t I,

only part of x (to the right of i) is explored. Using the traditional binary search, the time for

this task must be bounded by O(log|X|/|Y|) since we always have |x| |X|.

Example 2 To see how the LCAs can be used to skip over useless checks, we check several

single intervals against L5 in Fig. 8 to demonstrate the working process.

• Assume that I = [13, 15] is compared with 5
5I = [13, 13] in L5. We have [13, 13] [13, 15].

Since c(5) = 3 = [5, 16] I = [13, 15], we immediately know that 5
5I = [13, 13] is the only

intervals which can be covered by I = [13, 15] and simply return <5, 5>.

• Assume that I = [5, 11] is compared with 4
5I = [8, 8] in L5. We have [8, 8] [5, 11].

However, I = c(4) = 2 = [5, 11]. We will return <l(2), r(2)> = <3, 4>. No further search is

necessary.

• Assume that I = [5, 16] is compared with 4
5I = [8, 8] in L5. We have [8, 8] [5, 16]. But we

also have c(4) = 2 = [5, 11] [5, 16]. So we will search part of 5 to the right of [5, 11] (it is

a subsequence: [5, 16][1, 20]) to find a largest interval which can covered by I = [5, 16]. It

is 3 = [5, 16]. So we return <l(3), r(3)> = <3, 5>.

- Improving binarySearch() by using LCAs

We need further change binarySearch(X, I, b) to binarySearch(X, x, I, b), by which the

search can also be done more efficiently by using LCA-intervals.

1. Let X = I1, I2, …, In. Let x = 1, …, j be the corresponding LCA interval sequence. Let t =

n/2. Compare I and It.

2. If b = 0 and I It, return t.

3. If b = 1 and I It, return t.

4. If I ≺ It, compare I and c(t) = i for some 1 ≤ i ≤ |x|, where c(t) represents the LCA-

interval of It. If I i, we will explore X[1 .. l(i) – 1] in a next step; otherwise, X[l(i) .. t –

1].

5. If It ≺ I, also compare I and c(t) = i for some 1 ≤ i ≤ |x|. If I i, we will explore X[r(i) +

1 .. n] in a next step; otherwise, X[t + 1 .. r(i)].

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

In the above process, if b = 0 we will check whether I It (line 2) while if b = 1 we will check

whether I It (line 3). However, for the case I ≺ It (line 4) or It ≺ I (line 5), the LCA-intervals

can be used to control the binary search in the same manner no matter whether b = 0 or b =

1, due to the following two lemmas.

Lemma 5 Let I be an interval in an interval sequence L and its LCA-interval. Let I be

another interval such that I ≺ I and I . Then, for any interval I between l() and r()

(including l() and r()), we have neither I I , nor I I.

Proof. If I I , we would have I since I . This contradicts the fact that I . If I

I, we would have I or I. Since I , we would have I, which contradicts the fact

that I ≺ I.

Lemma 6 Let I be an interval in an interval sequence L and its LCA-interval. Let I be

another interval such that I ≺ I and I . Then, for any interval I between l() and r()

(including l() and r()), we have neither I I , nor I I.

Proof. The lemma can be proved in a way similar to Lemma 5.

In this way, the time for the binary search of an interval sequence X can be reduced to

O(log|x| + log), where is the largest number of intervals in X, which share the same

LCA. We always have |x| |X| and |X|. Especially, if |x| 2, |x| < |X| and <

|X|.

Finally, part 1 (line 4) in setIntersect() should be accordingly slightly changed to use LCA-

intervals to speed up the process as described below.

 if I ≺ It then { if I c(t) then X X[1 .. l(c(t)) - 1] else X X[1 .. t - 1]; Y Y; }

From the above discussion, we can clearly see that LCAs are quite useful for speeding up the

operation. However, all of them have to be first efficiently recognized. In the next Subsection,

we address this issue in great detail.

5.2 Construction of LCA-trees

For constructing Tx, the LCAs for all the nodes labeled with x (in T) have to be recognized. A

simple approach is to search T for each x, which obviously needs O(|S||T|) time, where S =

M

i iS
1=

. But we will describe an algorithm, whose time complexity is bounded by O(|T|).

For this purpose, we will search T bottom-up, and the nodes labeled with different x’s and

the corresponding LCAs will be inserted into different Tx’s. We will attach each node v with

two links when inserted into a Tx, denoted as parent(v) and left-sibling(v), respectively.

parent(v) is used to point to the parent of v in Tx while left-sibling(v) points to a node in Tx

inserted just before v, which is not a descendant of v in T (of course, not in Tx, either).

Concretely, the following operations will be conducted.

(i) Let v be the node currently inserted into a Tx.

(ii) If v is not the first node inserted into Tx, we do the following:

Let v' be the node inserted into Tx just before v. If v' is not a child (descendant) of v, create

a link from v to v', denoted as left-sibling(v) = v'. If v' is a child (descendant) of v, we will

first create a link from v' to v, denoted as parent(v') = v. Then, v must be an LAC of some

nodes labeled w. We will go along the left-sibling chain starting from v' until we meet a

node v'' which is not a child (descendant) of v in Tw. For each encountered node u except

v'', set parent(u) v. Finally, set left-sibling(v) v'.

Fig. 9 is a pictorial illustration of this process.

Y. Chen et al.

 16

In Fig. 9(a), we show the navigation along a left-sibling chain starting from v when we find

that v is a child (descendant) of v. This process stops whenever we meet v'', a node that is

not a child (descendant) of v. Fig. 9(b) shows that the left-sibling link of v is set to point to v'',

which is previously pointed to by the left-sibling link of v’s left-most child.

Combining the above process with a bottom-up search of T, we get an efficient algorithm

find-LCA(T) (see below) for finding all the LCAs.

ALGORITHM find-LCA(T)

begin

1. For each w S, Tw .

2. Let u (labeled with an integer x) be the first node encountered during the bottom-up

searching of T. Insert u in Tx.

3. Let v be the currently encountered node in T and labeled with an integer y. Let v' be the

node visited just before v. Do (4) or (5), depending on whether v is the parent of v' or not.

4. If v is not the parent of v', then insert v into Ty.

5. If v is a parent of v', then for each child z of v in T, let K(z) be the set of LCA-trees, into

which z is inserted. Then, for each z and for each T K(z), we will go along a left-sibling

chain starting from z in T until we meet a node v'' which is not a child (descendant) of v

in T. If the number of the nodes encountered on this navigation along the left-sibling

chain is larger than 1, insert v into T, set parent(u) v for each u on the chain, and set

left-sibling(v) v''; otherwise, v will not be inserted into T.

end

In the algorithm, special attention should be paid to (5), by which the parent/child

relationship of the nodes in each LCA-tree T is established. Denote by dT(v) the outdegree of

a node v in T. Since for each node v added to T as a parent of some other nodes a left-sibling

chain will be navigated, O(dT(v)) time is required for this task. Therefore, the time used for

establishing a single T is bounded by

Tv

T vd)(= O(|T|).

On the other hand, since for each internal node v in T we have dT(v) ≥ 2, |T| must be ≤

2|leaves(T)|, where leaves(T) represents all the leaf nodes of T and must be exactly all

those nodes labeled with a same integer in T. Thus, the time complexity for constructing all

the LCA-trees must be bounded by

 |)(|O T
Tall

 ≤

Tall

Tleaves |)(|2(O = O(2|T|) = O(|T|).

Example 3 Consider the trie T shown in Fig. 1(d). Applying the above algorithm to T, we

will generate a series of subtrees as illustrated in Fig. 10. Due to space limitation, only first 7

steps are traced.

In step 1, node v10 labeled 5 is met and inserted into T5. In step 2, v4 labeled 6 is encountered

and inserted into T6. But it is not inserted into T5 since v10 is its unique child. In step 3, we

meet v3 labeled 5. Since it is not an ancestor of v10, a link left-sibling(v3) = v10 is created. In

v is not a child

(descendant) of v. v

v v

v

left-sibling(v’)

(a) (b)

Fig. 9. Illustration for the construction of a Tx.

v v

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

step 4, v1 labeled 2 is met and inserted into T2. At the same time, it is also inserted into T5

since v3 is a child of v1 and when we navigate along the left-sibling chain starting from v3, we

will meet v10 which is a descendant of v1. In step 5, we meet v11 labeled with 5. Since it does

not have any child, it will be inserted into T5, and a link left-sibling(v11) = v1 will also be

created. In step 6, we will meet v12 labeled 4 and insert it into T4. In step 7, v17 labeled 4 is

encountered and inserted into T4 with a link left-sibling(v17) = v11 being created.

6. CORRECTNESS AND TIME COMPLEXITY

In this section, we prove the correctness of setIntersect(Lx, Ly, b) (|Lx| ≥ |Ly|) with LCAs,

and analyze its time complexity .

Lemma 7 Let u and v be two nodes in T such that Iu ≺ Iv. Let u and v be their respective

LCAs. Then, u and v must be in one of three relationships: u and v are identical, Iu ≺ Iv, or

u is an ancestor of v.

Proof. Since Iu ≺ Iv, it is possible that u and v are identical, or Iu ≺ Iv. If u and v are not

identical, nor Iu ≺ Iv holds, u must be an ancestor of v. Otherwise, Iv ≺ Iu (i.e., Iv[2] < Iu[1]).

This contradicts the fact that Iu Iu, which implies that Iu[1] < Iu[1] ≤ Iu[2] < Iv[2].

Corollary 1 Let u and v be two nodes labeled with the same integer x in T such that Iu ≺ Iv.

Then, if in x the LCA u of u appears after the LCA v of v, u must be an ancestor of v.

Based on the above Corollary, we can immediately get the correctness of the modified

Search(X, t, I). We recall that by the original Search(X, t, I), for I It, we will try to find a

smallest j ≤ t and a largest j ≥ t such that all the intervals in X between j and j (including

j, j) can be contained in I. By the modified Search(X, t, I), we use the LCA-intervals in x

and distinguish among three cases: c(t) I, c(t) = I, and c(t) I, where c(t) represents the

LCA of It in x. In the first case, we simply return <t, t> since It is the only interval in X

which can be contained in I. In the second case, we will return <l(c(t)), r(c(t))>. This is

obviously correct. In the third case, we will search part of x to the right of c(t) to find the last

v10

Fig. 10. Sample trace.

T5 T6 T2 T4

bottom-up
search of T

v10

5

v4

6 v4

v3

5

v10

v3 v10

v1

2
v3 v10

v1

v1

v11

5

v11

v4

v4

v3
v10

v1

v1 v4

v12

4
v12

v3
v10

v1

v1
v4

v11

v17

4 v4
v3

v10

v1

v1

v6

v17 v11

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Y. Chen et al.

 18

interval which is still containable in I and return <l(), r()>. The correctness of this process

is guaranteed by the Corollary. Finally, for each case, x is shortened for efficiency. For the

first two cases, the subsequence starting from c(t)) to the end of x is cut off. For the third

case, we take away all the intervals starting to the end from x. This will definitely not

impact the correctness since we proceed for X and x from right to left.

Lemma 8 The modified Search(X, x, t, I) (with I It) will find a smallest j ≤ t and a largest

j ≥ t such that all the intervals in X between j and j (including j, j) can be contained in I.

Proof. See the above analysis.

Proposition 2 Let X and Y be two interval sequences with |X| ≥ |Y|. setIntersect(X, Y, b)

with LCAs will return a correct answer.

Proof. To prove the correctness of setIntersect(X, Y, b) with LCAs , where |X| ≥ |Y|, we

simply check all the following four cases one by one.

Case 1: Jm ≺ It (line 4),

Case 2: It ≺ Jm (lines 5 – 9),

Case 3: Jm It (line 10), and

Case 4: Jm It (line 11).

In Case 1, the problem is reduced. Depending on whether Jm c(t), it is reduced to X = X[1 ..

t - 1] and Y = Y; or X = X[1 .. l(c(t)) - 1] and Y = Y. This is obviously correct.

In Case 2, we first try to find an interval in the part to the right of It in X, which can be

contained in Jm or contain Jm (depending on whether b = 1 or b = 0), by using the modified

binarySearch(L, , Jm, b). According to Lemma 4 and 5, it is correct. If such an interval can

be found, the problem is reduced to X = X and Y = Y[1 .. m-1]. Otherwise, depending on the

value of b, we call B1() or B0(). B1() is simply correct. B0() is correct in terms of Lemma 7.

In Case 3, we call B0(). In Case 4, we call B1(). According to the analysis of Case 2, we can

see that these two cases are also correctly handled. This completes the proof of the

proposition.

Lemma 9 Let m = |Y| and n = |X|. Assume that m ≤ n. The time complexity of

setIntersect(Lx, Ly, b) with LCAs is bounded by O((1 + 2l)m), where l =

m

n
log .

Proof. We prove the proposition by induction on h = m + n.

Basis. When h = 1, 2, the proposition trivially holds.

Hypothesis. Assume that the proposition holds when h ≤ k. We will prove that when h = k +

1, the proposition also holds.

Denote by (m, n) the number of comparisons made by the algorithm. Then, According to the

four cases checked in the algorithm, we have

1. Jm ≺ It: (m, n) = 1 + (m, n – 2l - 1);

2. It ≺ Jm: (m, n) = 1 + 2l + (m - 1, n), where 2l is due to the two searches: one in X and

one in x;

3. Jm It: (m, n) = 1 + l + (m - 1, n – 2l - 1), where l is due to the search in x; and

4. Jm It: (m, n) = 1 + (m - 1, n),

where t = n – 2l – 1.

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

(3) and (4) are obviously smaller than (1) or (2). So we need only to solve recursions (1) and

(2). To solve the recursion (1), we represent n as 2lm + with 0 ≤ < m. Thus, we have

 n – 2l – 1 = 2lm + – 2l – 1.

If – 2l – 1 < 0, n – 2l – 1 = 2(l-1)m + , where = m + – 2l – 1 < m. By induction, (m, n) =

1 + (m, n – 2l - 1) = (1 + 2(l – 1))m = (- 1 + 2l)m ≤ (1 + 2l)m. In the case of – 2l – 1 ≥ 0, we

must have – 2l – 1 < < m. By induction, the proposition still holds.

For recursion (2), we have

 1 + 2l + (m - 1, n) = 1 + 2l + (1 + 2l)(m – 1) = (1 + 2l)m,

which shows that the proposition also holds in this case.

Finally, we notice that by using the modified binarySearch() (see 4.1), the running time to

search X[t + 1 .. |X|] is actually bounded by O(log|x[c(t) .. |x|]| + log) (instead of

O(

m

n
log)), where we use c(t) to represent the position of It’s LCA-interval in x, and is the

largest number of intervals in X[t + 1 .. |Lx|], which share the same LCA; and in general we

have |x[c(t) .. |x|]| and both smaller than |X[t + 1 .. |X|]| =
m

n
. So we have the

following proposition on the time complexity of our algorithm.

Proposition 3 Let X and Y be two interval sequences with |Y|= m ≤ |X| = n. The time

complexity of the modified setIntersect(X, Y, b) with LCAs is bounded by O(mlog), where <

m

n
.

Proof. See Lemma 9 and the above analysis.

Finally, we consider a combined sequence L formed by inserting all the intervals of Y into X

in such a way that for any two intervals I and I in L if I is to the left of I or I I, I appears

before I in L. Then, there are

 +

n

nm
 possible placements of the intervals of Y in the

combined sequence; it follows that

 +

n

nm
lg comparisons are necessary to distinguish these

possible orderings. Since each of such combined sequences corresponds to an intersection of Y

and X, we can take

 +

n

nm
lg =

m

n
m lg as a lower bound of the problem. In this sense, our

algorithm reaches the optimality.

7. EXPERIMENTS

In order to show that our method has not only the best theoretical time complexity, but also

works quite well in practice, we have made a bunch of tests.

In the experiments, we have tested seven methods:

• Hwang-Lin’s [57] (HL for short),

• Baeza-Yates’s [5] (BY for short),

• Barbay-Ortiz-Lu’s [7] (BOL for short),

• Hashing-based (RanGroupScan in [26]; Hb for short),

• Skip-list-based [43] (SkipL for short),

• setIntersect (discussed in the paper; sI for short),

• setIntersect with LCAs (discussed in the paper; sIL for short).

All our experiments are performed on a 64-bit Windows operating system. The processor is

Intel Core(TM) i5-3210M CPU @ 2.50GHZ with 8GB RAM. All index techniques are

Y. Chen et al.

 20

implemented by C++ and compiled by Microsoft Visual Studio 2010. We use the function

QueryPerformanceCounter() from the Kernel32.lib library to measure the CPU time, which

provides a high-precision timing (microsecond precision) on the Windows Platform. For all

the tests the indexes are put entirely in memory.

• Data Sets

To evaluate the algorithms, we use both synthetic and real data.

For the experiments with synthetic data, we first create a vocabulary containing 3 million

words (short strings each containing less than 20 characters). Then, we randomly choose

words to form a document. The length of each document is between 500 and 1000 words.

For the experiments with real data, we use the TREC GOV2 corpus. The characteristics of

this collection are shown in Table 2.

 Table 2: Characteristics of Wikipedia Data

 TREC GOV2

Documents (in HTML or PDF) 25,197,000

Size (gigabytes) 360

Word occurrences (without markup) 38,515,000

The corpus is associated with a query log containing 100,000 queries. For this test, we

randomly choose 6000 queries which contain more than one key word. Table 3 shows the

distribution of the numbers of key words in queries.

Table 3: Distribution of key word numbers in queries

#words 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

#queries 1549 1362 1053 873 546 365 89 63 51 24 5 11 2 4 1 1 1

7.1 Test on synthetic data sets

• Two word queries with varying list sizes

First, we test two-word queries with varying list sizes. We use the synthetic data. The results

are shown in Fig. 11, where the time is measured in milliseconds. In Fig. 11(a), we

demonstrate the results over short lists ranging from 4k/4k (both lists taking parting in the

operation are of length 4k integers) to 4k/1M (one of the lists contains 4k integers while the

other 1 million integers). In Fig. 11(b), we show the results over long lists ranging from

40k/2M to 40k/10M.

0

0.2

0.4

0.6

0.8

HL BOL BY

Hb SkipL SI

sIL

4k/4k 4k/8k 4k/16k 4k/32k 4k/64k 4k/128k 4k/256k 4k/512k 4k/1M

Fig. 11: Two word queries over synthetic data.

(a) (b)

40k/2M 40k/3M 40k/4M 40k/5M 40k/6M 40k/7M 40k/8M 40k/9M 40k/10M

0

5

10

15

20

25

30

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

From these two figures, we can see that our methods uniformly outperform the other

strategies. Even the binary search of intervals without LCAs works better than the others.

Especially, as the length of inverted lists increases, the running time of our methods

decreases. For short inverted lists (Fig. 11(a)), no significant difference among hash-based,

SkipList, and all the adaptive methods can be observed. However, for large inverted lists (Fig.

11(b)), we can clearly see that SkipList has the worst performance. We can also see that

Hwang and Lin’s is slightly worse than Baeza-Yates’s, Barbay-Ortiz-Lu’s, and hash-based

methods.

In Fig. 12, we show the ratios of the interval sequence sizes over their corresponding

inverted lists, which is obtained by dividing all the inverted lists into ten groups according to

theirs sizes and calculating the average size of each group and the average size of the

corresponding interval sequences.

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10

inverted list sizes (million)

in
te

rv
al

 s
eq

. s
iz

es

This figure demonstrates that as the size of inverted lists increases the size of the

corresponding interval sequences become shorter. Together with the binary search and the

use of LACs, this property makes our methods superior.

• Tests on queries with varying number of key words

In this experiment, we vary the number k of words in a query with k = 2, 3, …, 7. For each

query, the words are chosen randomly, but with a control being imposed so that the size of

the inverted lists associated with each word is larger than 100,000 since for short lists all the

algorithms work fast (as shown in Fig. 11(a), they all run within one millisecond) and no

significant difference can be observed.

In Fig. 13, we report the test results on the queries with 2, 3, and 4 key words while in Fig.

14 on the queries with 5, 6, and 7 key words.

0

20

40

60

80

100

HL BY BOL Hb SkipL sI sIL

ti
m

e
 (

m
s.

)

2 3 4

Number of words k:

Fig. 12: Ratio of intervals sequences over inverted lists.

Fig. 13: Test results on varying number of words in a query.

Y. Chen et al.

 22

0

25

50

75

100

125

150

175

200

HL BY BOL Hb SkipL sI sIL

ti
m

e
(m

s.
)

5 6 7

From these two figures, we can see that the SkipList, and the Hash-based both perform

poorly. The reason for this it is due to the auxiliary data (such as new hash values) or new

data structures (such as new skip lists) that have to be established for the intermediate

results. In the opposite, for all the remaining algorithms, no such a task is required. Even

though for our algorithm with LCAs extra data structures are used, they are automatically

changed for the intermediate results and no extra effort is required to reproduce them.

So both our algorithms work much better than the SkipList and the Hash-based when more

words are involved in a query. They are also better than all the other three methods since

much shorter interval sequences are checked.

7.2 Tests on real data sets

In this experiment, we use TREC GOV2 corpus. The most important characteristics of this

text corpus are given in Table 2. Over this database, the same tests are performed as over

the synthetic database. However, for the tests on the two-word queries, we have evaluated

queries from the query log, categorized into four groups with each containing 25 queries. In

the first three groups, both the words are with high appearance frequency, middle

appearance frequency, and low appearance frequency, respectively; and the ratio |w|/|w |

for all the queries is set to be between 1.0 and 1.22, where w represents the inverted list

associated with w. In the fourth group, the appearance frequencies of the two words in a

query is greatly different with the ratio |w|/|w | ≥ 8.

For the queries with varying number of words, denoted by wi the ith word in a query and i

the inverted list associated with wi. In all the queries, the words are ordered such that |i| ≤

|i+1|. For all the queries tested, the ratio |i+1|/|i| is between 1.0 and 2.0. But for our

methods, the words are reordered according to the length of interval sequences.

In Fig. 15, we show the average time of each strategy on two-word queries. In Fig. 15(a) we

show the running time of queries over short lists while in Fig. 15(b) we show the average

time of all the tested queries.

Number of words k:

Fig. 14: Test results on varying number of words in a query.

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

In Fig. 16 and 17, we show the test results on the queries with 2, 3, 4 words, and the queries

with 5, 6, 7 words, respectively.

0

20

40

60

80

100

120

HL BY BOL Hb SkipL sI sIL

ti
m

e
(m

s.
)

2 3 4

0

25

50

75

100

125

150

175

200

HL BY BOL Hb SkipL sI sIL

ti
m

e
(m

s.
)

5 6 7

From these figures, we can see that for the two-word queries Hwang and Lin’s is slightly

worse than Baeza-Yates’s, but Barbay-Ortiz-Lu’s has a comparable performance. They all are

much better than the Hash-based and the SkipLst. Again, for the queries with more than two

words, the performance of the Hash-based degrades due to the recalculation of hash values

for the intermediate results. For a similar reason, the SkipList also works poorly.

Our algorithms still work best, consistent with our theoretical time analysis.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

HL BOL BY Hb

SkipL SI sIL

4k/4k 4k/8k 4k/16k 4k/32k 4k/64k 4k/128k 4k/256k 4k/512k

 4k/1M

0

10

20

30

40

50

60

HL BY BOL Hb SkipL SI SIL

Fig. 15: Two word queries over real data.

(a) (b)

Fig. 16: Test results on queries with 2, 3, 4 words.

Fig. 17: Test results on queries with 5, 6, 7 words.

Number of words k:

Number of words k:

Y. Chen et al.

 24

7.3 Space requirements

The high performance of our methods is at cost of extra space for storing interval sequence.

However, in comparison with some other methods with auxiliary data structure, like the

SkipList, and the Hash-based, our method does not impose higher space requirements than

them. Especially, by using different integer encoding schemes, such as -coding, -coding (p.

116 in [60]), or Golomb-coding [29] for integers (gaps between consecutive document IDs) in

inverted lists and interval sequences, the problem can be further mitigated to some extent.

On the synthetic data sets, we have tested several algorithms with the Golomb-coding being

used. The results are shown in Fig. 18 and 19. In Fig. 18, we show the space requirements.

From this, we can see that our method with no LCAs uses a little bit less space than the

SkipList, more space than the Hash-based and Baeza-Yates’s. Particularly, Baeza-Yates’s

uses only simple (compressed) inverted list, and therefore has the lowest space requirement.

Our method with LCAs requires most space. Its storage requirement is between 1.1 and 1.5

times of the size of the compressed inverted lists and between 1.05 and 1.21 times of the size

of the Hash-based algorithm.

0

1

2

3

4

5

0 2 4 6 8

sizes (million)

sp
ac

e
(m

il
li

on
 b

yt
es

)

BY Hb SkipL sI sIL

In Fig. 19, we show the running time. Comparing this figure and Fig. 13, we can clearly see

that more time is required for every algorithm to evaluate the same kind of queries.

0

20

40

60

80

0 2 4 6 8 10

sizes (million)

ti
m

e
(m

s.
)

BY Hb SkipL sI sIL

7.4 Indexes on disk

In all the above tests, all the indexes are maintained in main memory. However, indexes are

normally disk-resident. When a query arrives, the corresponding inverted lists or the

corresponding interval sequences will be taken from hard disk into main memory. This can be

done quickly by using a hash table. In order to check the impact of space usage on query time, we

Fig. 18: Space requirements.

Fig. 19: Running time.

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

have done two more experiments. One is with small buffer sizes, and the other is with large ones.

Altogether four methods are tested in such an environment: SkipList, Baeza-Yates’s, interval

sequence with and without LCAs. In the tests, we have run 500 two-word queries (from the

query log) with each word associated with an inverted list of length larger than 100,000. The

average running times are shown in Fig. 20(a) and (b).

From Fig. 20(a), we can see that the small buffer sizes do not impact much our methods. It is

because for a long inverted list the corresponding interval sequence tends short. In the

opposite, the impact of small buffer sizes for Baeza-Yates’s is relatively big due to the way it

works. By this method, at each step a median element of the shorter list will be figured out to

do a binary search in the longer list. In a small buffer, however, only part of the lists is

stored and each time only a locally central element (i.e., the median of the part of the shorter

list, which is currently stored in the buffer) can be used, which will substantially degrade the

efficiency of this method. Comparing Fig. 20(a) and Fig. 11(b), we can see that, with large

buffers, no significant difference between in-memory and on-disk for all the four strategies

can be observed.

8. CONCLUSION

In this paper, a new off-line algorithm for doing set intersections is discussed. Based on the

transformation of inverted lists to interval sequences by establishing a trie T over the

sequences of set identifiers, a binary search over interval sequences is designed with their

least common ancestors being used to skip over useless interval containment checking. In

this way, an optimal time complexity is achieved. Let X and Y be two interval sequences

corresponding to two inverted lists created for two words x and y, respectively. Our algorithm

needs only O(|Y|log(|x|/|Y|)) time, where x is a sequence of nodes with each being the

least common ancestors of some nodes in T, whose intervals make up a segment in X. Since

in many cases an interval sequence is much shorter than the corresponding inverted list, the

time complexity is theoretically better than any existing on-line method. Extensive

Experiments have been conducted, which shows that our method also has optimal

performance in practice.

REFERENCES

[1] V.N. Anh and A. Moffat: Inverted index compression using word-aligned binary codes, Kluwer Int.

Journal of Information Retrieval 8, 1, pp. 151-166, 2005.

0

20

40

60

80

BY SkipL SI sIL

100k 200k 300k 400k 500k

buffer size

Fig. 20: Two word queries over disk-residential indexes.

(a) (b)

0

10

20

30

40

50

BY SkipL SI sIL

2M 4M 4M 8M 10M

buffer size

Y. Chen et al.

 26

[2] N. Ao, F. Zhang, D. Stones, et al.: Efficient Parallel Lists Intersection and Index Compression

Algorithms using Graphics Processing Units, PVLDB 2011, Seattle, USA.

[3] T. Apaydin, G. Canahuate, H. Ferhatosmanoglu, A. Saman Tosun: Approximate Encoding for

Direct Access and Query Processing over Compressed Bitmaps. VLDB 2006: 846-857.

[4] D. Arroyuelo, S. González, M. Oyarzún and V. Sepulveda: Document identifier reassignment and run-

length-compressed inverted indexes for improved search performance. SIGIR 2013: 173-182.

[5] R. A. Baeza-Yates: A Fast Set Intersection Algorithm for Sorted Sequences. CPM 2004: 400-408.

[6] R.A. Baeza-Yates, and A. Salinger: Experimental analysis of a fast intersection algorithm for

sorted sequences, in Proc. 12th Intl. Conf. on String Processing and Information, Springer, Berlin,

13-24, 2005
[7] J. Barbay, A. López-Ortiz, and T. Lu: Faster adaptive set intersections for text searching. In Proc.

of the 5th International Workshop on Experimental Algorithms (WEA), volume 4007 of Lecture

Notes in Computer Science (LNCS), pages 146–157. Springer Berlin / Heidelberg, 2006. 7.

[8] J. Barbay, C. Kenyon: Alternation and redundancy analysis of the intersection problem. ACM

Transactions on Algorithms 4(1) (2008).

[9] J. Barbay, A. López-Ortiz, T. Lu, A. Salinger: An experimental investigation of set intersection

algorithms for text searching, ACM Journal of Experimental Algorithmics 14: (2009).

[10] T.A. Bjørklund, N. Grimsmo, J. Gehrke, Ø. Torbjørnsen: Inverted indexes vs. bitmap indexes in

decision support systems. CIKM 2009: 1509-1512.

[11] P. Bille, A. Pagh, and R. Pagh: Fast-Evaluation of Union-Intersection Expression. In ISAAC, pp.

739-750, 2007.

[12] G.E. Blelloch and M. Reid-Miller: Fast Set Operations using Treaps. In ACM SPAA, pp. 16-26,

1998.

[13] B. Croft, D. Metzler, T. Strohman: Search Engines: Information Retrieval in Practice – Feb 6 2009,

Amazon.com.

[14] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Hercovici, Y.S. Maarek, and A. Soffer: Static index

pruning for information retrieval systems, in Proc. 24th Annual Intl. Conf. on Research and

Development in formation Retrieval, New Orlean, LA, 43-50, 2001.

[15] Y. Chen, Y.B. Chen: On the Signature Tree Construction and Analysis, IEEE TKDE, Sept. 2006,

Vol.18, No. 9, pp 1207 – 1224.

[16] Y. Chen: Building Signature Trees into OODBs, Journal of Information Science and Engineering,

20, 275-304 (2004).

[17] Y. Chen and Y.B. Chen: An Efficient Algorithm for Answering Graph Reachability Queries, in Proc.

24th Int. Conf. on Data Engineering (ICDE 2008), IEEE, April 2008, pp. 892-901.

[18] Y. Chen and Y.B. Chen: Decomposing DAGs into spanning trees: A new way to compress transitive

closures, in Proc. 27th Int. Conf. on Data Engineering (ICDE 2011), IEEE, April 2011, pp. 1007-

1018.

[19] Y. Chen and W. Shen, Decomposition of Inverted Lists and Word Labeling: A New Index Structure

for Text Search, in Proc. 2014 Int. Conf. on Advances in Big Data Analytics, IEEE, July 21-24, 2014,

Las Vegas, Nevada, USA.

[20] Y. Chen and W. Shen, On the Intersection of Inverted Lists, in Proc. the 11th Int. Conf. on

Foundations of Computer Science, IEEE, July 26-30, 2015, Las Vegas, Nevada, USA.

[21] H. Cohen and E. Porat: Fast set intersection and two-patterns matching. Theoretical Computer Science

411(40-42): 3795-3800 (2010).

[22] C.L.A. Clarke and G.V. Cormack: Dynamic inverted indexs for a distributed full-text retrieval

systems, Tech. rep. MT-95-01, Dept. Computer Science, University of Waterloo, Waterloo, Canada,

1995.

[23] K.D. Demaine, A. LÓpez-Ortiz, and J.I. Munro: Adaptive set intersections, unions, and differences,

in Proc. 11th ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, 743-752, 2000.

[24] K.D. Demaine, T.R. Jones, and M. Patrascu: Interpolation search for non-independent data, in

Proc. 15th , ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, 529-530, 2004.

[25] U. Deppisch: S-Tree: A Dynamic Balanced Signature Index for Office Retrieval, Proc. ACM SIGIR

conf, Sep 1986, pp 77 – 87.

[26] B. Ding, A.C. König, Fast set intersection in memory, Proc. of the VLDB Endowment, v.4 n.4,

p.255-266, January 2011.

[27] C. Faloutsos: Access Methods for Text, ACM Computing Surveys, vol. 17, no. 1, pp. 49-74, 1985.

[28] C. Faloutsos and R. Chan: Fast Text Access Methods for Optical and Large Magnetic Disks:

Designs and Performance Comparison, Proc. 14th Int’l Conf. Very Large Data Bases, pp. 280-293,

Aug. 1988.

Setintersection on Sets

Theoretical Computer Science, Vol. xx, No. x, Article xx, Publication date: Month 2016

[29] S.W. Golomb: Run-length encodings, IEEE Trans. Inform. Theory, IT-12, 3 (July), 399-401, 1966.

[30] D. Harman, W. McCoy, R. Toense, and G. Candela: Prototyping a distributed information retrieval

system using statistical ranking, Inform. Proc. Manag. 27, 5, 449-460, 1991.

[31] Y. Ishikawa, H. Kitagawa and N. Ohbo: Evaluation of signature files as set access facilities in

OODBs, in Proc. of ACM SIGMOD Int. Conf. on Management of Data, Washington D.C., May 1993,

pp. 247-256.

[32] S. Heman. Super-scalar database compression between RAM and CPU-cache. MS Thesis, Centrum

voor Wiskunde en Informatica, Amsterdam, Netherlands, July 2005.

[33] H. Inoue, M. Ohara, and K. Taura, Faster Set Intersection with SIMD instructions by Reducing

Branch Mispredictions, in Proc. VLDB, pp. 293 – 304, 2015.

[34] E.L. Ivie: Search procedure based on measures of relatedness between documents, Ph.D. thesis, MIT,

Cambridge, MA, 1966.

[35] H. Kitagawa and Y. Ishikawa: False Drop Analysis of Set Retrieval with Signature Files, IEICE

TRANS. INF. & SYST, VOL. E80-D, NO. 6 JUNE 1997.

[36] D.E. Knuth, The Art of Computer Programming, Vol. 3, Massachusetts, Addison-Wesley Publish

Com., 1975.

[37] D. Lemire, L. Boytsov and N. Kurz. SIMD Compression and the Intersection of Sorted

Integers. arXiv:1401.6399, 2014.
[38] R. Lempel and S. Moran, Predictive caching and prefetching of query results in search engines, in

Proc. the World Wide Web Conf., Budapest, Hungary, ACM, 19-28, 2003.

[39] J. Lovins: Development of a Stemming Algorithm, Mechanical Translation and Computational

Linguistics, 11, 22—31, 1968.

[40] Lucene in Action, Second Edition: Covers Apache Lucene 3.0 by Michael McCandless, E. Hatcher

and O. Gospodnetic (July 28, 2010).

[41] A. Moffat and J. Zobel: Parameterized compression for sparse bitmaps, in Proc. 5th Annual Intl.

ACM SIGIR Conf. on Research and Development in Information Retrieval, Copenhagen, Denmark,

ACM, 274-285, 1992.

[42] A. Moffat and J. Zobel: What does it means to “measures performance”? in Proc. 5th Intl. Conf. on

Web Information Systems, Brisbane, Australia, Lecture Notes in Computer Science, vol. 3306,

Springer, 1-12, 2004.

[43] W. Pugh. A skip list cookbook, technical report, UMIACS-TR-89-72, University of Maryland, 1990.

[44] P. Sanders and F. Transier. Intersection in Integer Inverted Indices. In ALENEX, pp. 71-83, 2007

[45] P.C. Saraiva et al.: Rank-preserving two-level caching for scalable search engines, in Proc. 24th

Annual Intl. Conf. on Research and Development in Information Retrieval, New Orlean, LA, 51-58,

2001.

[46] B. Schlegel, T. Willhalm, and W. Lehner: Fast Sorted-Set Intersection using SIMD Instructions. In

Proc. of the Second International Workshop on Accelerating Data Management Systems Using

Modern Processor and Storage Architectures, 2011.

[47] S.S. Skiena: The Algorithm Design manual, TELOS, State University of New York, Stony Brook,

NY, 1997.

[48] S. Tatikonda, F. Junqueira, B.B. Cambazoglu, V. Plachouras: On efficient posting list intersection

with multicore processors, SIGIR 2009: 738-739.

[49] Transier and P. Sanders: Compressed inverted indexes for in-memory search engines, in ALENEX,

pp. 3-12, 2008.

[50] M. Terrovitis, S. Passas, P. Vassiliadis, and T.K. Sellis: A combination of trie-trees and inverted

files for the indexing of set-valued attributes, in Proc. CIKM, 2006, pp.728-737.

[51] E. Tousidou, A. Nanopoulos, and Y. Manolopoulos: Improved Methods for Signature-Tree

Construction, Computer J., vol. 43, no. 4, pp. 301-314, 2000.

[52] E. Tousidou, P. Bozanis, Y. Manolopoulos: Signature-based structures for objects with set-values

attributes, Infromation Systems, 27(2):93-121, 2002.

[53] D. Tsirogiannis, S. Guha, N. Koudas: Improving the Performance of List Intersection, PVLDB

2009.

[54] P. Willett: The Porter stemming algorithm: then and now. Program: electronic library and

information systems. 40(3). pp. 219 – 233, 2006.

[55] H.E. Williams, J. Yiannis, and J. Zobel: Compression of inverted indexes for fast query evaluation,

in Proc. 25th Conf. on Research and development in information retrieval, 2002, 222-229.

[56] J. Zobel and A. Moffat: Inverted Files for Text Search Engines, ACM Computing Surveys, 38(2):1-

56, July 2006.

Y. Chen et al.

 28

[57] J. Zobel, A. Moffat, and K. Ramamohanarao: Inverted Files Versus Signature Files for Text

Indexing, in ACM Trans. Database Syst., 1998, pp.453-490.

[58] A.Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien: Efficient query evaluation using a

two-level retrieval process, in Proc. CIKM, pp. 426-434, 2003.

[59] F.K. Hwang and S. Lin, A Simple Algorithm for Merging Two Distinct Linear Ordered Sets, SIAM

J. Comput., Vol. 1. No. 1, March 1972.

[60] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes – Compressing Indexing Document

and Images, Morgan Kaufman Publisher, 1999.

[61] H. Yan, S. Ding and T. Suel: Inverted index compression and query processing with optimized

document ordering. WWW 2009: 401-410.

[62] J. Zhang, X. Long, and T. Suel: Performance of compressed inverted list caching in search engines.

In Proc. of the 17th Int. World Wide Web Conf., April 2008.

