
Efficient Processing of XML Tree Pattern Queries

Paper: jc10-5-2585; 2006/5/11

Efficient Processing of XML Tree Pattern Queries

Yangjun Chen�, and Dunren Che��

�Department of Applied Computer Science, University of Winnipeg

515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada

E-mail: ychen2@uwinnipeg.ca
��Department of Computer Science, Southern Illinois University

Carbondale, IL 62901, USA

E-mail: dche@cs.siu.edu

[Received October 28, 2005; accepted March 17, 2006]

In this paper, we present a polynomial-time algorithm
for TPQ (tree pattern queries) minimization without
XML constraints involved. The main idea of the al-
gorithm is a dynamic programming strategy to find
all the matching subtrees within a TPQ. A matching
subtree implies a redundancy and should be removed
in such a way that the semantics of the original TPQ
is not damaged. Our algorithm consists of two parts:
one for subtree recognization and the other for subtree
deletion. Both of them needs only O(n2) time, where n
is the number of nodes in a TPQ.

Keywords: XML documents, tree pattern queries, Xpath
expressions, query evaluation

1. Introduction

XML (eXtensible Markup Language) is emerging as
a standard for data and information exchange between
applications on the Web and elsewhere. It offers a con-
venient syntax for representing data from heterogeneous
data sources distributed over the Internet. As an impor-
tant issue in building up Web services, XML queries have
been extensively studied recently, and various optimiza-
tion strategies to solve this problem are proposed. But
most of them follow a conventional routine such as trans-
forming a query into a logical-level plan first (such as in
[8]), and then exploring the (exponential) space of possi-
ble plans in order to identify the optimal one that has the
least estimated cost (such as in [1]). Yet XML queries
are significantly different from the conventional RDBMS
queries in that the former routinely involve a tree-shaped
pattern that is to be matched against the database, and
the queries are commonly referred to as TPQs. Further-
more, TPQs often contain redundancies, especially when
constraints such as those induced from the DTD/XSD
(XMAL Schema Definition) are additionally considered.
Redundancies are detrimental to the performance of XML
query evaluation. Therefore, studying efficient mecha-
nisms for TPQ minimization is of great importance for
XML query processing [2, 3, 9–11].

Fig. 1. A query tree.

2. Background and Data Model

2.1. Data Model and Queries
We consider a data model where information is repre-

sented as a forest of trees. Each node in the tree has an
associated type. Types can be organized in a simple ag-
gregation hierarchy for capturing the ancestorship.

To abstract from existing query languages for XML
(e.g., [4–6]), we express queries as tree patterns where
nodes are types and edges are parent-child or ancestor-
descendant relationships. Among all the nodes of a query
Q, one is designated as the output node, denoted by out-
put�Q�, corresponding to the output of the query. As an
example, consider the query tree shown in Fig.1, which
asks for any node of type b that is a child of some node
of type a. In addition, the b-node is the parent of some c-
node and some e-node, and an ancestor of some d-node.
In the figure, a parent-child relationship is represented by
a single edge while an ancestor-descendant relationship
by a double edge. The output node is indicated by *. The
query corresponds to the following XPath expression:

a�b�c and ��d���b�c and e��d��

This tree patters is used to retrieve relevant portions of
data from a database. Although the tree patterns do not
capture all aspects of XML query languages such as or-
dering and restructuring, they form a key component of
XML query languages by focusing on their structural as-
pect [7].

2.2. Semantics
Definition 2.1 (Equivalent Queries) Let Q�D� denote the
result of a query Q on a database D. We say that Q1 � Q2

Vol.10 No.5, 2006 Journal of Advanced Computational Intelligence 1
and Intelligent Informatics



Chen, Y., and Che, D.

Fig. 2. Illustration of minimization scheme.

for queries Q1 and Q2, if Q1�D��Q2�D� for all databases
D. We say Q1 and Q2 are equivalent if Q1 �Q2 as well as
Q2 �Q1.

Definition 2.2 (Redundant Node) A node p � Q is said
to be redundant iff another query Q�, obtained from Q
by deleting p and all its descendants, is equivalent to Q,
(i.e.Q��D� � Q�D�).

Definition 2.3 (Minimal Query) A query Q is said to be
minimal iff no query of smaller size is equivalent to Q.
For a TPQ, the size is the number of the nodes in that
query.

Definition 2.4 (Coverage Relation) Consider a TPQ Q �
�N�E� consisting of a set N of nodes and a set E of di-
rected edges; each node p �Q has a type λ �p� associated
with it. We define the coverage relation in a TPQ Q as fol-
lows. We say that node p is covered by node v or v is the
coverer of p (denote by p � v), whenever the following
conditions hold:

� Preserve node types: λ �p� � λ �v�; also, if p is the
output node then v � p.

� Preserve child edge relationships: if p has a direct
child p�, then v has to have a direct child v� such that
p� � v�.

� Preserve descendant edge relationships: if p has a
descendant child p��, then v has to have a descendant
child v�� such that p�� � v��.

Definition 2.5 (Cover-Set) Let N be the set of the nodes of
a certain TPQ Q and cov�p� denote the set of all coverers
of p for any p � Q, we have:

1. If p is the output node, cov�p� � �p�.

2. If p is a leaf node, cov�p� � �v�v � N�λ �p� � λ �v��.

3. If p is a non-leaf node, cov�p� is a set of nodes, in
which each node v satisfies one of the following con-
ditions:

(i) For each child p� of p, v is the parent of some node
in cov�p��, or

(ii) For each descendant p�� of p, v is an ancestor of
some node in cov�p���.

2.3. Observations
As we stated before, our major task in this paper is to

solve the problem of optimizing TPQS with/without the

presence of constraints. The designing of our proposed
algorithms is guided by the following two important ob-
servations.

1) If not augmenting the queries at the first place, some
TPQs may fail to be minimized.

It sounds to be unreasonable to “enlarge” a query
first when our goal is to minimize it. However,
in many cases, augmenting the input query is the
only way to discover the potential opportunity to
minimize it. As an example, consider the query of
Fig.2(d). In the absence of constraints, this query
is minimal. If we are given the constraint: “every
section has a paragraph”, we still cannot perform
any minimization directly on it. Yet, if we augment
this query by adding an additional node “paragraph”
and make it as a descendant of “section” as shown
in Fig.2(b), we then see that the entire left branch
is now covered by the right branch, and thus can
be completely dropped. This gives us a smaller but
equivalent query as shown in Fig.2(a). By removing
the added (redundant) node “paragraph”, we reach
the ultimate minimal state as shown in Fig.2(c).

2) The order of applying constraints is important for
obtaining a minimal equivalent query.

Constraints like the required child/descendant
nodes inherently carry the information that the
child/descendant nodes are redundant if the related
parent/ancestor nodes are already in the query
pattern. But the question is, should we apply
the constraints first by dropping the redundant
child/descendant nodes immediately or should we
perform minimization first? Consider the query of
Fig.2(b). Suppose the constraint we are given is
still the same – “every section has a paragraph”.
If we adopt the first strategy, then the query can be
simplified to Fig.2(d), by dropping the “paragraph”
node immediately. Unfortunately, doing so will
prevent any further simplification, either by applying
constraints or constraint-independent minimization.
However, the current state is obviously not minimal
(the minimal state is the one shown in Fig.2(c)). In
summary, the minimization of TPQs with/without
the presence of constraints are orthogonal to each
other. The kernel minimization scheme can be
shared by both of the problems (for the minimiza-
tion of TPQs in the presence of constraints, we just
need to arrange additional processing steps). In

2 Journal of Advanced Computational Intelligence Vol.10 No.5, 2006
and Intelligent Informatics



Efficient Processing of XML Tree Pattern Queries

general, our algorithm for tree pattern minimization
can be described as a 3-phase process that consists
of the following:

� Augmentation Phase: Augment the query with re-
spect to the constraints that are present. If no con-
straints are given, move to next step directly.

� Minimization Phase: Identify and remove the re-
dundant nodes in the augmented query.

� Garbage Collection Phase: Remove all temporary
nodes added by the first step.

3. Identify and Remove Redundant Nodes

3.1. Algorithm

In the previous section, we have presented the general
idea for TPQ minimization. Readers may already notice
that the first and the third phase of the algorithm do not
affect the core process of minimization (i.e., the second
phase) at all. Hence, the major challenge falls on how to
identify and remove redundant nodes in a TPQ. Due to
limitation of space, we only address the core process in
paper. However, the augmentation as well as the garbage
collection can be reletively easily conducted based on the
strategy to be presented.

The algorithm to be given is in fact a dynamic pro-
gramming solution. During the process, three matrices
are maintained and computed to facilitate the discovery
of coverages. They are described as follows.

1. The nodes in a TPQ Q are numbered in postorder,
and the nodes are then referred to by their postorder
numbers.

2. The first matrix is established to keep the proper
transitive closure of Q, in which each ai j has value 0
or 1. Initially, we set ai j � 1, if j is an ancestor of i;
otherwise, ai j � 0. We also notice that aii�1� i � n�
is always set to 0 since any node i is not considered
as a proper ancestor of itself. In addition, during the
computation, if we find k covers i, each ancestor of
k is considered as an ancestor of i. Therefore, the
matrix will be dynamically changed. This matrix is
denoted by tran�Q�.

3. The second matrix is used to calculate the cover-set,
in which each ci j has value 0 or 1. If ci j � 1, it in-
dicates that the subtree rooted at the node indexed
by j covers the subtree rooted at the node indexed
by i. Otherwise, ci j � 0. This matrix is denoted by
cover�Q�.

4. The third matrix is to store the parent j of any node
k that covers i. Therefore, an entry di j � 1 indicates
that there exists some child k of j, which covers i,
i.e., cik � 1; otherwise, di j � 0. This matrix is de-
noted by parent-cover�Q�.

cover�Q� is established by running the following algo-
rithm, called Coverage. Initially, ci j � 0 and di j � 0 for
all i and j. During the execution of the algorithm, the
values of ci j’s will be changed according to Definition
2.5 while di j’s will be changed as specified above (see
item (4)). The Coverage algorithm uses two convenient
boolean functions, which are defined below:

- f �i� i�� j� – if �i� i�� is a child edge and there exists an
j� such that � j� j�� is a child edge and ci� j� � 1, return
true; otherwise, false. This function needs a constant
time by directly checking whether di� j � 1.

- g�i� i�� j� – if �i� i�� is a descendant edge and there ex-
ists an j such that ci� j� � 1 and a j� j � 1, return true;
otherwise, false. This function needs a constant time,
too, by directly checking whether ai� j � 1.

Our Coverage algorithm is given below:

Algorithm Coverage�Q�
input:Q
output: cover�Q�
begin
1. for i � 1 to n do
2. �if i � output�Q� then cii :� 1;
3. else if i is a leaf then �for j � 1 to n do if λ �i� � λ � j�

then ci j :� 1;�
4. else
5. �let i1� i2� � � � � ik be the children of i;
6. for j � 1 to n do
7. if λ �i� � λ � j� then
8. �if for each child edge �i� il� �1� l � k�,

f �i� il� j� returns true and
9. for each descendant edge �i� il� �1� l � k�,

g�i� il� j� returns true
10. then ci j :� 1;��
11. let j1� j2� � � � � jh be the nodes that cover i;
12. set dipl

� 1 for each pl , where pl is the parent of
jl �1� l � h�;

13. let �q1� � � � �qm� be a set such that each node in it is an
ancestor of some jl . Set aiql

� 1 for each
ql �1� l �m�;�

end
The above algorithm works in a bottom up way since we
search the tree along the nodes’ postorder numbers. Dur-
ing the process, ci j is determined according to the cover-
age of i�s and j�s children as well as their descendants (see
lines 7-10) while ai j and di j are changed according to the
newly changed ci j’s (see lines 11-13).

Example 1. We apply Coverage�Q� to the TPQ Q shown
in Fig.1. First, the algorithm will generate tran�Q� as
shown in Fig.3. We recall that in Q each node is referred
to by its postorder number. In addition, each ci j as well as
each di j is initially set to 0.

In each step of the outer for-loop, cover�Q�, parent-
cover�Q�, and tran�Q� will be changed in the way as il-
lustrated in Fig.4.

From cover�Q� created in step 8, we can see
cov�1� � cov�4� � �1�4��

Vol.10 No.5, 2006 Journal of Advanced Computational Intelligence 3
and Intelligent Informatics



Chen, Y., and Che, D.

Fig. 4. Sample trace.

Fig. 3. Initial tran�Q�.

cov�2� � cov�5� � �2�5��
cov�3� � �7�� and
cov�7� � �7��

Based on cover�Q� obtained by the Coverage algorithm,
Q can be minimized by doing the following with each
node v � Q:

(i) Let v1�v2� � � � �vk be the children of v;

(ii) For each vi,

if �v�vi� is a child edge and there exists vj� j �� i�
such that �v�vj� is a child edge and cviv j

� 1, then
remove the subtree rooted at vi if v j has not been
removed;

if �v�vi� is a descendant edge and there exists

Fig. 5. A minimized tree.

v j� j �� i� such that �v�vi� is a child or descendant
edge and cviv j

� 1 or aviv j
� 1, then remove the

subtree rooted at vi if v j has not been removed.

When applying these operations to the tree shown in
Fig.1, the subtree rooted at 3 will be eliminated as shown
in Fig.5.

Obviously, this process can be easily integrated into the
Algorithm Coverage�Q� by performing the above step im-
mediately after tran�Q� and parent-cover�Q� are modified
according to the newly changed ci j’s. This is because after
each inner for-loop, all the covering nodes of i is recorded
into cover�Q� and if there is any node k that is covered
by i, it must be covered by a node that covers i. Thus,
this will be certainly discovered in the subsequent com-
putation. So i and all its descendants can be removed if
possible without damaging the correctness. In terms of
the above analysis, we give the following general query

4 Journal of Advanced Computational Intelligence Vol.10 No.5, 2006
and Intelligent Informatics



Efficient Processing of XML Tree Pattern Queries

minimization algorithm.

Algorithm query-minimization�Q�
input: Q
output: minimized query – Q�

begin
1. for i � 1 to n do
2. �if i � output�Q� then cii :� 1;
3. else if i is a leaf then �for j � 1 to n do if λ �i� � λ � j�

then ci j :� 1;�
4. else
5. �let i1� i2� � � � � ik be the children of i;
6. for j � 1 to n do
7. if j exists do
8. �if λ �i� � λ � j� then
9. �if for each child edge �i� il� �1 � l � k�,

f �i� il� j� returns true and
10. for each descendant edge �i� il� �1 � l � k�,

g�i� il� j� returns true
11. then ci j :� 1;���
12. let j1� j2� � � � � jh be the nodes that cover i;
13. set dipl

� 1 for each pl , where pl is the parent of
jl �1 � l � h�;

14. let �q1� � � � �qm� be a set such that each node in it is an
ancestor of some jl. Set aiql

� 1 for each
ql �1 � l � m�;

15. if there is a sibling of i satisfying the condition speci-
fied above in (ii), remove i and its descendants;�

end
The above algorithm is a slight change to Algorithm Cov-
erage�Q�. In line 7, we check whether a node is already
deleted. If it is the case, the corresponding computation
will not be performed, leading to some time reduction. In
addition, some work in line 13 and 14 can also be saved.
In line 15, we remove i if it can be removed according to
the condition (ii) given above.

3.2. Correctness and Time Complexity
The correctness of Algorithm Coverage�Q� can be eas-

ily established. In terms of Definition 2.5, a node i is cov-
ered by another node j if it is an output node, a leaf node
have the same label as j or the following conditions are
satisfied:

(i) λ �i� � λ � j� and j is the parent of some node in
cov�i�� for each child i� of i.

(ii) λ �i� � λ � j� and j is an ancestor of some node in
cov�i��� for each descendant i�� of i.

These two conditions are exactly checked in lines 8-9 in
Algorithm Coverage�Q�. The work done in line 12 and 13
of the algorithm is just to make the checking of the above
conditions more efficient.

Now we analyze the time complexity of Algorithm
Coverage�Q�. First, we notice that each step in the inner
for-loop needs O�di� time, where di represents the outde-
gree of i. Then, the whole cost of the inner for-loop is

bounded by O
�

∑
i

di

�
�O�n�. The time for the execution

of line 12 is obviously bounded by O�n�. In addition, the
time for line 13 is also O�n� if we change tran�Q� as fol-
lows. Each time when we search the tree bottom-up from
a covering node qk �1� k�m� to find all its ancestors, we
mark each node encountered and stop whenever we meet
such a mark (made by a previous searching). So at most
O�n� nodes will be checked. From this analysis, we see
that the total cost of the algorithm is O�n2�. The time of
Algorithm query-minimization�Q� is still O�n2� since line
15 in it takes at most O�di� time.

4. Conclusion

In this paper, the minimization of TPQs in XML
database systems has been discussed. For this, two algo-
rithms were proposed: one for the recognition of match-
ing subtrees within a TPQ, and the other for the TPQ
minimization. The main idea behind the algorithm for
subtree recognition is a dynamic programming strategy to
find all coverages of nodes. It needs O�n2� time for this
task, where n is the number of nodes in a TPQ Q. Based
on this algorithm, the algorithm for the query minimiza-
tion is devised. It removes a subtree immediately once the
subtree is found to be covered by another. Thus, the query
reduction does not require any extra costs. So the entire
time complexity of our algorithms is bounded by O�n2�.
In the absence of XML constraints, it can always find the
minimal equivalent query to the original one.

References:
[1] J. McHugh, and J. Widom, “Query Optimization for XML,” Pro-

ceedings of the 25th VLDB Conference, Edinburgh, Scotland,
1999.

[2] S. Amer-Yahia etc. “Minimization of TPQs,” Proceedings of the
ACM SIGMOD International Conference on Management of Data,
pp. 497-508, 2001.

[3] P. T. Woo, “Minimizing Simple XPath Expressions,” WebDB 2001.

[4] G. Miklau, and D. Suciu, “Containment and Equivalence for an
XPath Fragment,” Proceedings of 21st ACM Symp., Principles of
Database Systems, 2002.

[5] D. Chamberlin, J. Clark, D. Florescu, and M. Stefanescu,
“XQuery1.0: An XML Query Language,”
http://www.w3.org/TR/ query-datamodel/.

[6] A. Deutch, M. Fernandex, D. Florescu, A. Levy, and D. Suciu, “A
Query Language for XML,” WWW’99.

[7] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava,
and Y. Wu, “Structural Joins: A Primitive for Efficient XML Query
Pattern Matching,” Proceedings of the 18th International Confer-
ence on Data Engineering, 2002.

[8] D. Che, and K. Aberer, “Query Processing and Optimization in
XML Structured-Document Databases,” The VLDB Journal (in
press).

[9] S. Flesca, F. Furfaro, and E. Masciari, “On the Minimization of
Xpath Queries,” Proceedings of the 29th VLDB Conference, Berlin,
Germany, 2003.

[10] D. Lee, and W. W. Chu, “Constraints-preserving Transformation
from XML Document Type Definition to Relational Schema,” Pro-
ceedings of the 19th International Conference on Conceptual Mod-
eling, pp. 323-338, 2000.

[11] C. Yu, and L. Popa, “Constraint-Based XML Query Rewriting for
Data Integration,” Proceedings of the ACM SIGMOD International
Conference, Paris, France, 2004.

Vol.10 No.5, 2006 Journal of Advanced Computational Intelligence 5
and Intelligent Informatics



Chen, Y., and Che, D.

Name:
Yangjun Chen

Affiliation:
Associate Professor, Dept. Applied Computer
Science, University of Winnipeg

Address:
515 Portage Ave. Winnipeg, Manitoba R3B 2E9, Canada
Brief Biographical History:
1982 Received B.S. degree in information system engineering from the
Technical Institute of Changsha, China
1990 Received Diploma degree in computer science from the University
of Kaiserslautern, Germany
1995 Received Ph.D. degree in computer science from the University of
Kaiserslautern, Germany
1995-1997 Worked as a post-doctor at the Technical University of
Chemnitz-Zwickau, Germany
1997-2000 Worked as a senior engineer at the German National Research
Center of Information Technology (GMD), Germany
2000 Worked as a post-doctor at the University of Alberta, Canada
2000-present Professor in the Department of Applied Computer Science,
the University of Winnipeg, Canada
Main Works:
� “On the Signature Tree Construction and Analysis,” to appear in IEEE
Transaction on Knowledge and Data Engineering.
� “Graph Traversal and Linear Binary-chain Programs,” IEEE Transaction
on Knowledge and Data Engineering, Vol.15, No.3, pp. 573-596,
May/June, 2003.
� “Magic Sets and Stratified Databases,” Int. Journal of Intelligent
Systems, John Wiley & Sons, Ltd., Vol.12, No.3, pp. 203-231, March,
1997.

Name:
Dunren Che

Affiliation:
Assistant Professor, Department of Computer
Science, Southern Illinois University Carbondale

Address:
Faner Hall 2125. SIU-Campus Carbondale, IL 62901, USA
Brief Biographical History:
1994 Received Ph.D. in Computer Science from the Beijing University of
Aeronautics and Astronautics, Beijing, China
1994-2001 Gained postdoctoral research experience from various research
Institutes, including, the Tsinghua University in China, the German
National Research Center for Information Technology in Germany, and the
Johns Hopkins University in the USA
2002-present Assistant Professor of Computer Science in the Southern
Illinois University at Carbondale, USA
Main Works:
� “Query Optimization in XML Structured-Document Databases,” The
VLDB Journal, Vol.15, 2006.
� “Efficiently Processing XML Queries with Support for Negated
Containments,” International Journal of Computer & Information Science,
Vol.6, No.2, pp. 109-120, June, 2005.

6 Journal of Advanced Computational Intelligence Vol.10 No.5, 2006
and Intelligent Informatics


