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Abstract—Grahne et al. have presented a graph algorithm for evaluating a subset of recursive queries [14], [15]. This method consists

of two phases. In the first phase, the method transforms a linear binary-chain program into a set of equations over expressions

containing predicate symbols. In the second phase, a graph is constructed from the equations and the answers are produced by

traversing the relevant paths. Here, we describe a new algorithm which requires less time than Grahne’s. The key idea of the

improvement is to reduce the search space that will be traversed when a query is invoked. Furthermore, we speed up the evaluation of

cyclic data by generating most answers directly in terms of the answers already found and the associated “path information” instead of

traversing the corresponding paths as usual. In this way, our algorithm achieves a linear time complexity for both acyclic and cyclic data.

Index Terms—Deductive database, binary-chain programs, automaton, graph searching, feedback node.
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1 INTRODUCTION

IN recent years there has been considerable effort directed
toward the integration of many aspects of the artificial

intelligence field with the database field. An outcome of this
effort is the notion of knowledge-based systems, which can
be described simply as an advanced database system
augmented with a mechanism for rule processing. An
important matter of research in such systems is the efficient
evaluation of recursive queries. Various strategies for
processing recursive queries have been proposed (see [6],
[7], [8], [9], [10], [11], [12], [19], [30]). These strategies
include evaluation methods such as naive evaluation [6],
[27], seminaive evaluation [2], query/subquery [31], RQA/
FQI [25], Henschen-Naqvi [20], and the methods used in
compiling recursive queries [16], [17], [18], [19], [20].
Another class of strategies, called query optimization
strategies, are used to transform queries into a form that
is more amenable to the existing optimization techniques
developed for relational databases. Several examples of this
class of approaches are magic sets [3], counting [3], and
their generalized versions [5], [11]. In this paper, we discuss
a graph method which has been presented for handling a
subset of recursive queries, the so-called binary-chain
programs, by Grahne et al. [14], [15]. (We shall subsequently
refer to this method as Grahne’s algorithm.) Binary relations
form an important subcase of n-ary relations. This is not
only because binary queries are frequently encountered in
practical application, but also because any set of relations
can be represented as a set of binary relations [34].
Moreover, it is often the case that the Datalog programs
computing many interesting examples of recursive queries
fall into the class of “binary-chain” programs [33].

The following is an interesting program defining the
recursion scsg (same-country same generation relatives).

scsgðx; yÞ parentðx; x1Þ; scsgðx1; y1Þ; same countryðx1; y1Þ;
parentðy; y1Þ:

scsgðx; yÞ  siblingðx; yÞ:
same countryðx; yÞ  birth countryðx; vÞ; birth countryðy; vÞ:

In addition, compared to the SLD resolution [22] and its
different variants [21], [25], [31], the graph method by itself

is advantageous due to the following two benefits:

. Repeated firing of rules with the same head
predicate can be avoided (see Section 3.1);

. Instead of maintaining a large “goal node” in each
resolution step as done in SLD strategy, a simple
structure is used to record nodes encountered
during a graph traversal (see Section 3.2).

Grahne et al.’s method works in a two-phase approach.
In the first phase, a program is transformed into a set of
equations of the form: r ¼ er, where r is a derived predicate
symbol and er is an expression whose arguments are
predicate symbols and whose operators are chosen from
among [ (union), � (composition), and * (reflexive transitive
closure). For example, the above program can be trans-
formed into the following equations:

scsg ¼ sibling [ parent � scsg � same country � parent
same country ¼ birth country � birth country:

In the second phase, a directed graph GðrÞ is constructed
from each equation of the form: r ¼ er such that rðx; yÞ is
true if and only if GðrÞ contains a path from a node
representing x to a node representing y. Here, a pair (a, b)
satisfying a predicate pðx; yÞ (appearing in the equation) is
represented as an edge labeled with p in the graph. This
result means that evaluation problems for the predicate r
reduces to graph traversal problems for the graph GðrÞ or
the hierarchy of GðrÞs (see below). We show that this
method proceeds redundantly in certain cases and can be
improved by elaborating its second phase. First, we try to
reduce the search space that will be traversed by Grahne’s
algorithm. We do this by recognizing all similar portions of
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a graph and manage to produce all the relevant answers by
constructing only one of them. The other refinement is
concerned with the treatment of cyclic data. In this case, a
cycle is stored when it is encountered at the first time. We
then suspend the traversal along the corresponding path to
avoid duplicate work. However, as many intermediate
answers may not be used to produce new answers along a
cyclic path, suspending the traversal along the cyclic path
may affect the completeness. Therefore, we develop a
process to evaluate the remaining answers by iterating on
each cyclic path with a different initial value each time. In
this iteration process, we further optimize the evaluation by
generating most answers for cyclic data directly from the
answers already found and the associated path information
instead of traversing the relevant subgraphs as usual. In this
way, we can decrease the time complexity by an order of
magnitude or more. This is because traversing paths
requires access to the external storage or search of large
relations but the “generating” operations always happen in
the main memory and require only access to small data sets
(i.e., the answers already found). As a consequence, our
algorithm requires only linear time for both cyclic and
acyclic data. That is, if the input graphs contains n nodes
and e edges, our algorithm needs only OðeÞ time, while the
existing methods need OðneÞ time or more.

The paper has the following main contributions:

1. Tarjan’s algorithm for identifying strongly connected
components (SCC) of a directed graph is modified
and embedded into a graph traversal algorithm for
evaluating binary-chain programs so that subsump-
tion checking can be done in linear time. Using
Tarjan’s algorithm, we can recognize two kinds of
subsumed nodes during a graph traversal. One kind
of subsumed nodes (called RINs) implies a similar
part of the graph, which needs not be traversed and
the corresponding answers can be generated directly
from the answers already found and the relevant path
information. Another kind of subsumed nodes (called
RCNs) shows an infinite expansion. Therefore,
special treatment should be done to avoid infinity
but without damaging the completeness. In Grahne’s
algorithm, there is no subsumption checking at all.

2. A new technique for handling cyclic data is devel-
oped to minimize time complexity. As mentioned
above, an RIN implies an SCC identified during a
graph traversal. Therefore, whenever an RIN is
encountered, the evaluation should be suspended
to avoid nontermination. However, the answers
which may be produced if the SCC is traversed will
be lost. Thus, they should be found in some way
else. This can be done by executing iterations over
the SCC until the fix point is reached. This process is
also elaborated. We evaluate the answers only along
one cycle of the SCC. The answers for the other
cycles will be generated in terms of the answers
already found. Note that, by “answer generation,”
we mean that we produce them not by graph
traversal but by “analyzing” the intermediate an-
swers and path information available, which is in
general much more efficient than normal answer
evaluation.

The paper is organized as follows: In Secion 2, we
introduce the necessary terminology from [14], [15]. In
Section 3, we briefly describe the main idea of Grahne’s
algorithm. In Section 4, we give our refined graph traversal
algorithm for evaluating linear binary-chain programs. In
Section 5, we compare the computational complexity of our
algorithm with the existing strategies. Section 6 is a short
conclusion.

2 BASIC CONCEPTS

A Datalog program consists of a finite set of rules of the form

q p1; p2; . . . ; pm; m � 0:

q is called the head and the conjunction p1; p2; . . . ; pm is
called the body of the rule. q is a predicate while each pi may
be either a predicate or a negated predicate. (If p represents
a predicate, then :p represents a negated one.) When m ¼ 0,
the rule is of the form

q 

and is known as a unit clause.
A predicate pðt1; t2; . . . ; tnÞ, n � 0, is a ground predicate

when all of its terms t1; t2; . . . ; tn, are constants. A ground
rule is one defined in which each predicate in the rule is
ground. A fact is a ground unit clause. The definition of a
predicate p is the set of rules which have p as the head
predicate. A base predicate is defined solely by facts. The set
of facts in the database is also known as the extensional
database. A rule that is not a fact is known as a derivation
rule. A derived predicate is a predicate which is defined solely
by derivation rules. The set of derivation rules is also
known as the intensional database. As usual, we assume
that the base predicate and the derived predicates form two
disjoint sets, that is, no base predicate appears in the head of
a rule with a nonempty body.

A predicate (or relation) with two argument positions is
called a binary predicate (or binary relation). For a binary
predicate p, the set of values assumed by the first argument
of p is called the domain of p, and the set of values assumed
by the second argument of p is called the range of p.

A rule of the form

qðx1; xmþ1Þ  p1ðx1; x2Þ; p2ðx2; x3Þ; . . . ; pmðxm; xmþ1Þ;

where m � 0 and x1; . . . ; xm þ 1 are all distinct variables, is
called a binary-chain rule. A Datalog program in which the
predicates are all binary predicates and the rules in the
intensional database are all binary-chain rules is called a
binary-chain program.

For a program, we may construct a dependency graph
representing a refer to relationship between the predicates.
This is a directed graph where there is a node for each
predicate and an arc from node q to node p iff the predicate q
occurs in the body of a rule whose head predicate is p. A
predicate p depends on a predicate q if there is a path of
length greater than or equal to one from q to p. We denote
the relation p depends on q by p( q, where depends on is the
transitive closure of the refer to relation. A predicate p is
recursive if p( p. Two predicates p and q are mutually
recursive if p( q and q( p.
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A rule in which the head predicate is mutually recursive

to one of the body predicates is called a recursive rule. If the

body of a recursive rule contains at most one literal whose

predicate is mutually recursive to the head predicate, the

rule is called a linearly recursive rule. A program that

contains at least one such rule is called a linearly recursive

program.
A binary-chain rule

qðx1; xmþ1Þ  p1ðx1; x2Þ; p2ðx2; x3Þ; . . . ; pmðxm; xmþ1Þ

is a right-linear rule if none of the predicates p1; . . . ; pmÿ1 is

mutually recursive to p, and a left-linear rule if none of the

predicates p2; . . . ; pm is mutually recursive to p. A derived

predicate is a regular predicate if its definition is right-linear

or left-linear. A binary-chain program is a regular program if

all its derived predicates are regular.
In addition, the relations for the predicates appearing left

to the recursive predicates is called the left-hand side relations

and those right to the recursive predicate is called the right-

hand side relations.

3 GRAHNE’s METHOD

In this section, we briefly describe Grahne’s algorithm,

which is necessary for introducing our refined method.

3.1 Program Transformation

Grahne’s method works in a two-phase manner. In the first

phase of Grahne’s method, any linear binary-chain program

is transformed into a system of equations of the form

r ¼ Er;

where r is a derived predicate symbol and Er is an

expression whose arguments are predicate symbols and

whose operators are chosen from among [ (union), �
(composition), and � (reflexive transitive closure). In addition,

the following constraints hold:

. For each derived predicate, there is exactly one
equation;

. In each equation r ¼ Er, the expression Er does
not contain any occurrences of regular derived
predicates.

In this way, repeated firing of rules can be avoided since

each derived predicate is associated with only one equation

no matter how many times it appears in the original

program.
The transformation process of any linear binary-chain

program into a system of equations can be summarized as

follows:

1. Construct an initial equation for each derived
predicate. Let r be a derived predicate and r 
e1; . . . ; r en be n rules having r in the head. Then,
construct an equation of the following form:

r ¼ e01 [ . . . [ e0n;

where each e0iði ¼ 1; . . . ; nÞ is a set of predicate

symbols connected with “�,” which appear in ei.

2. Transform any equation of the form: r ¼ e0 [ r � e1 [
. . . [ r � en into r ¼ e0 [ r � ðe1 [ . . . [ enÞ. (Similarly,
any equation of the form: r ¼ e0 [ e1 � r [ . . . [ en � r
will be transformed into r ¼ e0 [ ðe1 [ . . . enÞ � r.) We
notice that an equation like r ¼ e1 � r is meaningless
since there is no initial part of r. Then, it can be
removed. Further, an equation like r ¼ e0 [ r can be
replaced with r ¼ e0 to eliminate any useless part.

3. Replace any equation of the form: r ¼ e0 [ r � e1 with
r ¼ e0 � e�1. (Similarly, replace r ¼ e0 [ e1 � r with
e�1 � e0.). In this way, any regular predicate is
removed.

4. Eliminate any equation of the form: r ¼ e, where e
does not contain any predicate mutually recursive to
r. Then, substitute e for every occurrence of r in the
right-hand side of all the other equations.

5. Repeat steps 2 to 4 until nothing more can be done.

See the following example for illustration.

Example 3.1. Consider the following program:

pðx; yÞ  bðx; zÞ; qðz; yÞ
qðx; yÞ  cðx; zÞ; pðz; yÞ
qðx; yÞ  dðx; zÞ; rðz; yÞ
rðx; yÞ  aðx; yÞ
rðx; yÞ  eðx; zÞ; qðz; yÞ;

where a, b, c, d, and e are base predicates, while p, q, and
r are derived predicates. This program can be trans-
formed into the following equations by means of the
transformation method above:

1. p ¼ b � ðc � b [ d � eÞ� � d � a,
2. q ¼ ðc � b [ d � eÞ� � d � a, and
3. r ¼ a [ e � ðc � b [ d � eÞ� � d � a.

For further details, please refer to the description in [15].

3.2 Description of Grahne’s Algorithm

The algorithm proposed by Grahne et al. can be described
as follows: Let r ¼ Er be an equation. The algorithm
represents the equation as a nondeterministic automaton,
denoted by MðErÞ, which can be obtained by the standard
technique from Er when we regard Er as a regular
expression over the alphabet consisting of all predicate
symbols appearing in Er. For example, (1) given above can
be represented as the automaton shown in Fig. 1.

Here, qs, qf , and qiði ¼ 1; 2; . . . ; 7Þ represent the initial,
final, and intermediate states, respectively. The transitions
labeled with “id” denote transitions on the empty string. A
predicate symbol labeling a transition will be interpreted as
the relation it denotes. Then, symbol “id” will be inter-
preted as the identity relation.

If r ¼ Er is not recursive, an interpretation graph of MðErÞ
will be generated, which is a directed graph with a set of
nodes ðq; uÞ, where q is a state in MðErÞ and u is a domain
element of some base relation labeling a transition leaving q,
and with a set of edges of the form, ðq; uÞ ÿ ðq0; vÞ, where, for
some base relation a, q!a q0 is a transition in MðErÞ such that
aðu; vÞ is true. In this way, the query evaluation is reduced to
a graph traversal problem. (Afterwards, we use the term
graph to refer to a directed graph, since we do not discuss
undirected ones at all.)
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If r ¼ Er is a recursive equation, a hierarchy of automata
will be constructed in evaluating answers to the process can
be described as follows:

1. The ith level in the hierarchy, denoted by EMðr; iÞ,
corresponds to the ith recursive call of r (which
appears in Er) with some of its variables bound to
constants. First, EMðr; 0Þ is the initial state qs and
EMðr; 1Þ is a copy of MðErÞ.

2. EMðr; iÞ is obtained from EMðr; iÿ 1Þ by replacing
each transition q!p q0, where p is a derived predicate,
with a fresh copy of MðEpÞ. Concretely, the transi-
tion q!p q0 will be eliminated and two new transi-
tions: q!id q0s and q0f!

id
q0 will be added, where q0s and q0f

are the initial and final states of the fresh copy of
MðEpÞ. (See Fig. 4 for illustration.)

3. For each automaton copy, the corresponding inter-
pretation graph will be traversed.

Now, we consider the evaluation of a query of the
form rðc; yÞ, where c is a constant. The evaluation
algorithm will generate a sequence of interpretation
graphs of EMðr; 0Þ [ . . . [ EMðr; iÞ; i � 1. We denote an
interpretation graph of EMðr; iÞ by Gðr;d; iÞ, where “d”
represents a constant to which the variable appearing in
the query is bound. In general, an EMðr; iÞ will have
several interpretation graphs with each for a different
variable binding.

The algorithm starts with Gðr; c; 0Þ, which is the graph
with a set containing only one node ðqs; cÞððqs; cÞ is called
the source node) and with no edges. Here, qs is the initial
state of all EMðr; iÞ; i � 1. During the ith iteration of the
main loop, Gðr; c0; iÿ 1Þ will be extended to Gðr; c00; iÞ. Note
that here c, c0, and c00 are different constants to which one of
the variables appearing in the predicate of the query is
bound. This extension is done by performing a depth-first
traversal (i.e., Gðr; c0; iÿ 1Þ is traversed using a depth-first
search strategy.) When i ¼ 1, the traversal starts from the
node ðqs; cÞ. All paths not containing edges labeled with
derived predicates are traversed. Whenever a node ðq; uÞ
not visited before is entered, all transitions in EMðr; iÞ
leaving q are determined. For any transition q!a q0, where a
is a base predicate and for any term v such that aðu; vÞ is true
and the node ðq0; vÞ has not yet been generated, the
algorithm generates ðq0; vÞ and continues the traversal from
this node.

At the end of the iteration, it is examined whether or not
any new nodes ðq; uÞ (which are called extension or
continuation points) have been generated, where EMðr; iÞ
contains a transition leaving q and labeled with a derived
predicate. If not, the algorithm terminates and the answers
to the query will be

Ans ¼ fðu; vÞj for some i; ðqis; uÞ; ðqif ; vÞ 2 Gðr; u; iÞg;

where qis and qif are the initial and the final state of EMðr; iÞ,
respectively. Otherwise, the algorithm starts a new itera-
tion, the ðiþ 1Þth. Since this algorithm is fundamental for
this paper, we give its pseudocode below. We briefly
discuss the algorithm and explain how the data structures
are used to implement the idea described above.

The original algorithm consists of two parts. The first
part (named evaluation-query) controls the generation of
automaton hierarchy. The second part (named traverse)
traverses interpretation graphs. However, for ease of
explanation, we rewrite it as a three-part algorithm
consisting of: evaluation-query, traverse, and fresh-automaton.
Here, evaluation-query and traverse correspond to the first
and second parts of Grahne’s algorithm, respectively. fresh-
automaton is a subprocedure of evaluation-query used to
generate a fresh copy of the automaton. In the algorithm,
the following data structures are utilized:

. EM: automaton hierarchy,

. G: interpretation graph,

. C: a list used to store the continuation points which
are produced whenever a derived predicate is
encountered, and

. S: a list to store the starting points which are
generated in terms of C whenever a fresh copy of the
automaton is made.

The three subprocedures can be specified as follows:

. The procedure evaluation-query (p: derived predicate;
a: term; var Y : set of terms) takes query pða; Y Þ as the
input and returns the answers as the output, which
are stored in Y .

. The procedure traverse (q: state; u: term: C: continua-
tion points) takes a node ðq; uÞ as the input and
traverses some interpretation graph Gðr; d; iÞ from
ðq; uÞ. The returned value is a set of continuation
points C.

. The procedure fresh-automaton (C: continuation
points; S: starting points) takes a set of continuation
points C as the input and makes a fresh copy of the
automaton. The returned value is a set of starting
points S.

procedure evaluation-query(p: derived predicate; a: term;

var Y : set of terms);

(*evaluate the query pða; Y Þ when the equation for p is

p ¼ e�p)
1 begin

2 let EM be a copy of MðepÞ; (*EM is the current

EMðp; iÞ, the ith level of the automaton hierarchy.

At the beginning i ¼ 1.*)

3 G :¼ ;; (*G is the current Gðp; a; iÞ, the interpretation

graph of EMðp; iÞ.*)

4 S :¼ fðq; aÞg (*starting point for the 1st traversal*)

5 repeat (*main loop*)
6 C :¼ ;; (*remove previous continuation points of

the form ðqis; uÞ*)

7 for all ðq; uÞ in Sdo (*breadth-first search*)

8 if ðq; uÞ is not yet in G

9 then
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10 begin

11 insert ðq; uÞ into G;

12 traverseðq; u; CÞ; (*traverse the

interpretation graph of

EMðp; iÞ, during which

some continuation points

will be produced*)

13 end

14 S :¼ ;; (*remove all starting nodes of the previous
level in the hierarchy. The new starting

nodes of the current level will be stored

in S.*)

15 fresh-automatonðC; SÞ;
16 until C :¼ ;; (*no new continuation points

were generated*)

17 Y :¼ fujðqf ; uÞ 2 Gg (*store the instantiations for

the variable appearing in
the query*)

18 end

procedure traverse(q: state; u: term; C: continuation points);

(*depth-first search in an interpretation graph*)

(*computes new nodes of G reachable from ðq; uÞ
1 begin

2 for all transitions q!s q0 in EM do

3 if s is a base predicate then

4 for all terms v such that sðu; vÞ is a fact do

5 begin

6 if ðq0; vÞ is not yet in G

7 then

8 begin

9 insert ðq0; vÞ into G;

10 traverseðq0; v; CÞ;
(*go into the graph*)

11 end

12 end

13 else if s ¼ id (*handle "identity" symbols *)

14 then

15 begin

16 if ðq0; uÞ is not yet in G

17 then

18 begin

19 insert ðq0; uÞ into G;

20 traverseðq0; u; CÞ
21 end

22 end

23 else (*s is a derived predicate*)
24 insert ðq0; uÞ into C; (*store

continuation points that will

be used to form new starting

points for the next level

traversal in the hierarchy*)

25 end

precedure fresh-automaton(C: continuation points; S: strating

points)

1 for all transitions q!r q0 in EM where r is a derived

predicate and ðq; uÞ is in C for some u do

2 begin (* in this loop, a new automaton in the
hierarchy is constructed.*)

3 generate M 0, a fresh copy of MðepÞ;
4 denote by qs0 the initial state and by qa0 the final

state of M 0;

5 add into EM all states and transitions of M 0

(without changing the initial and final states of

EM);

6 add into EM the transitions q!id q0s and qf!
id
q0;

7 S :¼ S [ fðq0s; uÞjðq; uÞ 2 Cg; (*store new starting

nodes in S*)

8 remove the transition q!r q0 from EM;

9 end

Essentially, the algorithm is a combination of the depth-
first search and the breadth-first search strategies. That is,
all nodes of the form ðqis; uÞ are traversed in a breadth-first
fashion (see lines 7-13 in evaluation-query), while all nodes in
an interpretation graph, say Gðr; c; iÞ, is traversed using the
depth-first search strategy (see line 12 in evaluation-query
and the procedure “traverse”). All nodes already visited are
stored in a set, G. At iteration i, the set G contains the nodes
of Gðr; c; iÞ. In addition, the procedure “traverse” returns a
set, C containing those continuation points which are used
to form the actual staring points (set S) for the next level
traversal. These starting points are stored in set S (see line 7
of fresh-automaton). Finally, notice that each automaton EM
is generated in the procedure fresh-automaton. Since the
nodes of the form ðqis; uÞ are traversed in a breadth-first
manner, Grahne’s algorithm cannot be directly developed
to support subsumption checks.

The following example serves as an illustration.

Example 3.2. Consider the following program:
Rules:

1. rpðx; yÞ  flatðx; yÞ,
2. rpðx; yÞ  upðx; zÞ; rpðz; wÞ; downðw; yÞ.
Facts:

upða1; a2Þ; upða1; a3Þ; upða2; a1Þ; upða2; a3Þ;
flatða3; b3Þ;
downðb3; b2Þ; downðb2; b1Þ:

The program is a binary-chain program, and the
predicate rp is linearly recursive. The equation for rp is:

rp ¼ flat [ up � rp � down:

The corresponding automaton is shown in Fig. 2.

Given the query ?ÿ rpða1; yÞ, the algorithm proposed by
Grahne et al. will traverse the graph shown in Fig. 3. The
corresponding EMðr; iÞ’s are shown in Fig. 4.

Now, we trace the evaluation for a better understanding.
At the very beginning, EMðrp; 0Þ is the initial state qs and

Gðrp; a1; 0Þ contains only one node ðqs; a1Þ. During the first
iteration, EMðrp; 1Þwill be established, which is as shown in
Fig. 2; and Gðrp; a1; 1Þ will be traversed, producing two
intermediate answers: rpða3; b3Þ, rpða1; b2Þ. The portion
enclosed by a broken line in Fig. 3 shows Gðrp; a1; 1Þ.
Whenever predicate rp is encountered during the traversal,
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EMðrp; 2Þ will be generated. It is just a copy of EMðrp; 1Þ.
Then, Gðrp; a2; 2Þ will be traversed, producing another
group of answers: rpða3; b3Þ, rpða2; b2Þ, rpða1; b1Þ. In a similar
way, we construct EMðrp; 3Þ and traverse Gðrp; a1; 3Þ, etc.
The process repeats until no new Gðrp; cont; iÞ for some cont
and i > 0 can be generated or the upper bound on the
number of iterations (established manually) is reached. In
fact, Grahne’s algorithm for this example does not terminate
if no such upper bound is established since similar nodes
can be met infinitely many times due to cyclic data.

Observe the dotted line from ðq00s ; a1Þ to ðqs; a1Þ, which
shows a cycle. One can image that, if we traverse the graph
from ðq00s ; a1Þ continually, we will traverse similar graphs
repeatedly without termination. Another observation is that
although ðq00s ; a3Þ and ðq0s; a3Þ are similar, they do not lead to
nontermination. These two kinds of similarities should be
distinguished carefully. The following section is mainly
devoted to this issue.

4 OPTIMAL EVALUATION OF BINARY-CHAIN

PROGRAMS

As discussed in the Introduction, the drawback of Grahne’s
algorithm is the absence of subsumption checking and no
ways are provided to distinguish between cyclic and acyclic
data. To remove such insufficiencies, we integrate Tarjan’s
algorithm for identifying strongly connected components
(SCC) of a directed graph with Grahne’s by labeling some
nodes of interpretation graphs. In the following, we first
present the concept of subsumption checks and give a

modified version of Tarjan’s algorithm which can be easily
used for our purpose in Section 4.1. Then, we embed
Tarjan’s algorithm in Grahne’s in Section 4.2. Next, in
Section 4.3, we discuss two optimization possibilities for
acyclic and cyclic data, respectively. In Section 4.4, we
present the concept of linear cycle covers, which underlies
the optimization techniques for cyclic data. Finally,
Section 4.5 gives two examples to conclude the discussion.

4.1 Subsumption Checks and Tarjan’s Algorithm

Grahne’s algorithm has no mechanism to do subsumption
checks. Therefore, much redundant work will be done due
to repeated accesses to similar portions of a graph. Thus, the
first step of the refinement is to develop an efficient
algorithm for doing subsumption checks. Then, based on
the checks of similarities, we try to eliminate a lot of
redundant computations by avoiding the traversal of
similar subgraphs and by generating answers directly in
terms of “path information” stored explicitly. First, we have
the following two definitions.

Definition 4.1. A substitution � is a finite set of the form
fv1=t1; . . . ; vn=tng, where each vi is a variable, each ti is a term
(in the absence of function symbols, a term is a constant or a
variable) distinct from vi and the variables v1; . . . ; vn are
distinct. Each element vi=ti is called a binding for vi. � is called
a ground substitution if the ti are all ground terms. � is
called a variable-pure substitution if the ti are all variables.

Definition 4.2. Let s and t be two predicates. We say that s
subsumes t if there exists a substitution� ¼ fv1=t1; . . . ; vn=tng
such that s� ¼ t, where s� is a new predicate obtained from s by
simultaneously replacing each occurrence of the variable vi in s
by term tiði ¼ 1; . . . ; nÞ.
Based on the subsumption concept, the classification of

repeatedly appearing nodes can be defined as follows:

Definition 4.3. A node of the form: ðq0; c0Þ is subsumed by a
node of the form: ðq00; c00Þ if c0 ¼ c00 and q0 and q0 are two
different appearances of the same state on two different levels of
an automaton hierarchy.
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Here, qs is the initial state and qf is the final state. The symbol “id” is

intrepreted as the identity relation.
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For example, node ðq00s ; a1Þ of the graph shown in Fig. 3 is
subsumed by ðqs; a1Þ. In that graph, qs and q00s are the same
state, appearing on the first and third levels, respectively.

In addition, a node is usually thought of as being
subsumed by itself.

Definition 4.4. A repeated incomplete node (RIN) is a node
which is subsumed by a previous node which has appeared
earlier on the same path as the RIN.

For example, node ðq00s ; a1Þ of the graph shown in Fig. 3 is
an RIN because it is subsumed by ðqs; a1Þ which has
appeared earlier on the same path.

The RINs are the only nodes which cannot be traversed
further during the traversal process. However, cutting off
such a path in the graph may affect the completeness
because some answers relying on this node can not be
evaluated. Therefore, a mechanism is needed to evaluate
the remaining answers in some way else.

Definition 4.5. A repeated complete node (RCN) is a node
which is subsumed by a previous node which has appeared
earlier but not on the same path as the RCN.

For example, node ðq00s ; a3Þ of the graph shown in Fig. 3 is
an RCN because it is subsumed by ðq0s; a3Þ which has
appeared earlier but not on the same path.

From the above definitions, we see that there are two
kinds of subsumption checks which must be handled
differently. When an RIN is encountered, the traversal
should be suspended and the corresponding cycle should be
recorded explicitly, while when an RCN is encountered, it
should be expanded immediately using the answers already
found. In addition, as we will see later, the ways in which
RINs and RCNs are used to speed up the evaluation are
different. However, distinguishing RCNs from RINs is not
trivial and a more sophisticated technique is needed. To this
end, we combine the technique for finding a topological
order for a directed graph with the technique for isolating the
strongly connected components (SCC) of a directed graph
[29] in such a way that the task can be done in linear time.

In what follows, we describe this method in detail.
Note that in Fig. 3, the node ðq00s ; a3Þ is an RCN

(subsumed by ðq0s; a3Þ) and the node ðq00s ; a1Þ is an RIN
(subsumed by ðqs; a1Þ). Because ðq00s ; a1Þ is subsumed by
node ðqs; a1Þ that has appeared earlier on the same path, we
expect to extend a series of subgraphs similar to the first one
from this node, which has already been traversed. There-
fore, the algorithm will run infinitely if no control
mechanism is provided. (To guarantee both the termination

and the completeness, Grahne’s method establishes an
upper bound on the number of iterations which is
sufficiently large to allow all the answers to be found.)
Thus, the traversal along a cyclic path has to be cut off to
guarantee the termination. We then have to record cycles
explicitly and evaluate the corresponding answers along the
cycles in a subsequent phase. In contrast, each RCN must be
handled immediately to get some new answers, which may
be reused in the subsequent traversals.

Below is a graph traversal algorithm which can isolate all
cycles of a graph being traversed and, at the same time,
recognize all RCNs of the graph in linear time. An optimal
strategy for evaluating linear binary-chain programs can be
obtained by combining this algorithm with techniques
described in the next section. Its time complexity remains
linear.

For convenience, we call the graph shown in Fig. 3 the
interpretation graph, the partial graph left to the broken
vertical line the up-graph and the partial graph right to the
broken vertical line the down-graph. In addition, for ease of
exposition, we define a character graph for an up-graph
(down-graph) as follows:

Definition 4.6. A character graph for an up-graph (down-graph)
is a digraph, where there is a node for each node of the form
ðqis; uÞððqif ; vÞÞ in the up-graph (down-graph) and an edge
from node a to node b iff there is a path from a to b in the up-
graph (down-graph), which contains no other nodes of the form
ðqis; uÞððqif ; vÞÞ.

For example, the character graph of the up-graph shown
in Fig. 3 is as in Fig. 5.

The purpose of character graphs is to explain the control
mechanism used in our method. In fact, it is sufficient to
perform subsumption checks only on those nodes of an
interpretation graph, which appear also in its character
graphs (see Section 4.2). Therefore, we give the following
algorithm over a character graph instead of an interpreta-
tion graph so as to illustrate the key ideas more clearly.

We associate each node v of a character graph with
three integers dfsnumberðvÞ, toplnumberðvÞ, and lowlinkðvÞ.
dfsnumber is used to number the nodes of a character
graph in the order they are reached during the search.
toplnumber is used to number the nodes with the property
that all descendants of a node having toplnumber value m
have a lower toplnumber value than m, i.e., a reverse
topological order numbering. Here, it is used to test whether
a node is an RCN or an RIC. lowlink is dynamically changed
and used to number the nodes in such a way that if two nodes
v and w are in the same strongly connected component, then
lowlinkðvÞ ¼ lowlinkðwÞ. Therefore, it can be used to identify
the “root” of a strongly connected component (a root is a
node of a strongly connected component, which is first
visited during the traversal). With the help of a stack
structure, all strongly connected components can be feasibly
found based on the calculation of lowlink values.

During a depth-first traversal, we distinguish among
four types of edges:

1. tree edges. An edge e: v! u is a tree edge if u is reached
from v when it is scanned and u has not been visited
before (then at this moment defnumberðuÞ ¼ 0 if we
initially assign each defnumber with 0.)
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2. forward edges: An edge e : v! u is a forward edge
if when it is scanned for the first time and
defnumberðuÞ > defnumberðvÞ > 0.

3. back edge: An edge e : v! u is a back edge if when it
is scanned for the first time,

defnumberðvÞ > defnumberðuÞ > 0

and, at the same time, u is an “ancestor” of v.
4. cross edges. An edge e : v! u is a cross edge if when

it is scanned for the first time,

defnumberðvÞ > defnumberðuÞ > 0

but u is not an “ancestor” of v.

Essentially, the algorithm presented below is a mod-
ified version of Tarjan’s algorithm [29]. The difference
between them consists in the use of toplnumber in the
modified algorithm, which facilitates the differentiation of
back edges from cross edges and then the identification of
strongly connected components. (In the original algorithm,
a stack structure must be searched to do this.) We will see
that in the algorithm below, for an edge v! u with
defnumberðvÞ > defnumberðuÞ, if u is topologically num-
bered (toplnumberðuÞ > 0), then it is a cross edge;
otherwise, it is a back edge. Whenever a back edge is
visited, all the nodes belonging to an SCC can be simply
taken from a stack S.

In addition, for our purposes, each RCN and each RIN

are marked.

procedure graph-algoðvÞ (*depth-first traversal of a graph

rooted at v*)
begin

i :¼ 0; j :¼ 0; (*i and j are two global variables, used to

calculate dfsnumber and toplnumber,

respectively.*)

toplnumberðvÞ :¼ 0;

graph-searchðvÞ; (*go into the graph*)

end

procedure graph-searchðvÞ
begin

i :¼ iþ 1; dfsnumberðvÞ :¼ i; lowlinkðvÞ :¼ i; (*initiate

lowlink value; it may be changed during the

search*)

put v on stack S; (*S is used to store strongly connected
components if any*)

generate all sons of v if they exist;

for each son w of v do

begin

if w is not topologically numbered then

toplnumberðwÞ :¼ 0; (*when a node is
encountered at the first

time, its toplnumber value

is 0.*)

end

for each son w of v do

begin

subsumption checking for w;

if w is not subsumed by any node then

begin

call graph-searchðwÞ; (*go deeper into

the graph*)

lowlinkðvÞ :¼ minðlowlinkðvÞ,
dfsnumberðwÞÞ; (*the root of a subgraph

will have the least

lowlink value*)

end

else (*w is subsumed by some node*)

{suppose that w is subsumed by u;

if dfsnumberðuÞ < dfsnumberðvÞ then

if toplnumberðuÞ > 0 then (*if u is

topologically numbered, it can not be

an ancestor node of v.*)

mark w to be an RCN;

else (*a cycle is encountered*)
{mark w to be an RIN;

lowlinkðvÞ :¼ minðlowlinkðvÞ,
dfsnumberðuÞÞ;}} (*this operation will

make all nodes of a

end strongly connected component have the

same lowlink value as the root. see [29] *)

if ðlowlinkðvÞ ¼ dfsnumberðvÞÞ then (*v is a root of some

strongly connected component*)
begin

while w on the stack S satisfies

dfsnumberðwÞ � dfsnumberðvÞ do

{delete w from the stack S and put w in current

strongly connected component (rooted at v);

toplnumberðwÞ :¼ j;} (*topological order

numbering; all the nodes in an

SCC have the same toplnumber*)
j :¼ jþ 1; (*j is used to calculate toplnumber*)

end

end

In the above algorithms, we notice the difference
between lowlink and toplnumber:

1. lowlink is used to number the nodes top-down as
dfsnumber; but it will be changed dynamically in
such a way that all nodes in a SCC possess the same
lowlink. Therefore, it is employed to identify the
“root” of an SCC.

2. toplnumber is used to number the nodes bottom-up.
All nodes in an identified SCC will be assigned the
same toplnumber.

By a simple analysis, we know that this algorithm

requires only linear time (see [29]). Fig. 6 shows a directed

graph, its defnumber, lowlink, and toplnumber values, and

its strongly connected components.
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Now, we make a step-by-step trace of this graph
traversal to see how the algorithm works (Table 1).

4.2 Embedding Tarjan’s Algorithm into Grahne’s

In this section, we discuss the embedding of Tarjan’s
algorithm in Grahne’s. The optimization issues will be
discussed in Sections 4.3 and 4.4.

From the discussion conducted in the previous section,
we know that any node of the form: ðqis; uÞððqif ; vÞÞ should be
labeled during a graph traversal using Grahne’s algorithm.
Whenever such a node is encountered, subsumption check-
ing will be made and different treatments will be performed
in terms of its characteristics. To this end, the control manner
of Grahne’s algorithm has to be changed a lot to facilitate the
subsumption checking. That is, both the automaton hier-
archy and the interpretation graph will be traversed in a
depth-first search way. In the following, we give the detailed
description of the algorithm for this task, which consists of
four parts: evaluation (working for global control), controlled-
traversal (for generating answers), son-generation (for making
a fresh copy of the automaton and generating new starting
points), and traversal (for traversing an interpretation graph
from some starting point and generating new continuation
points). As with Grahne’s algorithm, the following data
structures are used in the refined algorithm:

. EM: automaton hierarchy.

. G: interpretation graph.

. C: a list used to store the continuation points which
are produced whenever a derived predicate is
encountered.

. S: a list to store the starting points which are
generated in terms of C whenever a fresh copy of the
automaton is made. According to Tarjan’s algorithm,
S contains the son nodes (newly generated) of a
node in the up-graph or in the down-graph during
the traversal.

The four subprocedures can be specified as follows:

1. The procedure evaluation (r: derived predicate; c:
constant; y: free variable) takes query pða; yÞ as the
input and returns the answers as the output, which
are stored in y.

2. The procedure controlled-traversal (q: state; u: term)
takes a node of the form: (q, u) as the input and
generates all the interpretation graphs. It is essentially
a depth-first search with Tarjan’s technique for
identifying SCC used to distinguish RINs from RCNs.

3. The procedure son-generation (q: state; u: term; S:
starting points) takes a node of the form: (q, u) as the
input and makes a fresh copy of the automaton if

this has not been generated. The returned value is a
set of new starting points S, which can be regarded
as the (direct) son nodes of (q, u).

4. The procedure traverse (q: state; u: term; C: continua-
tion points) takes a node (q, u) as the input and
traverses some interpretation graph Gðr; d; iÞ from
(q, u). The returned value is a set of continuation
points C.

procedure evaluation(r: derived predicate; c: constant; y: free

variable)

(*evaluate the query rðc; yÞ*)

1 begin

2 G :¼ ;; (*G is the current interpretation graph.*)

3 i :¼ 0; j :¼ 0; toplnumberððqs; cÞÞ :¼ 0; (*i and j are

used to calculate defnumber values

and toplnumber values.*)

4 call controlled-traversalððqs; cÞÞ; (*ðqs; cÞ is the source

node, corresponding to the issued query*)

5 Ans :¼ fðu; vÞ | for some i, ðqis; uÞ, ðqis; vÞ 2 Gðr; u; iÞ
and there is a path from ðqis; uÞ to ðqis; vÞ in Gg

6 Y :¼ fujðqf ; uÞGg (*store the instantiations for the

variable appearing in the query*)

7 end

The following three procedures (controlled-traversal, son-
generation, and traversal) correspond to the two main
iterations of Grahne’s algorithm with Tarjan’s algorithm
embedded. The subsumption checks are performed in
controlled-traversal whenever a fresh copy of the automaton
is generated since only at this moment a node of the form:
ðqis; uÞ will be encountered. (For simplicity, the checks over
the nodes of the form: ðqif ; vÞ are not given. In fact, the
subsumption check for the down-graph, which happens
when a node of the form ðqjf ; dÞ is encountered in the
procedure traversal, works in a similar way.) If an RCN is
encountered, no matter whether in the up- or down-graph,
procedure, generation-RCN will be invoked to generate
answers for the subgraph rooted at the RCN. If an RIN is
encountered during the traversal of the up-graph, proce-
dure generation-RIN will be called to produce answers for
cycles, in which generation-RIN-1 will be called to generate
answers directly. Procedure generation-RIN-2 is performed
only for the RINs appearing in the down-graph. These
procedures will be discussed in the next two sections in
great detail.

procedure controlled-traversal (v)

1 begin

2 i :¼ iþ 1; defnumberðvÞ :¼ i; lowlinkðvÞ :¼ i; (*initiate
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lowlink value; it may be changed during

the search*)

3 suppose that v is of the form ðq; uÞ;

4 put ðq; uÞ on the stack ST ; (*ST is used to store cycles

if any*)

5 son-generationðq; u; SÞ;
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6 for each w in S do

7 begin

8 perform subsumption check for w;

9 if w is not subsumed by any node then

10 call controlled-traversal(w); (*go deeper into the

graph.*)

11 lowlinkðvÞ :¼ minðlowlinkðvÞ; lowlinkðwÞÞ; (*the

root of a subgraph will have the least

lowlink value.*)
12 else (*w is subsumed by some node*)

13 begin

14 mark w as a subsumed node; suppose that w is

subsumed by a node u;

15 if defnumberðuÞ < defnumberðvÞ then

16 if toplnumberðuÞ > 0 then (*if u is

typologically numbered, it cannot

be an ancestor node of v.*)
17 call generation-RCNðw; uÞ;
18 else (*a cycle is encountered*)

19 lowlinkðvÞ :¼ minðlowlinkðvÞ,
dfsnumberðuÞÞ; (*this operation will

make all nodes of a

20 end strongly connected

component have the same

lowlink value as the root.*)
21 end

22 if (lowlinkðvÞ ¼ dfsnumberðvÞ) then (*v is the root of a

component*)

23 begin

24 while w on the stack ST satisfies

dfsnumberðwÞ � dfsnumberðvÞ do

25 {delete w from the stack ST and put w in

current component (rooted at v);
26 toplnumberðwÞ :¼ j;} (*topological order

numbering; all the nodes in an SCC have

the same toplnumber*)

27 j :¼ jþ 1; (*j is used to calculate toplnumber*)

28 end

29 for each strongly connected component SCC do

call generation-RINðSCCÞ;
30 end

procedure son-generation (q: state; u: term; S: starting points)

1 begin

2 C :¼ ;; (*C is the set of previous continuation

points.*)
3 if ðq; uÞ is not yet in G then

4 begin

5 insert ðq; uÞ into G;

6 traversalðq; u; CÞ; (*traverse the interpretation

graph of EMðr; iÞ, during

which some continuation

points will be produced.*)

7 end

8 else S :¼ ;; return;

9 for all transitions q!a q0 in EM where a is a recursive

predicate and ðq; uÞ is in C do

10 begin (*construct a new automaton for the next

level traversal and the starting points of
the corresponding interpretation

graphs.*)

11 generate M 0 (if it does not exist), a fresh copy

of MðErÞ;
12 denote the initial state by q0s and the final state by

q0f ;

13 add into EM all states and transitions of M 0;

(*Note that the initial state and the final state
are not changed.*)

14 add into EM the transitions q!id q0s and q!id q0;
15 S :¼ S [ fðq0s; uÞjðq; uÞCg;

toplnumberððq0s; uÞÞ :¼ 0 for each ðq0s; uÞ;
(*put new starting points into S.*)

16 remove subsumed continuation points from

C;

17 remove the transition q!a q0 from EM; (*This
transition is replaced by the newly

constructed automaton.*)

18 end

19 end

procedure traversal (q: state; b: term; C: continuation points)

(*depth-first search in an interpretation graph*)

1 begin

2 for all transitions q!a q0 in EM do

3 if a is a base predicate then

4 for all terms b0 such that aðb; b0Þ is a fact do

5 begin

6 if ðq0; b0Þ is not yet in G (*check whether

ðq0; b0Þ has been already accessed.*) then

7 begin

8 insert ðq0; b0Þ into G;

9 traversalðq0; b0; CÞ; (*go deeper

into the graph*)

10 end

11 end

12 else if a ¼ id

13 then

14 begin

15 if q is of the form: qif then

16 {perform subsumption checking;

17 if RCN then {let u be the subsumming

node of ðq; bÞ; call generation-RCN

ððq; bÞ; uÞ;}
18 if RIN then

19 {let ðqjf ; b0Þ be the subsumming node of

ðq; bÞ;
20 let P be a path from ðqs; cÞ to ðqjs; b00Þ in

the up-graph, where ðb00; b0Þ is an

answer;

21 calls generation-RIN-2ðP; ðqjf ; b0ÞÞ;}}
22 else if ðq; b0Þ is not yet in G then

23 begin

24 insert ðq0; b0Þ into G;

25 traversalðq0; b0; CÞ;
26 end
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27 end

28 else insert ðq; bÞ into C; (*a is a derived predicate;

ðq; bÞ is a continuation point which will

be used to form new starting points for

the next level traversal.*)

29 end

As with Grahne’s algorithm, all nodes visited are stored
in a set, G. Starting with the graph Gðr; c; 0Þ, which contains
only one node ðqs; cÞ (called the source node) and with no
edges, all interpretation graphs will be traversed in a depth-
first fashion. This is done by calling the procedure traversal
to extend Gðr; c0; iÿ 1Þ to Gðr; c00; iÞ (see line 6 of son-
generation). In traversal, the interpretation graphs will be
traversed and the newly produced continuation points are
stored in the set C (see line 28 of traversal), which in turn will
be used to form some new starting points for the next level
traversal (see line 15 of son-generation). In son-generation, a
copy of the automaton corresponding to a new level will be
constructed (see lines 10-18 of son-generation). In addition, in
terms of the set C, son-generation will create a set of new
starting points, S, on which the subsumption checks are
performed (see lines 6-21 of controlled-traversal).

Comparing the above algorithm with Grahne’s, we see
that the main difference consists in the subsumption
checking performed in the former (see lines 6-29 of
controlled-traversal). This is done in the way as discussed
in Section 4.1. Additionally, controlled-traversal works in a
depth-first manner (see line 10 for going deeper into the
graph), which differs a lot from Grahne’s, in which a
breadth-first search strategy is used and each automaton is
generated only once. But, we notice that by a simple
examination (see line 9 of son-generation), we generate each
automaton copy only one time, too. Corresponding to a
fresh copy of the automaton, all the interpretation graphs
will be searched one after the other using Grahne’s method.
But in the above algorithm, only one interpretation graph is
searched. The remaining interpretation graphs will be
searched by backtracking. Within an interpretation graph,
the traversal is executed using the depth-first strategy by
both methods. Therefore, in the above algorithm, the entire
graph generated for evaluating a query is traversed
uniformly in the depth-first search manner.

Example 4.1. For illustration, see the up-graph part of Fig. 7.
By applying the above algorithm to Example 3.2, we will
generate this graph which is the same as that shown in
Fig. 3. But, each node of the form: ðqis; uÞ in the graph is
labeled with a triple when it is generated as in Tarjan’s
algorithm. It is also the reason why we change Grahne’s
algorithm to a pure depth-first search.

Based on such labels, we can distinguish RCNs from
RINs. In the following two sections, we discuss how to use
RCNs and RINs to optimize the evaluation.

4.3 Search Space Reduction and Answer
Generation

Based on the mechanism for subsumption checks, we
develop three methods for generating answers directly in
terms of different “path informations”:

. answer generation for RCNs;

. answer generation when an up-graph (or a down-
graph) contains cycles; and

. answer generation when both the up-graph and the
down-graph contain cycles.

In the following discussion, six propositions will be

established. First, Proposition 4.1 is to show that if an RCN

is encountered, some answers can be generated directly

using the answers already found. Second, Proposition 4.2

demonstrates that the answers along a cycle can be

generated using the answers along another if they have a

common point. Next, Proposition 4.3 shows how to

generate answers along two cycles which are in the up-

and down-graph, respectively. These three propositions

reveal the possibility of evaluation optimization. Proposi-

tions 4.4 and 4.5 are used to show that a linear cover for an

SSC can be found in linear time if it contains a feedback

node. Finally, Proposition 4.6 tells us that the answers

produced by traversing an SCC can be generated along each

cycle in the linear cover for the SCC. In terms of

Propositions 4.2 and 4.3, the answers for a cycle can be

generated using the answers produced along another one.

Thus, Proposition 4.6 hints an efficient method that we

produce the answers for an SCC only along one cycle while

generating the answers for all the other cycles.

4.3.1 Answer Generation for RCNs

Example 4.2. Consider the query of Example 3.2 again. Its
interpretation graph is reproduced in Fig. 8.

From this graph, we can see that the portion enclosed by

a broken line is similar to the portion enclosed by a solid

line except that the states occurring in the nodes of one

portion are “slightly” different from the other. It is due to

the fact that ðq00f ; a3Þ is an RCN and is subsumed by ðq0f ; a3Þ.
Obviously, we can cut off the portion enclosed by the solid

line and directly use the portion enclosed by the broken line

to generate the corresponding answers or vice versa. In this

way, each edge of the interpretation graph can be accessed

at most only once in the case of acyclic data since any

repeated accesses to an edge are avoided. In this sense, a lot

of search space is reduced and a linear time complexity is

achieved for acyclic data. With regard to the correctness of

the method, we have the following proposition.

Proposition 4.1. Let n1 be an RCN and be subsumed by n2.
Then, we can always find two subgraphs of the same height,
which have, respectively, n1 and n2 as their roots and are
similar to each other, i.e., each node in the subgraph rooted at
n1 is subsumed by a node in the subgraph rooted at n2.

Proof. The proposition follows from the binary-chaining
property that a range value of a predicate depends only
on one of the domain values of the predicate, which in
turn depends only on some range value of the predicate
directly left to its predicate. Assume that ðq1; a1Þ !
ðq2; a2Þ ! . . .! ðqm; amÞ is a path in the graph. Then,
each edge is either labeled with “id” or with a predicate
symbol. If an edge ðqi; aiÞ ! ðqiþ1; aiþ1Þ is labeled with
“id”, then ai ¼ aiþ1 according to the graph construction.
Suppose that the nonid predicate symbols for the path are
p1 � . . . � pm0 ðm0 � mÞ. Then, traversing this path corre-
sponds to an evaluation of the expression: p1 . . . pm0 . Now,
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consider another node ðq10 ; a10 Þ which is subsumed by

ðq1; a1Þ. Then, a1 ¼ a10 and q1 and q10 are two different

appearances of the same state on two different levels of

the automaton hierarchy. Thus, there must be a path

ðq10 ; a10 Þ ! ðq20 ; a20 Þ ! . . .! ðqn0 ; an0 Þ labeled with the

nonid predicate symbols r1 . . . rn0 ðn0n ��Þ such that

p1 � . . . � pk ¼ r1 � . . . � rk;

where k ¼ minðm0; n0Þ and a2 ¼ a20 ; . . . ; ak ¼ ak0 . There-

fore, ðq2; a2Þ subsumes ðq20 ; a20 Þ; . . . ; and ðqk; akÞ sub-

sumes ðqk0 ; ak0 Þ. tu
The following procedure is an algorithm implementation

of the above method for generating answers. In this

procedure, the answers for the path from w to the source

node ðP2Þ are generated directly from the answers

produced along the path from u to the source node ðP1Þ.
If P1 is shorter than P2, some answers for P2 cannot be

generated. They must be evaluated by traversing the

corresponding subgraph in a usual way.

procedure generation-RCN (w: an RCN; u: subsuming

counterpart)
begin

let P1 ¼ fðq0
s1; c0Þ; . . . ; ðqns1; cnÞ be the path from the

source node to u in the up-graph;

let P1 ¼ fðq0
s2; g0Þ; . . . ; ðqms2; gmÞðcn ¼ gmÞ be the path

from the source node to w in the up-graph;

let k ¼ minfn;mg;
for each path P in the down-graph, which is

reachable from P1 do

{let P is of the form: fðq0
f1; d0Þ; . . . ; ðqnf1; dnÞg

construct new answers: ðg0; d0Þ; . . . ; ðgk; dkÞ;
if n < m then

call traversalðqmÿnþ1
f2 ; dnÿmþ1Þ;} (*ðqmÿnþ1

f2

represents the final state of

EMðr;mÿ nþ 1Þ.*)

end

We can give a similar algorithm for the RCNs appearing

in the down-graph. But for simplicity, we omit it.

4.3.2 Answer Generation When an Up-Graph (or a

Down-Graph) Contains Cycles

Example 4.3. Continuing our running program. But,

suppose that the database contains the following facts:

flatðc4; c5Þ
upðc3; c4Þ; upðc3; c2Þ; upðc2; c3Þ; upðc2; c8Þ; upðc8; c3Þ
downðc5; c1Þ; downðc1; c6Þ; downðc6; c7Þ; downðc7; c9Þ:

Given the query ?ÿ rpðc3; yÞ, the algorithm proposed by

Grahne et al. will traverse the graph shown in Fig. 9.

Because the nodes ðq00s ; c3Þ and ðq000s ; c3Þ are subsumed by the

node ðqs; c3Þ, we expect to extend a lot of similar subgraphs

that have been traversed earlier.

Therefore, the traversal along a cycle should be cut off and

an iteration process should be used to find the remaining

answers. We do this as follows: By performing subsumption

checks, two cycles will be recorded explicitly. One of them

consists of the starting points: ðq00s ; c3Þ, ðq0s; c2Þ, and ðqs; c3Þ.
Traversing the corresponding path in the down-graph (the

path from q00f to qf in the down-graph shown in Fig. 9)
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repeatedly (each time with a newly produced value as the

initial value), we will evaluate the following answers:

rpðc3; c1Þ, rpðc2; c6Þ, rpðc3; c7Þ, and rpðc2; c9Þ. The other cyclic

path consists of ðq000s ; c3Þ, ðq00s ; c8Þ, ðq0s; c2Þ, and ðqs; c3Þ. Similarly,

traversing the corresponding path in the down-graph (the

path from q000f to qf in the down-graph shown in Fig. 9)

repeatedly, we will produce rpðc3; c1Þ, rpðc8; c6Þ, rpðc2; c7Þ,
rpðc3; c9Þ, and rpðc8; c9Þ. An observation shows that the

answers evaluated along the second cycle can be directly

generated from the answers produced along the first path. For

example, we can directly generate rpðc8; c6Þ from rpðc2; c6Þ on

the first cyclic path and the second node ððq00s ; c8ÞÞ of the

second cyclic path and rpðc2; c7Þ from rpðc3; c7Þ and the third

node ððq0s; c2ÞÞ and so on, instead of traversing the path again.

Fig. 10 helps to illustrates this feature.
Below, we describe this method more formally.

Let C1 be the first cycle v1  v2  �  vn  v1 and A1 ¼
fa1; . . . ; an; anþ1; . . . ; a2n; . . . ; ain; . . . ; ainþjg the answer set

produced along C1, where i and j are integers and

0 � j � n. (It should be noticed that each alð1 � l � inþ jÞ
is a subset which is produced when the nodes of the form

ðq�f ; cÞ of the �th level interpretation graph are encountered,

where c stands for a constant and l ¼ rnþ � for some integer

r.) Let C2 be the second cycle w1  w2  � � �  wm  w1. In

addition, we define

A2 ¼ fanþ1; . . . ; a2n; . . . ; ain; . . . ; ainþjg;
A3 ¼ fa2nþ1; . . . ; ain; . . . ; ainþjg;
. . . . . .

Ai ¼ fainþ1; . . . ; ainþjg:

Then, in terms of Akð1 � k � iÞ and C2, we can generate

the first part of answers for C2 as shown in Fig. 11. (Note

that we do not necessarily compute all Akð1 � k � iÞ. In

practice, each time an Ak needs to be used in the

computation, we shrink Akÿ1 by leaving out certain ais).

Without loss of generality, we assume that n � m.

If n ¼ m, no more new answers can be generated after

the first step. Otherwise, in terms of C1 and the newly

generated answers for C2, we can further generate some

new answers for C1 in the same way. To this end, we first

merge the newly generated answers.

b1 ¼ b11 [ b21 [ . . . [ bi1;

. . . . . .

blmþr ¼ b1;lmþr [ . . . . . . :

(Hereafter, this process is called a merging operation.)
Then, we construct Bkð1 � k � lÞ as follows:

B1 ¼ fb1; . . . ; blmþrg;
B2 ¼ fbmþ1; . . . ; blmþrg;
B3 ¼ fb2mþ1; . . . ; blmþrg;
. . . . . .

Bl ¼ fblmþ1; . . . ; blmþrg:

(Hereafter, this process is called a separating operation.)

In terms of C1 and Bkð2 � k � lÞ, some new answers for

C1 can be generated as described above. Note that B1 will

not be used in this step. It is because no new answers can be

generated in terms of it, i.e., using it, only the same answer

set as A1 can be generated. In the next step, some new

answers for C2 can be generated in terms of C2 and the

newly generated answers for C1.
The correctness of this method is based on the following

proposition.

Proposition 4.2. Let fv1; v2; . . . ; vng and fw1; w2; . . . ; wmg be
two cycles having the same starting point. Suppose that each vi
is of the form ðqis; ciÞ and each wj is of the form ðqjs; djÞ. Let
ðci; hÞ be an answer. Then, pair ðdj; hÞ corresponds to an
answer if i; j satisfy the equation:

k �mþ j ¼ l � nþ i

for some integers k and lð0 � k � nÿ 1; 0 � l � mÿ 1Þ.
Proof. Without loss of generality, assume that v1 ¼ w1 is the

same starting point of the two cycles and crossing an
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edge ðv1; oÞ some path in the down-graph will be

traversed (see Fig. 12 for illustration).
If there is some l such that the distance from o to o0 is

l � nþ i, then ðci; hÞ is an anwser. Therefore, if there is some
k such that k �mþ j ¼ l � nþ i, ðdj; hÞwill be an anwser.tu

In terms of the above analysis, we have the following
algorithm for generating answers.

procedure generation-RIN-1(C1: the first cycle, C2: the

second cycle)

begin

u :¼ 1; v :¼ 2;

repeat

let Cu ¼ fðq1
s1; c1Þ; . . . ; ðqns1; cnÞg;

let A ¼ fðc1; a1Þ; . . . ; ðcn; anÞ,ðc1; anþ1Þ; . . . ,

ðcn; a2nÞ; . . . ; ðcn; alnÞ; . . . ; ðci; alnþiÞg
be the answers evaluated along Cu;

let Cv ¼ fðq1
s2; d1Þ; . . . ; ðqms2; cmÞg;

for s ¼ 0 to lÿ 1 do

(*through this loop control, the

separating operation is made.*)

for t ¼ sþ 1 to lnþ i do

fg :¼ t mod m;

construct new answers of the form: ðdg; atÞg
let B be the result;

do the merging operation over B; let

B0 ¼ fb1; . . . ; bkmþjg be the result, where
k �mþ j ¼ l � nþ i;

A :¼ B0=fb1; b2; . . . ; bmg;
w :¼ u;u :¼ v; v :¼ w;

until no new answers can be generated

end

4.3.3 Answer Generation When Both the Up-Graph and

the Down-Graph Contain Cycles

Example 4.4. Continuing our running program with the
database represented using Fig. 13.

Given the query ?ÿ rpða1; yÞ, the algorithm proposed by
Grahne et al. will traverse the graph shown in Fig. 14 when
Gðrp; a1; 4Þ is about to be constructed.

This graph contains two cycles. One of them is in its up-
graph and the other is in its down-graph.

According to Grahne’s method, an upper bound on the
number of iterations will be established in this case, which
is sufficiently large enough to allow all the answers to be
found. In this way, however, too much redundant work
may been done because all the similar portions of the graph
will be repeatedly traversed.

Consider the following sample of cyclic relations for the
rules given in Example 3.2 shown in Fig. 15.

The length of the longest cycle appearing in the relation
up is m, and the length of the longest cycle in the relation
down is n. In this case, the upper bound established by
Grahne’s method should be m � n. This is because if m and n
do not have a common divisor, the entire answers can be
produced only when m � n iterations of the main loop are
performed. For example, the tuple ðc1; b1Þ belongs to the
relation denoted by the expression

upmnÿ1 � flat � downmnÿ1;

but does not belong to the relation denoted by any
expression upk � flat � downk, where k < m � nÿ 1 (see [15]).

To avoid this redundancy, such kind of subsumptions
has to be checked. As stated above, if a subsumed node
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(RIN) is encountered in the up-graph, the traversal along
the corresponding path should be suspended. Similarly, we
need an iteration process to produce the remaining
answers. During the iteration, if an RIN is encountered in
the down-graph, we use the following method to generate
the remaining answers. We imagine two circles with each
corresponding to a cyclic path of Example 4.3 (see Fig. 16).

Then, we run, respectively, along the two circles in the
same direction and, at each step, take one element from
each circle to form a pair which corresponds to an answer.
We do this continually until no new answers can be
produced. For this example, the final set of pairs is:

rpða3; b2Þ; rpða2; b1Þ; rpða1; b2Þ;
rpða3; b1Þ; rpða2; b2Þ; rpða1; b1Þ:

The following proposition underlies this idea.

Proposition 4.3. Let ðc1; c2; . . . ; cmÞ be a cycle appearing in the
graph representing up, ðb1; b2; . . . ; bnÞ be a cycle appearing in
the graph representing down, and rpðcm; bnÞ be an answer.
Then, pair ðci; bjÞ corresponds to an answer if i; j satisfies the
equation:

k �mþ j ¼ l � nþ i

for some integers k and lð1 � k � n; 1 � l � mÞ.
Proof. Consider the relation denoted by the expression

upk�mÿi � flat � downl�nÿj:

If k �mþ j ¼ l � nþ i, the relation can evaluated by
running the rules given in Example 3.2 repeatedly (in a
bottom-up manner) and rpðci; bjÞ belongs to it. There-
fore, ðci; bjÞ corresponds to an answer. tu
In the following procedure, the answers are generated by

pairing the corresponding elements along two cycles. One

of them ðP1Þ is in the up-graph and the other one ðP2Þ is in

the down-graph. If P1 is not a cycle, the elements on it are

taken consecutively until the end of the path, while the

elements on P2 are taken in a circular tour.

procedure generation-RIN-2(P1: a path in the up-graph; v: an
RIN in the down-graph)

begin

let SCC be the strongly connected component

containing v;

for each cycle P2 in the cycle cover contained in SCC

do

{let P1 ¼ fðq1
s ; c1Þ; . . . ; ðqns ; cnÞ};

let P2 ¼ fðq1
f ; c1Þ; . . . ; ðqms ; bmÞg;

if P1 is a cycle

then {repeat

construct all pairs of the form: ðci; bjÞ such

that k �mþ j ¼ l � nþ i for some integers k

and lð1 � k � n; 1 � l � mÞ
until no new answers can be generated}

else for i ¼ 1 to n do

{construct ðci; bjÞ such that i ¼ � �mþ j
for some � � 0;}

end

Because traversing paths requires access to the external

storage or search of large relations but the “generating”

operations happen always in the main memory and

requires only access to small data sets (i.e., the answers

just found along some cycle), we may suppose that

“generating answers” has the time complexity of Oð1Þ.
(This claim is reasonable because according to the buffer

replacement policies such as LRU (least recently used) and

FIFO (first-in-first-out), used in a database management

system, the intermediate answers found for some cycle

should have not be moved to the external storage when the

immediately following generation of answers are per-

formed.) Thus, each cycle in the input relation is traversed

at most only once in effect. Therefore, the idea described

above requires only Oðmþ nÞ time for the cyclic data

shown in Fig. 13.

4.4 Linear Cycle Covers for a Strongly Connected
Graph

Obviously, we have to first enumerate all cycles of an SCC

prior to the direct generation of answers in the case of cyclic

data. Unfortunately, this cannot always be done in linear

time. Using Johnson’s algorithm [23], this task requires time

Oðnscc þ esccÞcscc, where nscc and escc are numbers of nodes

and edges, respectively, and cscc is the number of cycles in

the SCC. In many cases, the number of cycles cscc can grow

faster with nscc than the exponential 2nsec . For example, in a

complete directed graph (CDG) with n nodes there are

exactly
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n
nÿ iþ 1

� �
ðnÿ 1Þ!

cycles. In Fig. 17, we show a complete directed graph with
four nodes (4-CDG), which contains 20 cycles.

In addition, the technique for generating answers cannot
be applied efficiently to the graph shown in Fig. 18a since
there is no common node among the cycles contained in it
and the task of selecting a cycle, along which the answers
will be produced, becomes difficult. (Remember that, for
the first cycle, the answers have to be produced by the
graph traversal.)

To overcome these difficulties, we define several new
concepts and propose a method to make the technique for
generating answers useful.

Definition 4.7. Let G be an SCC. A feedback node of G is a
node contained in every cycle of G.

For example, node p in the graph shown in Fig. 18b is a
feedback node.

Definition 4.8. A set of cycles C contained in an SCC is called a
cycle cover of the SCC, if each edge of the SCC appears at
least in one cycle of C. We denote the cardinality of C by jCj.

Definition 4.9. A cycle cover with regard to an SCC is a linear
cycle cover if its cardinality is in the order OðesccÞ, where escc
is the number of the edges of the SCC.

Based on the above definitions, we develop a method to
underlie the technique for generating answers. The main
idea behind it is to identify first a feedback node and then,
using the feedback node as a pivot, to perform a depth-first
search to find a linear cycle cover. Using Garey’s algorithm
[13], one feedback node in an SCC can be found in linear

time if any. Thus, we can use Garey’s algorithm to check for
an SCC whether some feedback node exists. If not, we
traverse the SCC in a normal way. Otherwise, if a feedback
node exists, we take it as the start node and proceed to find
a linear cycle cover of the SCC, to which the technique for
generating answers can be applied. Garey’s algorithm will
be described in detail in the Appendix, which takes an SCC
as the input and finds one or more feedback nodes or
reports that such a node does not exist.

Below is an algorithm for finding a linear cycle cover
with regard to an SCC containing a feedback node. In the
algorithm, each node v is marked with a Boolean value
valðvÞ and at the beginning, all valðvÞs are set to 0. During
the depth-first traversal (starting from the feedback node),
we set valðvÞ to 1, when the corresponding node v is visited
for the first time. Then, we have s simple property that
when a node v with valðvÞ ¼ 1 is met, at least one cycle
through the feedback node and v must already be
generated. In terms of this property, when a node v with
valðvÞ ¼ 1 is encountered, a new cycle can immediately be
constructed by taking the current path and the path from v
to the feedback node (which appears in some already
generated cycle) together. This algorithm will be embedded
into the algorithm for generating answers in such a way that
cycles in a cycle cover is enumerated dynamically.

procedure cycle-coverðfbn;SCCÞ (*fbn is a feedback node of

SCC.*)

1 begin

2 for all node in SCC do

3 valðnodeÞ :¼ 0;

4 N :¼ fbn;
5 valðfbnÞ :¼ 1;

6 searchðfbnÞ;
7 end
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procedure searchðvÞ
8 begin

9 generate all sons of v;

10 for each son m do

11 if valðmÞ ¼ 0 then fvalðmÞ :¼ 1; searchðmÞg
12 else

13 {take one of the paths (from m to N) which

have been visited and the current path from

N to m to form a new cycle; store the new

cycle};

14 end

In the following, we show that the cycles enumerated by
cycle-cover( ) constitute a linear cycle cover.

Proposition 4.4. Let C be a set of cycles (of an arbitrary SCC)

found by cycle-cover( ), then C is a cycle cover for the SCC.

Proof. Assume, to the contrary, that C is not a cycle cover.

Then, there exists at least one edge in the SCC that does

not appears in any cycle in C. Suppose ðni; njÞ is such an

edge. Thus, ðni; njÞ has not been visited by cycle-cover( ).

Obviously, ni has not been visited either. Otherwise,

from lines 9-11, we see that ðni; njÞ will certainly be

traversed after ni is visited, which contradicts the

assumption. For the same reason, any edge with ni
being the tail (for an edge ðv; uÞ, v is the tail and u is the

head of the edge) will not be visited. Consider one of

such edges, say ðnk; niÞ. Then nk is also unvisited. In this

way, we can find a sequence ni; nk; . . . ; nl with nl ¼ N,

which is not visited by cycle-cover( ). But, this contradicts

the behavior of the algorithm. Thus, C is a cycle cover.tu
Proposition 4.5. The cycle cover found by cycle-cover( ) is

linear.

Proof. We denote the number of the found cycles passing a
set of nodes n1; n2; . . . ; nk by numcyclesðn1; n2; . . . ; nkÞ. If

the indegree and outdegree of each node ni in an SCC are

denoted as inðniÞ and outðniÞ, respectively, the number

of the cycles found by cycle-cover( ) can be computed as

follows:

numcycles ¼ numcyclesðvÞ; ð1Þ

where v is the start node (a feedback point).

numcyclesðvÞ ¼
XoutðvÞ
i¼1

numcyclesðv; niÞ

¼
XoutðvÞ
i¼1

XoutðniÞ
j¼1

numcyclesðv; ni; nijÞ;
ð2Þ

where each ni stands for a son of v, while each nij stands
for a son of ni.

If we use outedgesðniÞ to denote the set of edges
incident out of ni and inedgesðnijÞ to denote the edges
incident into nij, we have

[i outedgesðniÞ ¼ [i;jinedgesðnijÞ:

This equation can be proved as follows. First, we have

[i outedgesðniÞ � [i;jinedgesðnijÞ

(see Fig. 19 for illustration).

Then, we prove [ioutedgesðniÞ � [i;jinedgesðnijÞ.
Assume, to the contrary, that there exists a node u

such that for some nkðn; nkÞ =2 [i outedgesðniÞ but

2 [i;jinedgesðnijÞ. In terms of the property of SCCs,

there must be a path connecting nk and n as shown in

Fig. 20. Then, the cycle composed of this path and the

edge ðu; nkÞ does not contain v, which is a contra-

diction with the fact that v is a common node of all

cycles contained in the SCC.
In terms of the above analysis, (2) can be rewritten as

follows:
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Fig. 18. Cycles without common nodes.

Fig. 19. Illustration for the relationship between indegrees and out-

degrees.

Fig. 20. A cycle which does not contain v.



XoutðvÞ
i¼1

XoutðniÞ
j¼1

numcyclesðv; ni; nijÞ ¼

X
j

XinðnjÞ
m¼1

numcyclesðv; nim ; njÞ:

ð3Þ

Note that in the right-hand side of (3) each nim stands

for a son of v. Since in the above algorithm, only one of

the paths which follows a node u (from u to N) is taken to

form a new cycle when n is met once again (see line 13 in

cycle-cover( ); see also the thick edges shown in Fig. 18 for

illustration. Along each of them, only one path will be

considered), we have the following equation:

X
j

XinðnjÞ
m¼1

numcyclesðv; nim ; njÞ ¼
X
j

ðnumcyclesðv; nji ; njÞ

þ inðnjÞ ÿ 1Þ
¼
X
j

numcyclesðb; nji ; njÞ

þ
X
j

inðnjÞ ÿ j

¼
X
k

numcyclesðv; nji ; nkj ; nkÞ

þ
X
j

inðnjÞ

þ
X
k

inðnkÞ ÿ ðjþ kÞ

¼ . . . . . .

¼ inðvÞ þ
X
nl 6¼v

inðnlÞ

ÿ ðnscc ÿ outðvÞÞ
¼ Oðescc ÿ nscc þ 1Þ:

ð4Þ

Here, nji stands for a father node of nj, through which nj
is visited for the first time. Therefore, the cycle cover

found by cycle-cover( ) is linear. tu
In the worst case, the length of a cycle is in the order of

OðnsccÞ. Then, the space complexity of cycle-cover() will be

Oðnscc � esccÞ. It is not desired for the optimization purpose.

In addition, if we generate answers simply along each cycle

without any control, some answers may be repeatedly

produced many times due to the common part of cycles.

Therefore, we do not enumerate all the cycles of a cycle

cover using cycle-cover( ), but integrate its idea into the

process for generating answers (see procedure “generation-

RIN” shown in the next section).
Another important question is whether the answers

produced by traversing an entire SCC is the same as those

produced by traversing only one of its cycle covers. In the

following, we prove a proposition to give a positive reply to

this.

Definition 4.10. Let pi and pj be two answers to a recursive

query. If pi can be evaluated on pj, we say that pj is a

predecessor of pi, and pi is a successor of pj, denoted

predecessorðpiÞ and successorðpjÞ, respectively.

Proposition 4.6. Let Ascc and Acycle-cover be two sets of answers
produced by traversing some SCC in the up-graph, which
contains at least one feedback node, and by one of its cycle
covers, respectively, then Ascc ¼ Acycle-cover.

Proof. For any a 2 Acycle-cover, we have trivially a 2 Ascc.
Then, Acycle-cover � Ascc. In the following, we prove that
Ascc � Acycle-cover. For any a 2 Ascc, there must be a path
v0 ! v1 ! v2 ! . . .! vi in the SCC (with v0 being a
feedback node and each vjð0 < j � iÞ being also a node
in the character graph) such that Av0

¼ predecessorðAv1
Þ,

Av1
¼ predecessorðAv2

Þ; . . . ; Aviÿ1
¼ predecessorðAviÞ and

a 2 Avj , where Avjð0 � j � iÞ stands for a set of answers
produced by traversing path vj ! vjþ1 (corresponding to
an edge in the character graph) and the corresponding
path in the down-graph. In terms of the property of
cycle covers, there is a set of cycles C in cycle-cover such
that the paths v0 ! v1, v1 ! v2; . . . , and viÿ1 ! vi are
covered by C. Then, by the first traversal along C, we
will get Av0

. By the second traversal along C, we will
get Av1

and so on. Obviously, by the ith traversal along
C, Avi will be produced. Therefore, a 2 Acycle-cover. Thus,
Ascc � Acycle-cover, which completes the proof. tu

The following two procedures are an algorithm imple-
mentation for controlling the direct generation of answers.
For a strong component, if all cycles in it have a common
node, only partial answers for one cycle is evaluated by
traversing the corresponding subgraph. The remaining
answers for all cycles are generated directly in terms of
the answers already found and the relevant “path informa-
tion.” If the strong component contains no feedback node, it
has to be traversed repeatedly until no new answers can be
produced. Note that in the case that a feedback node exists,
we enumerate a cycle dynamically as cycle-cover( ) does and
generate answers as discussed in the previous sections.

In procedure “generation-RIN,” the feedback node will be
first found. If it does not exist, the control is switched over
to a brute-force evaluation. If it does exist, procedure
“answer-generation” is called, in which the cycles are
enumerated dynamically and both “generation-RIN-1” and
“generation-RIN-2” may be called for generating answers
directly.

procedure generation-RIN(SCC: a strongly connected

component)

begin

using Garey’s algorithm to find a feedback node if

any;
if a feedback node exists then

{let fsb be the feedback node;

for all n in SCC do valueðnÞ :¼ 0;

N :¼ fsb;
valueðfsbÞ :¼ 1;

answer-generation(fsb);

else traverse the SCC in a normal way;

end

procedure answer-generation(n: a feedback node)

begin

for each son m of n do
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if valueðmÞ ¼ 0 then {valueðmÞ :¼ 1;

answer-generationðmÞ}
else

{take one of the paths (from m to N) which have

been visited and the current path from N to

m to form a new cycle P;

if P is the first one then

{traverse the corresponding down-graph for P;

if an RIN w in the down-graph is encountered

then call generation-RIN-2(P, w);}

else

{let P1 be the first cycle;

call generation-RIN-1ðP1; P Þ}
end

4.5 Sample Trace

In this section, we apply the algorithms discussed above to
Examples 3.2 and 4.3 to generate some of answers directly
from the path information and the answers already found.

Example 4.5. Consider the rules and facts as in Example 3.2.
Let rpða1; yÞ be the query. Algorithm evaluation ( ) will
produce the answers: rpða3; b3Þ, rpða2; b2Þ, rpða1; b1Þ by
traversing the path shown in the upper part of Fig. 21.

See Fig. 8 for comparison. By this process, two layers of
the automaton hierarchy will be generated by executing
controlled-traversal( ). The path is traversed by performing
traversal( ). The remaining answers are generated by calling
on generation-RCN( ), which pairs the corresponding
elements from the relevant path and the answers evaluated
along it as shown in the lower part of Fig. 19. The answers
generated by generation-RCN( ) are: rpða3; b3Þ, rpða1; b2Þ.
Example 4.6. Given the rules and facts as in Example 4.4.

Let rpða1; yÞ be the query. Algorithm evaluation ( ) will
produce the answers: rpða3; b2Þ, rpða2; b1Þ, rpða1; b2Þ by
calling on generation-RIN( ), in which part of the down-
graph will be searched. During this process, another
cycle is identified. Then, generation-RIN-2( ) will be
executed to generate the remaining answers: rpða3; b2Þ,
rpða2; b1Þ, rpða1; b2Þ, rpða3; b1Þ, rpða2; b2Þ, rpða1; b1Þ by
running, respectively, along the two cycles as shown in
Fig. 22.

5 COMPLEXITY ANALYSIS AND COMPARISON

In order to compare the time complexity of our algorithm
with Grahne’s, we use the following linear recursive
program as a benchmark to do an exact time analysis.

sðx; yÞ  rðx; yÞ;
sðx; yÞ  pðx; zÞ; sðz; wÞ; qðw; yÞ:

Assume that the graph representing the relation for “r”
contains nr nodes and er edges, the graph for “p” contains
np nodes and ep edges, and the graph for “q” contains nq
nodes and eq edges. At an abstract level, the graph traversal
process of Grahne’s algorithm can be viewed as two
processes: a constant propagation process and a variable
instantiation process. The former corresponds to the
traversal of the graph for “p” (i.e., the up-graph). The latter
corresponds to the traversal of the graphs for “r” and “q”
(which corresponds to the down-graph). If the indegree and
outdegree of each node i in the graph are denoted as
indegreeðiÞ and outdegreeðiÞ, respectively, then the cost of
Grahne’s algorithm is:

OðepÞ þOðerÞ þO
X
ði;jÞ2A

indegreeðiÞ � outdegreeðjÞ

0@ 1A;
where A denotes the set of answer tuples. OðepÞ is the cost
for the traversal of the graph for “p.” OðerÞ is the cost for the
traversal of the graph for “r.” The cost for the traversal of
the graph for “q” is

O
X
ði;jÞ 2 A

indegreeðiÞ � outdegreeðjÞ

0@ 1A ¼ Oðep � eqÞ:

The diagram shown in Fig. 23a helps to clarify the result.
From this graph, we see that crossing the edgeði; jÞ, each

edge incident to j will be visited indegree ðiÞ times.
Similarly, the graph traversal of our algorithm can be
viewed as two processes. However, due to the answer
generation for RCNs in both the up-graph and down-graph,
the cost is reduced to

OðepÞ þOðerÞ þOðeqÞ:

See Fig. 23b for illustration. The edges in the down-graph
will not be visited more than once because the edges
incident to j will be visited only one time through some
ði; jÞ and each ði; jÞ can be accessed only once due to the
subsumption check performed in the up-graph. We also
notice that through ði0; jÞ (denoted by a dashed arrow) they
will not be visited, either, due to the subsumption check
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made in the down-graph. In fact, the number of the actually
accessed edges of the down-graph should be smaller than
OðeqÞ since the edges like those incident to j0 (marked gray)
may not be visited. In the above analysis, we do not take the
cost for “generating answers” into account. In fact, in
comparison with the cost of evaluating an answer (by
algebraic operations: join, selection, projection, etc.), the cost
of generating an answer is very little such that we needn’t
consider it. (In practice, the time complexity of a computa-
tion mainly depends on the number of accesses to the
external storage which in turn depends on the number of
the relations participating in the computation and their
cardinalities).

To make the above analysis clear, see the graph shown in
Fig. 24a, representing a set of input relations.

Applying our algorithm to the above program against
this graph (to evaluate ?-sða1; xÞ), the answer pairs evaluated
(using algebraic operations) are of the form: ðai; biÿjÞði ¼
1; . . . ; nÿ 1; j ¼ 0; . . . ; iÿ 1Þ (see the solid edges connecting
au and bv shown in Fig. 23b for illustration) if the first
derivation is performed along the path

a1 ! a2 . . . an ! bn ! . . .! b1:

All the other answer pairs, i.e., of the form:

ðak; bkþlÞðk ¼ 1; . . . ; nÿ 2; l ¼ 1; . . . ; nÿ kÿ 1Þ

will be directly generated (see the dashed edges shown in
Fig. 14b.) By this process, each edge in both the graphs
representing p and q is visited only once.

Now, we derive the time complexity of handling cycles.
We consider only the case of linear recursion. To simplify

the description of the results of the analysis, we assume that
each cycle has the same length (by “length,” we mean the
number of nodes in a cycle, which have initial (or final)
states) and along each cycle the number of new answers got
by the algorithm from an initial value or an evaluated
answer in one step is d. Thus, if each cycle has the length m
and the number of iterations over a cycle is l, then the time
complexity of the second step of Grahne’s algorithm is in
the order of

� �
Xm�l
i¼1

diÿ1 � C ¼ � � d
mlÿ1 ÿ 1

dÿ 1
� C;

where � is the number of the cycles associated with an FQ

and C represents the cost of evaluating an answer in the

iteration step. In the worst case, C is the elapsed time of a

read access to the external storage, i.e., each evaluation in

the step requires an I/O.
In procedure generation-RIN( ), ðdml ÿ 1Þ=ðdÿ 1Þ answers

are evaluated using the assumption above. The remaining

answers for each cycle are all generated by executing

answer-generation( ). Let � be the cost of generating an

answer in the generation process, then the running time for

executing answer-generation( ) is

1

dÿ 1
½ðdml ÿ 1Þ � C þ ð�ÿ 1Þ � ðdml ÿ 1Þ � ��:

Since �� C, the saving on time is significant. If �=C �
1=ð� � dmlÞ; ð�ÿ 1Þ � ðdml ÿ 1Þ � � is less than some constant

and, therefore, the time complexity of generation-RIN( ) is

OðdmlCÞ. Therefore, the refined algorithm may reduce the
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worst-case time complexity of Grahne’s algorithm by a
factor �, the number of the cycles, if we do not take the cost
of generating an answer into account.

Various strategies for processing recursive queries have
been proposed. However, all these algorithms require at
least Oðe2Þ or OðenÞ time [1], [2], [3], [4], [5], [18], [32].

When the input relations contain no cycles, the cost of
Counting is OðenÞ, better than that of Magic Sets which is
Oðe2Þ [24]. For cyclic cases, [18] proposed a method which
takes OðneÞ time. However, this method requires Oðe2Þ time
for preprocessing. Sacca and Zaniolo [26] presented an
algorithm that runs a counting method until a cycle is
detected, then switches over to Magic Sets. This algorithm is
also Oðe2Þ on cyclic data. The method proposed in [1]
requires Oðn3Þ time. But, in some cases, the complexity can
be reduced to Oðn2Þ. The algorithm proposed in [32]
requires OðneÞ time. In terms of the analysis of [35] and
the analysis conducted above, the time complexities of
several important methods can be summarized in Table 2.

To analyze the space complexity of our algorithm, we
first make the following two observations:

1. Since corresponding to each layer of the automaton,
there are normally several interpretation graphs.
Thus, the graph G dominates the space complexity.

2. Due to the subsumption check, each edge of the
input graph can be visited at most once for
generating the interpretation graph G. Fig. 25 serves
as an illustration.

Assume that Fig. 25a is the graph representing the relation
“p.” Our algorithm will generate a graph as shown in Fig. 25b.
The nodes “b” and “d” both are generated two times.
However, due to the subsumption check, when “b” (or “d”)
is encountered at the second time, the traversal will not be
continued from the corresponding nodes. Thus, there are no
edges visited more than once. The same analysis applies to
the graph representing the relation “q.” Therefore, the space
complexity of our algorithm is bounded by OðeÞ, where e
represents the number of the edges of the input graphs.

6 CONCLUSION

In this paper, a graph traversal algorithm has been
presented which is much more efficient than Grahne’s
algorithm. The key idea of the improvement is to recognize
all the similar portions of a graph and to produce all the
relevant answers by constructing only one of them. In the
case of acyclic data, the algorithm optimizes the evaluation

by traversing each cycle only once and generating the

remaining answers directly from the answers already

found. In the case of cyclic data, several graph optimization

techniques are employed to speed up the evaluation, such

as the combination of Tarjan’s algorithm and the topological

numbering, and the algorithm for finding feedback nodes

as well as for cycle covers. In this way, most of the answers

for cyclic paths can also be generated directly instead of

traversing the corresponding subgraphs. Since traversing a

path requires access to the external storage or search of

large relations, but the “generating” operations requires

only access to small data sets and happens always in main

memory, we may suppose that the time complexity of

generating answers is Oð1Þ and, therefore, a linear time is

achieved.

APPENDIX

In this appendix, we describe Garey’s algorithm and make a

sample trace to clarify its main idea.
In Garey’s algorithm, the nodes of an SCC are numbered

from 1 to n as they are reached during a depth-first search.

Based on this numbering, the following two values can be

defined:

1. y ¼ max {v | there is a back edge ðu; vÞ} and
2. z ¼ max {w | for every back edge ðu; vÞ, w is an

ancestor of u or u itself}.

Then, a feedback node fbn must satisfy y � fbn � z. If

y > z or if the subgraph of the SCC obtained by deleting all

nodes v satisfying y � v � z is not acyclic, then no feedback

nodes exist.
To determine which of these candidates actually are

feedback nodes, each node will be associated with two

labels defined as follows:

594 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003

TABLE 2
Costs of Methods

Fig. 25. Illustration for space complexity.



1. maxiðvÞ ¼ max{{w | w � z and ðv; wÞ is not a back
edge} [ {maxiðwÞ | w > z and ðv; wÞ is not a back
edge}} and

2. loopðvÞ ¼ true if and only if either v is a proper
descendant of z or there is an edge ðv; wÞwhich is not
a back edge such that w > z and at the same time
loopðwÞ ¼ true. Otherwise, loopðvÞ ¼ false.

We notice that the two labels are defined recursively and
can be calculated only in a reverse topological order. That
is, before the labels for a node v are computed, the labels for
v’s children must be available. In addition, z has to be
known ahead of time. By convention, maxf;g is set to “0.”

These two labels can be used to identify feedback nodes
due to the following theorem given by Garey and Tarjan [13].
In the theorem, a feedback set S is a set such that every cycle of
an SCC contains at least one node in S. The reader should not
confuse this concept with the set of feedback nodes.

Theorem. A node v 2 SCC is a feedback node if and only if

1. y � v � z;
2. the set {fxjy � x � zg is a feedback set;
3. maxiðuÞ � v for 1 � u < v; and
4. loopðuÞ ¼ false for y � u < v.

In terms of this theorem, the Garey’s algorithm can be
sketched as follows:

procedure find-feedback-nodes(SCC: a strongly connected

component)

begin

number the nodes in SCC from 1 to n in depth-first

order;
test whether y � z and whether SCC becomes acyclic

when all nodes v satisfying y � v � z are

deleted. If either test fails, report “SCC

contains no feedback nodes”;

calculate maxiðvÞ and loopðvÞ for each v in a reverse

topological order;

initialize maxitest :¼ maxfmaxiðuÞj1u < yg; (If y ¼ 1,

maxitest :¼ 0;)
initialize set of feedback nodes Sfbn :¼ ;;
v :¼ y; Mark := 0;

repeat

if maxitest � v, then add v to Sfbn;

maxitest :¼ maxfmaxitest;maxiðvÞg
if loopðvÞ ¼ false and v < z,

then v :¼ vþ 1;

else Mark := 1;
until Mark = 1

end

It is not difficult to verify that the algorithm requires only

linear time [13]. In the following, we make a sample trace to

show how the labels work.

Example. Consider the graph shown in Fig. 26a.

A depth-first numbering with all back edges removed is
shown in Fig. 26b.

Then, we have

y ¼ 1; z ¼ 3:

. maxið4Þ ¼ maxf;g ¼ 0; loopð4Þ ¼ true.

. maxið3Þ ¼ maxfmaxið4Þg ¼ 0; loopð3Þ ¼ true.

. maxið5Þ ¼ maxf3g ¼ 3; loopð5Þ ¼ false.

. maxið2Þ ¼ maxf3g ¼ 3; loopð2Þ ¼ false.

. maxið1Þ ¼ maxf2;maxið5Þg ¼ 3; loopð1Þ ¼ false.
In the next step, the repeat-until loop will be executed:

. initial values: Sfbn ¼ ;;maxitest ¼ 0; v ¼ 1; Mark = 0.

. 1st iteration: Sfbn ¼ f1g; maxitest ¼ 3; v ¼ 2; Mark
= 0.

. 2nd iteration: Sfbn ¼ f1g; maxitest ¼ 3; v ¼ 3; Mark
= 0.

. 3th iteration: Sfbn ¼ f1; 3g; maxitest ¼ 3; v ¼ 4; Mark
= 1.

The loop terminates since Mark =1.
The feedback nodes are those numbered 1 and 3 in

Fig. 25b, which correspond to the nodes marked with “a”

and “c” in Fig. 25a, respectively.
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