BWT Arrays and Mismatching Trees: A New Way for String Matching with *k* Mismatches

Yangjun Chen, Yujia Wu Department of Applied Computer Science University of Winnipeg

Outline

- > Motivation
 - Statement of Problem
 - Related work
- BWT Arrays A space-economic Index for String Matching
- String Matching with k Mismatches
 - Search trees
 - Mismatching information
 - Mismatching trees
- > Experiments
- Conclusion and Future Work

Statement of Problem

- String matching with k mismatches: find all the occurrences of a pattern string r in a target string s with each occurrence having up to k positions different between r and s.
 - In DNA databases, due to polymorphisms or mutations among individuals or even sequencing errors, a read (a short sample DNA sequence) may disagree in some positions at any of its occurrences in a genome.

Example:
$$k = 4$$
 aaaaacaaac pattern acacacagaagccc target

Related Work

Exact string matching

- On-line algorithms:

 Knuth-Morris-Pratt, Boyer-Moore, Aho-Corasick
- Index based:

```
suffix trees (Weiner; McCreight; Ukkonen), suffix arrays (Manber, Myers), BWT-transformation (Burrow-Wheeler), Hash (Karp, Rabin)
```

Inexact string matching

- String matching with k mismatches Hamming distance (Landau, U. Vishkin; Amir at al.; Cole)
- String matching with k differences Levelshtein distance (Chang, Lampe)
- String matching with wild-cards (Manber, Baeza-Yates)

BWT-Index

- Burrows-Wheeler Transform (BWT)
- $> s = a_1c_1a_2g_1a_3c_2a_4$ \$

$a_1 c_1 a_2 g_1 a_3 c_2 a_4$ \$ a_2 $g_1 a_3 c_2 a_4 $ a_1 c_1$ $g_1 \ a_3 \ c_2 \ a_4 \ \ a_1 \ c_1 \ a_2$ a_3 c_2 a_4 \$ a_1 c_1 a_2 a_2 $c_2 a_4 \ \ a_1 c_1 a_2 g_1 a_3$ $\$ $a_1 c_1 a_2 g_1 a_3 c_2 a_4$

Rank correspondence:

 $\underline{rk}_{F}(e) = \underline{rk}_{I}(e)$

BWT construction:

$$L[i] = \$,$$
 if $SA[i] = 1;$
 $L[i] = \$[SA[i] - 1],$ otherwise.

Backward Search of BWT-Index

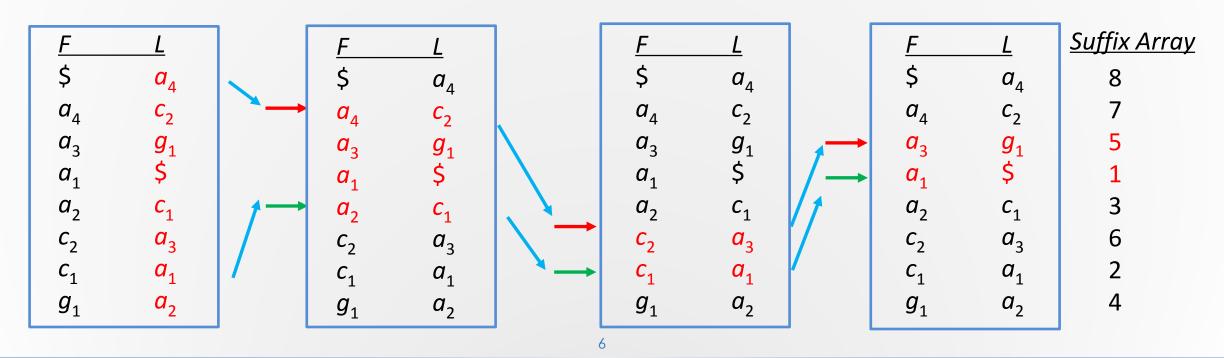
- $> s = a_1c_1a_2g_1a_3c_2a_4$ \$
- \rightarrow Search p = aca

<--- Backward Search

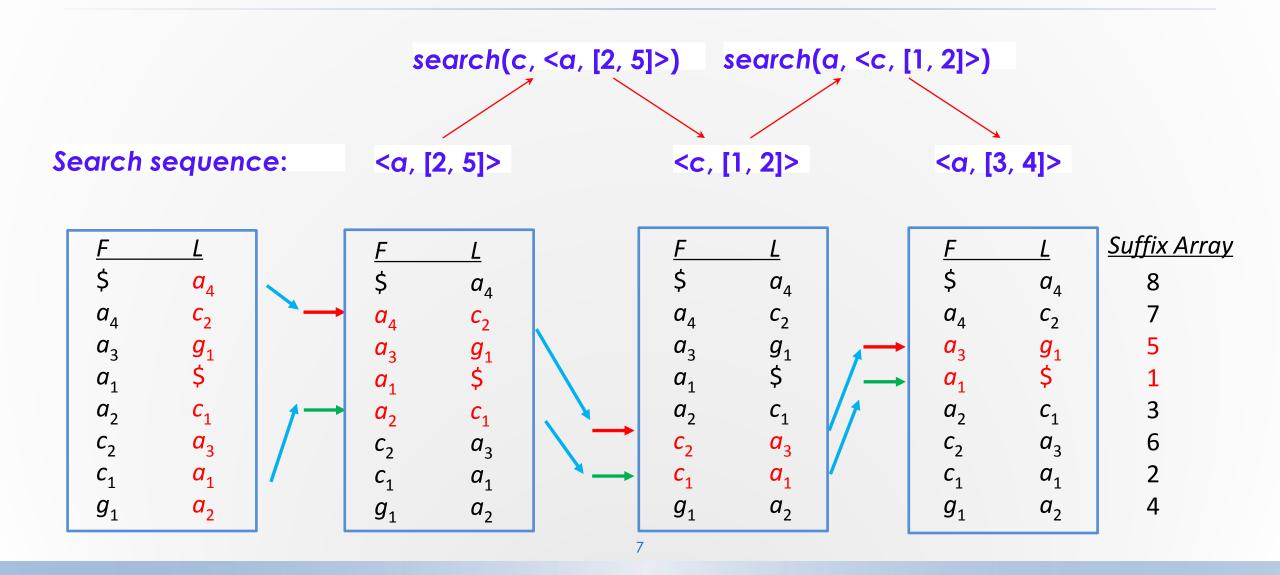
search(z,
$$\pi$$
) =
$$\begin{cases} \langle z, [\alpha, \beta] \rangle, \\ \phi, \end{cases}$$

if z appears in L_{π} ; otherwise.

Z: a character π : a range in F L_{π} : a range in L, corresponding to π



Backward Search of BWT-Index



rankAll

- Arrange $|\Sigma|$ arrays each for a character $x \in \Sigma$ such that $A_x[i]$ (the *i*th entry in the array for x) is the number of appearances of x within L[1...i].
- Instead of scanning a certain segment $L[\alpha ... \beta]$ ($\alpha \le \beta$) to find a subrange for a certain $X \in \Sigma$, we can simply look up A_X to see whether $A_X[\alpha 1] = A_{\alpha}[\beta]$. If it is the case, then α does not occur in α ... β]. Otherwise, $[A_X[\alpha 1] + 1, A_X[\beta]]$ should be the found range.

Example

To find the first and the last appearance of c in L[2...5], we only need to find $A_c[2-1] = A_c[1] = 0$ and $A_c[5] = 2$. So the corresponding range is $[A_c[2-1] + 1, A_c[5]] = [1, 2]$.

ſ	F	<u>L</u>
	\$	a_4
ı	a_4	c_2
	a_3	$oldsymbol{g_1}$ \$
ı	a_1	\$
1	a_2	c ₁
ı	c_2	a_3
ı	c_1	a_1
L	${g}_{\scriptscriptstyle 1}$	a_2

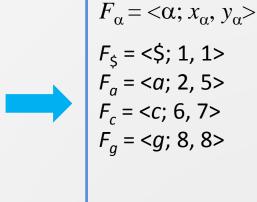
<u>A</u> 5_	A_a	A_{c}	A_{a}	\underline{A}_t	
0	1	0	0	0	
0	1	1	0	0	
0	1	1	1	0	
1	1	1	1	0	
1	1	2	1	0	
1	2	2	1	0	
1	3	2	1	0	
1	4	2	1	0	

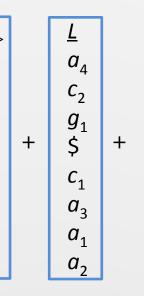
Reduce rankAll-Index Size

- F-ranks: F_{α} = <a; x_{a} , y_{a} >
- BWT array: L
- Reduced appearance array: A_{α} with bucket size β.
- Reduced suffix array: SA^* with bucket size γ .

Find a range: $top' \leftarrow F(x_{\alpha}) + A_{\alpha}[\lfloor (top - 1)/\beta \rfloor] + r + 1$ $bot' \leftarrow F(x_{\alpha}) + A_{\alpha}[\lfloor bot/\beta \rfloor] + r'$ $r \text{ is the number of } \alpha \text{'s appearances within }$ $L[\lfloor (top - 1)/\beta \rfloor \beta ... top - 1]$ $r' \text{ is the number of } \alpha \text{'s appearances within }$ $L[\lfloor bot/\beta \rfloor \beta ... bot]$

<u>i</u>	F	L	<u>rk</u> ,	<u>SA</u>
1	\$	a_4	1	8
2	a_4	c_2	1	7
3	a_3	g_1^-	1	5
4	a_1	\$	-	1
5	a_2	c_1	2	3
6	c_2^-	a_3^-	2	6
7	c_1^-	a_1	3	2
8	$g_{_1}$	a_2	4	4





<u>A</u> \$_	A_a	A_c	A_q	\underline{A}_t
0	1	0	0	0
0	1	1	0	0
0	1	1	1	0
1	1	1	1	0
1	1	2	1	0
1	2	2	1	0
1	3	2	1	0
1	4	2	1	0

Search Trees

pattern: r = tcaca; target: s = acagaca; k = 2.

r:
$$V_0 < -$$
, $[1, 8] >$

r[1] = f
 $V_1 < \alpha$, $[1, 4] >$
 $V_2 < c$, $[1, 2] >$
 $V_3 < g$, $[1, 1] >$

r[2] = c
 $V_4 < c$, $[1, 2] >$
 $V_5 < g$, $[1, 1] >$
 $V_6 < \alpha$, $[2, 3] >$
 $V_7 < \alpha$, $[4, 4] >$

r[3] = a
 $V_8 < a$, $[2, 3] >$
 $V_9 < a$, $[4, 4] >$
 $V_{10} < g$, $[1, 1] >$
 $V_{11} < c$, $[2, 2] >$

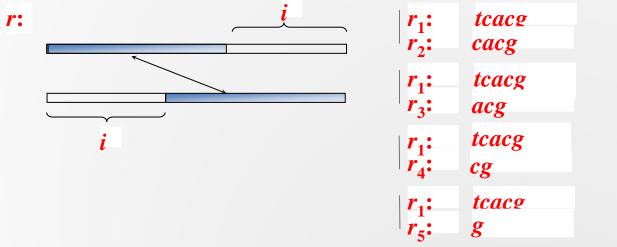
r[4] = c
 $V_{12} < g$, $[1, 1] >$
 $V_{13} < c$, $[2, 2] >$
 $V_{14} < a$, $[4, 4 >]$
 $V_{15} < a$, $[3, 3] >$

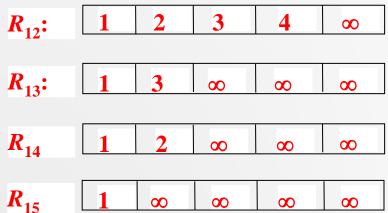
r[5] = a
 $V_{16} < a$, $[4, 4] >$
 $V_{17} < a$, $[3, 3] >$
 $V_{18} < c$, $[2, 2] >$
 $V_{19} < 5$, $[-, -] >$
 $V_{19} < 5$, $[-, -] >$
 $V_{11} < 0$

Mismatching information

R – mismatching table for r with |r| = m.

 R_{ij} – containing the positions of the first 2k + 1 mismatches between r[i ... m - q + i] and r[j ... m - q + j], where $q = \max\{i, j\}$, such that if $R_{ij}[l] = x \ (\neq \infty)$ then $r[i + x - 1] \neq r[j + x - 1]$ or one of them does not exist, and it is the l-th mismatch between them.





Derivation of mismatching information

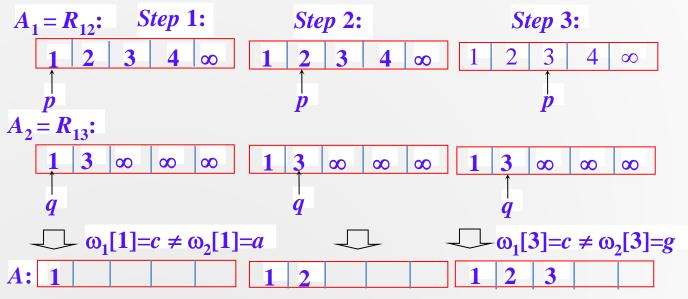
We store only part of mismatching information, specifically: R_{12} , ..., R_{1m} , while all the other mismatching information will be dynamically derived.

Derive the mismatching information between

$$\omega_1 = r[2..4] = cacg and$$

$$\omega_2 = r[3 .. 5] = acg$$

from R_{12} and R_{13} .

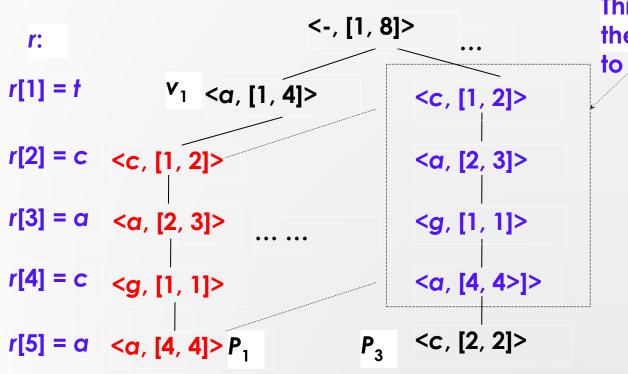


Algorithm for Derivation of mismatching information

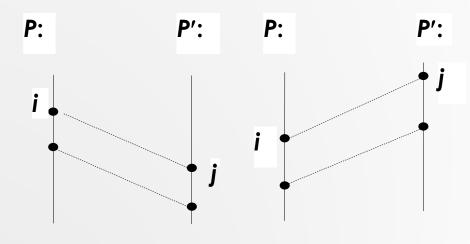
- Let ω , ω_1 and ω_2 be three strings. Let A_1 and A_2 be two arrays containing all the positions of mismatches between ω and ω_1 , and ω and ω_2 , respectively.
- □ Create a new array A such that if A[i] = j ($\neq \infty$), then $\omega_1[j] \neq \omega_1[j]$, or one of them does not exists. It is the *i*th mismatch between them.

```
    p := 1; q := 1; l := 1;
    If A<sub>2</sub>[q] < A<sub>1</sub>[p], then {A[l] := A<sub>2</sub>[q]; q := q + 1; l := l + 1;}
    If A<sub>1</sub>[p] < A<sub>2</sub>[q], then {A[l] := A<sub>1</sub>[p]; p := p + 1; l := l + 1;}
    If A<sub>1</sub>[p] = A<sub>2</sub>[q], then {if ω<sub>1</sub>[p] ≠ ω<sub>2</sub>[q], then {A[l] := q; l := l + 1;} p := p + 1; q := q + 1;}
    If p > |A<sub>1</sub>|, q > |A<sub>2</sub>|, or both A<sub>1</sub>[p] and A<sub>2</sub>[q] are ∞, stop (if A<sub>1</sub> (or A<sub>2</sub>) has some remaining elements, which are not ∞, first append them to the rear of A, and then stop.)
    Otherwise, go to (2).
```

Derivation of mismatching information for paths in a search tree.

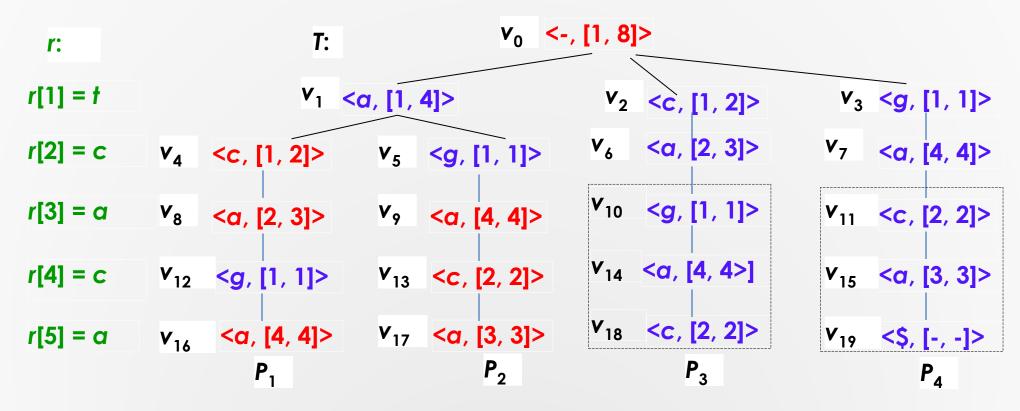


This part of P_3 will not be created. We derive the mismatching information for it according to P_1 and R_{21} .

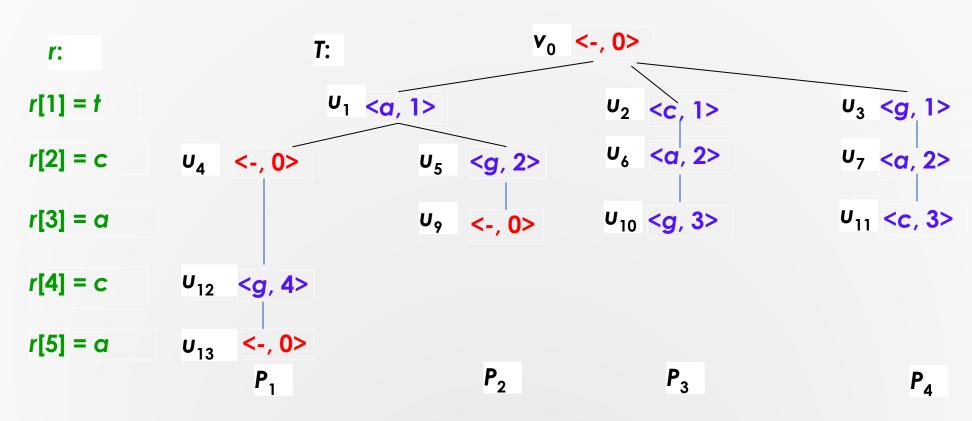


Mismatching trees

In a search tree, we distinguish between matching and mismatching nodes.



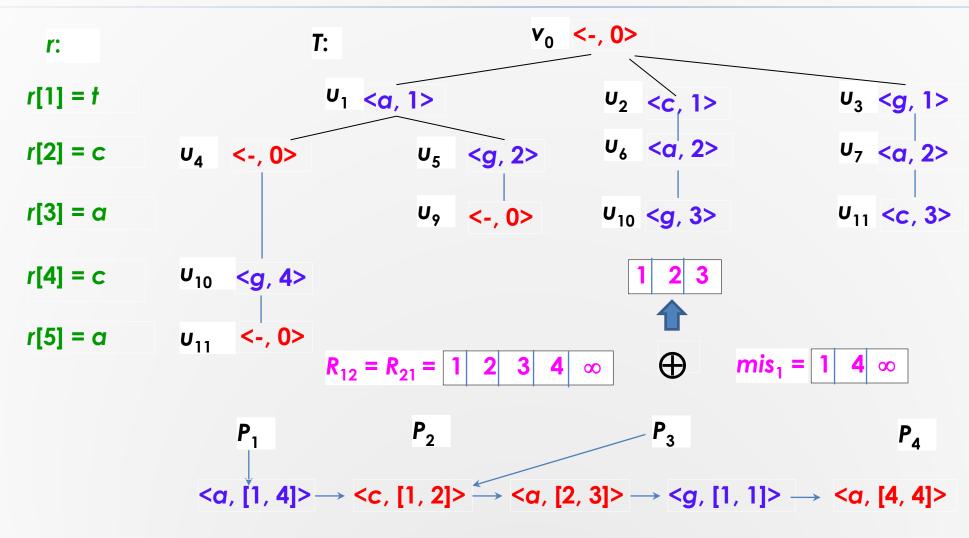
Mismatching trees



> Algorithm

- Mismatching tree generation
- Derivation of mismatching information for paths

Derivation of Mismatching Information



Generation of mismatching trees

- In order to generate a mismatching tree D, we will use a stack S to control the process, in which each entry is a quadruple (v, j, κ, u) , where
 - v a node inserted into the hash table.
 - j j is an integer to indicate that v is the jth node on a path in T (counted from the root with the root as the 0th node).
 - κ the number of mismatches between the path and r[0..j] (recall that r[0] = '-').
 - u the parent of a node in D to be created for v.

Mismatching tree generation

- Each time an entry $e = (v, j, \kappa, u)$ with $v = \langle x, [\alpha, \beta] \rangle$ is popped out from S, we will check whether x = r[j].
 - If x = r[j], we will generate a node $u' = \langle x, j \rangle$ and link it to u as a child.
 - If $x \neq r[j]$, we will check whether u is a node of the form <-, 0>. If it is not the case, generate a node u' = <-, 0>.
 - Otherwise, set *u'* to be *u*.
 - Using search() to find all the children of $v: v_1, ..., v_l$. Then, push each $(v_i, j + 1, \kappa', u')$ into S with κ' being κ or $\kappa + 1$, depending on whether $y_i = r[j + 1]$, where $v_i = \langle y_i, [\alpha_i, \beta_i] \rangle$.

Mismatching information derivation for paths

- As with the basic process, each time a node $v = \langle x, [\alpha, \beta] \rangle$ (compared to r[j]) is encountered, which is the same as a previous one $v' = \langle x', [\alpha', \beta'] \rangle$ (compared to r[i]), we will not create a subtree in T in a way as for v', but create a new node u for v in D (mismatching tree) and then go along p(v') (the link associated with v') to find the corresponding nodes u' in D and search D[u'] in the breadth-first manner to generate a subtree rooted at u in D by simulating the merge operation discussed in Subsection B.
- In other words, D[u] (to be created) corresponds to the mismatch arrays for all the paths going though v in T, which will not be actually produced.

Mismatching information derivation for paths

- To this end, a queue data structure Q is used to do a breadth-first search of D[u'], and at the same time generate D[u]. In Q, each entry e is a pair (w, γ) with w being a node in D[u'], and γ an entry in R_{ij} . Initially, put $(u', R_{ij}[1])$ into Q, where $u' = \langle x, i \rangle$. In the process, when e is dequeued from Q (taken out from the front), we will make the following operations (simulating the steps in merge()):
- Let $e = (w, R_{ij}[I])$. Assume that $w = \langle z, f \rangle$ and $R_{ij}[I] = val$. If $\langle z, f \rangle = \langle -, 0 \rangle$, then create a copy of w added to D[u]. If w is not a leaf node, let $w_1, ..., w_h$ be the children of w and enqueue $(w_1, R_{ij}[I]), ..., (w_h, R_{ij}[I])$ into Q (append at the end) in turn. If $\langle z, f \rangle \neq \langle -, 0 \rangle$, do (2), (3), or (4).
- If f < i + val 1, add $\langle z, f i + j \rangle$ to D[u]. If w is not a leaf node, enqueue $(w_1, R_{ij}[I])$, ..., $(w_h, R_{ij}[I])$ into Q.

Mismatching information derivation for paths

- If f = i + val 1, we will distinguish between two subcases: $z \neq r[j + val 1]$ and z = r[j + val 1]. If $z \neq r[j + val 1]$, we have a mismatching and add a node $\langle z, j + val 1 \rangle$ to D[u]. If z = r[j + val 1], create a node $\langle -$, $0 \rangle$ added to D[u]. (If its parent is $\langle -$, $0 \rangle$, it should be merged into its parent.)
- If w is not a leaf node, enqueue $\langle w_1, R_{ij}[I+1]\rangle$, ..., $\langle w_h, R_{ij}[I+1]\rangle$ into Q.
- If f > i + val 1, we will scan R_{ij} starting from $R_{ij}[I]$ until we meet $R_{ij}[I']$ such that $f \le i + R_{ij}[I'] 1$. For each $R_{ij}[g]$ ($I \le g < I'$), we create a new node $< r[j + R_{ij}[g] - 1]$, $j + R_{ij}[g] - 1>$ added to D[u]. Enqueue < w, $R_{ij}[I'] >$ into Q.

Experiments

- Compare 4 different approaches
- BWT-based [34] (BWT for short),
- Amir's method [2] (Amir for short),
- Cole's method [14] (Cole for short),
- Algorithm A discussed in this paper (A() for short)

Experiments

Test Environments:

- Implementation in C++, compiled by GNU make utility with optimization of level 2
- 64-bit Ubuntu operating system
- run on a single core of a 2.40GHz Intel Xeon E5-2630 processor with 32GB RAM

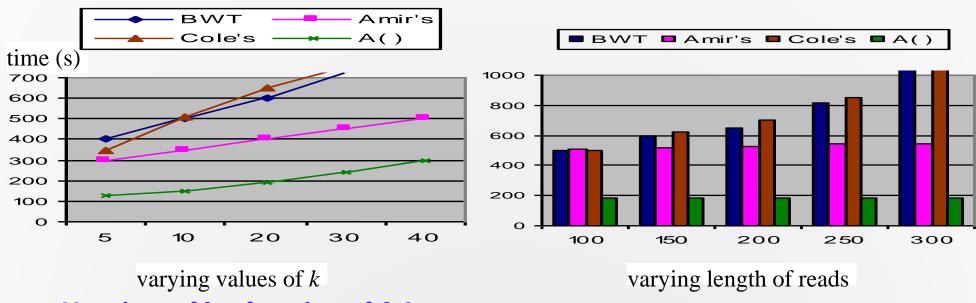
Experiments

TABLE I. CHARACTERISTICS OF GENOMES

Genomes	Genome sizes (bp)
Rat chr1 (Rnor_6.0)	290,094,217
C. merolae (ASM9120v1)	16,728,967
C. elegans (WBcel235)	103,022,290
Zebra fish (GRCz10)	1,464,443,456
Rat (Rnor_6.0)	2,909,701,677

Tests with Real Data

> Tests with varying length of reads (over Rat genome)

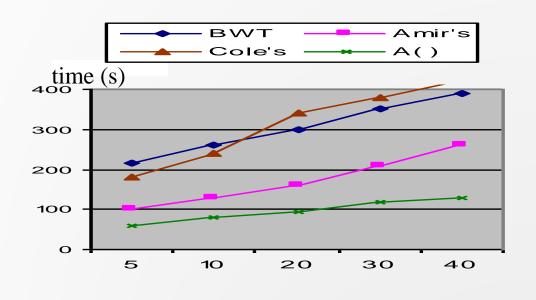


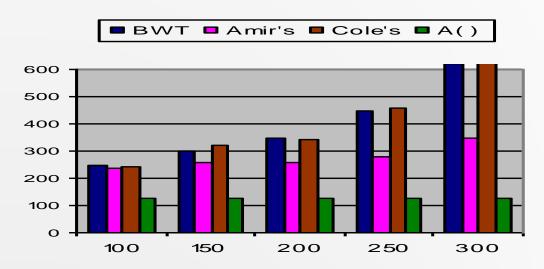
Number of leaf nodes of S-trees

k/length-of-read	5/50	10/100	20/150	30/200
No. of leaf nodes	2K	0.7M	16.5M	102M

Tests with Real Data

> TESTS WITH VARYING LENGTH OF READS (OVER Zebra fish)





varying values of k

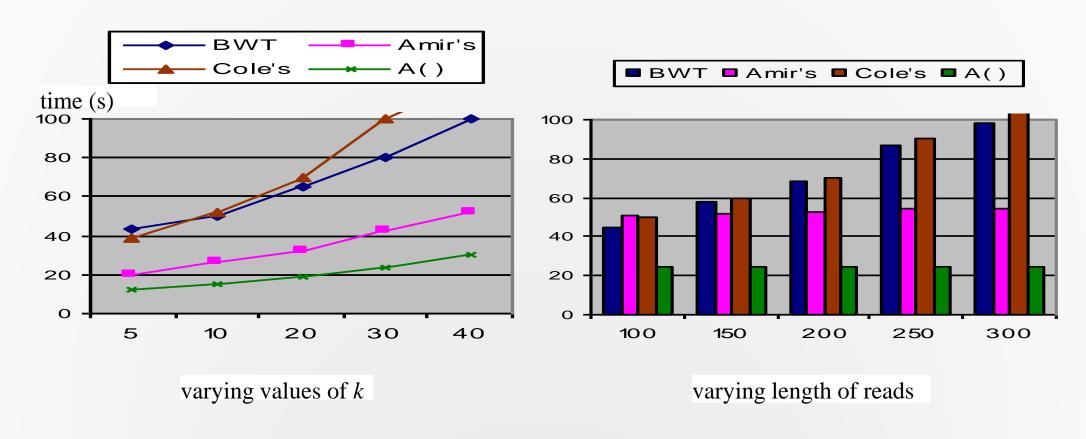
varying length of reads

Number of leaf nodes of S-trees

k/length-of-read	5/50	10/100	20/150	30/200
No. of leaf nodes	0.7K	0.30M	9.2M	89M

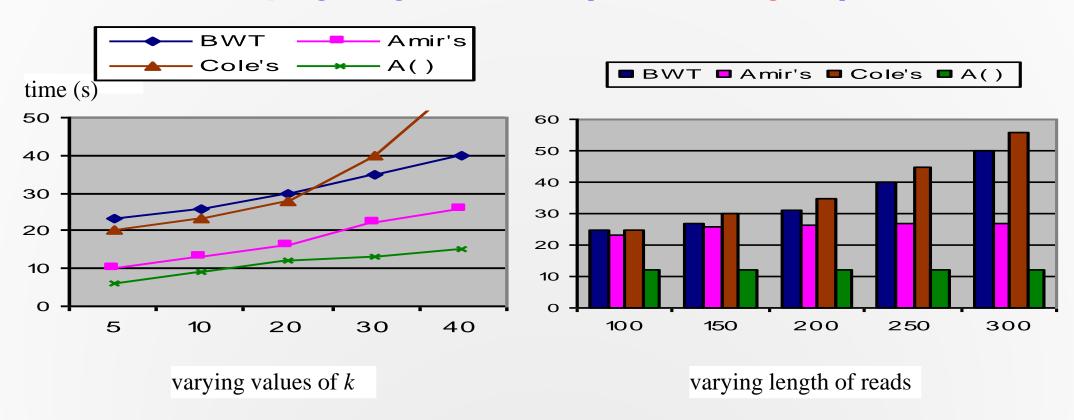
Tests with real Data

> Tests with varying length of reads (OVER Rat chr1)



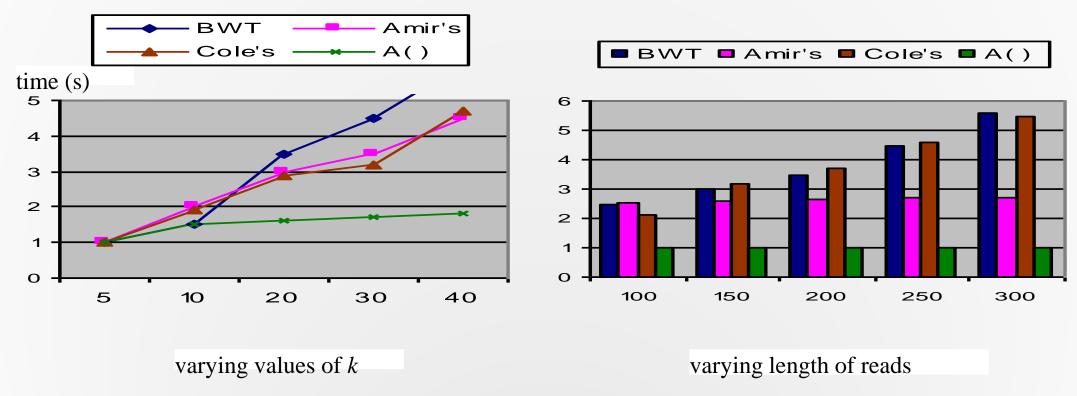
Tests with Real Data

> Tests with varying length of reads (OVER C. elegans)



Tests with Real Data

> Tests with varying length of reads (over C. merlae)



Conclusion and Future Work

> Main contribution

- Combination of derivation of mismatching information and BWT indexes for *k* mismatching problem
- Concept of mismatching trees
- Extensive tests
- > Future work
 - String matching with k differences
 - String matching with don't care symbols

Thank you!